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New implicit and implicit-explicit time-stepping methods for the wave equation in second-order 
form are described with application to two and three-dimensional problems discretized on overset 
grids. The implicit schemes are single step, three levels in time, and based on the modified 
equation approach. Second and fourth-order accurate schemes are developed and they incorporate 
upwind dissipation for stability on overset grids. The fully implicit schemes are useful for certain 
applications such as the WaveHoltz algorithm for solving Helmholtz problems where very large 
time-steps are desired. Some wave propagation problems are geometrically stiff due to localized 
regions of small grid cells, such as grids needed to resolve fine geometric features, and for these 
situations the implicit time-stepping scheme is combined with an explicit scheme: the implicit 
scheme is used for component grids containing small cells while the explicit scheme is used on 
the other grids such as background Cartesian grids. The resulting partitioned implicit-explicit 
scheme can be many times faster than using an explicit scheme everywhere. The accuracy and 
stability of the schemes are studied through analysis and numerical computations.
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1. Introduction

The wave equation in second-order form is an important model for many applications in science and engineering involving wave 
propagation. Example applications include acoustics, electromagnetics and elasticity; such problems are often posed mathematically 
as partial differential equations with appropriate initial and boundary conditions. Wave propagation problems are often solved most 
efficiently using high-order accurate explicit time-stepping schemes. Explicit schemes can be fast and memory efficient. The time-step 
for such schemes is limited by the usual CFL stability condition involving the size of grid cells and the wave speed. Thus, there are 
some situations, such as with a locally fine mesh or a locally large wave speed, when an explicit scheme with a global time-step 
is inefficient since a small time-step would be required everywhere. For such situations, we say the problem is geometrically stiff or 
materially stiff. An example of a geometrically stiff problem is the diffraction of an incident wave from a knife-edge as shown in Fig. 1. 
The solution of this problem is computed using an overset grid for which there are small grid cells near the tip of the knife-edge. These 
small cells force the time-step of an explicit method to be reduced by a factor of 20 from that required by the Cartesian background 
grid. (More information concerning overset grids and our numerical schemes for such grids is given later.) There are two common 
approaches to overcome this stiffness, local time-stepping (LTS) and locally implicit methods (LIM). LTS methods use a local time-step 
dictated by the local time-step restriction. LIMs use an implicit method on only part of the domain, usually where the grid cells are 
smallest.

In this article we develop new locally implicit time-stepping schemes for the wave equation in second-order form on overset grids 
based on the modified equation (ME) approach. These schemes are high-order accurate single-step schemes that use three time-levels 
and a compact spatial stencil. The schemes depend on one or more parameters that determine the degree of implicitness; the second-
order accurate scheme depends on one parameter while the fourth-order accurate scheme depends on two parameters. For certain 
ranges of these parameters the schemes are unconditionally stable in time. A small amount of upwind dissipation is added to the 
schemes for stability on overset grids. The upwind dissipation can be added in several ways, for example, in a fully implicit manner 
or in a predictor-corrector fashion where the upwinding is added in a separate explicit step.

Our implicit time-stepping ME scheme, denoted by IME, is combined with a ME-based explicit time-stepping scheme, denoted 
by EME, in a spatially partitioned manner. The EME schemes we use have a compact stencil and have a time-step restriction that 
is independent of the order of accuracy.2 We say that these compact EME schemes are able to take a CFL-one time-step. This is in 

2 Many EME schemes take powers of an matrix operator (leading to a wider stencil) and the time-step restriction depends on the order of accuracy.
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Nomenclature

ME: Modified Equation
EMEp: Explicit Modified Equation scheme, !th order accu-

rate
IMEp: Implicit Modified Equation scheme, !th order accu-

rate

SPIEp: Spatially Partitioned Implicit Explicit scheme, !th
order accurate

SCHEMEp-UW-PC: SCHEMEp + upwind dissipation+ pre-
dictor corrector

LTS: Local Time Stepping
LIM: Locally Implicit Method

Fig. 1. Geometrically stiff problem: scattering of a modulated Gaussian plane wave from a knife edge. Left: overset grid for the geometry showing magnified views of 
the tip grid which has very small grid cells. Right: contours of |"| computed with the new SPIE scheme; the tip grid was advanced implicitly while other grids were 
advanced explicitly resulting in a time-step that was about 20 times larger than using an explicit scheme on all grids. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

contrast to typical linear multi-step methods where explicit higher-order schemes tend to have smaller time-step restrictions, or to 
popular Discontinuous Galerkin (DG) methods where the time-step restriction typically scales as 1∕(2# +1) with # being the degree 
of the polynomial basis [1]. For an overset grid, a locally implicit scheme can be used, for example, on boundary-fitted component 
grids that resolve small geometrical features. The EME scheme can then be used on Cartesian background grids or on curvilinear grids 
that have similar grid spacings to the background grids. In this way the time-step for the EME scheme is not restricted by the small 
grid cells used to resolve small geometrical features. In typical applications, the majority of the grid points belong to background 
Cartesian grids, and the solution on these grid points can be advanced very efficiently with a CFL-one time-step. This can make the 
hybrid IME-EME scheme much more efficient than using the EME scheme everywhere with a small (global) CFL time-step. We refer 
to this hybrid scheme as a Spatially Partitioned Implicit-Explicit (SPIE) scheme. Note that the EME scheme is more accurate since ME 
schemes are most accurate for the CFL number close to one: unlike method-of-lines schemes, the accuracy of ME schemes is degraded 
for small CFL numbers. The implicit matrix formed by the IME schemes is definite, and it is well suited to a solution by modern 
Krylov-based methods or multigrid.

