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2 J. Burkart and K. Lazebnik

1. Introduction

The Julia set of an entire function f : C — C, denoted by [J(f), is the set of points at
which the dynamical system ( f, C) behaves chaotically. The behavior of f near oo plays an
important role, and one has the following dichotomy. Either oo is a removable singularity,
in which case, f is a polynomial, or co is an essential singularity, in which case, f is a
transcendental entire function.

When f is a polynomial, 7 (f) is usually small in the sense of Hausdorff dimension.
Hausdorff dimension is the most well-studied measure of size for Julia sets, and this is
the measure we will study in this manuscript. For instance, one has that the quadratic
polynomial p.(z) := z2 + ¢ satisfies dim(J (p¢)) < 2 for generic ¢ € C (see for instance
[Urb94]), although there exist parameters c satisfying dim(.7 (p.)) = 2 [Shi98] and even
area(J (p¢)) > 0 [AL22, BC12].

However, when f is a transcendental entire function, the generic situation is that
dim(7 (f)) = 2. For instance, in [Mis81], it was shown that 7 (e*) = C, and in [McM87],
it was shown that functions in certain standard exponential and sine families have Julia
sets of dimension 2. Thus, in contrast with the polynomial setting, the difficulty in the
transcendental setting is to find Julia sets of small dimension, a problem whose history we
overview briefly now.

In [Bak75], it was proven that the Julia set of any transcendental f must contain
a non-trivial continuum and, hence, we always have dim(J(f)) > 1. In the class of
transcendental f with bounded singular set, denoted B, it was shown in [Sta91, Sta96,
Sta00] that

{dim(F(f)) : f e B} =(1,2],

(see also [AB20]). Finally, in [Bis18], it was proven that outside of the class B, the lower
bound of 1 in the inequality dim(7 (f)) > 1 is actually attained (see also [Bur21, Zha24]).
Our main result (see Theorem 1.1 below) also achieves this lower bound, but by different
methods and with different resulting dynamical properties that we now discuss.

The Fatou set of the function in [Bis18] is in fact completely described: it consists of
a collection of multiply connected wandering domains, abbreviated m.c.w.d. This class of
Fatou components has been well studied [Ber1l, BRS13, BRS16, BZ11, Fer22, KS08,
RS08, RS19] and appears in several different contexts in transcendental dynamics. An
m.c.w.d. U of [Bisl8] consists of a topological annulus minus countably many discs
that accumulate only on the outer boundary of U (see Figure 1(a)). This topological
structure is aptly termed infinite outer connectivity (defined precisely in [BRS13]). The
Fatou components of the function in our Theorem 1.1 are also all m.c.w.d.s; however, they
have infinite inner connectivity (see Figure 1(b)), and we prove they have the following
more intricate topological structure.

THEOREM 1.1. There exists a transcendental entire function f : C — C satisfying:

(1 dim(T(f) =1,
(2) each Fatou component of f is a m.c.w.d. of infinite inner-connectivity; and
(3) each m.c.w.d. of f has uncountably many singleton complementary components.
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Transcendental Julia sets of minimal Hausdorff dimension 3

FIGURE 1. Panels (a) and (b) illustrate the concept of infinite outer-connectivity and infinite inner-connectivity,
respectively. Panels (a) and (b) also accurately describe the topology of the m.c.w.d.s in [Bis18] and Theorem 1.1,
respectively. As seen, the structure in panel (b) is more intricate.

Part (3) of Theorem 1.1 answers a question of [RS19] (see [RS19, Question 9.5]) on
the structure of m.c.w.d.s. It is left open whether part (3) in fact must always occur
for an m.c.w.d. of infinite inner-connectivity. Another intriguing question suggested by
Theorem 1.1 is whether there exist transcendental f with dim(J(f)) = 1 and doubly
connected m.c.w.d.: this is closely related to [Bis18, Question 7].

Much of the contribution of the present manuscript is in providing an alternative
approach to the breakthrough result of [Bis18] (part (1) in Theorem 1.1), an approach
that the authors find conceptual and readily adaptable to other settings. The function
f of [Bis18] is defined by an infinite product that is roughly designed to behave as a
monomial on large portions of C. The technical work in describing the dynamics of f
relies on formula-heavy estimates of the behavior of f by certain terms in the infinite
product.

The approach in the present manuscript is similar in that it constructs f that is
designed to behave as a monomial on large portions of C; however, this is done by
quasiconformal methods. Namely, a quasiregular 4 : C — C is constructed, so that by the
measurable Riemann mapping theorem, there exists a quasiconformal ¢ : C — C such
that f := h o ¢! is the entire function of Theorem 1.1. One has freedom in prescribing
the dynamics of 4, and so the difficulty of describing the dynamics of f becomes a matter
of estimating the ‘correction’ map ¢, rather than on formula estimates as in [Bis18]. The
details of this quasiconformal approach were detailed in [BL.23], and has other applications
besides that described in the present manuscript.

The advantages of the quasiconformal approach are usually technical in nature. For
instance, a key aspect of the proof of Theorem 1.1 is in understanding the location of
critical values of . In [Bis18], this requires a delicate estimate involving the infinite product
formula. In the quasiconformal approach, this is almost trivial since the critical values of
h can be prescribed freely, and f := & o ¢! and h share the same critical values. Another
central difficulty in the proof of Theorem 1.1 is showing that the outer boundary of an
m.c.w.d. of f is a C! curve (hence, one-dimensional). In both approaches, this involves
studying pullbacks of circles. However, only in the quasiconformal approach is there an
explicit parameterization (in terms of ¢) for the pullback, and this provides a different
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4 J. Burkart and K. Lazebnik

FIGURE 2. Definition of Ak, By for all k € Z. The annuli Ay are shaded light gray and the By are white. Also
shown are Vi C Aj and the ‘petals’ P; C Aj (in dark gray).

approach to the question of the precise degree of regularity for these curves. We will
discuss further technical advantages of quasiconformal methods throughout the paper.

We will outline the main arguments in the proof of Theorem 1.1 and the structure of the
paper in §2, before filling in the details in §§3—11. Appendix A contains many classical
theorems and definitions that we will make use of throughout the paper, along with a proof
of an important lemma we need in §6.

2. Outline of the proof
We appeal to the main theorem of [BL23] (described in Appendix A) to produce the
quasiregular function 2 : C — C as described in § 1. The map & roughly behaves as z +— 7"
for increasing n as z — oc. To be able to prove dynamical properties about f :=h o ¢!,
we need estimates on |¢ (z) — z|; these are proven in §3.

In §4, we define a sequence of annuli Ak, By for k > 1 (see Figure 2), and we prove the
following mapping behavior. First, we show that

f(Bi) C Biy1.

Thus, each By is contained in an m.c.w.d. of f. We define subannuli V; C Ay and prove
that

A1 C f(Vi).

We also prove in §6 that there are balls P; C A such that P; N Vi = @, which satisfy

Ar+1 C f(P)),

and f|p; is conformal.

The definition of the annuli Ag, By are extended to negative indices k by pulling back
under f (see Figure 2). Together, the annuli Ay and Bj cover C except for a Cantor set,
which we denote by E. This Cantor set E is the Julia set of the polynomial-like mapping
obtained by restricting the definition of f to a subdomain of C, and we prove in §5 that
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Transcendental Julia sets of minimal Hausdorff dimension 5

dim(E) « 1. Similarly, denoting by E’ the set of points that map to E, it is readily deduced
that dim(E’) = dim(E).
As the By are contained in wandering components, we have that

J(f)\E’C{ze(C:f"(z)eUAkforalln}. 2.1)
keZ
We denote the set defined on the right-hand side of equation (2.1) by X, so that estimating
dim(7 (f)) reduces to estimating dim(X).
We partition X into two sets. For z € X, we say that z moves forwards if z € Ay and
f@) €A1 If z € Ap and f(2) € A for j < k, we say that z moves backwards. We
denote by Y the set of z € X that move backwards infinitely often, and Z := X \ Y so that

X=YuZz

In §8, we construct a sequence of covers C,, of Y, such that C,, covers all those points
that move backwards m times. This is done by simply pulling back the annuli A; under
iterates of f in regions where f is conformal. Standard distortion estimates apply when
estimating the diameters of elements of C,,, and we deduce that dim(Y) « 1.

The set Z is further partitioned into those points that eventually always stay in (_J; Vi,
denoted by Z;, and Z; := Z \ Z;. The dimension of [J(f) is supported on Z;. We prove
in §9 that Z; consists of Jordan curves and we prove in § 10 that these curves are in fact C 1
(hence, have dimension 1). We prove in §11 that dim(Z,) = 0, and Z; is precisely the set
of singleton complementary components in part (3) of Theorem 1.1.

3. Quasiconformal mapping estimates

In this section, we begin the proof of Theorem 1.1 by first applying Theorem A.17 (see
Appendix A) to a specific sequence (M j)?o=1’ (r j)?ozl that we now define. This yields
an entire function f, so that f o ¢ = h is the quasiregular function described in §2. As
discussed, we have freedom in describing the mapping behavior and dynamics of the
quasiregular map , but transferring this behavior to the entire function f :=h o ¢!
requires estimates on |¢ (z) — z|, and this is the main focus of this section.

Definition 3.1. We define an entire function f and a quasiconformal map ¢ : C — C by
applying Theorem A.17 to the parameters:

Mj:=2r:=16,c1:=1 and rjy:=c; - (3rp™ forj>2. @30
We will need some rough estimates on how fast () o1 grows and (¢ j);?il decays. We
first show that by assuming (".i)?il satisfies some mild growth conditions, we can show

that (r]Mj )?‘;1 grows much faster than (c j)‘j’.‘;l decays (see Table 1).

LEMMA 3.2. Assume for all k > 3 that \/ri > r;j forall j < k. Then, we have

k—1
My, My, | | —M; My _1+1
rk cCk = rk . rj J Z rk (32)

j=1
forall k > 3.
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6 J. Burkart and K. Lazebnik

TABLE 1. The values of My, ¢k, and ry for small values of k.
The sequence My increases exponentially and ry increases
super-exponentially, while ¢; decays super-exponentially.

k 0 1 2 3 4
M 1 2 4 8 16
ck undefined 1 278 932 oI
i 0 16 64 212 236

Remark 3.3. We will prove in Lemma 3.4 that the assumption of Lemma 3.2 does indeed
hold.

Proof. This is just a calculation, making use of the fact that M; — M;y; = —M; and
2M; = M4 forall j > 0, along with the definition of ¢, given by equation (A.15). When

k = 1, we verify equation (3.2) by checking that er[' =cp- er[OH. For the case of k > 2,
we verify equation (3.2) by computing
d M;_\—M
My — M j=1=M;
rp o Ck =T 'Hrj—l
j=2
k
_ My —Mj_
= 11T
j=2
k
M, -Mj
Zrkk'l_[rk ! (\/azrj)
j=2
k=2
_ M T 2= M)
=T
MM +1 M +1
ry =r, .
In the last line, we used the fact that ZI;;% Mj=M;_;—1. ]

LEMMA 3.4. The sequence (1)}, defined in Definition 3.1 satisfies:

(1 ra>ri;

(2) forallk =2, \/riy1 > 1.

In particular, (ry)R2., is an increasing sequence, and if k > 2, we have \/ri {1 > r; for all
j=1...,k

Proof. The claim (1) is just a calculation:

M,
r2=c1(%1> =82 =64>16=r,. (3.3)

We will prove the second claim by induction. First, we have
r M,
ry = C2<E> =27832%%* =212 = 642 (3.4)

Therefore, /r3 > rp > ry.
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Transcendental Julia sets of minimal Hausdorff dimension 7

Suppose that for some k > 3, we have /ry > r; forall j =1,...,k — 1. Then, by
Lemma 3.2,

Min— My_1+1— My_o+1 My_y, — My_p+1
ripr = cxrpi 2 Mk > M= e Moot M2 6= 5 M2t (35
Since k > 3, we have M;_» > M| = 2, so that
2
Tk41 = Tk - T 3.6)

Therefore, by the inductive hypothesis, we must have ,/rii1>ry >r; for all
j=1,...,k— 1. This proves the claim. O

We record the following important inequalities that follow from the proof of Lemma 3.4.

COROLLARY 3.5. We have the following inequalities. For all k > 3,

e > Mt g 3.7
rigr > 27 Mep Mot (3.8)
Forall k > 5, we have
rear > 2% = 2Mc  ang (3.9)
reet > drf. (3.10)

Proof. Most of the work has already been done in the proof of Lemma 3.4. We first prove
equation (3.7). When k > 2, By Lemma 3.4, we have /ryy1 > r; forall j =1,... k.
Therefore, by Lemma 3.2, we obtain equation (3.7).

Equation (3.8) follows immediately. Indeed, the first two lines of equation (3.5) yields

Mi—1+15—M,
Tkl =1y 27k,

when k > 3.
When k > 5, we can refine the estimate ryy1 > r,iw k-2t from equation (3.5). We note
that by Lemma 3.4, we have ry > 16 for all k > 5. Therefore,

My _>+1
rrgr = g S qeMier = M2 — oMk

Finally, since ry > 16 for all k > 1, we certainly obtain equation (3.10) from equation (3.6).
O

Corollary 3.5 concludes our discussion of some technical relations and inequalities
we will need for the sequences (rj);?ozl, (cj)j?';l. As discussed in §1, one of the key
advantages of the quasiconformal approach (over the infinite-product approach) is the
relative simplicity of deducing the singular value structure of the constructed function.
This is summarized in the following proposition. Although equations (3.11) and (3.12)
are slightly technical, they simply say the critical points are radially equidistributed on
each circle |z| = r;, and the zeros are equidistributed on a slightly larger circle. Recall
from Definition 3.1 that f is the entire function obtained by applying Theorem A.17 to the

parameters in equation (3.1).
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8 J. Burkart and K. Lazebnik

PROPOSITION 3.6. Let (Mj)c]?il, (rj)?o:l and (cj);?‘;l be as in Definition 3.1. Then, the

only critical points of f are 0 and the simple critical points given by

¢<rj -exp (l%ﬁ» (3.11)
J

where j € Nand 1 < kj < M. The only singular values of f are 0 and the critical values

(¢ r;‘/lj)(j?‘;o. The zeros of f are given by

0 and @ ln ;. CGhi-Dm 3.12)
an ri-exp|-— —, .
P T T g
where j € Nand 1 <k; < M;. All of the zeros of f are simple except for O that is of
multiplicity 2.
Proof. This follows immediately from [BL.23, Proposition 3.21]. O

We now move on to show how to modify f near the origin so that instead of being
modeled by a function of the form z”, it is modeled by a polynomial with a Cantor repeller
Julia set. This will be advantageous because z”* has a Julia set of dimension 1, whereas the
constructed Cantor repeller will have dimension < 1.

The main idea is that a monic, degree M polynomial p(z) behaves like z > z
near oo. We will show how to interpolate between p(z) and z — zM* in a way that is

My

quasiconformal with dilatation bounded independent of k. Our strategy closely follows
[FJL19, §3].

Definition 3.7. We define

exp |1+ if0<x <1,
b(x) = p( x2—1)
0 ifx >1,
and, for r > 1, the smooth map
1 ifx<r-—1,
@) =3bx—-r+1) ifr—1<x<r,
0 ifx>r.

We also set n,(z) =7, (]z]).

PROPOSITION 3.8. Let gr(z) := crzMe 4+ 12l (2) and wy := (8k)z/(8k)z. Then, there
exists K’ € Nwith K’ > 5 such that

sup |lukllLoecy < 1. (3.13)
k>K’

Proof. We abbreviate 1(z) := 1, (z). We use a similar strategy as in the proof of [FJL19,
Lemma 3.1], and the initial steps of the proof are exactly the same. We have

Mi—1

(8k)z(z) = Mycpz +rn(z) +rzny(z) and  (gr)z(z) = rznz(z).

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



Transcendental Julia sets of minimal Hausdorff dimension 9

Solving b”(x) =0, one sees that |b'(x)| has a maximum at xo = (1/3)!/* with
|’ (x0)| < e, so that |b'(x)| < e forx € [0, 1]. Thus, |(7)'(x)| < e for all x > 0. Using the
chain rule again, we have

8|z| e 8|z| e
‘—(z) =Mz - 5 ‘—(z) =1 '(zDI - 5
where we have used the fact that
a|z| Z d|z| b4
— =— and — = —.
0z 2|z| 07 2|z|
Hence,
(8r)z(2) ri|zle/2
(€)@ | 7 IMrcrlz|Me=1 — ri|n(2)| — relzle/2|
e/2
(3.14)

o IMyexlzI M2 e — (@)1 /2] — e/2]

Let us consider the right-hand side of equation (3.14) for |z| = r; — 1, recalling My := 2*.

We have that
cxlz| M2 1
= - 1
i ri(re — 1)? lj[z rM M’ ) ”

k—1

_ 1 (e — D% (= D¥ (e — 1?

rk(rk - 1)2 r12 . r222 ..... r]?k_]l
2 3 4 k—1
_ =D k=D =D .- (re — 1)?
Tk rl2 r222 }’323 ”4%4 ..... r,?k:ll

By Lemmas 3.4 and 3.5, we may deduce for all k > 5,

re — 1> 2r-1, (3.15)
-1 23
(”‘—2)3 >1, and (3.16)
22
(re — D? > 1y (3.17)
Combining the above inequalities, it follows that when |z| > r; — 1, we have
M —2
Gl (3.18)
Ik
Thus, it follows from equation (3.14) that in fact |(gx)z/(gx);| — 0 as k — oo. U

Definition 3.9. Let f, ¢ be as in Definition 3.1, and & := f o ¢. We define a family of
entire functions fy := hy o ¢;1 as follows. Let

gn(z) if|z] <7,
h(z) if |z| > rn,

hn(2) :=

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



10 J. Burkart and K. Lazebnik

and ¢ : C — C is the quasiconformal mapping such that:
(1)  fn is holomorphic;

) ¢n(0) =0;and

(3) l¢n(@)/z—1] — 0asz — oo.

The fact that ¢y may be normalized so that condition (3) is satisfied follows from an
argument similar to [BL23].

Remark 3.10. We will always assume that N > 5. Note that for |z| =ry, we have
gn(z) = h(2).

Remark 3.11. 'We will show that for all sufficiently large N, the function f satisfies the
conclusions of Theorem 1.1. We will occasionally omit the subscript N and simply write f
when convenient.

PROPOSITION 3.12. For ¢y as in Definition 3.9, supy K(¢n) < 00.

Proof. By Proposition 3.8, we have supy K(¢nl{z<ry})) <00 and, by [BL23,
Proposition 4.6], we have supy K(dnljjzj>ry}) < 00. O

n [BL23], the conclusion |¢(z)/z — 1] 222 0 of Theorem A.17 is deduced by an
application of the Teichmiiller—Wittich—Belinskii theorem (see [LV73, Theorem 6.1]).
We will need a more quantitative statement for the purposes of proving Theorem 1.1,
in particular, when we prove that the m.c.w.d.’s of Theorem 1.1 have smooth boundary.
This quantitative statement is given in Theorem 3.14 below. The proof follows from the
main arguments of [Shil8]. Indeed, Theorem 3.14 is quite analogous to the main result of
[Shil8], but we will need to assume less than in [Shil8], and accordingly, we will obtain a
weaker conclusion, which will nevertheless suffice to prove Theorem 1.1.

Definition 3.13. For p > 1and 0 < r < 1, we will denote
-1 1
wp(r) = (L)P Viosleer™, (3.19)

THEOREM 3.14. Let y : C — C be a quasiconformal mapping, i := vz /., and suppose
that

dx d
1(r) = / Lz al 2y is finite and has order O (w1(r)) asr (0.  (3.20)
{1z|<r} 1 —|ul= |zl

Then, i is conformal at 0 and, for any p > 2, we have
¥(2) =v(0) + ¢'(0)z + O(wp(lz])) asz— 0. (3.21)

Proof. By [Shil8, Lemma 10], we have that for any p > 2 and 0 < p < 1, there exists
C’ = C/(p, p) such that if 0 < |z2| < p?|z1], then

M(Z)¢Zl 22 (2) ‘
dx d
M«; 1—|u(z>|2 T

u(z) dxd
/A D o 1), (322

= 2
(0~ zalolzih) I — IR@I* 2

1—,02
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Transcendental Julia sets of minimal Hausdorff dimension 11

and
2
l11(2)] |¢zl,zzzgz)| dx dy
c  1—|n@]
1 I @ dxdy |
< + C Lo (s 121D VP, (3.23)
1= 02 Jagalolan = 0@ 1z P
where
21 1 (2)|P dx dy
¢;1.,00) = ———— and [,2:= .
e 2z —21)(z — 22) b c (1= p@P)P |z12A + |zl/r)?
(3.24)

Thus, by [Shil8, Theorem 8], it suffices to show that the lim inf,, ¢ of the four terms on
the right-hand sides of equations (3.22) and (3.23) are O (wp(|z1])) as z1 — 0. In fact, we
have better estimates on the two integral terms: they are O (w1(|z1])) by assumption (3.20).
For the remaining two terms, we use [Shil8, Lemma 11]: there exist constants C, and C3
depending only on K (1) such that for 0 < r < r/,

k@ dxdy 9(1>2

r/

(3.25)

Ipoa(u;r) < C2/
g e L= n@P 22 2
Letting v’ = r'/=, we see the first term on the right-hand side of equation (3.25) has
order O(wi(r')) = O(wi(r)), and the second term has order O(r), so that I, > has order
O (w1 (r)). Thus, I,2(i; |z1])"/? has order O(wp(|z1])), and so the result follows. O

172

Remark 3.15. One readily sees from the constants in the proof of Theorem 3.14 that
the big-O constants in equation (3.21) depend only on K (1) and the big-O constants in
equation (3.20). In particular, they are independent of N € N.

We now apply Theorem 3.14 to our particular setting.

THEOREM 3.16. There exists C' > 0 and R > 0 such that for any N € N and any p > 2,
¢n(z)

Z

1‘ <C - wp(1/lz]) forlzl > R. (3.26)

Proof. Let N e N. Let ¢ := ¢y : C — C be a quasiconformal mapping such that
hy o ¢~ is holomorphic and ¢ (0) = 0. Consider

V(2) == 1/¢(1/2),
and define 7 (r) as in equation (3.20). We wish to apply Theorem 3.14. To this end, we

calculate
1oy < X 2/ d“zlyf% 3 I d“;y, (3.27)
L=k Jgai<nnsuppn 1212 7 1=k2 = g, Izl
where
J (r) is the smallest integer such that 1/r < () - exp(w/M;) (3.28)

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



12 J. Burkart and K. Lazebnik

and
G ={zeC: r;l -exp(—m/Mj) <|z| < (rj — H~h. (3.29)
As in the proof of [BL23, Theorem 4.8], we calculate

dx dy / dx dy
<
1 — k2 Z L |Z|2 Z G r.72 exp(—Zn/Mj)

>0 Jzj(r) /
7 ((rj = )72 = r; 2 exp(=27/M)))

- jZXj(:r) r_2 exp(—2m /M)
~ Z <( ) exp(2m /M) — )
Jzjr)
O\ 4n
B )
Py (e R T
2rj—1 8
< Z <(r]—1)2 )

7
]
~—

x.‘l
X~
~—

AN

1 Jjr)
<§> s (3.30)

where we have used the fact that M; = 2/, Corollary 3.5, and the inequality
exp(x) <1+42x forallx <1.

Next, we note that

22<j+1)(j+2)/2 - 221+---+j+..,+21' > -exp(n'/M,'). (3.31)
Thus, it is readily calculated that
ri-exp(/M;) > 1/r = (j+1)(j +2) > loglogr™!, (3.32)

and so since (1/2)7 ~ (1/2)VU+DG+2) it follows that
. / 1
rj-exp(m/M;) > exp(—mw/M;j¢))/r > 1/2r) = (%)/ < (%) loglog =" (3.33)

Together, equations (3.27)—(3.33) imply that 7 (r) is finite and has order O (w;(r)) as
r N\ 0, as needed. Thus, we may apply Theorem 3.14 to deduce that there exist ¢ > 0 and
r > 0, so that

¥ (2)/z =¥ O <c-wp(lzl) for|z| <r. (3.34)

By multiplying v by a complex constant, we may assume that ¥’(0) = 1. Since
1/¢(1/z) = ¥ (z), the inequality (3.26) follows by taking R =1/r and C’ > ¢. By
Proposition 3.12 and Remark 3.15, the constants C’ and R do not depend on N since
the above big-O estimates for I (r) do not depend on N. O]

For the rest of the paper, we fix C’, R > 0 so that Theorem 3.16 holds.

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



Transcendental Julia sets of minimal Hausdorff dimension 13

THEOREM 3.17. Let ¢ > 0. There exists Ne € N such that for N > N, we have
lpn(z) —z| <& for|z| <R. (3.35)

Proof. Let uy be the Beltrami coefficient of ¢n. As N — oo, we have uy — 0
pointwise. Thus, we have |¢x (z) — z| — 0 uniformly on the compact set |z| < R. O

We conclude by restating Proposition 3.6 that listed the critical points and values of fy,
but now adapted to account for the new behavior of the function fy near O.
LEMMA 3.18. Let {g}?if
B(0, ry). Then, the only critical points of fy are the simple critical points given by ¢y ({)
for j=1,...,2N —1, and the simple critical points given by

2k — D7 ,
¢v(\ri-expli—7——)). J=zN.1<kj=M,; (3.36)
J

! denote the 2N — 1 many critical points of gn(z) contained in

. .. M; ..
The only singular values of fy are the critical values (£cr j ! );": N and the critical values

P

(vt

4. Mapping behavior near oo

Having proven in §3 all the estimates on the ‘correction’ map ¢ that we will need, we
can now begin describing the mapping behavior of the function f :=ho¢~!. In §4,
we will introduce the annuli Ay, Vi, By for k > 1: these regions will be central to the
proof of Theorem 1.1, as discussed in §2. We will also prove in Lemmas 4.17 and 4.18 the
fundamental relations:

f(Br) C Byr1 and Agy; C f(Vg) forallk > 1.

In this section, and in the rest of the paper, we will consider the case p =2 - /2 for
Definition 3.13. The following lemma gives us estimates for how w,. \/Q(|z|’1) decays as
7 — 00.

LEMMA 4.1. There exists kg € Z so that if k > ko and |z| > 1/20ry, then

1 1 Vk/4
)=

Proof. This is just a simple calculation using Definition 3.13 and Corollary 3.5. Indeed,

for all £k > 10, we have
2Mi—
log log (%) > log log ( 20 )

> log log(2Mk-5)

= log(My_s log 2)

= log(2k*5 log 2)

= (k —5) log 2 + log log 2.
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14 J. Burkart and K. Lazebnik

Therefore, there exists a value kg so that for all kK > kg, we have log log(ry/20) > %k. For
all such k, we verify that when |z| > (r;/20), we have

1 1\ (1/2V2))/loglog [z 1\ (1/(2v2)/log log(r¢/20)
alin) = ) <(3)

[H] 2 2
1\ (/v VET2 1\ Vk/4
< - = — .
=(z) (=)
This yields equation (4.1) as desired. O

Remark 4.2. Note that by perhaps choosing ko larger, we may additionally assume that
re = (1/20)r, > R for all k > ko. In this case, Theorem 3.16 and Lemma 4.1 imply that

for all k > ko, if |z| > (r/20), we have (¢n(2)/z) € B(1, C' - 2= Vk/4),

LEMMA 4.3. Let ko be as in Remark 4.2. For all k > ko, if |z| = (rx/20) and N > 5, we
have

(1= (1) )lel < low@ = (14 (1))l @2)

Moreover, if z € gy {w : |w| > (rr/20)}), then
1

(1+c ()

1
(1= ()

lz| < loy' (@) < I2. (4.3)

Vk/4
)

Proof. Equation (4.2) is just a rearrangement of equation (3.26), but using the esti-
mate (4.1). For the second equation, just note that if z € ¢y {w : |w| > (rr/20)}), then
there exists w with |w| > (rx/20) so that ¢ (w) = z. Then, equation (4.2) holds with
w= ¢1§1 (z), so equation (4.3) is just a rearrangement of equation (4.2). O

Remark 4.4. We will always assume that the integer N € N satisfies N > k.

Next, we will do some re-indexing of variables. This will make our notation easier to
read and more consistent with [Bis18].

Definition 4.5. Given the parameters My, ck, and r from Definition 3.1, and given any
integer N > 1, we define

ng = Mipy—g =2V (4.4)
Ry :=rrynN—1, 4.5)

and
Cr = CkyN-1. (4.6)

Next, for any given N > 1, we define

1
T Ao ap D

4.7)
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Transcendental Julia sets of minimal Hausdorff dimension 15

and
Br = :
k= (14 C - (1/2)WEEN=1)/4)’

(4.8)

Remark 4.6. As k — oo, the sequence (o) decreases monotonically to 1, and (Bi)
increases monotonically to 1. We will always assume the integer N € N is large enough so
that for all £k > 1, we have

99 101
i 1 = 49
100 = Pe=1 =<5 (4.9)

The specific constants above are not important, we just need B; and oy to be sufficiently
close to 1 for all large k > 1.

Remark 4.7. We emphasize that the parameters in Definition 4.5 depend on N € N; we
omit this dependence in the notation for readability. We also remark that Definition 3.1
implies that we still have Ry = Cyx(Ry/2)"* for all k > 1. Finally, we have the equalities
R1 = ry and n; = My. We will occasionally switch between the two forms of notation.

The inequalities (3.7), (3.8), (3.9), and (3.10) that apply to ("j)?il can now be restated
as follows by applying Definition 4.5.

LEMMA 4.8. Fix an integer N > 5. Then, for all k > 1, we have

R Cp = Rp (4.10)

Rigr > 27" Ry 4.11)
Ry > 22" and, 4.12)

Riy1 > 4R3. (4.13)

The next lemma describes some relationships among the n; terms that we use freely
throughout the paper.

LEMMA 4.9. Forall k > 1, we have:

(1) 2nf = ngyy;
2 2N+ ZI;-=1 Nj = Ngt].

Proof. Part (1) is obvious. Part (2) is a simple calculation:

k k=1
2N+ ny =2N<1+22/> — N gk —pNHk —
= =0

This proves the claim. O

We denote open round annuli centered at the origin by A(r, R) = {z:r < |z| < R}.
Next, we will define the following sequence of annuli. See Figures 2 and 3.
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16 J. Burkart and K. Lazebnik

Ag B Ary1] Byt

FIGURE 3. A visualization of Ay and By viewed on the cylinder. The annuli A; have constant modulus, and the
annulus By have very large and increasing moduli.

Definition 4.10. Given any N > 1, we define
Ak = A(3Ri. 4Ry), By = A(4Ry, JRit1), Vi = A(3Re. 3 R). (4.14)

We now begin to describe the mapping behavior of f in terms of the annuli in
Definition 4.10.

PROPOSITION 4.11. The zeros of fy that satisfy |z| > %Rl are contained in | J72 | Ak. In
fact, each Ay contains exactly ny many simple zeros, each located inside A(%Rk, %Rk).

Proof. This follows for fy by combining equation (3.12) and Lemma 4.3. O

LEMMA 4.12. There exists M € N so that for all N > M, for all k > 1, and for all
Z € A(%Rk, %Rk+1), we have

IN@) = Ciqr - (B ()" (4.15)
Proof. If z € A(exp(rr/ng) - R, Rr+1), then
IN 0 dN(2) = Cpyr - 2"
Therefore, if z € ¢ (A(exp(mr/ng) - Rk, Rr+1)), we must have

IN@) = Crer - (P ()",

Therefore, it is sufficient to show that there is an M so that for all N > M, and for all
k > 1, we have

5 3 b4
A ZRk, ZRk+l Con|Al exp| — | - Rk, Rk+1 ) )-
nk

The existence of such an M is a simple calculation using Lemma 4.3. O

LEMMA 4.13. There exists M € N so that for all N > M, for all k > 1, and for all
z € AGGRe. 3 Ris),

B Crpt 2™+ < | fv (@) < o Crger 2]+ (4.16)
Proof. This follows immediately from Lemma 4.3, Definition 4.5, and Lemma 4.12. [

When estimating f near |z| = Ry, we will require in some situations the following
lemma, which is similar to Lemma 4.13. Recall that by Definition 3.9 for all
z2€ B(O,ry — 1), we have fn(z) =qnody (), where gn(z) = cenzMN +ryz=
C1Z" + Ryz.
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Transcendental Julia sets of minimal Hausdorff dimension 17

LEMMA 4.14. There exists M € N so that for all N > M, we have

1 1 19
EcN|z|MN <lgn@)| < 2¢en|z|MN  forall z € A<%R1, 2—0R1). 4.17)

Proof. This is a simple but somewhat tedious application of Lemma 4.8. By the triangle
inequality, we obtain for all z € A((1/20)R;, (19/20)Ry) that

r r
enlz)M¥ <1 - —N> < lgn (@] < enlz/M¥ <1 + —N)

enlz|My—1 cnlz|Mh—1

On the one hand, we have by Lemma 3.5 that

1 + rn 1 + N
max _— —
Z€A((1/20)R1,(19/20)R)) cn|z|My—1 en((1/20)ry)My—1

rN(l/ZO)rN
=14+
(1/10)My ey (ry /2)MN
10MN 2
=14+ N
20 ry+1
My 2
<14 10 ‘ rNM
20 2-My (N=1)
-1 20My 1
=t M2
N

o (20"
= +% W .
N

By Lemma 4.8, there exists M so that for all N > M, we have rllv/ 4 > 40 and, therefore,
we obtain

1+ I'N <14 1 1\ v 5
max _ — .| = < 2.
z€A((1/20)R1,(19/20)Ry) CN|Z|MN—1 - 20 2

Therefore, we obtain for all z € z € A((1/20)Ry, (19/20)R;) that

lgn (2)| < 2cnlz|MV. (4.18)

The proof of the other inequality is similar. O

LEMMA 4.15. For all N sufficiently large, we have

1 1 9
EﬂwaCNIZIMN < Ifv@| <2a!™eylzMY forallz A(ERI» ERI) (4.19)
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18 J. Burkart and K. Lazebnik
Proof. By Lemma 4.3, there exists M € N so that for all N > M, we have

oy A L 2 CA Le. Dg
N 10 10! 20 20t

By perhaps choosing M larger, we have for all N > M that Ry — 1 > (19/20)R; as well.
Then, for all z € A((1/10)Ry, (9/10)R;), we have by Lemmas 4.3 and 4.14 that

zeA((l/l(I)l)lI?f(9/10)R1) wi@l = zeA((l/lglI?f@/lO)Rl) |qN(¢;]1(Z))|
< 2enlpy @MY < 2eyal Nz MY, (4.20)
Similarly, we obtain
zeA((l/IOI)nRiE(E’/lO)Rl) w2 = zeA((l/IOr)nlg?,(9/10)R1) qu((bgll(Z))'
> Jenlon' @IMY = Len g™ iz (4.21)
This proves the claim. O

We are now ready to prove some basic lemmas about the macroscopic mapping behavior
of the function fy. First, we will need the following basic lemma.

LEMMA 4.16. Suppose that g is holomorphic on an annulus W = A(a, b) and continuous
up to the boundary of W. Let U = A(c, d).

(1) Iflg)| <conlzl=aand|g(z)| > d on|z| :2 then U C g(W)._
(2)  Suppose g has no zeros in W and that g(0W) C U. Then, g(W) C U.

Proof. The first part uses the fact that holomorphic maps are open. The second part
is an application of the maximum principle. A detailed proof can be found in [Bis18,
Lemma 11.1]. O

Next, we prove the following lemma about the mapping behavior on Ay, where we will
see the dynamics of fy are the most interesting.

LEMMA 4.17. There exists M € N such that for all N > M and for all k > 1, we have
Apr1 C fn(Vk) C fn(Ap). (4.22)
Proof. First, we prove the case of k > 2. In this setting, by Lemma 4.13,

max  |fv(@)| < max  o*Crlz|™ < o Cr(2Re)"™ < ¥ (2)™ - Cr - (S R)™.
o % 1 Cr(5Re) L (5) (3Rx)

ool

By equation (4.9), we have oy - ‘5—‘ <
we end up with

. Therefore, if N > 5, since Rxy1 = Cy - (Rr/2)",

max | fv@)] < (2)"™ Rip1 < 2 Riq1. (4.23)
S e (5)" Ret < 3 Res

Next, observe that by Lemma 4.13, we have

min  [fv(z)] > min  B¥Cilz|™ = B Cr(2R)™ = B - (&)™ . C) - (L R)™.
|z\=<3/5)Rk|f | |Z‘:(3/5)Rk'3k |zl B Cr(5Re)™ = B - (3) (3R
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Transcendental Julia sets of minimal Hausdorff dimension 19

By equation (4.9), we have B - g > %. If N > 5, we end up with

3 9\ "k
min 2| > (5) " Rky1 > 4Riq1. 4.24)
i V1= () R * (

The lemma for the case of k > 2 now follows from Lemma 4.16, part (1).
The case of k = 1 is almost exactly the same, except we now have to use Lemma 4.15.
By following the exact same steps as above, we obtain since N > 5 that

max DI <2(Z)"Ry < 1R 4.25

. /@I <2(3)" Ry < 3Rz (4.25)
and

- > 1(2)""R, > 4R,. 4.26

L min lfv@I| = 5(3)" R > 4R, (4.26)

The lemma for the case of k = 1 now follows from Lemma 4.16, part (1). O

LEMMA 4.18. There exists M € N so that for all N > M and for all k > 1, we have
fn(Bi) C Bit1. (4.27)

Proof. We will adopt a similar strategy to Lemma 4.17, using Lemma 4.16, part (2). First,
we make the important observation that Cx41/Cr = R, " for all k > 1. Next, observe that
if |z| = 4 Rg, then we have by Lemma 4.13,

|I\n2411X [N < | I‘nax ak"+1Ck+1|Z| kel
Ry

= oy Crq1 (4R

= o8 O R - (SR

= o 18U (A R)™ - R (A Re)™

= o T8I Ry .

= ()" 32" Riq1.
By equation (4.9), we have oz,% < 2forall £ > 1. By Lemma 4.8, there exists M so that for
all N > M, and for all k > 1, we have R,i/z > 256. Therefore,

64"+1 R 64"+ R, 128 \ k! 1 !
p k+1 < k:k1+1 — ( I ) < <§> ) (4.28)
k42 (1/2)"+1 Ry R
By equation (4.28), and since N > 5, we have for all k > 1,
maX fn@)] < 64%+ Ry < (1) Reya < LR, (4.29)

‘_
Next, observe that by Lemma 4.13, we similarly have

min |fv@)1z min B Crpf2™ !

lz|=
_ﬂ”k+lc R TNk fkt Rk . & "
2 2

= (B2)"* 2" Ryt = (2B2)™ Ryy1.

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



20 J. Burkart and K. Lazebnik

By, Bis1

e
fn

FIGURE 4. fy maps the annulus By into the annulus By 1. The picture is not to scale; in reality, the modulus of
By.+1 is much larger than the modulus of fy (Bg).

By equation (4.9), we have ,3,? 22> % Therefore, since N > 5, we have for all £k > 1 that

min | fy(2)] > (3)"™ Ris1 > 8Re1. (4.30)
jel=4Ry

Therefore, by equations (4.29) and (4.30), for all k > 1, we have
fv(zl = 4Ry) C A(8Rk, gRi41) C Bit1. (4.31)

We can use similar techniques as above to analyze the behavior of fx on the outermost
boundary of By (see Figure 4). Indeed, we have

1
max 2)| < zR 4.32
. [/N@)| < gRk+2 (4.32)

and

min 2)| > 8R4 4.33
L_min1fn(@)] > 8Rip (4.33)

Therefore, by equations (4.33) and (4.32), we have
fv(lzl = LRi1) C A(8Rx, §Ris1) C Brr. (4.34)

As we commented at the start, this proves the lemma. O

We conclude this section by recording the location of the critical points and values of f
in relation to the annuli Ay, By.

PROPOSITION 4.19. There exists M € N so that for all N > M, all critical points 7 of
fn with |z| > %Rl belong to | Ji—, Ak. Moreover, if z € Ay is a critical point, then
IN(2) € Biyi.

Proof. By Proposition 3.6 and Lemma 4.3, there exists M so that for all N > M, all critical
points of fy satisfying |z| > ‘—llRl belong to | g2, Ax. If z € Ay is a critical point, then
Proposition 3.6 also says that | fy(z)] = CxR.*. To see that CxR,* € By, first notice
that we have the identity

CiRt = 2"Cr(3Ri)™ = 2" Rega. (435)
It follows immediately from equation (4.35) that since N > 5, we have

CkRZk =2""Rp11 > 8Rk+1. (4.36)
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However, we have by Lemma 4.8 that

ng ny ng
2" R4 < 8nk < (l) )
Rit2 Rt 2

So since N > 5, we obtain from equation (4.35) that
CiRY < (3)"™ Riz < gRisa. (4.37)
Therefore, by equations (4.36) and (4.37), we have fy(z) € Bi41. O

Remark 4.20. For the rest of the paper, we will always assume that N is large enough so
that all of the statements and inequalities in this section are valid.

5. Mapping behavior near 0

Having studied the mapping behavior of f in the region |z| > R;/4 in §4, we now study
in §5 the mapping behavior of f in |z| < R;/4. Recall that in |z| < R;/4, the mapping f
satisfies f(z) = gn o ¢>;,] (z), where gy (z) = cnzMN + ryz. This polynomial was chosen
so as to have a Cantor Julia set of dimension < 1. Thus, when we consider f as a
polynomial-like mapping by restricting the domain of f to a subdomain of |z| < R;/4,
we will see that the Julia set of this polynomial-like mapping has dimension < 1.

We begin with the following lemma about the polynomial gy (z).

LEMMA 5.1. Let gn(z) = cNzMN + ry - z. Then, the derivative of gy (2) is
gy @) = enMyZ"™V T 4y (5.1)

The non-zeros of gn are given by

_ 1/My—1
. <_”N> . (5.2)
cN
The critical points of gn are given by
1/My—1
—ry
= . 53
: (CNMN) o
The critical values of qn lie on the circle
= () — (5.4)
— TN - —_ — ). .
¢ cNMpy N My

The value of |qy (z)| when z is a zero of qn satisfies
gy ()| =ry(My = 1). (5.5)

Proof. These are all simple calculations. We only verify equation (5.4). If z is a critical
point of gy, then we calculate that
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( ) —rN My/My—1 N —rN 1/My—1
Z)=¢ r
4qnN N en My N en My

(T,

- cNMpy N My
—rn 1/My—1 1

= ry- | 1——).
CNMN MN

The result follows upon taking the absolute value. O

We will now prove that the critical values of gy map to Bj. This will be crucial in
dimension estimates that require coverings that are built by considering the inverse f~!.
First, we need the following technical lemma.

LEMMA 5.2. Forall N > 10, we have

1/My—1

r 1

M1y < (X <—r_, (5.6)

CNMN 2
Proof. Recall first that ry = cy—1(ry—1 /Z)MN*1 by definition. Therefore, we calculate
Mn— Mn—
N 1 CN—er(,N] b 1 VN(,N] K 1 My (5 7)
— = = = r . .
CN 2M(n—1) cN 2Mn—1) r—M(N—I) 2Mn—1) N-1
N—1

First, we prove the upper bound for equation (5.6). First, note that we have for all N > 5
that

2~ Mw-n/My—1 o L
V2

so that by combining equations (5.7) and (5.8), we obtain

1/ My—1 1/ My—1
( N ) = ( ! ) S Mw-n/My=1 .r;//]"iN‘l < LVJZV -

(5.8)

cNMn My 2
(5.9
To prove the lower bound for equation (5.6), since N > 5, note that we have
1 \/Mv=l g 1
— > and 2 Myv-i/My-l s (5.10)
My -2 -2

By two applications of Corollary 3.5, since N > 10, we obtain
r;,/ﬁ”’_l > 2~M-2/My~1 .rll\ljlgfz)/MN—l > 2_]/2711\//§2 > 2=1/29MN-3/8 _ pMy—6—1/2
(5.11)

Therefore, in a similar way to equation (5.9), except this time using equations (5.10) and
(5.11), we have

1/My—1 1/My—1
R L0 I e

CNMN MN
> oMN—6=1/2=2) | > M-y (5.12)
Equations (5.9) and (5.12) combine to prove equation (5.6). O
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LEMMA 5.3. For N > 10, the critical values of qn belong to By, and the critical points
satisfy |z| < r%,fl.

Proof. If z is a critical point, by Lemmas 5.1 and 5.2, we have

1/My—1

N 1 2

lz| = ( > < —ry_;- (5.13)
cNMy 2 Nl

Recall that by Corollary 3.5 that if N > 10, we have rjz\,_1 < }‘rN and r,z\, < l”N+l- So by

i)
Lemmas 5.1 and 5.2, if z is a critical point, then

1/My—1
lgn (2)] < N ) <1 1)< L2 <L, !
D= r —— | S —=ry_{’IN S —=ry < —=FN+1
qgnN en My N My ﬁNlN 4x/§N 16\/§N+
(5.14)

and
1
lgn ()| = 2MVDry_yry - (1 - —) > 8ry. (5.15)
My

Therefore, by Definition 4.5, we have the critical values of gy contained in Bjp, as
desired. O]

Now we introduce a polynomial-like mapping by restricting f to a subdomain U, defined
as follows.

Definition 5.4. For the rest of this section, we will use the following definitions.
(1) Define D = B(0, }R).

(2) Definer = 16r12\,71R1. This is the same as r = 16r1%,71rN by equation (4.5).
(3) Define V= B(0,r)and U’ = q;I(V).

(4) Define U = ¢n(U").

LEMMA 5.5. For all N > 10, the triple qy : U' — V is a degree 2V polynomial-like
mapping. Moreover, all 2V — 1 many critical points of gy belong to U’ C D.

Proof. We first verify that U’ C D. Note that if |z| = lRl = }‘rN, then by Lemma 4.14,

we have
1 /1 \Mv
lgn(2)| = 56N<—rN)

4
1 My+1
= (5) IN+1
1 My+1/2 M
> (Z) ry" Vry  (Lemma 4.8)
1/4\ M
1 'y N Mn-2)
= E(T) ry IN. (5.16)

Therefore, since N > 10, we have r]{,/ 4 /4 > 8 and we deduce that
lgn (2)| > 1613, > 1615 _rN. (5.17)

Therefore, we must have U’ C D.
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1
ry ) Mn- . oV =0B(0,r
= (35)™" o kl=im 0,7)

FIGURE 5. A schematic for Definition 5.4 and Lemma 5.5. The critical points for gy lie on the circle |z| =
(rn/eNnMy) 1/My=1"and the associated critical values lie in an annulus contained in V, illustrated in gray. So, U
contains the critical points of gy, and it will also be verified that U C D.

By equation (5.14), the critical values of g satisfy |z| < rjz\,_er. Therefore, V contains
all 2V — 1 many critical values of gy, so that U’ contains the 2¥ — 1 many critical
points of gy. It now follows from Lemma A.11 that gy : U’ — V is a proper degree 2V
branched covering map, and it follows from Theorem A.13 that U’ is a Jordan domain.
Since U’ is contained in D, which is compactly contained in V, gy : U’ — V is a degree
2N polynomial-like mapping (see Figure 5). O

LEMMA 5.6. Let U be as in Definition 5.4 and N > 10. Then, U C D and the triple fy :
U — V isadegree 2V polynomial-like mapping.

Proof. By Lemma 4.3, we verify that U = ¢y (U’) C D. Therefore, by Lemma 3.18,
fN=¢qno qﬁ;/l : U — V is a proper, degree 2"V branched covering map, and is therefore
a degree 2"V polynomial-like mapping. O

The rest of §5 is devoted to showing the filled Julia set of fy : U — V has dimension
<« 1. We will do so by constructing a cover by pulling back B(0, 4R1) under appropriate
branches of f~!.

Remark 5.7. Suppose that B(0, R) is the disk of radius R centered at the origin, where
we take any R € [4R1, 8R;], so that B(0, R) C V. By Lemmas 5.5 and 5.6, B(0, R)
contains the 2 — 1 many critical points of fy : U — V. However, by equation (5.15),
B(0, R) does not contain the 2 — 1 many critical values of fy : U — V. It follows then
from Lemma A.15 that fy '(B) c Uis the disjoint union of 2V many Jordan domains B;,
i=1,...,2" suchthat fy : B; — B is conformal.

Remark 5.7 motivates the following definition (see Figure 6).

Definition 5.8. Define y := {z : |z] = 4R1}. Then, y is a circle that surrounds the critical

points of fx contained in D, but not the critical values associated to those critical points.

() LetI't = fy 1(y) be the disjoint union of the 2" many Jordan curves contained in
D that fy maps to y. We denote the elements of '] by y.

(2) Let 'y = fy"(y) be the disjoint union of 2N" many Jordan curves in D that get
mapped by f} to y. We denote the elements of Iy by y;,.

(3) Given y, € I';, we define j, to be the bounded simply connected domain with
boundary given by y,,. We define f‘; to be the set of all y,.
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FIGURE 6. Illustration of Definition 5.8 of the families I';,.

Remark 5.9. An alternative definition for y in Definition 5.8 would be o = {z : |z] =
8RR}, and we analogously could define %, elements o,, C X,,, and &,,. Then, for each
on € X, 0, contains exactly one element y,, € I, and the modulus of &, \ ﬁ is bounded
below by (271)’] log 2 > 0. For each o, € %,, there exists some element 0,,_1 € X,
such that fy : 6, — 6,1 is conformal. This means that the corresponding mapping
fN : ¥n = Vn_1 is conformal, and by Remark A.7, Corollaries A.4 and A.6 apply with
constants that do not depend on the integers N or n.

We now estimate the diameters of our covering of Definition 5.8.

LEMMA 5.10. Lety, I'y, and T, beasin Definition 5.8. Then, there exists a value M € N
so that for all N > M, for all n > 1, and for every y,, € 'y, we have

diameter( fy (v,)) > R diameter(y;,).

Proof. Choose some y| € I, and let 20 € ¥1 be a zero for fy. Such a zg exists since
fn(y1) = y surrounds the origin. Then, by Corollary A.6 and Remark 5.9 applied to the
appropriate branch of the inverse fy L. B(0,4R;) — 71, there exists a constant C > 0
such that

b S5

| fy (o)l
Therefore, by Theorem 3.17 and Lemma 5.1, there exists another constant L > 0 so that

diameter( fy(y1)) 1 , _l' a1y & . _
WEE'U’N(ZO)I—C Ri(My—1) - [(¢y ) (z0)| = C L-(My—1).
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This proves the estimate for the case of n = 1. For n > 1, by Corollary A.4 and
Remark 5.9, there exists a constant ¢ > 1 such that
diameter(fy (ys)) _ 1 diameter(fy™" (/v (va)))
diameter(y,) ~ ¢ diameter(fy ' (y4))
1 diameter(y) - Ry

LMy —1).

= diameter(y;) — c¢-C
Therefore, there exists M € N so that for all N > M and for all n > 1, we have

diameter(fy (¥,)) - R
diameter(y,) a

This is exactly what we wanted to show. O

Lemma 5.10 allows us to deduce the Hausdorff dimension of the Julia set of the
polynomial-like mapping fy : U — V.

THEOREM 5.11. Lett > 0 be given. Then, there exists an integer M so that forall N > M,
the Hausdorff dimension of the filled Julia set of fn : U — V is at most t.

Proof. For each n > 1, f; is a covering of the Julia set of (fn, U, V). Fix t > 0. If
Yn € Ty, then fv (¥p) =: ¥n—1 € I'y—1. Therefore, by Lemma 5.10, we have

> diameter(7;)" < R{' -2V )" diameter(y,1)". (5.18)
nely a1€lut

It follows from equation (5.18) that

i Z diameter(y,)" < diameter(y)’ - i 2N”Rl_'”. (5.19)
n=1 yrel, n=1
The sum in equation (5.19) converges if and only if
VR < 1
Therefore, we use Corollary 3.5 to see that
Ry"2N = 2N < 2N-My-ir, (5.20)

Choose M so that for all N > M, we have N — 2V =1 < 0, so that we obtain 2V R < 1.
For such a choice of N, equation (5.19) converges, and for any n > 0, there exists some
value n so that

Z diameter(7,,)" < 1.
neln
Since f‘; is a covering of the filled Julia set of fy : U — V, it follows that its Hausdorff

dimension is bounded above by ¢. O

We conclude §5 by showing that the critical values of fy lying in |z] < R;/4 map to
Bj. This will be crucial in constructing covers of the Julia set of f by pulling back the
annuli Ay under fy.
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LEMMA 5.12. For all N > 10, if z is a critical point of fy contained in D, then
In(2) € B

Proof. The only critical points of fx contained inside of D are of the form ¢y (z), where
z is a critical point of gy. By Lemma 5.3, the critical values of gy are contained in Bj.
Therefore, the critical values of fy associated to the critical points in D belong to By. [

6. Location of the Julia set

In this section, we refine our understanding of the behavior of f in the annuli A;. Namely,
we prove that unless z belongs to Vi or a collection of small balls (which we call petals
in Definition 6.2 below), then f(z) € Bi41. This is crucial to our understanding of the
structure of J(f), since it is readily observed (see Lemma 6.1 below) that the annuli
By lie in F(f). We will also further describe the behavior of f in the aforementioned
petals.

LEMMA 6.1. There exists M € N such that for all N > M, By belongs to the Fatou set of
fn forallk > 1.

Proof. By Lemma 4.18, there exists M € N such that for all N > M, we have
Jn(Bx) C Bi+1. This implies that each point in By escapes locally uniformly to co. [

Therefore, when |z| > %Rl, the Julia set of fy is contained in U,fil Ag.Foreachk > 1,
Proposition 4.11 says that fy has n; many zeros contained in Ax. For a given k > 1, let
{w’; ;”‘z , denote these zeros. Following the terminology in [Bis18], we introduce some
notation for the balls containing the zeros of fy inside of Ay (see Figure 7).

Definition 6.2. For k > 1, let P, = Ujkzl B(w’]‘., Ry /2"*) be the petals of fy inside of
Ay. A connected component P, C Py will be called a petal.

As already mentioned, we will now prove several lemmas (Lemmas 6.3-6.8) detailing
the mapping behavior of f within the annulus A, most crucially within the subannulus Vi
and the petals Pg.

LEMMA 6.3. There exists M € N so that for all N > M, ifk > 1, then

Sn(A(3Ri, 4Rt)) C Biyr.
Proof. By Proposition 4.11 and by Lemma 4.16, it is sufficient to verify that there exists
M € N so that for all N > M, we have fn(|z]| =4Ry) C Bxy1 and fy(|z] = 3Ry C
Bi+1. The former has already been verified in equation (4.31), so we only need to prove

the latter. By the maximum principle for holomorphic functions, we have

max (z)] < max @) < LRisn. 6.
|Z|=(5/4)Rk|fN )l |Z|:4Rk|fN )| < §Ret )
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FIGURE 7. Illustration of Definition 6.2 of the petals Py. The annuli Bi_1, By are in white, the annulus Ay is in
light gray, and the annulus Vj and petals Py are in dark gray.

By Lemma 4.13, we have

n n Rk "k 5 k1 1 "k

lz|=(5/4) Ry T |z|1=(5/4) R 2 2 2
P 5 Ng+1
> B, 'R - )
> By Rit1 <4)
By equation (4.9), we have fy - % > g. Therefore, since N > 5, we have
min | fv@] = (£)"" Res1 > 8Riqr. (6.2)
iz, Y ) * *

It follows from equations (6.2) and (6.1) that
fv(lzl = 3Re) C A(8Rit1, §Ris2) C Bigr. (6.3)
As discussed at the beginning, this proves the claim. [
LEMMA 6.4. There exists M € N so that for all N > M, if k > 1, then
Iv(A(3Re. 2Ri)) C By.
Proof. We consider the cases of k > 2 and k = 1 separately.

When k > 2, equation (4.34) implies that fy (|z] = }‘Rk) C Bg. By equation (4.23), we
have max;|—2/5)r, | [N ()| < %{RH]. Next, we observe that by Lemma 4.8,
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min |fv()| > min  BFCrlz|™ = B Cr(E)™ (SRe)™ = BLF Riey1 (2)™
|z\=(2/5)ka |z|=(2/5)Rkﬁ" A C(3)" GRO™ = A Rin (5)

= )" R R

Since N > 5, by equation (4.9) and Lemma 4.8, we have

BiaR, > 4. (6.4)
Therefore, we obtain
min > 4" R 8Ry. 6.5
|Z|:(21/5)Rk | fn(2)] > © > 8Ry (6.5)
It follows that
fv(lzl = 2Re) C A(8Rk. 3 Res1) C Bk (6.6)

whenever k > 2. Therefore, the case of k > 2 follows from part (2) of Lemma 4.16 and
Proposition 4.11.

For the k = 1 case, we use slightly different estimates. First, notice that by following a
similar argument as above, but applying Lemma 4.15, we obtain

: 1 4n
min 2)| > 54" Ry > 8R;.
e /N ()] = 5 1 1

This, combined with equation (4.25), allows us to conclude that
fv(1zl = 2Ry) C By, (6.7)

Next, by following similar reasoning as in equation (5.16), except this time applying
Lemma 4.15, we have

1 r N 1 r N
min | fy(2)] = Zﬁ{wN< 1:’1 ) r]]\lI/IN_er _ _<,31 N ) r]{‘]/IN_er.

l2l=(1/4)R, A

By equation (4.9) and Lemma 4.8, along with similar reasoning as equation (5.17), we have

min 2)| > 16r2_ N = 16r2_ R? > 4R;. 6.8
zl=(1/4) R, |fN( )| N—1'N N—11%1 1 ( )

So by equation (6.8) and the maximum principle used with equation (4.25), we have
fv(lzl = §R1) C By. (6.9)
The k = 1 case now follows from Proposition 4.11 and part (2) of Lemma 4.16. O
LEMMA 6.5. There exists M € N so that for all N > M, if k > 1, we have
fv(Izl = 2Re) C Beyr. (6.10)

Proof. We again must argue the k = 1 and k > 2 cases separately.
When k£ > 2, we have by Lemma 4.13 that

max ()] < Cu(3R)" = () (R = o (§)" Ruc.
lz|=(3/5) R
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By equation (4.9), we have akg < % Therefore, since N > 5, we obtain

(@ (6/SN™ Rit1 _ (7/5)™ Ri+1 _< 28 )"" <1>"k
< .

Riy2 T2k R,'Zfﬁl SRi41 4

It follows that

max @] < (1) Riy2 < 1 Ripa. 6.11)
R g, N @ (2)" Resa < 5Rus (

Therefore, we have by equations (4.24) and (6.11) that
fv(Izl = 2Re) € A(8Rk41. g Rkt2) C Brr. (6.12)

For the k = 1 case, the arguments are similar, and by using Lemma 4.15 and requiring
N > 5, we obtain

max <2(1)"™R; < iR;. (6.13)
lsl=G/5)R, (@) 8

Therefore, by equations (4.26) and (6.13), we obtain
fv(lzl = 2R) € A(8R2, §R3) C Bs. (6.14)
The lemma now follows from equations (6.12) and (6.14). O]

COROLLARY 6.6. Forallk > 1, we have fn(Vy) C Bx U Ag41 U B41.

Proof. By equations (6.6) and (6.7), along with equations (6.12) and (6.14), we have
fv(zl = 2Ry) C B and fy(|z| = 2Rx) C Biy for all k > 1. Therefore, by part (2) of
Lemma 4.16, we have fy (Vi) C Bx U Agy1 U B4, as desired. ]

The following lemma asserts that f is conformal on every petal Py C Py, with large
expansion.

LEMMA 6.7. There exists an M € N and a constant ). > 0 so that for all N > M, for all
k > 1, and for all zeros w]]‘. inAg, j=1,...,ny, the mapping

N Bk, Aexp(r/m) — DR — fy(Bwh, Aexp(r/n) = DRY)  (6.15)

is conformal. Moreover, we have

R
B(wlj‘-, 27];) C B(wlj‘», Alexp(m/ng) — DRy) (6.16)
and

k Rk
B(0,4Rr+1) C fn| B wJ"QTk . (6.17)
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Proof. Note that by Lemmas A.19 and 4.3, there exist constants A > 0 and § > 0 so that
B(0, sCkR*) C fN(B(w Aexp(r/ng) — DRy)) C B(0, SCkR). (6.18)
Moreover, Lemmas A.19 and 4.3 imply that the mapping in equation (6.15) is injective,
and therefore conformal. Next, note that
2_11,‘ Rk < 2_nk _ ng k— o0
rexp(/ng) — DRy — Am/ng  2MmA
Therefore, there exists M so that for all N > M, we have equation (6.15) and
B(w Ry /2%) C B(w A(exp(mw/ng) — 1)Ry). It remains to verify that equation (6.17)
holds
To see this, note that by Theorem A.l and equation (6.18), we have
b > dist(0, 9B(0, Ci R ""))
= 4di st(w BB(w Aexp(/ng) — DRy)))
) CkRZk
4) (exp(rw/ni) — 1R

0. (6.19)

|(fn) (w]

> il’l C Rnk 1
8Am

1) _
ﬁznknkRk_HRk I

Therefore, if wlj‘. is a zero of fy in Ag, we have

)
|(fN)<u*>|> 2WnkRk+1R (6.20)

Next, consider the branch of the inverse f ]; : B(0, 5Cy RZk) — D', where
D C B(w’;, Aexp(r/ng) — DRy).

Since 6 > 0 is fixed, there exists a perhaps larger M € N so that for all N > M, we have
62" > 4. Therefore,

SCkR}F = 82" Cy (3 Rk)™ = 82" Riy1 > 2" 1 4Ry 41 > 4Ryy1. (6.21)

We can further deduce from equation (6.21) that the modulus of the annulus
B(0, 8CkRZk)\B(O, 4Ri41) is bounded below by some fixed constant indepen-
dent of k. Denote D:f,;l(B(O, 4Ri+1)) C D'. By applying Corollary A.6 to
f,;l : B(0, 4Ry41) — D, we see that there exists a constant L’ > 0 such that

4R 1 4R
k/“ — o <Ry §L’%.
L' | fi(w) )I o Lf (Wl
Since the modulus of B(0, 8CkRZ") \ B(0,4Ri41) is bounded below by some fixed

constant independent of k, the constant L’ is independent of k and w’j‘.. By perhaps
increasing M, we have that forall N > M,

(6.22)

\?w

— SAT _ Rk
4R LLf W)™ < 4Rt L5 =27 Ry Ric < 50 (6.23)
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Therefore, by equations (6.22) and (6.23), and equation (A.6), we have

4R R
D c B(wh, L' ) c B(wh, =X ).
P )] 7o

This proves equation (6.17), which is exactly what we wanted to show. O

LEMMA 6.8. Forallk > 1, fn(A(2 R, 3Ri) \ UL, B(w’;, R /2")) C Bjy1.

Proof. First, observe that every connected component of the boundary of A(%Rk, %Rk) \
U;”;l B(w];, Ry /2") is mapped inside of B4 by fu. Indeed, by Lemma 6.5, fx(|z| =
%Rk) C Bi+1, and by equation (6.3), fv(|z] = §Rk) C Bi+1- The rest of the connected

components of the boundary of A(%Rk, %Rk) \ U;”‘Z | (w’j‘. , R /2") are the boundaries of
the petals Py C Px. By equation (6.17),

fN<aB<w’;., f—’;» C {lz] = 4Ry41}. (6.24)
By equations (4.37) and (6.18), we have
fn <aB <w’; , %)) CB (0, %CkRZ"> CB <0, %RM). (6.25)
Equations (6.24) and (6.25) imply
fn <aB<w§, f—’i)) C Big1. (6.26)

By Proposition 4.11, fy has no additional zeros in A(%Rk, %Rk) \ U';kzl B(w’j‘., Ry /2).
The result now follows from the maximum principle and minimum principle for non-zero

holomorphic functions. O]

With Lemmas 6.3-6.8 in hand, we can now deduce the following about the Julia set
of fN .

THEOREM 6.9. There exists M € N so that if N > M, then for all k > 1,

ng R
(T (NN AW C ( U B(w';., 2_’;)) U V.

j=1

Proof. We will show that all other points get mapped to By or Bj4i, so that they
belong to the Fatou set of fy by Lemma 6.1. Suppose that z € Ay N J(fn), but z ¢ Pg.
Then, by Lemma 6.3, z ¢ A(3 Ry, 4Ry), and by Lemma 6.4, z ¢ A(§ Ry, 2Ry). Similarly,
Lemma 6.8 and the assumption that z ¢ Py shows that z ¢ A(%Rk, %Rk). Finally, observe
that we cannot have z € {|z| = %Rk}, zeflzl = 2Ry}, or z € {|z| = 2Ry} by equations
(6.6) and (6.7), (6.10), and (6.3), respectively. Since z € Ax N J(fn), but z ¢ P, it follows
that z € A(%Rk, %Rk) = Vj, which proves the theorem. O

The same argument of the proof of Theorem 6.9 yields the following useful result.
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FIGURE 8. Illustration of Definition 7.1 of Ay, By for negative k. Each connected component of Ap maps

conformally onto Ap; therefore, each connected component of Ag contains 2 many connected components

of A_j. The picture repeats itself as we zoom in. The set By is the region between the outer boundaries of the
components of Ag and the inner boundary of A;.

LEMMA 6.10. Suppose that z € Ay and fn(z) € A; for some k > 1 and some j € Z.

Then,
nk
R
k k
Z € VkU ( U B(w], 27k>>

j=1

7. Conformal mapping behavior
We begin §7 by defining A, By for negative indices k, simply by pulling back (by f) the
definition of Ay, By for positive k (see Figure 8). With this definition, we will deduce
that if z € J(f), then either z maps to the filled Julia set of the polynomial like mapping
(f, U, V), or all iterates of z lie in UkeZ Aj. We have already estimated the dimension
of the Julia set of (f, U, V) in §5, so in this section, we study the set of points that have
orbits lying in | oy, Ax.

As in Definition 5.4(1), we will use the notation D = B(0, %Rl) for the remainder of
this section.

Definition 7.1. We define
Ag={z:z€ D, fn(z) € A1} (1.1)
For integers k > 1, we define
Ap=fz:2..., fE@ e D, ffl@) e Ay (7.2)

We define By and Vj for k < 0 in the exact same way.

Notation 7.2. 'We will use the following notation in this section.

(1) The polynomial-like mapping ( fx, U, V) will be the one defined as in Lemma 5.6.
(2) The filled Julia set of (fn, U, V) will be denoted as E.

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



34 J. Burkart and K. Lazebnik

LEMMA 7.3. Let z € C. Then, exactly one of the following is true.
(1) Wehave z € E.

(2) There exists k € Z so that z € By.

(3) There exists k € Z so that 7 € Ag.

Proof. The filled Julia set E of (fy, U, V) is forward invariant and contained in D.
Therefore, if 7 € E, itis impossible for z € Ay or z € By for any integer k by Definition 7.1.
So we will suppose that z ¢ E. By Definition 4.14, if |z| > %R], then there exists k > 0
so that z must belong to exactly one of By or Ag. Therefore, we only have to focus our
attention on the case |z| < A%Rl.

Suppose first that z € U C D, recalling that U C D by Lemma 5.6. Then, since z ¢ E,
there exists a smallest integer / > 1 so that fll\, (z) ¢ U. First, we consider the case that
If,lv(z)l > Ry /4. Then, by equation (6.9), fy(dD) C By, so by our choice of [ and the
maximum principle, we must have either fllv (z) € Ay or fllv (z) € B;. It follows from
Definition 7.1 that either z € A;_; or z € By_;.

Next, we consider the case where |f1{,(z)| < 4—1LR1, so that f/(z) € D\ U. Observe
that by Definition 5.4, fy(dU) = {z: |z| = 16r}2\,7] R1} C Bj. Indeed, we certainly have
16r1%,_1R1 > 4R1, and we may argue using Lemma 4.8 that 16r12v_1R1 < Ry/4. We also
have fn(0D) C By by equation (6.9). Therefore, by Proposition 4.11, we must have
fi*1(z) € By, sothat z € B_. O

LEMMA 7.4. Suppose that z € f&l(Ak) for some integer k € Z. Then, z € A; for some
integer j.

Proof. By assumption, we have fy(z) € A; for some integer k. By Lemma 7.3, either
z € E, z € A; for some integer j, or z € B; for some integer j. We cannot have z € E,
because fy(E) C E.If z € Bj and j < 0, then by Definition 7.1, we must have fy(z) €
Bji1.1fz € Bj forsome j > 1, then fy(z) € Bj41 by Lemma 4.18. Therefore, we cannot
have z € B; for any integer j. The only remaining possibility is that we must have z € A;
for some integer j. O

Notation 7.5. For an open set Q2 C C, we let € denote the union of € and its bounded
complementary components.

Definition 7.6. A domain A C C is a topological annulus if the complement of A has two
connected components. We say A is a Jordan annulus if the boundary of A consists of two
Jordan curves.

Definition 7.7. Let f : C — C be an entire function. We define CV (f) to be the set
of all critical values of f, AV (f) the set of asymptotic values of f, and SV (f) =
CV(f)UAV(f) to be the set of all singular values of f. We define the postsingular set of

fby

P(f)={f"@) :2e8SV(f), n=0}. (7.3)

We define the postcritical set of f in a similar way.
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LEMMA 7.8. For all sufficiently large N, the postsingular set of fn coincides with the
postcritical set, and is a subset of | ;= Bk.

Proof. By Lemma 3.18, fy has no asymptotic values. By Proposition 4.19, for all
sufficiently large N, all of the critical points of fy with |z] > 4—11R1 are mapped into
Bj+1 for some k > 1. By Lemma 5.12, all of the critical points of fy with |z] < }TRl
are mapped into Bp. Therefore, SV (fy) C Uk>1 By.. It follows from Lemma 4.18 that
P(fn) C > Br as well. - O

Next, we note some of the basic covering map behavior on the annuli Ay.

LEMMA 7.9. Forallk <1, we let Zk denote Ay or Vy.

(1) Let k <0 and suppose that Zk is a connected component of Zk, and ij:1 is a

Zy iy Then, fy : Z — Zp . is
conformal, and every connected component of Zk is a Jordan domain.

(2) Let k <0 and suppose that Z; is a connected component of Z, and Z, 4 isa
connected component of Zyy1 so that fn(Z;) = Z . Then, fn :Z; — Z;_ | is

conformal, and every connected component of Zy is a Jordan annulus

(3) Forallk <1, Zy consists of exactly 2*tDON many connected components.

connected component of Zk+1 so that fy (Z

Proof. To prove part (1), note that by Lemma 7.8, there are no critical values of fy
contained in B(0,4R;). Therefore, the claim follows by Lemma A.15, which further
implies that each connected component of ZC for k < 0 is a Jordan domain.

Part (2) follows immediately from part (1).

To see part (3), note that Lemma A.15 1mplles that Z( consists of 2V many ct connected
components. Each connected component of Zo is mapped conformally onto 7 by fn.
Therefore, fN(ZO) contains the 2V many connected components of Zy, and it follows
that each connected component of 20 contains 2" many connected components of Z_.
Therefore, Z_; consists of 22 many connected components. By proceeding similarly, we
deduce that every connected component of 2k+1 for k < —1 contains 2 many connected
components of Zy, and Z therefore must have 2V —**+1D many connected components. []

LEMMA 7.10. Letk > 1. Let W = f,;l(AkH) N Vi, which is non-empty by Lemma 4.17.
Then, fn : W — Ay is a degree ny covering map.

Proof. When k > 2, observe that on ¢;1(W), we have fy o ¢y = Cyxz"* and that the
mapping fy o ¢y : (/);,l(W) — A4 is a degree ny covering map. Since ¢y is quasi-
conformal, it follows that fy : W — Ay is a degree ny covermg map as well. The k = 1
case is similar, except this time, we use the fact that on ¢>N (W), fnodn(z) = gn(z)isa
degree n| covering map to conclude that fy o ¢y : q);,l (W) — Ajisadegree nj covering
map. O

Recall that by Lemma 6.1, for k > 1, the annuli By belong to the Fatou set of fy. This
motivates the following definition.

Definition 7.11. For k > 1, we define Q2 to be the Fatou component that contains By.
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Remark 7.12. Tt is readily verified that each 2 is multiply connected. By Definition 3.9,
we have fy(0) = 0, and O is in the Julia set of fy since it is a repelling fixed point. Indeed,
by Definition 3.9, we have

| fx O] = gy (0)] - |y (0)].

We verify from equation (5.1) that ql’v (0) = ry, and by Theorem 3.17, for all N sufficiently

large, we may assume that % < |¢>}V 0] < % Therefore, for all N sufficiently large, by

Lemma 4.8, we have

Ify @] = 3ry > 1.
Therefore, 0 is a repelling fixed point for f. Since By C €2 for all k > 1, it follows that
Q) cannot be simply connected.

LEMMA 7.13. Suppose that j, k > 1 and j # k. Then, Q; # .

Proof. By Lemma 4.18, we have fn(By) C By for all £ > 1. Therefore, we must have
N (k) C Q41 forall k£ > 1, and since fy has no asymptotic values by Lemma 3.18, we
actually have

SN Q) = Qi (7.4)

for all k > 1, (see [Her98, Corollary 2]).

Suppose for the sake of contradiction that we have Q; = € for some k > j > 1. It
follows from Definition 7.11 that £2; = €2;;. This, combined with equation (7.4), implies
that 2; is unbounded. This contradicts [Bak75, Theorem 1]. ]

Definition 7.14. We define

A=A (7.5)
keZ
and
X:={z:f"2) e A,n=0,1,...}. (7.6)

LEMMA 7.15. There exists M € N so that for all N > M, we have f1\71(A) C A.
Proof. By Lemma 7.4, we have fy Y(A) C A for each integer k. Since

ity = v Ao,

keZ

the conclusion follows immediately. O

Definition 7.16. Recall that the filled Julia set of the polynomial-like mapping (fy, U, V)
from Lemma 5.6 is denoted as E. Define

E' =] ry" (). (1.7)

LEMMA 7.17. The Hausdorff dimension of E and E' are the same.
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Proof. This follows immediately from Definition 7.16 along with equations (A.11) and
(A.12). O

The following lemmas give us some basic rules for how orbits of points in X behave.
LEMMA 7.18. The Julia set of fy : C — C is a subset of E' U X.

Remark 7.19. In fact, we actually have J(fy) = E’ U X, and this will become apparent
in the later sections.

Proof. Since (fn, U, V) is a polynomial-like mapping and E is its filled Julia set, E
coincides with the closure of the repelling periodic cycles for (fn, U, V). These are also
repelling periodic cycles for f viewed as an entire function, so E C J (fn). Since J (fn)
is backwards invariant, it follows immediately from Definition 7.16 that E’ C J(fy) as
well.

Now, suppose that z € J(fn), but z ¢ E’. The set E’ is both forward and backward
invariant. Therefore, for all n > 0, we have fﬂ(z) ¢ E’ and, in particular, we have
fy () ¢ E. By Lemma 6.1 and Definition 7.1, if f§,(z) € By for some n > 0 and k € Z,
we must have z in the Fatou set of f. Therefore, by Lemma 7.3, we must have f ](} (z) e A
for all n > 0 so that z € X, as desired. O]

LEMMA 7.20. Suppose that z € Ay and fn(z) € Aj for some j € Z. Then, j < k + 1.

Proof. First, suppose that z € Ay for some k < 0. Then, by Definition 7.1, fx(2) € Ak+1,
sothat j =k + 1.

Next, suppose that z € Ay for some k > 1. Then, by equation (4.31), we have fy(|z| =
4Ry) C Bi+1. Therefore, by the maximum principle for holomorphic functions, we must
have fn(B(0, 4Ry)) C §k+1~ Soif fy(z) € Aj, we must have j < k + 1. O

LEMMA 7.21. Suppose that z € Ay and fn(z) € Aj for some k > j. Then, k > 1, and
there exists a petal P, C Py such that 7 € Py.

Proof. If k <0, we have fy(z) € Ax+1 by Definition 7.1, so we must have k > 1.

By Lemma 6.10, we must have z € V; or we must have z € Py for some petal Py C
Pr. If z € Vi, then by Corollary 6.6, we must have fxn(z) € By U Ag4+1 U Br41. Since
fn(@) € Ajand j < k, we must have z € Py for some petal P, C P. O]

LEMMA 7.22. Suppose that Q C Ak is a Jordan domain for some k > 1. Then, the
number of connected components of fy 1(Q) that are contained in Ay is ni+1, and each
component is a Jordan domain.

Proof. By Lemma 7.8, there are no singular values of fy in U. Therefore, Iy ()
is the disjoint union of Jordan domains. By Lemma 7.10, there are exactly n; many
connected components of fy 1(U ) contained inside of Vi. By Lemma 6.7, there is
exactly one connected component of fy "w ) contained in each petal P, C Pk, which
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yields n; many more connected components of fy '(U). There are no other connected
components contained inside of A; by Lemma 6.10. Therefore, the total number of
connected components contained inside of Ay is ny + ng = ng41. O]

Definition 7.23. If a point z € X, then for each n > 0, f},(z) € Ak, for some integer
k(n, z). By Lemma 7.20,

k(z,n+1) <k(z,n)+ 1. (7.8)

We call the sequence (k(z, ”))3020 the orbit sequence of z.
This inspires the following definition, which will be crucial to the proof of Theorem 1.1.

Definition 7.24. Suppose that z € X. Forn > 1,if k(z,n) < k(z,n — 1) + 1, we will say
that z moves backwards on the nth iterate. We will sometimes omit the iterate n and just
say that z moves backwards. We let Y denote the set of all points in X that move backwards
for infinitely many distinct iterates, and we let Z denote the set of all points in X that move
backwards for only finitely many iterates.

Remark 7.25. Suppose that z, f(z),..., f*(z) € A, but we perhaps do not have
f"t1(z) € A. Then, we may still define the finite orbit sequence (k(z, j ))'}=O. Therefore,
we may still speak of a point z moving backwards for the iterates where its finite orbit
sequence is defined.

Remark 7.26. Let W be connected with W C A and suppose that fI{}(W) C A for
j=1,...,n. Then, since W is connected, each point z € W has the same finite orbit
sequence (k(z, j));fzo. In these situations, we will say that the set W moves backwards
whenever any of the points z € W move backwards.

Remark 7.27. Tt follows immediately from Definition 7.24 that

X=YUZ.

8. A first dimension estimate

We deduced in §7 that 7(f) C E’ U X. We have already estimated the dimension of E’,
and we now move on to estimating the dimension of X =Y U Z. This section will be
devoted to estimating the dimension of Y (the set of points that move backwards infinitely
often). In fact, we will show that the dimension of Y can be taken arbitrarily close to 0.
Although the details are somewhat technical, the idea is simple: we build a sequence of
coverings C,, of Y by pulling back the annuli A; under appropriate branches of the inverse
of f™. The diameters of elements in C,, are estimated by standard distortion estimates for
conformal mappings.

More precisely, our goal in this section is to show that for any ¢ > 0, there exists
some M € N so that for all N > M, we have dimg(Y) < r. We will start by formally
constructing a sequence of coverings C,, of Y N Ay, for m > 0, using the dynamics of fy.
Our initial covering Cy will have exactly one element, the annulus A;. We first describe
how to construct C; from Cy (see Figure 9).
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FIGURE 9. Tllustration of the covering C; and the notation W} for elements of C; (see Notation 8.3). The
elements of C,, for m > 1 are obtained by essentially placing a scaled-down copy of C,,—; in each annulus
in the covering Cp,—1.

LEMMA 8.1. There exists a collection of sets Cy that has the following properties.

(1)  Every element in Cy is a subset of an element in Cy.

(2) Cy is a countable cover of Y N Aj.

(3) Let W be an element of Cy. Then, there exists an integer n > 1 and an integer k € 7
such that fl’\}_l(W) C Ay, and f1;(W) is a connected component of Ay for k < n.

(4)  Every element of Cy moves backwards once.

Proof. For each z € A1 NY, by Definition 7.24 and equation (7.8), there is a smallest

positive integer n so that fy(z) € Ay for some k < n. We remark that it is possible that k

is a non-positive integer. Let W denote the connected component of 5" (Ax) that contains

z. The collection of all distinct components obtained by applying this procedure to all

z € Y is denoted by C;. We check that the properties in the lemma hold.

(1) By Lemma 7.15, W C A, and since W is connected and contains z € A1, we have
W C Ay

(2) Any two elements of C are disjoint. Since A is bounded and all elements of C; are
open, the collection C; is countable.

(3) This follows from the construction of each W, since we chose the smallest positive
integer n such that f§ (z) € Ay fork < n.

(4) By Lemma 7.15, f]{}(W) C Afor j =0,...,n, so this claim follows since 7 is the
smallest positive integer so that fy (z) € Ag fork < n.

This proves the claim. O
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We now show how to construct C,, for m > 1. Our procedure is inductive and described
in the following lemma.

LEMMA 8.2. Let m > 1. Suppose there exists a collection of subsets Cy, that satisfy the

following properties.

e C,, is a countable cover of Y N Aj.

o Let W be an element of Cy,. Then, there exists an integer n > 1 and an integer k € Z
such that [y (W) is a connected component of Ay and 1'\1]71 (W) C Aj for some j > k.
Moreover, W moves backwards for the mth time on the nth iterate.

Then, there exists a collection of subsets Cp 41 that satisfy the following properties.

(1)  Cuy1is arefinement of Cy,, i.e., every element in Cp, 41 is a subset of an element in C,,.

(2) Each element of Cy,, contains countably many elements of Cy,+1, and Cy11 is a

countable cover of Y N Ajy.

(3) Every element of C,+1 moves backwards m + 1 many times.

Moreover, let W be an element of Cpy 11, and let z € Y satisfyz € W C W/, where W' is an

element of C,. Let (k(z, j ))j?io denote the orbit sequence of 7. Let n be the value such that

f;f,_l(W) C f;f,_l(W/) C Akzn—1), [y (W') is a connected component of Ay n), where

k(z,n) < k(z,n — 1) and z moves backwards for the mth time on the nth iterate. Then,

there exists a value q > 1 such that f;\l,ﬂ_l(W) C Akzntg—1) f;ﬂ(W) is a connected

component of Axzntq), Where k(z,n +q) < k(z,n+q — 1), and W moves backwards
for the m + 1st time on the n + qth iterate.

Proof. Choose z € Y N A;. Then, there exists an element W’ of C,, containing z. Let n be
the integer such that f,'\’,(W/) = Ak(zn), k(z,n) < k(z,n — 1), and z moves backwards for
the mth time on the nth iterate. Then, since z € Y, it must move backwards again. There-
fore, there exists a smallest value ¢ > 1 such that f ;\',Jrq (2) € Akzntq) and k(z,n +¢q) <
k(z,n+q —1). We let W denote the connected component of f;("+q)(Ak(Z,n+q)) that
contains z, and we let Cy,,41 denote the collection of all distinct components obtained by
applying this procedure to all z € Y. We now prove the desired properties.

(1) Let W be an element of C,4i. Then by construction, there exists some point
z € Y N A; contained inside of W. Let W’ denote the element of C,, that contains z.
Let n be the integer so that f(W’) = Ay for some k, where W’ moves backwards for
the mth time on the nth iterate. We must have f*(W) C A, so since W is connected,
we have (W) C Ay and it follows that W C W’.

(2) We already know C,, is countable and by the construction, Cp, 4+ covers ¥ N Aj. Let
W’ be an element of C,;,, and let n be the integer such that W’ moves backwards for
the mth time on the nth iterate. Then, f 1’(, (W') = Ay, for some integer k. If k > 1, then
by equation (6.18), there exists countably many elements of C,, | contained in W’'.
If k < 0 is negative, then fl'\’fk“ (W) = A| by Lemma 7.9, and we can apply the
same reasoning for the k > 1 case to see that there exists countably many elements
of Cpy41 contained in W’. Since there are countably many elements W’ in Cp,, the
collection Cy, 4 is also countable.

(3) That every element of Cy,4+1 moves backwards m + 1 many times follows from the
definition of n and the choice of ¢ in the construction. O
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Wy

T n+2
Wik

FIGURE 10. An illustration of components of the form VT/,:’J:'iI € é\m+1 contained inside of some W;! € C,, for

g = 1,2, and 3. The component W}! is bounded by the innermost and outermost circle.

In the rest of our analysis, we will mostly be focused on understanding what happens
when we refine from C,, to C,,,+1. Therefore, the following notation will be convenient (see
Figures 9 and 10).

Notation 8.3. Let W' be an element of C,,, and let W C W’ be an element of C,,11. We
will denote W’ as W,?, where n > 1 is the iterate where W’ moves backwards for the mth
time, and [ (W[') = Ay for some integer k. We will say that W' is of the form W}’ for
n > 1 and k € Z. Likewise, we will denote W as W;Z+q, where n + g is the iterate where
W moves backwards for the m + 1st time, and f,’:,+q(W) = A;. We will say W is of the
form W]'.'Jrq forg > 1.

The following lemma states that the mappings used to define the collections C,, are
conformal with bounded distortion. We state it precisely below.

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



42 J. Burkart and K. Lazebnik

LEMMA 8.4. Let m > 0 and let W}! be an element of Cy,. Then, there exists a Jordan

domain B containing W' such that fy : B — [y (B) is conformal. Moreover:

(1) whenk <0, the modulus of B \ W,ﬁ' is bounded below by @mn)~! log(2), and fl'\;(B)
is an element 01y from Remark 5.9;

(2) whenk > 1, fy(B) = B(0, 4Ry 1), and the modulus of B \ W,:’ is bounded below
by 2m)~ ! log(2).

Proof. Fix m > 0 and choose some k > 1. Let W;' be an element of Cy,. By following
equation (6.21) and using the fact that N > 5, we deduce

8
EckR,'jk > 21714 R 1 > 16Riy1. (8.1)
Therefore, we have

—~ k) ) )
Ay = B(0,4Ry) C B(0, 4Ri41) C B(O, zckR,’jk> c B(O, Ech’;f>. (8.2)

Let B denote the connected component of f, "(B(0, 4Ry+1)) that contains Vifg By
Lemma 7.21, f,'\',_l (W) is the subset of a petal P; C A; for some j > k. Since fy (W}') =
B(0, 4Ry), f]’\',_1 (W,:’) contains a zero w of fy and we can deduce by equation (8.2) that
we have

' (B) € B(w, Aexp(rw/nj) — DR;) C Aj.

Therefore, by equation (6.18), fy : fl'\}*l (B) = B(0,4Ry41) is conformal. Since
fa=Y(B) C A}, we have fL(B) C Aforl=0,...,n—1 by Lemma 7.15. Therefore,
by Lemma 7.8, f]’f,_l :B—> f ](j_l(B) is conformal. Therefore, the composition
fy:B— B(0;4Rk+1) is conformal and B is a Jordan domain. The modulus lower
bound for B \ W}! follows from equation (4.13).

Now, consider the case of k < 0. Let A;{ be the connected component of A; such
that fy (W) = A}. Then, the boundary of ;4\;{ is one of the elements y;_; of '
from Definition 5.8. Therefore, there exists an element o;_; from Remark 5.9 so that the
modulus of 57_x \ 71_x is bounded below by (277)~! log(2). Let B denote the connected
component of fy"(0x+1) that contains W}'. Then, f}, : B — 041 is conformal by a
similar argument to the k > 1 case. O

Remark 8.5. Tt follows immediately from Lemma 8.4 that for all m > 0, every element of
C,, is a Jordan annulus.

Remark 8.6. Letm > 0 and let W;! be any element of C,,, and let K be any compact subset
of W,? Let B be the Jordan domain from Lemma 8.4 containing W;'. By Remark A.7,
Corollary A.4 applies with D = B to fy : B — fy(B) with U = W' and constant C =
L” > 0 that does not depend on m, the element W', or the compact set K.

We now begin estimating the diameters of elements in C,, for the purpose of estimating
the dimension of Y. The following lemma is the same as [Bis18, inequality (17.1)]. Our
proof is similar, and we include all the details for the sake of the reader.
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LEMMA 8.7. Fix some t > 0 and let W|! € C;, be given. Then, there exists some M € N
so that for all N > M, we have

1
> diameter(W}_ ) < Tog diameter(W)', (8.3)
Wi cwi
where the sum in equation (8.3) is taken over all components of the form W'_, in Cy, that
are contained in Wy!.

Remark 8.8. The specific constant 1/100 is not particularly important. In fact, by
increasing M, it can be replaced by any arbitrarily small positive constant.

Proof. The proof splits into two cases: the case of k > 1 and the case of k < 1.

Suppose that k > 1. The}r\1, there is exactly one element of the form W', C W,:‘ Indeed,
the mapping fy : W' — Ay is a conformal bijection, and since there is only one Ay C
Zk when k > 1, there can only be one W,?_l C W,ﬁ’ Thus, we have

diameter(W;"_,)’ Remark 86 , diameter(Az_)’ —( ,,)tR,’(_l
diameter(W")! - diameter(Ay)! R}
t
Lem2a4.8 (L”)[< 1 ) - (L/;)t ' 8.4)
4R R

Suppose that k < 1. Then, there exists a connected component A; of A; so that
fy W — A} is conformal. By Lemma 7.9, we have the following composition of
conformal bijections:

- fn fl—k R

wr S A 2 AL
Therefore, the number of elements of the form W,:‘_l C W,? is equal to the number of
connected components of Ag, which is 2V by part (3) of Lemma 7.9. Next, recall that
the outermost boundary of each connected component of Ay and A;_; coincides with an
element y_i1 and an element y_j > from Definition 5.8, respectively (here, we take the
convention that yq is {z : |z] = 4R1}). Therefore, we obtain

— di no o\t
ZW:—|CW1? dlameter(Wk—l) Remark 8.6 (L ZA/
<

diameter(A’,_.)*
0% k-1 CAL eter(A;_y)

diameter(W;")! - diameter(A})’
Lemma 5.10 wy 2N (diameter(A})'/R}) (L") -2V
< = .
- diameter(A})’ R}

(8.5)

By equations (8.4) and (8.5), the conclusion of the lemma now follows by choosing M
large enough so that for all N > M, we have

(L//)t . 2N 1
- < —
R} ~ 100
Such an M exists by applying Lemma 4.8 and inequality (4.12); see equation (5.20). [

We move on to describing how to change the covering C,, of ¥ N A; by topological
annuli into a simpler covering C,, by topological disks.

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



44 J. Burkart and K. Lazebnik

Definition 8.9. We define a) tobe A 1 and we define a to be the collection

(W' :n>1and W € Cy}. (8.6)

Remark 8.10. When m = 1, we note that the covering Cp satisfies:

° Cm is a coverlng of C,,,, and hence is a covering of A; NY; and
° 1fWk eCm,thenk > 1.

Definition 8.11. Let m > 1 and assume that é;n hEs been constructed and satisfies parts
(1) and (2) of Remark 8.10. Let W}' € Cy,. Then, W' contains a sequence of components
W" € Cy, for j < k. Fix W;’, and consider the elements of Cy, 41 contained inside of W]'.’ of
the form WHJ_F; (- 1If j = 1,thenall g > 1 occur. If j < 0, then g must satisfy g > 2 — j.
Either way, for each valid choice of ¢, the elements of Cm that lie inside of W" are defined
to be the components W +q 1- Doing this for all j < k, we obtain all of the elements
of Cm+ | contained in W" The covermg Cm+ 1 is defined to be the collection of all such
elements obtained in thls way for each W € Cp.

Next, we need the following technical lemma. Recall that in Definition 4.5, we defined
ng = 2N +k—1 )

LEMMA 8.12. Fix some t > 0. For k > 1, define Ly = ny - - - ng, and let € > 0 be given.
Then, there exists M € N such that for all N > M, we have

o
Z LR < e (8.7)
k=1

Proof. We will use the ratio test. Let a; denote the kth term of equation (8.7). Then, for
any k > 1, we have, by applying Lemma 4.8, there exists M so that forall N > M,

!
arg1 2y g RY

a 2kn1 kR,

= 2Nf4
T\ Rt

1 \!
< 2nj41 (m)

12k+N=2

k+1

2 _
= 47nk+12

1 Nk—1
< 8nj_ > . (8.8)

Since nx" — 0 as n — oo whenever x € (0, 1), the series converges by the ratio test. In
fact, a stronger statement is true. By perhaps choosing M larger, we may arrange for the
ratio in equation (8.8) to be arbitrarily small for all £ > 1. We may also arrange for the
first term of equation (8.7), 2n1 R, to be arbitrarily small. It follows that we can make
equation (8.7) arbitrarily small. O
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The proof of Lemma 8.14 is the same as the proof of [Bis18, equation (17.2)]. We include
the details for the sake of the reader. First, we introduce the following convenient definition.

Definition 8.13. Let m > 0 and let W]’.‘ € Cp, be given. Fix some value g > 1. We define
Wj’.‘ (g) to be the set of all elements Wf:qq_ | € €m+1 that are a subset of W]’.’.

LEMMA 8.14. Fix some t > 0. Let Wj’.’ € Cyy be given for m > 0. Then, there exists a
M € N so that for all N > M, we have

o

. 1
Z Z d1ameter(Wj:5 D= —Odlameter(W")’ (8.9)
g=1 Wi(q)

Proof. Fix an arbitrary element Wj’? € Cy,, and choose an arbitrary element of the form

W;’I{jﬁ | € Cpis1 contained inside of W7 for some g > max({1, 2 — j}.

First, we observe that the mapping
fy: W" — Aj
is conformal by Lemma 8.4. Therefore, by Lemma 8.4 and Corollary A.4, we obtain
diameter(W" 7 )t , diameter(f3( Wty

Jjt+q—1 < (L") +q 1
dlameter(W}?)f - diameter(A ;)’

(8.10)

Next, we observe that the mapping
n+q
fN v W j+g— D)= Ajg-t

is conformal. Noting that j+qg—1=>1, if B is the Jordan domain from Lemma

8.4 that contains W] Hqg—1° then f{(B) C Aj. Let B’ be the connected component of

f,;(n+q)(B(0, 2Rj14)) so that B’ C B and the modulus of B \ B’ is bounded above by
Qm)~! log(2). Therefore, by Corollary A.4 and Remark 8.6, we obtain

diameter( f3;( n:g D) , diameter(A; o), diameter(A;j,-1)'
diameter(f,(B"))!  ~ dlameter(f"—’_q (B)) diameter(B(0, 2R 44))"

(8.11)
Combining equations (8.10) and (8.11), we obtain

diameter(W" 1 )

Jjt+q-1
— diameter(fy (B)) _ diameter(A j,-1)’ . diameter(W")!
- diameter(B(0, 2R 4))" diameter(A ;)’ !
— diameter(A ;)" diameter(A j44—1)" . diameter(W")!
J

- diameter(B(0, 2R 1 4))’ . diameter(A )’

R _ t
= (L")} Sitaml) diameter(W7)"
Rjtq !

L 2 1
< (( ) ) - diameter(W;?)t.
2 RH‘LI 1
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Next, for a fixed value ¢ > 1, we want to count the total number of components
of the form Wj',’:qqf] € Cp+1 contained in W/’?. Suppose that j > 1. First, the mapping

f](l, : W" — Aj is a conformal mapping. Next, for each i =0,1,...,q — 1, we have
”*’(W;’I;f D CAjrisand [ W ) = Ajyg.

Since there are n;,,-1 many petals in Aj;,_1, there are n;,,_1 many connected
components of fy ha j+q—1) contained inside of A;;,_1 by Lemma 7.21. For such a
connected component U of fy A J+g—1) by repeatedly applying Lemma 7.22, there
are exactly nj 1 -njo---njg1 = 2‘1’1 j -+ njig—2 many connected components
contained in A ; that map conformally onto U Therefore, the total number of components
of the form W _1 € Cm+1 contained in W” is bounded above by

Q1 njrga) njrg <20 g <27 L (8.12)

When j < 0, for a fixed value ¢ > 1, counting the total number of components of the form

W;’:; | € Cn+1 contained in W’.’ is similar to the j > 1 case, with just one additional
n+q

comphcatlon In this case, we must have ¢ > 2 — j, and we have f}( + a1

= fy S l)(A jtg—D N A’ and A’ is the connected component of A; that contains

) C U, where

I "j{;’ 1)- However, by Lemma 1. 9 f Ny U~ f —J (U) is conformal. So by similar

reasoning as equation (8.12), the number of components of the form erj— | contained
inside of W]'.’ is bounded above by

g2 irg—1
290y njygen o njyg1 < 27T, (8.13)

for each g > 2 — j. Therefore,

o0
Z Z diameter(WJ"I; D!

g=1 Wi(q)

(Ll/)z t o0
< diameter(W7)" - ( ) Z 20t R

2 Jtgq-1

g>max{1,2—j}
t 00

: nyt (L//)z k —t
< dlameter(Wj) . Z 2°LiR,
The result now follows by choosing M so large that for all N > M,

. 1 2\
ZszRk <—(—5).
P 100 \ (L")

Such an M exists by Lemma 8.12. O

We will now show that the sum of the diameters of every distinct element W of CAmH is
comparable to the sum of the diameters of every distinct element V of C,,.
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LEMMA 8.15. Fix somet > 0. Letm > 1 be given. Then,

Z diameter(W)' < — Z diameter(V)'. (8.14)
WeCm+1 VeC

Proof. Let V’VIZ’ € Cy,. Define
G :={W eCpny1:WC W
If W € E, then there exists j < k sothat W C WJ’.Z € C,, and WJ’.’ C W,ﬁ’ For fixed j, define
={WeG:WcCWw/}hL
It follows from Lemma 8.14 that

1
Z diameter(W)" < 0 diameter(Wj’-’)t )
WEGI'

Since G = Ujﬁk G j, we obtain
Z diameter(W)' < 00 Z ) diameter(W]’-‘)t ) (8.15)
WeG W}’eC,,,, W;?CW,:‘
By repeatedly applying Lemma 8.7, we have for any fixed j < k that
1\
ZA diameter(Wj'-’)’ < (ﬁ) diameter(W}")". (8.16)
wrCwy
By combining equations (8.15) and (8.16), we deduce
Z diameter(W)" < Z (L>k - diameter(W}")" < L diameter(W}")"
= — e \100 =0 ko
The claim now follows by summing over all VT/,:’ €Cp. O

THEOREM 8.16. With the notation as above,

o
Z Z diameter(W)’ < oo. (8.17)
m=1 weC,

As a consequence, we have dimg (Y N A1) <t.

Proof. We obtain a geometric sum by Lemma 8.15. Indeed,

o0

Z Z diameter(W)' < Z ( ] ) diameter(A )" < oo.

m=1 weC,,
Therefore, for every ¢ > 0, there exists m > 0 so that

Z diameter(W)' < s.
Wean
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Since Gy, covers Y N A for each m > 0, by applying equation (A.10), we deduce that
H'(Y N Ap) = 0. It follows immediately that dimgy (Y N Ay) < 1. O

COROLLARY 8.17. We have dimg(Y) < t.

Proof. First, we will observe that our arguments above apply to the case of Ay NY
for k > 1, with simple modifications made to the definitions of C,,. Therefore,
dimg(Y NAy) <t forall k>1.If £k <0, let A}c be a connected component of Ap.
Then, by repeatedly applying Lemma 7.9, we see that f;{,“ maps A; onto Aj conformally.
It follows that dimg (Y N A}) = dimg (Y N Ay), and we deduce that dimy (Y N Ay) =
dimg (Y N A;) forall k < 0.

Since Y C A, we conclude by equation (A.11) that

dimy (Y) =dimyg (Y N A) =supdim(Ay NY) <t,
keZ

as desired. O]

9. Jordan Fatou boundary components

Recall that we have proven J(f) C E' UY U Z, and that E” and Y may be taken to have
arbitrarily small (positive) dimension. We now move on to estimating the dimension of Z
(those points whose orbits always stay in A, and eventually only move forward). It will be
necessary to partition Z as follows.

Definition 9.1. Let

Zy = {z € Z : there exists [ > 0 such that for all j > 0, fll\,ﬂ(z) € U Vk} 9.1)
k>1

and
Zr =27\ Z;. 9.2)
Note that Z = Z| U Z».

Our primary objective over the next three sections is the proof of the following theorem.

THEOREM 9.2. Zj is the disjoint union of countably many C' Jordan curves, and Z» has
Hausdorff dimension 0.

In this section, we will focus on proving that Z; consists of a disjoint union of Jordan
curves, and in § 10, we will prove that they are cl. Lastly, in §11, we will study Z5.

For the entirety of the next three sections, we choose M so large so that forall N > M
and k > 1, we have for all z € V} that

I <lpy@] <2 (9.3)

The existence of such an M follows from the Cauchy estimate and Lemma 4.3.
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Rp)

FIGURE 11. A schematic for the statement of Lemma 9.3.

Recall from Definition 7.11 that for k > 1, € is the Fatou component containing By.
We first study the set Z; N Qy fork > 1.

LEMMA 9.3. Let F:C — C be a holomorphic function, z € C, and suppose that
F'(2) #0,z #0, and F(z) # 0. Let R;, RF(;) denote the rays starting at the origin and
passing through z, F(z), respectively. Let v € T,C denote the outward pointing tangent
vector to R, based at z and let w € Tr;)C be the image of the outward pointing tangent
vector to Rp(;) based at F(z). Then, the angle between DF (v) and w is given by
arg((z/F(2))F'(2)) (see Figure 11).

Proof. First, we consider the case that F(z) = z. Then, letting v € T,C denote the unit
tangent vector pointing in the direction of R, we have

DF,(v) = F'(z)v = |F'(z)| arg(F'(2))v € T.C.

This proves the result in the case where w = z. When F(z) # z, the result follows from
applying the above reasoning to the function ¢ — (z/F(z)) - F(¢). O

The following lemma follows a similar strategy to [Bis18, Lemma 18.1].

LEMMA 9.4. Let ¢ > 0 and n, k € N be given. Suppose that ¢ is a univalent function on
the annulus A(}‘Rk, %Rk) and suppose that |¢(2)/z — 1| < € on A(%Rk, %Rk). Define

F(z) = ()"

For any fixed T € [0, 21r), parameterize the segment S(t) = {re'T : %Rk <r< %Rk} as
Y (r) = relt, r e [%Rk, %Rk]. Suppose that F o y; and y, intersect at some point z. Then,
the angle between the tangent vectors of F o y; and y, based at F(z) is O(g) as ¢ — 0.

Proof. Following Lemma 9.3, it is sufficient to estimate arg(zF’(z)/F(z)). To that end,
first observe that by the chain rule, we have

F'2)  n@@)" ¢ =z

= = ¢’ (2). 9.4
Fo T ey o " O
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7~

FIGURE 12. A schematic for the proof of Lemma 9.4.

Let g(¢) = ¢(¢) — ¢. Then, g'(¢) = ¢'(¢) — 1. If z € A(3 Rk, 2Ry), then B(z, 15Rx) C
A(A—I‘Rk, %Rk), so that Cauchy estimates say we must have

maxpg(z,(1/10)Ry) 18(¢)]

Ig/(z)l = (1/10) Ry
10
=R s lax (&) — ¢l
O el @ -1
Rk B(z,(1/10)Ry)
<10-e.

It follows that for all z € A(ZRk, 2Ry), we have |¢/(z) — 1| < 10e, so that ¢/(z) €
B(1, 10¢). This means that n¢'(z) € B(n, 10ne). By assumption, we have (¢(z)/z) €
B(1, ¢). Therefore, if ¢ < %, we have (z/¢(z)) € B(1, 2¢) (see Figure 12).

Putting everything together, we have

% -n¢'(z) € B(n, 24ne). 9.5)

Indeed, if a € B(1, 2¢) and b € B(n, 10n¢e), we have

lab—n|=|la(b—n)4+an—n| <la|-|1b—n|+n-la—1|
(1 +2¢)10ne + 2¢en

12ne + 20ne?

= 12ne(1 + 3¢)

< 24ne

IA

whenever ¢ < 3/5. Therefore, for all ¢ sufficiently small, we have

arg (zl;((;) ) < arctan(24 - 26) = O(e) ase — 0.

This proves the claim; see Figure 12. O
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Definition 9.5. Let Q be given for some k > 1. Then, the outermost boundary component
of Q is contained in Vi1 by Theorem 6.9. Define

Tip =1z € Vip1 : f5(2) € Virji1, j =0,1,...,n). (9.6)

By Lemmas 4.17 and 7.10, for n > 1, each I'y, is a topological annulus compactly
contained inside of I'y,—1, and I'x; is compactly contained inside of 'y g = Viy1. We
define

[o/0]
T := () k- 9.7)
n=1

The remainder of this section will be devoted to showing that 'y is in fact a Jordan
curve, and in the next section, we will show that it is C1.

Definition 9.6. Fix some k > 1 and let n > 0 be arbitrary. Each Vj4,41 has a foliation
of closed circles centered around the origin, including the inner and outer boundary of
Vi4n+1. When n = 0, this is a foliation of I'x 9, which we denote by Uy 0. When n > 1,
by pulling this foliation back to I'x , by fy, we obtain a foliation Uy , of I'y,, by analytic
Jordan curves by Lemma 7.10.

Remark 9.7. Letn > 1.1Itisreadily verified from equation (9.6) that fx (I't ») = Tk1.0—1.
Similarly, we can verify using Definition 9.6 that if y € Uy ,, then fx(y) € Uk+1.0—1-

LEMMA 9.8. Let k > 1, and suppose that y, € Uy, and Yy € Uy for m > n > 0.
Suppose that vy, and y, intersect at some point z. Let 1,(z) and 1,(z) denote the
counter-clockwise oriented unit tangent vectors of v, and yy, at z. Likewise, let v,(z) and
Vi (2) denote the outward pointing normal vectors of y, and yy, at z. Then,

m—1
170 (2) — T (2)| = [V (2) — v (2)| = O( Z 2” N+k+l/4>. 9.8)

I=n

Proof. We first consider the case m = 1 and n = 0. In this case, yy is a circle, and fy (y1)
is a circle in V7. Let z be a point of intersection of yq and y1, so that vy(z) and v (z) are
the corresponding outward pointing normal vectors based at z. Let R be the ray through
the origin passing through z, let R’ be the ray passing through fx(z). Since fy(y1) is a
circle, Dfn : T,C — Ty (;)C maps v;(z) to the outward pointing normal of a circle based
at fn(z). Therefore, vp(z) coincides with the tangent vector to R based at z, (Dfn);(vo)
coincides with the tangent vector to fy(R) based at fy(z), and (Dfn),(v1) coincides
with the tangent vector to R’ based at fx (z). Therefore, by Lemma 9.4, the angle between
(Dfn)-(vo) and (Dfy),(v1) is O(2~V¥FN). Since fy is conformal at z, we deduce that

11(2) = 70(2)] = Ivi(2) = w(@)] < 0@ VEN),

Next, we consider the case of m > 1 andn = m — 1. By Lemma 7.10, the angle between
vm and y;,—1 at z is the same as the angle between f;\?;*l (¢m) and f;\?;*l (¥m—1) at the point
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Zo](é)) ; (Dfn)=(n(2))
Ny (Dfn):(1(2))
BAT fn(7)
" In(m)

FIGURE 13. A schematic for the proof of Lemma 9.8 in the key step of m = 1 and n = 0. In this case, yp and

fn (1) are circles, and (Dfy) : T,C — T, (;)C maps the outward pointing normal v;(z) to y; to an outward

pointing normal (Dfy);(vi(z)) of the circle fx(y1). This allows us to apply Lemma 9.4 to estimate the angle
between (Dfy).(v1(z)) and (Dfn);(vo(z)), which coincides with the angle between v; (z) and vy (z).

FIGURE 14. A schematic for the proof of Corollary 9.9. If some ray R passed through y at more than one point,
there is a ray R’ tangent to y at some other point z. If C is the circle centered at the origin passing through z, the
normal vectors vy, (z) and vc (z) make an angle of 7/2 with each other.

f;,"_l(z). We also have that f]’\;‘_l(ym) € Ug4m—1,1 and f]'\;l_l(ym_l) € Uk+m—1,0, so that
1(,"_1 (¥m—1) is a circle. Therefore, we have by Lemma 9.4 that

1T (2) — Tm_1(2)| < O~ WNFkFm=D)/4)

The lemma now follows by applying the triangle inequality. Let m > n. Then,

m—1 m—1
(@) — 0@ < Y lu@ —un @)l < 0( > 2“”*"*”“)

I=n I=n

This proves the claim (see Figure 13). O

COROLLARY 9.9. Letk > 1, n > 0, and let y be any element of Uy . Then, there exists
M e Nsothatif N > M, y N{re'? :0 <r < oo} is a single point for any 6.

Proof. Suppose that some ray R through the origin intersected y more than once. Since y
is an analytic Jordan curve, this implies that there exists a point z on ¥ and a ray R’ such
that R’ passes through z and is tangent to y. This, in turn, implies that the circle passing
through z centered at the origin makes an angle of 77 /2 with y. For all N sufficiently large,
this is a contradiction to Lemma 9.8 (see Figure 14). O]

LEMMA 9.10. Suppose thatk > 2, z € Vi, and fn(2) € Viy1. Then,

o7 @ € AL Re 53" R,
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Proof. Recall that by Lemma 4.12, for z € Vi, we have fy =hyo qbg,l(z) =
Cy (qb]?,l (z))" . Suppose for the sake of a contradiction that Iqb;,l @ < %(;1‘)1/ "k Ry. Then,

_ 1
1fv@] = Crloy' @™ < Ce(3(2) ™ Re)™ = LRip1 < 2Ry

Since we have fy(z) € Vi4+1, we have a contradiction and deduce that we must have
by (@] > 5" Ry
Similarly, suppose for the sake of a contradiction that |qb;,1 @) = %(%)1/ "k Rr. Then,

|fv(@)] > 3Ris1 > 3 Res1.

Since we have fn(z) € Vk4+1, we have a contradiction and deduce that we must have
oy ()] < $(3)!/" Ry. The claim follows. O

LEMMA 9.11. Let k, n > 1 and suppose that 7 € Ty . Then,

1 Ri+2
‘ > — ) 9.9
[ fv@] = yidas Rit 9.9)

Proof. By the chain rule, we have

fn(@ = nis1 Crp1 (B @)1 7o ().

Since z € 'k, and k > 1, we have fy(z) € Vi42. Therefore, by Lemma 9.10, we must
have

_ 1 1
oy (€ AGG(H)" Risr, 3(3)" Re)-
Therefore, by equation (9.3), we have

v @nD @] = mig1 1 oy D™ oy (@)

1 1/1)\ Y+ ng4+1—1
> — C - R
e (A1) 5
1 1 (g1—1)/ng41 1
== = ——— R
2""“<4> /DRt
2 Riy2
= —nk+1—Jr
2-4 Ri+1
_ ln Ry
= R
This is precisely what we wanted to show. O

Remark 9.12. Tt follows from Corollary 9.9 that if T" is an element of U ,, then we can
parameterize I" as

y:[0,27] - T

y(©) =r@)- e
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for some R -valued function 7 () on [0, 27]. Equivalently, we have
y(0) = (r(0) cos(0), r(0) sin(9)).

Definition 9.13. Fixk > 1 and m > 1. Let Ry be the ray starting at the origin with angle 6.
Define

Wim (0) = length(Ry N Ty ) (9.10)
and
Wim = SUp  Wim(0). (9.11)
6€[0,27)

LEMMA 9.14. Fixk > 1. Then,
8m—1

Wi = ————Rp+41-
Nk+1 - Nk+m

In particular, wy , — 0as m — oo.

Proof. Fix k > 1. Note that by Lemma 9.10, we have

1 3\ /11 1\ /e 1 2 Rt
wk,1 < —Rk+1<<—> - <—> ) < =Ry+1 = &L
2 4 4 2 g+l Mgl

where for the second inequality, we have used the easily verified fact that
(3/4)* — (1/4)* < 2x for all sufficiently small x > O.
Therefore, for all kK > 1, we have

Riy1

Nk+1

Wk,1 =

(9.12)

Next, fix some m > 1, and define Sg = Ry N I'x . Then, fa(Sp) isacurvein Ti41m—1
with one endpoint on the inner boundary of I'x1 ,,—1 and the other endpoint on the outer
boundary of I'x41,,—1. Then, by Lemma 9.4, the angle between fn(Sp) and any radial
segment it meets is 0(2"/’\?"/ 4). We will now show that this implies that the length of
Jfn(Sp) is bounded above by 2wi1 m—1.

Indeed, first observe that by Lemma 9.4, fy(Sg) intersects any circle centered at O at
most once. Thus, we may parameterize fn(Sp) as y(r) = r exp(i6(r)) forr € [r1, r] with
rp — 11 < Wi41,m—1 and some [0, 2mr)-valued function 6 (r). Suppose that the radial arc

o(r) :=rexp(ify), r € [r1, 2]

intersects fn (Sg) at some point zg = roe'?% . Then, the angle ¢ between the tangent vectors
of o and fn(Sp) at the point zq is given by the usual dot-product formula,

Re(o'(r0))Re(y’ (r0)) + Im(o" o)) Im(y"(r0)) _ 1

lo"Go)ll - Iy o) [+ (o0 G0))

Recall that ¢ = 027V N +k) by Lemma 9.4. Thus, for all sufficiently large N, we have
that cos(¢) € [0.9, 1]. It follows that |6"(rg)| < (1/rg). The above reasoning holds for all
ro € [r1, r2], and so it follows that

cos(p) =
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rn r
1ength(fN(Se))=/ IIV’(V)IIdV=/ \/1+("9/(7'))20175‘/5(72—r1)<2wk+1,m—1-
1 r

.
However, we can establish a lower bound for the length of fn(Sp) using Lemma 9.11.
Indeed, we have

ng+1 Ry
4 Riy1

\%

length( fy (Sp)) = /S o @Nldz] = wem(®) -
0

Therefore, we have

4 Riy1 Bwigim—1 Rip

Wi < 2Wki1m—1 .
ng+1 Reyo ng+1 Rego

Therefore, we have forall k > 1 and all m > 1,

gl Rit1
Wiyp £ ————————Wim—1,1
k41 Nktm k+m
gm—1 Rit1 Ritm gm—1
= = Ricy1.
g4l v Nktm—1 Redm Pkdm Mkl © - Nkm

This is what we wanted to show, and it also follows that wg, — oo as m — oo, as
desired. O]

THEOREM 9.15. For each k > 1, Ty is a Jordan curve. Furthermore, Ty intersects any
ray {z : arg(z) = 0} in exactly one point.

Proof. Fixk > 1. By Corollary 9.9, there exist Jordan-curve parameterizations of the form

yin0) = rin@)e, 0 € [0, 2], (9.13)

YU @) = ro"9)e'?, 6 € [0, 27] (9.14)

of the inner and outer boundaries (respectively) of I'x ,. Let m > n. Then, by Lemma 9.14
and since 'y, C 'k, we have the estimate

Irin@) — rin@)| = ri"B) — riN @) < r™(©) — riNO) = i, > 0. (9.15)
By equation (9.15), we can conclude that y, has a continuous limit:
y™©) :=r"®)e, 6 €0,2x].
Similar reasoning allows us to conclude that ™" has a continuous limit:
UL @) = ro@)e?, 6 €10,27],
and moreover by equation (9.15),

YU ([0, 27]) = y™ ([0, 27]). (9.16)

Note that y™™([0,2x]) is a Jordan curve since r™ is continuous. Furthermore,
y™([0, 27]) C [y since ring) > r,"(@) for all n and 6. Moreover, we must have
'y C ([0, 27r]) by equation (9.16). Thus, T’y = ([0, 277]) is a Jordan curve. O
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10. Smooth Fatou boundary components

In this section, we continue our study of the set Z. We will first prove that each Jordan
curve Iy is in fact a C! curve (see Theorem 10.2 below). Then, we will conclude that the
set Z1 is a disjoint union of C! curves and, in particular, has dimension 1. We begin with
a precise definition of a C! curve.

Definition 10.1. We say that a Jordan curve I is C! if there exists a C! parameterization
y : [0, 2] — C of the curve I satisfying y’(0) # 0 for all 6 € [0, 27].

THEOREM 10.2. Foreveryk > 1, I'y is cl.

Remark 10.3. Theorem 10.2 gives only a partial answer to the question: what is the
regularity of the curves I';? Are they C2, smooth, analytic? This question is also asked
in [Bis18, §21]. The authors were not able to prove that the curves I'y are C 2 with the
approach in the current paper.

We will consider the case k = 1 to simplify notation, and we will fix a point zg € I'1
throughout this section. We will sometimes omit the subscript N from fn and ¢y, and
simply write f or ¢.

Definition 10.4. For m > 1, let s, be such that the circle |z| = s, passes through
S™(z0) € Vatm (see Figure 15), and define

Yy (0) := sy exp(if) for 6 € [0, 27]. (10.1)

For 0 < k < m, define

h M (n -0
() :=¢<"+Z/M> for 6 € [0, 2771, (10.2)
Cr+2

where the branch of nH\z/f chosen depends on 6 and is such that equation (10.2) defines a
parameterization of a Jordan curve surrounding 0.

Remark 10.5. By precomposing y," with a translation of [0, 27r] mod 277, we may assume
there is 6y € [0, 27r] not depending on m with zg = yy" (o) € ;" ([0, 27]).

LEMMA 10.6. Let 6 € [0, 27]. Then,

m—1 k m m—1
¢(f"oyy' (0)) 1
[1 o 11

<WﬂmﬂwW@rh1f“%W)kﬂWU%%%» (109
Proof. By Lemmas 4.12 and 4.17, we have that
v ([0,27]) C Viqo for0 <k <m. (10.4)
Thus, the definition in equation (10.2) is such that:
f™oyy' () = sy exp(ing - - - nyq160)  for6 € [0, 27]. (10.5)
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FIGURE 15. Tllustration of a brief sketch of the curves ;" for 0 < k < m.

An application of the chain rule then yields:

U oy @) - - f1 O8O - (Y O) = smina - - - it explina - - - iy 16).
(10.6)

By Lemma 4.12 and equation (10.4), we have that
9'(2)

f1(@) = Cone (@) ¢ (2) = i f(2)
¢ (2)

for z € ¥ ([0, 27]). (10.7)

Thus, equations (10.6) and (10.7) yield

' (fF oyl (9)))
d(f* 1oy (9))

= Sping - - - Ay exp@ing - - - ny416). (10.8)

'O - [] (nk+1 g6 -

k=1

Thus, by using equation (10.5) and isolating for ()/5")’(9) in equation (10.8) yields equation
(10.3). L]

Note that although the curve y;" ([0, 277]) depends on m, the point zg = y;;" (fp) does
not depend on m.

LEMMA 10.7. The sequence (y(;")’(eo) converges as m — Q.

Proof. Letk > 0. Since f* o Yo' (6o) € Vi42 by equation (10.4), we have by Lemma 4.3
that
¢ 01" 0)
floy@®)
The standard Cauchy estimates then apply to show that

1| < ¢ -2 VkEN+D/4, (10.9)

&' (f¥ oyl (00) — 1| < €. 2~ kN4 (10.10)
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Note that the right-hand sides of equations (10.9) and (10.10) are summable over k.
Moreover, it is easily verified that if two complex sums ) , |zx — 1] and D, Jwg — 1]
both converge, then so does [ | « 2kWk. Thus, we conclude from Lemma 10.6 and equations
(10.9) and (10.10) that (yé")/(eo) converges. O]

To summarize, we have thus far defined the curves y;" ([0, 277]) and their parameteri-
zations, and we have shown that (yg”)/ (6p) converges as m — 0o. Next, we will show that
(¥y") converges on the following dense subset of [0, 27].

Definition 10.8. Let O, € [0, 2] be such that f™ o yy"(6o) = ¥, (Om). By equa-

tion (10.2), there are n,, 41 - - - - - ny many points 6 € [0, 2] such that
" o' @) = vy (Om). (10.11)
Denote the collection of 6 satisfying equation (10.11) as .A,,, and define
A= A (10.12)
m>1

LEMMA 10.9. Let 0 € A. Then, the sequence (yé‘)’ (0) converges as k — oo, uniformly
over A.

Proof. Since 6 € A, we have that 6 € A, for some m. Consider yg”H. Since
20 € y(')"H([O, 2m]), it follows from the definition of ®,, that y,j’f“([O, 27]) passes

through the point 3" (®,,). Moreover, by precomposing y,"+! with a translation of [0, 27 ]

mod 27 if necessary, we may assume that
Y (@m) = Y (Om). (10.13)
Thus, we conclude that
yé”“(@) =y, (0) for6 e Ay, (10.14)
and arguing recursively, we see that for all £ > 1, we have
V@) = v 6) for6 € A, (10.15)
Thus, the sequence
(f* o vg" ONF (10.16)

in fact does not depend on m. Thus, equation (10.3) and the same exact argument as
for Lemma 10.7 show that in fact (yé‘)/ () converges as k — oo for any 0 € A,,, with
convergence that is uniform over m and the set A,,. O]

To deduce convergence of (yé‘)’ on all of [0,2m], we will need the following
proposition, whose proof is elementary and hence is omitted.

PROPOSITION 10.10. Let X be a complete metric space, f, : X — C a sequence of
uniformly continuous functions, and assume (f,) converges uniformly on a dense subset
of X. Then, the sequence f, converges uniformly on all of X.
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LEMMA 10.11. The functions y{ : [0, 2] — C converge uniformly.

Proof. Since A is dense in [0, 27] by equation (10.2), Lemma 10.9 implies that the
functions (yé‘)’ converge uniformly (as m — 00) on a dense subset of [0, 277]. We conclude
by Proposition 10.10 that the functions (yé‘ )’ converge uniformly on [0, 27]. O

To deduce that the functions y; converge, we will use the following elementary result
(see [Taol4, Theorem 3.7.1]).

PROPOSITION 10.12. Let i : [0, 2] — C be a sequence of C' functions. Suppose that
the functions y, converge uniformly to a function g, and suppose furthermore that yy (6)
converges for some Oy € [0, 21r]. Then, the functions yy converge uniformly to a C'
function yso : [0, 2] — C, and y, = g.

LEMMA 10.13. The functions yy, : [0, 2] — C converge uniformly to a C 1 function Yo :
[0,27] — C.

Proof. This is a direct application of Lemma 10.11 and Proposition 10.12. O

To prove that I'; is a C! curve, it remains to show that yéo does not vanish, and that
Yoo ([0, 27]) = I'y.

LEMMA 10.14. The curve yoo satisfies y.,(0) # 0 for all 6 € [0, 27].

Proof. Consider equation (10.3) for 8 € A. If we suppose by way of contradiction that
Y40 (0) = 0, then one of the infinite products in equation (10.3) must converge to 0, and so

either
0 k o, m
3 log (M) (10.17)
— frovy @)

or
D log <¢’Lka)«T(9))) (10.18)
k=1

must diverge. We will show that, in fact, both of the sums in equations (10.17), (10.18)
converge. Indeed, we have

> mﬂow@»’ >
1 I V)<
g?g(ﬂow@ SL

k=1

¢(fF oy ©)
fEoyg®)

and the right-hand side of equation (10.19) converges by equation (10.9). Thus, equation
(10.17) converges, and similarly we can use equation (10.10) to show that equation (10.18)
converges. Moreover, we deduce that the sums in equations (10.17), (10.18) are bounded
uniformly over 6 € A. Thus, we have proven that the sums in equations (10.17), (10.18) are
bounded uniformly over a dense subset of [0, 2], and hence yéo is bounded away from O
uniformly over a dense subset of [0, 27r]. Hence, v/, does not vanish on [0, 27]. O

1], (10.19)

LEMMA 10.15. The function yoo parameterizes I'1, in other words, v~ ([0, 27]) =T'.
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Proof. 1t is straightforward to see that Y, ([0, 27r]) C I'1. Indeed, since each 6 € A
satisfies f"(yoo(0)) € Uy Vi for all n, we have that y(0) € I'y for 6 € A. Since A
is dense in [0, 2] and Iy is closed, it follows that ¥~ ([0, 2r]) C I'1. To show that
Yo ([0, 2]) = I'1, we will need to use the fact (proven in Theorem 9.15) that I'y is a Jordan
curve. Indeed, suppose by way of contradiction that y. ([0, 2r]) C T'y. Then, Yoo ([0, 277])
is a strict subset of I'1, and since y0 ([0, 277]) is closed (as Yo is continuous), it follows that
there is an open interval I C [0, 27 ] such that Y5 ([0, 27]) C I'1 \ I'1({), where we use
"1 to also denote the parameterization of I'j. However, by Theorem 9.15, this means that
Y0 ([0, 27r]) has empty intersection with a sector of the form {z € C : ; < arg(z) < 6>}
However, then by uniform convergence, this would mean that for all sufficiently large m,
we have that y" ([0, 27]) has empty intersection with {z € C : 6 < arg(z) < 6,}, and this
is a contradiction since each y" ([0, 27r]) is a Jordan curve surrounding 0. O]

Thus, we have proven Theorem 10.2. We will deduce that Z; is one-dimensional, but
first we need a few preliminary results.

LEMMA 10.16. For each k > 1, Ty is a connected component of J(fn). Moreover, the
outer boundary of Qi is equal to the inner boundary of Q2+1, which is equal to T'y.

Proof. We first show that Ty C J(fn).If z € Ty and & > 0, then for all sufficiently large
n, there exists a petal P C A, such that f; "(P) C B(z, €), where we use a branch of
the inverse of fy : I'rn — Vi (see Figure 9). Since any petal contains a 0 of fx, and
0 € J(fn), it follows that B(z, &) N J(fn) # ©. Thus, as ¢ is arbitrary, we have proven
T C T(fw).

Next, we show that I'y C J(fw) is indeed a component of 7 (fy). Let K denote the
component of 7 (fx) that contains I'. Since I'y is connected, we have I'y C K. Suppose
by way of contradiction that 'y, C K. Note that

o o0
Ti =) Thn = J{& € Vi : fN () € Vigy foralln > 1}.
n=1 n=1
Thus, the assumption I'y C K implies that there must be some point ¢ € K \ Iy and n
such that fy(¢) is on the boundary of V,. However, the boundary of Vi, is mapped
to the Fatou set, and this is a contradiction. Thus, I'y C J(fn) is indeed a component of
T (fn)-

Next, we show that 'y coincides with the inner boundary of €2;41. Recall that Q1
was defined to be the Fatou component containing By1. Since we have proven that 'y
is a Jordan curve component of 7 (fn), it suffices to show that if z € ['y and ¢ > 0, then
B(z,e) N Q41 #@. Let z € Ty and ¢ > 0. As observed in the previous paragraph, the
boundary of each Vi belongs to the Fatou set. Moreover, B4 and the outer boundary
of Vi both belong to 2441 by Theorem 6.9. By similar reasoning, the outer boundary of
Vi and the outer boundary of 't 1 belong to 241, and recursively, we see that the outer
boundary of I'x , belongs to Q21 for all n > 1. Since the outer boundaries of 't , limit
on 'y, by the proof of Theorem 9.15, we see that B(z, &) N Q41 # @, as needed.

Lastly, it remains to show that Iy coincides with the outer boundary of . It suffices
to show that if z € I'y and ¢ > 0, then B(z, ) N Qk # . Our reasoning is similar to that
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given in the previous paragraph. Namely, note that the outer boundary of By and the inner
boundary of Vi both belong €2 by Theorem 6.9. Similarly, the inner boundary of V; and
the inner boundary of I'y; belong to the same Fatou component 2;. Recursively, we see
that the inner boundaries of ', all belong to the same Fatou component €2 for all n. By
the proof of Theorem 9.15, we see that B(z, €) N Qx # @ as needed. ]

LEMMA 10.17. For the set Z1, we have Z1 C J (fn).

Proof. Let z € Z1, so that by definition, there exists / > 0 so that for all j > 0, f 1{, (z) €
U k>1 Vk- Since z € Z, we may, by perhaps increasing /, further assume that fjl\, (2) never
moves backwards. Let m > 1 be such that f}v(z) € V. Since fjl\,(z) does not move

backwards and ff\,(z) € Ukzl Vi, we deduce that Ilvﬂ(z) € Viu+1. By similar reasoning,

we see that in fact, f,l\,ﬂ (z) € Viuyj forall j > 0. Thus, by Definition 9.5, f/lV () € Tyt
By Lemma 10.16, I';,—1 C J(fn), and so fll\,(z) e J(fn). O

LEMMA 10.18. Let T" be a component of Zi. Then, there exist p,n > 1 and a Jordan
domain B containing T" such that fy|p is conformal, and fy(I') = T').

Proof. Tt will be convenient to denote V := | =1 V;. Let I' be a component of Zj,
and let z € I'. Since z € Z, there is a positive integer m > 0 so that z moves backwards
precisely m times. Thus, there is an element W, € C,, containing z. Let us first assume
k > 1. By Lemma 8.4, there exists a Jordan domain B containing W,? such that fl’\’, (B) —>
B(0, 4Ri+1) is conformal and fy(W}') = Ag. In particular, since dAx C F(fn), we
deduce that I" C W}'. In particular, we have that £y, (I") C Ag. By our choice of W' € Cyy,
we have that fl’f,(l”) can only move forward. Moreover, by Lemma 6.9, we have that
either fl’f,(l‘) C Vi or fl’\’,(F) is a subset of a petal P, C Py. Since z € Zi, there exists
a smallest [ > 0 and p > 1 such that f7*'(z) € V, and f3"/(z) € V for all j > 0.
Moreover, by Lemma 6.7, there exists a Jordan domain B with W,’f C B’ C B such that
fl o fR(B") — furl(B') is conformal. Thus, £ (I") C V,,. Now, consider an arbitrary

7/ € T. Since f,'\;"’l (z") only moves forward and f;\;Hﬂ (z) € V for all j > 0, we have

that f;\',Hﬂ (z') € Vpyj for all j > 0. Thus, by Definition 9.5, 1'\1,"'1(1/) € I'_1. Since
7 € T was arbitrary, we have that fu/(I') € T'p_;. Lastly, since fut': B' — fit(B)
is conformal, we have that fl'\',H (I') = I' 1, and hence the proof is finished in the case
where k > 1. If k < 1, by Lemma 8.4, we have a Jordan domain B containing W,? such
that f3|p is conformal, and fy (W}') = Ay is mapped conformally onto A, whence the
above reasoning applies. O

COROLLARY 10.19. The set Z; is a countable disjoint union of C' Jordan curves. In
particular, the Hausdorff dimension of Z1 is equal to 1.

Proof. By Theorem 10.2 and Lemma 10.18, each component of Z; is a conformal image
of a C! Jordan curve, and hence each component of Z1 is a C! Jordan curve. Since any
Jordan curve has non-empty interior, there can be at most countably many components of
Z1. Lastly, dim(Z1) = 1 follows from Lemma A.10. O]
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11. Singleton boundary components
In this last section, we analyze finally the set Z,. Recall that we have proven that

J(f)CE'UYUZ U Z,,

and so to prove part (1) of Theorem 1.1, it only remains to estimate the dimension of Z5.
In this section, we will prove that, in fact, Z> has dimension 0 and consists of uncountably
many singletons. We begin by constructing a sequence of covers for Z,.

Recall from Definition 9.1 that

Zy = {z € Z : there exist arbitrarily large n such that fy(z) ¢ U Vk}. (1L.1)
k>1

We first analyze Z; intersected with the closure of a Fatou component €.
LEMMA 11.1. Suppose that 7 € Z> 0 Qi for some k > 1. Then, z € Ay.

Proof. Since z € Z; C X, the orbit sequence of z is (k(z, n));2, and we have

fn(@) € Ak

foralln > 0.

Note that Q; C Ax U By U Ajg+1. Since z € X, we must have z € A or z € Agy1.
Suppose for the sake of contradiction that we had z € Ag4;. Since z € Q. we have
f /IV (z) € Qi for all [ > 0. The outermost boundary component of € is 'y by Lemma
10.16, and T’y C Vi1 by equation (9.7). Therefore, we must have

Z € A(JTRH], %Rkﬂ).

By Lemma 6.4, fN(A(%RH], %Rk_H)) C By+1, so since z € X, we must have z € Vi 1.
Since fn(Vi41) C Br41 U Agy2 U Bryo by Corollary 6.6, we deduce that fy(z) €

A2 N gy 1.
By repeating the reasoning above, we deduce that fllv (z) € Vikgiy1 for all [ > 0. This
contradicts the fact that z € Z;, so we must have z € Ag. O]

LEMMA 11.2. Suppose that 7 € Q_k N Z, for some k > 1. Then, 7 € €.
Proof. Recall that
{z € C:4Ry < |z| < Rk41/4} C Q. (11.2)

Suppose for the sake of contradiction that z € €. Then, there exists &€ > 0 so that
B(z, ) C Q. By [BRS13, Theorem 1.2], there exists m > 0 and « > 0 so that for all
n > m, we have

AR R @I € fR(B(z, €) C Qg (11.3)

By Lemma 11.1,

TRerj < 1@ < 4Ryt (11.4)
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holds for all j > 0. Notice that by Lemma 4.8,

A/AFORTEE 1 L aeeo
fl-a gl-e == RRkin > 0.
k+n

Then, by perhaps increasing m, we have for all n > m that

/ARG
_ 1— :
AR

Therefore, for all n > m, the annulus A (4!~ R,ljr,‘f, ¢! /4(1+"‘))Rliifl‘) is not empty and

wpla | .
A<41 “Rie, m&ii?f) CAUSR@I 1N @IT) C Q. (1L.5)

By perhaps increasing m one last time, we can use Lemma 4.8 to deduce that for alln > m,
we have

AR R, < 1 Riqn. (11.6)

By equations (11.3) and (11.6), we deduce that f}, (B(z, €)) contains a point w € By, C
Q1n—1. This is a contradiction to the fact that fy (B(z, &)) C Q4 foralln > m. O]

Recall that we introduced the petals P; C P; for all j > 1 in Definition 6.2.

LEMMA 11.3. Suppose that z € Zo N Ay and suppose that the orbit sequence of 7 is
(k(z,n)2 = (k,k+1,k+2,...). Then,

ze) (UfN"(Pk+,->mAk). (11.7)

Proof. Since z € Ag and (k(z,n));2, = (k,k+1,k+2,...), we have fllv(z) € Agyy for
all I > 0. Since z ¢ Zi, there exists infinitely many positive integers j so that fZ{, (z) ¢
Vi+ ;. For those values of j, we still must have f]{,H (z) € Agyjy1, s0 Lemma 6.10 implies
that f ,{, (z) € Pry.j- The inclusion in equation (11.7) follows immediately. O

LEMMA 11.4. Suppose that z € 92 for some k > 1. Then, z € Z and the orbit sequence
of z is either (k(z,n))> o= (k,k+1,...) or (k(z,n);2 = (k+1,k+2,...). In the
latter case, we must have z € T'), C Z.

Proof. Let z € 0<2. First, recall that 02 C Ax U Ag41. Since 2 is a bounded Fatou
component, we have f(9) = 0Q+1 (see [BRS13, paragraph above Theorem 3.2]).
Therefore, we have fy (z) € Axyn U Agypqr foralln > 0.

Suppose that 7 € Ax41 N 92,. We argue similarly to Lemma 11.1. By Lemma 10.16 and
equation (9.7), the outermost boundary of €2y is a subset of Vi 1. Therefore, we must have

Z € A(}TRkH’ %Rkﬂ).
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Since fN(A(}TRk+1, %RkH)) C Biy1 and z € J(fn), by Lemma 6.1, we must have
7 € Vigr. Since fy(Vis1) C Br41 U Ags2 U Bryo and  fy(z) € 0Q2k+1, we obtain
IN @) € Appa.

By iterating the reasoning above, we deduce that f ,l\, (z) € Viyiy41 forall [ > 0, so that
zelgand (k(z,n)2y=Gk+1,k+2,...).

The other possibility is that z € Ay N d<2. Since fn(z) € 0Qk+1, we must have
In(@Z) € Agy1 U Agyn. By Lemma 7.20, we must have fy(z) € Ar+1. By repeating
this reasoning, we deduce that f,lv(z) € Ay for all 1 > 0, and (k(z, n));2, = (k, k +
1,..). O

COROLLARY 11.5. Forallk > 1, we have

ZyNo () (U I Pt ﬂAk>. (11.8)

Proof. Letz € Z N 0. By Lemma 11.1, we have z € Ay, and by Lemma 11.4, the orbit
sequence of z must be (k(z, n));’lo:0 =(k,k+1,k+2,...). The result now follows from
Lemma 11.3. O]

To estimate the Hausdorff dimension of Z, N 92, we will need the following estimates
on the expansion of fy on the petals Py for all £k > 1.

LEMMA 11.6. There exists M so that for all N > M and for all k > 1 and all 7 € Py, we
have

I R
. > — . 11.9
| fv(@)] = 1% R (11.9)

Proof. Let w be a zero of fxn contained inside of some connected component Pj of
Pr. First, note that there exists M so that for all N > M and all k > 1, the modulus of
B(w, Aexp(/ng) — DRy) \ B(w, Rx/2") is bounded below @n)~! log 2. Therefore,
by Theorem A.2 and Lemma 6.7, there exists a constant P > 1 that does not depend on k
or N so that for all z € B(w, Ry/2"%), we have

1 /
— < |ffV(Z)| < (11.10)
P | fyw)]
Therefore, by equation (6.20), we have
1 182" Riyq
! > _|f! D —— .
IIn@I = ZlIvWl = Foe—m Ry
By Lemma 4.8, there exists M € N so that for all N > M, we have
182" 1
— > —. 11.11)
P8 — 4
Equation (11.9) follows immediately. O
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COROLLARY 11.7. Fix some k > 2. Suppose that 7 € f;j (Pr+j) N Ay for some j > 1.

Then,
Ri+j
> — 11.12
I(fN)()I_4/ R (11.12)
Proof. By repeatedly applying Lemma 6.10, we see that for each / =1, ..., j, we have

either flgl(Pkﬂ) belongs to Py or Viyj—;. Therefore, if z € fly(PkH) N Ay, we
have by Lemmas 9.11 and 11.6 and the chain rule that

—1 j—1

j Rl+k+1 I Ry
Jy _ j
[(fy) (@] = |=0| Tk w1 R | | Ntk

This is exactly what we wanted to show. O

THEOREM 11.8. We have dimgy (Z> N 02;) = 0.

Proof. Let j > 1 and W be a connected component of fy J (Pryj) N A If z € W, then
we have by Theorem A.3 that there exists a constant P’ independent of N, k, and j such

that
P’ P4/ Ry Risi R
diameter(W) < ———— diameter(Py4.j) < —— k nkk+/ <p nkk N
I(F @ T2y nik Rewj 20 2kt
(11.13)

Fix some ¢ > 0. For j > 1, we define
Gj={W : W C A and f,{,(W) = Py j for some Py C Pyl

For each petal P4 j, there are ngy1 - - - ngy; many connected components W € G; by
Lemma 7.22. Since there are njy; many connected components of Py ;, and recalling
that Ly = ny - - - ng, we count the number of connected components of G ; as

Mgl == My - Mij = 2Img - - mpyjo1 - npgj < 2/ Ly

Therefore, we have

t

Z diameter(W)' < 2/ Ly ;(P)
WEGj

(11.14)

21 nkﬂ

Therefore, for any fixed [ > 1,
1\ e+
Z Z diameter(W)' < (P')' - R} szLk+j<2,> . (11.15)
j=l WeG; izl

This series converges by the ratio test. Indeed,

2 Ly 1\
2 2

lim -
j=oo 2/ Liyj

1 Mg+ j
= jll)rrgo Angy (5) =0. (11.16)
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Since equation (11.15) converges, we have that for any ¢ > 0, if [ is sufficiently large, then

Z Z diameter(W)" < e.

j=l WeG;

By Corollary 11.5, we conclude that H'(Z, N 3%) = 0. Since ¢ > 0 was arbitrary, we
further conclude that dimg (Z, N 02;) = 0. O]

Now that we know that dimg (Z, N 9€2;) = 0 for all kK > 0, we move on to estimating
dimgy (Z5).

LEMMA 11.9. Suppose that 7z € Ay for some k > 1. Suppose further that the orbit
sequence of 7is k(z,n) = (k,k + 1,k +2,...). Then, z € Q.

Proof. Since z € Zy N A, by Lemma 11.3, we have

ze) <U £y Peyj) mAk).

. . . . lj
Therefore, there exists a sequence (I;) of increasing integers so that fy (z) € Pry ; for

some petal P4y ;€ Pk+l.,~. Let le denote the connected component of f& i (Pk+1/.) that
contains z. By equation (11.13), diameter(le) — 0as j — oo.

Let ¢ > 0 be given. Then, there exists /; such that le C B(z, €). By equation (6.17),
there exists a point w € Pry;; so that |fy(w)| = 3Rj4s;+1. By Lemma 6.3, f]%,(w) €
Bk+lj+2, so that ff, (w) € Qk+lj+2- Therefore, the element of fl\jlj(w) that belongs to

Wi, belongs to 2. Therefore, B(z, €) N 2 is not empty, and since ¢ > 0 was arbitrary, it
follows that z € Q. O

COROLLARY 11.10. We have

zc f[;-"( L zn aszk>. (11.17)

j>0 k=1

Moreover, we have dimg (Z) = 0.

Proof. Since z € Z;, there exists m > 0 and k > 1 so that fl’\,” (z) € Ag, and the orbit
sequence of fy/(z) is strictly increasing and given by (k,k+1,...). It follows that
fy (@) € Q by Lemma 11.9. Thus, by Lemma 11.2, we have that f3/(z) € d€2. Therefore,
equation (11.17) holds.

By equations (A.12) and (A.ll), it follows from equation (11.17) that
dimg(Z;) = 0. O

COROLLARY 11.11. The set Z; is totally disconnected. In particular, every connected
component of Z; is a point.

Proof. The Hausdorff dimension of any non-singleton connected set is bounded
below by 1. Since dimgy(Z;) =0 < 1, Z; cannot have any non-singleton connected
components. O
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COROLLARY 11.12. Let k > 1. Then, 3 consists of countably many C' smooth Jordan
curves and uncountably many singleton components. The singleton components coincide
with Qi N Z and the C' smooth components coincide with Q. N Z1.

Proof. Since 0Q2x C Z by Lemma 11.4, we have
0 = (02 N Z1) U (02 N Z3).

Every component of Q; N Z; is a C! smooth Jordan curve by Corollary 10.19, and every
component of Q2 N Zj is a singleton by Corollary 11.11. There are uncountably many such
components by [RS19, Theorem 7.1]. O

COROLLARY 11.13. Let Q2 be a Fatou component of fn. Then, 02 consists of uncountably
many singleton components and countably many C' smooth Jordan curves.

Proof. Note that every Fatou component of fy is bounded. Let I denote the connected
component of the boundary of 2 that separates 2 from oo. Since I' C J(fn), by Lemma
7.18, we have ' C E'UX = E'UY U Z; U Z,. Since T is a non-singleton connected
set, we must have I' C Z;. By Lemma 10.18, there exists p, n > 1 and a Jordan domain
B containing T" such that fy|p is conformal and fy (I') = I';,. Consequently, we have

v (2) = Qp and fy|q is conformal. The result now follows from Corollary 11.12. O
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A. Appendix. Supplementary details

In this appendix, we collect several classical theorems and definitions used throughout the
paper, and we will briefly prove a technical result (needed in §6) on the behavior of the
interpolating map of [BL23] near its zeros. We begin with the statements of some classical
distortion theorems for conformal mappings.

THEOREM A.l. (Koebe 1/4 theorem) Let D C C be a domain and let zo € D, and
suppose that f : D — f(D) is conformal. Then,

dist(f (z0), 9(f (D))

dist(z0. 3D) < 4(f (zo)l. (A.D)

1
Zlf'(zo)l <

THEOREM A.2. Let D be a simply connected domain and let f : D — f(D) be a
conformal mapping. Let U be a relatively compact subset of D. Then, there is a constant C
that depends only on the modulus of D \ U such that

https://doi.org/10.1017/etds.2024.124 Published online by Cambridge University Press



68 J. Burkart and K. Lazebnik

! @l _ .

— =< sup =
C zwel [f/(w)]

(A.2)

Next, we need the following consequence of the Koebe distortion theorem. The statement
below is [McM94, Theorem 2.9].

THEOREM A.3. Let U and D be simply connected domains with U compactly contained
inD. Let f : D — f(D) be conformal. Then, there exists a constant C that depends only
on the modulus of D \ U such that for any x, y, z € U, we have

1 lf ) = f@I
Lo < LD ZIEL oy, (A3)
c ly —zl

Using the BiLipschitz estimate (A.3), we obtain the following corollary.

COROLLARY A.4. (Koebe distortion theorem) Let D be simply connected, let U be
open and compactly contained in D, and let K be a compact subset of U. Suppose
f : D — f(D) is conformal. Then, there is a constant C that depends only on the modulus
of D\ U so that

1 diameter(K) - diameter( f(K)) - Cdiameter(K )

: < — <C— : (A4)
C diameter(U) diameter(f (U)) diameter(U)

We can also deduce the following corollary using equation (A.3), but we first need the
following definitions.

Definition A.5. Let f: D — f(D) be a conformal mapping, and B = B(zg,r) be
compactly contained in D. We define the inner radius of f(B) by

Tf(B).f(zo) ‘= sup{t : B(f(z0),?) C f(B)}. (A.5)
We similarly define the outer radius of f(B) by
Ry(B).f(z) :=Inf{t : f(B) C B(f(z20), 1)} (A.6)

COROLLARY A.6. Let D be a simply connected domain and let f : D — f(D) be
conformal. Let B = B(zg, r) be a disk compactly contained inside of D. Then, there exists
a constant C that depends only on the modulus of D \ B so that

CUf oI <7pB).fao) < Ry s < Clf zo)lr. (A7)

Remark A.7. In this paper, we will frequently encounter the following situation. Let
f : € — C be an entire function and let D,, be a sequence of simply connected domains
in C. Let U, be open and relatively compact in D,,, and let K,, be a compact subset of
U, . Suppose that f, when restricted to Dj,, is conformal, and suppose that the modulus of
D, \ U, is bounded below by some fixed constant § > 0 that does not depend on n. Then,
there exists a single constant C so that equation (A.4) holds for all pairs of domains U, and
K. A similar assertion is true for equation (A.7).

We now recall some basic facts about Hausdorff dimension, following [Mat95].
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Definition A.8. Let A C C be a set. We define the «-Hausdorff measure of A to be the
quantity

HE(A) = lim H'(A)

o 0
= 811% <inf {Z diameter(U;)* : A C U U;, diameter(U;) < 8}), (A.8)

i=1 i=1

where the infimum is taken over all countable covers of A by sets {U;}7° ;.

One can verify by directly using Definition A.8 that if H'(A) < oo, then H*(A) =0
for all s > ¢, and similarly, if H'(A) > 0, then H*(A) = oo for all s < ¢. Therefore, the
following definition is well defined.

Definition A.9. Let A C C be a set. The Hausdorff dimension of A is defined to be
dimpy (A) := sup{t : H'(A) = oo} =inf{t : H'(A) = 0}. (A.9)
We also use the following well-known facts about Hausdorff dimension.

LEMMA A.10. Let A C C be a set and let s > 0. Then:
(1) H*(A) =0 if and only if for all ¢ > 0, there exists sets E; C C,i = 1,2, ... such
that A C |72, E; and

o
Z diameter(E;)* < ¢; (A.10)
i=1

(2)  suppose that A =\ J:2, A; for some sets A; C C. Then,

o]

dimy (A) = dimg ( U A,-> = sup dimpy (A4;); (A.11)

i=1 izl
(3) let S C Cbeasetandlet f: C— C be an entire function. Then,
dimy ($) = dimp (f(S)) = dimg (£~ (). (A.12)

We will now record some useful lemmas about branched coverings that are topological
in nature. The following are [RGS19, Propositions 3.1 and 3.2].

LEMMA A.ll. Let f : X — Y be a branched covering map between two non-compact,
simply connected Riemann surfaces. Suppose that U C Y is a simply connected domain
and let U’ be a connected component of f~Y(U) such that U’ contains only finitely
many critical points of f. Then, f : U' — U is a proper map and U’ is simply connected.
Additionally, if the boundary of U is a Jordan curve in Y that contains no critical values
of f, then the boundary of U’ is a Jordan curve in X.

LEMMA A.12. Suppose that f : C — C is an entire function and suppose that U C C is
simply connected. Suppose that U contains no asymptotic values of f and that the critical
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values of f inside of U form a discrete set. Then, f is a branched covering from each
connected component of f~1(U) onto U.

The following version of the Riemann—-Hurwitz formula is from [Ste93].

THEOREM A.13. Let V and W be domains in C, and suppose the connectivity (the number
of complementary components) of V is m and the connectivity of Wisn. Let f : V — W
be a proper, branched covering map of degree k that has r many critical points. Then,

m—2=kn—2)+r. (A.13)
We also make use of polynomial-like mappings, see [DHS85].

Definition A.14. Let Q, ' C C be Jordan domains and suppose that € is compactly
contained inside of €. A holomorphic mapping f :Q — Q' is called a degree d
polynomial-like mapping if it is a proper, degree d, branched covering map. Given a
polynomial-like mapping, we denote its filled Julia set by

Kp=()rf"9.

n=1

We make frequent use out of the following lemma.

LEMMA A.15. Suppose that f : X — Y is a degree d branched covering map between
two simply connected planar domains with only finitely many critical points. Let U C Y
be a Jordan domain. Suppose that U does not contain any critical values of f. Then, there
are d many connected components of f~'(U) C X, each of which is a Jordan domain that
is mapped conformally onto U by f.

Proof. Since f : X — Y only has finitely many critical points in X, every connected
component U’ of f~1(U) is a Jordan domain and f:U’ — U is proper, finitely
branched covering map by Lemmas A.11 and A.12. Since U contains no critical values
of f: X — Y, the mapping f : U’ — U has no critical points. Since U’ and U are each
Jordan domains, it follows from Theorem A.13 that f : U’ — U is conformal. Since f is
degree d, it follows that we must have d many connected components of f~!(U). O

Next, we state the main result of [BL.23], which is central to the proof of Theorem 1.1.
We refer the reader to [BL23] for a detailed discussion and proof.

Definition A.16. Let (M) € Nbe increasing and (r;)32, € RT. We say that (M;)3,
(rj)jZ, are permissible if

. j—00 M
Tit1 > exp(n/Mj)~rj forall j € N,r; —— oo, and sup o <o0o. (Al4)

J J
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THEOREM A.17. Let (Mj);?‘;l, (rj)j?ozl be permissible, ry := 0, and ¢ € C* := C\ {0}.
Set

J
. . M;_1—M; My —My .
cii=c and cj:= cj_1~rj_’1 ! =c~1_[rk_1 for j > 2. (A.15)
k=2

Then, there exists an entire function f : C — C and a quasiconformal homeomorphism
¢ : C — C such that

fodx)= cszj Jorri_y-exp(m/M;_1) <l|z| <rj,jeN (A.16)

Moreover, if Zjozl Mj_1 < 00, then |¢p(z)/z — 1| = 0 as z — oo. The only singular

. M;
values of f are the critical values (£c; r; ! )‘;‘;1.
Finally, we record the following important lemma that is used in §6.

LEMMA A.18. Let g, 2, be the function in [BL23, Proposition 3.13] and let w be a zero of
g contained inside A(1, exp(mw/n)). There exists constants 0 < A < 1/8 and § > 0, which
do not depend on n, so that

B(0,8) C gnon(B(w, Alexp(r/n) — 1))) C B(0, 1/2). (A7)

Moreover, gy, 2, is injective on B(w, A(exp(wr/n) — 1)).

Proof. 1t is possible to prove this result directly from the definition of g2, [BL23,
Definition 3.11], but it will be more straightforward if we use some general results
about quasiconformal mappings. We will let B; := B(w, A(exp(sr/n) — 1)) and denote
the Jacobian of g by J,.

Let w be a zero of g contained inside A(1, exp(;r/n)). It follows from [BL.23, Definition
3.11] that g is injective (and hence quasiconformal) in

B(w, exp(n/22n) — 1>.

We first show that the first inclusion in equation (A.17) holds for small A. To this end, we
appeal to [AG8S, Theorem 1.8], which implies that there is a constant ¢ depending only on
K (gn.2n) (in particular, ¢ does not depend on 7 or 1) so that

d(g(w), 3g(B,)) = ¢ - h(exp(rr/2n) — 1) - exp ( log(Jg)). (A.18)

2m(B;) Js,

It is readily calculated that there is a constant C independent of n and A such that Jg(z) >
C-nforze B;.. Thus, from equation (A.18), we conclude that

d(g(w), 0g(By)) > ci(exp(mw/2n) — 1)Cn > cA - /2n - Cn = cAn C/2.

We conclude that the first inclusion in equation (A.17) holds for é that depends only on A.
Next, we show that for sufficiently small A the second inclusion in equation
(A.17) also holds. Indeed, since quasiconformal mappings are quasisymmetric (see
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[AIMO09, Theorem 3.6.2]), there exists a constant  depending only on K(g,2,) (and,
in particular,  does not depend on n) such that for all A < (exp(;r/2n) — 1)/4, we have

u lg(w) — g(w + e A(exp(rr/n) — 1)) -
oef027] 18(w) —g(w + Alexp(w/n) — 1)) —

(A.19)

It is readily seen from the definition of g, 2, that
r—0
sup |g(w) — g(w + A(exp(w/n) — 1)) —> 0,
n

so that by equation (A.19), we conclude that the second inclusion in equation (A.17) holds
for all sufficiently small X. O

LEMMA A.19. Let g = gu2nx.c be the function in [BL23, Proposition 3.19] and let w be
a zero of g contained inside A(x, exp(w/n) - x). There exists constants 0 < A < 1/8 and
& > 0, which do not depend on n or x, so that

B(0, 8 - cx™) C g(B(w, Mexp(r/n) — 1)x)) C B(0, 1/2 - cx"). (A.20)
Moreover, g is injective on B(w, A(exp(mw/n) — 1)x).

Proof. This follows immediately from the definition of g, 2, and Lemma A.18. Indeed,

we have
z
gn2nxe = (> cx"z) o guon 0 <z = ;>
The inclusions in equation (A.20) now follow from equation (A.17) |
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