Normally there is no benefit in using implicit time-stepping and taking a large (greater than one) global CFL time-step for wave 
propagation problems as the accuracy of the solution is usually degraded. However, there are applications where implicit time-
stepping methods for the wave equation using a large CFL number can be useful. For example, implicit methods for the wave equation 
are an attractive option for each iteration step of the WaveHoltz algorithm [2–4] which solves for time periodic (Helmholtz) solutions.3
The WaveHoltz algorithm can solve Helmholtz problems for frequencies anywhere in the spectrum without the need to invert an 
indefinite matrix as is common with many approaches. Each iteration of the WaveHoltz algorithm requires a solution of a wave 
equation over a given period, and just a few implicit time-steps per period (e.g. 5–10) are needed which leads to very large CFL 
numbers on fine grids. This is one of our motivations for developing stable IME schemes for overset grids.

There is a large literature on ME, LTS, and LIM schemes for the wave equation. Here we provide a brief synopsis, for further 
references, see [5,6], for example. Explicit ME schemes for the wave equation go back, at least, to the work of Dablain [7] and of 
Shubin and Bell [8]. Local time-stepping has most often been used for PDEs that are written as first-order systems in time. LTS has 
been used for decades with adaptive mesh refinement (AMR) since the pioneering work of Berger and Oliger [9]. Local time-stepping 
has also been developed, for example, for Runge-Kutta time-stepping [5,6,10], leap-frog time-stepping [11], and arbitrary high-order 
ADER schemes [1]. Of note is the ME-based LTS method for the wave equation of Diaz and Grote [12], where it was found necessary 
to have a small overlap of one or two cells between the coarse and fine cells in order to retain the time-step dictated by the coarse 

3 Note that the dispersion errors due to the large CFL time-step can be eliminated by an adjustment to the forcing frequency.
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mesh. Also of note is the locally time-stepped Runge-Kutta finite difference scheme of Liu, Li, and Hu [10] for the wave equation 
on block-structured grids. Another reason for using local time-stepping is to couple two difference schemes together. For example, 
Beznsov and Appelö [13] use local time-stepping for the wave equation to couple a DG scheme (which has a small time-step) with 
an Hermite scheme (which has a CFL-one time-step). The DG scheme is used on boundary-fitted grids of an overset grid for accurate 
treatment of the boundary conditions.

Compact implicit difference approximations lead to globally implicit systems (although sometimes with a time-step restriction) 
and these have been used for wave equations by a number of authors [14–16]. To overcome the cost of the global implicit solve, it is 
common to use locally one-dimensional approximate factorizations such as the alternating-direction-implicit (ADI) scheme [17,18]. 
A variety of locally implicit methods for wave equations have been developed, for example [19–22]. For some formulations care is 
required in coupling the implicit and explicit schemes to avoid an order of accuracy reduction in time. Of particular note is the fourth-
order accurate locally implicit method for the wave equation of Chabassier and Imperiale [21]. They use a Finite Element Method 
(FEM) discretization (with mass lumping to form a diagonal mass matrix) and a mortar element method with Lagrange multipliers to 
couple the implicit and explicit methods. The implicit ME scheme in [21] is similar to our implicit scheme except that we use finite 
difference approximations and a more compact approximation (which leads to different stability restrictions). Our approach uses a 
simple coupling between implicit and explicit regions based on overset grid interpolation. The price for this simpler coupling is that 
upwind dissipation is needed to ensure stability.

We have been developing high-order accurate algorithms for a variety of wave propagation problems on overset grids. These 
include the solution to Maxwell’s equations of electromagnetics for linear and nonlinear dispersive materials [23–27], the solution of 
linear and non-linear compressible elasticity [28,29] and the solution of incompressible elasticity [30]. A fourth-order accurate ME 
scheme for Maxwell’s equations in second-order form on overset grids was developed in [31]. Extensions of the implicit and implicit-
explicit time-stepping methods developed in this article will be very useful for these other applications, both to treat geometric 
stiffness and for solving Helmholtz problems using the WaveHoltz algorithm.

The work presented in the remaining sections of this article is organized as follows. Explicit and implicit ME schemes for the wave 
equation are introduced in Section 2, which also serves to establish some notation. Details of the second and fourth-order accurate 
IME schemes for Cartesian grids are given in Section 3 where a von Neumann stability analysis is also performed. Methods of upwind 
dissipation for IME schemes are described in Section 4, and this is followed in Section 5 by a formulation and a GKS stability analysis 
of our new SPIE schemes. Section 6 discusses the implementation of the new ME schemes for overset grids, and Section 7 provides 
results of a matrix stability analysis the ME schemes for one-dimensional overset grids. Numerical results are discussed in Section 8
and concluding remarks are offered in Section 9.

2. Three-level explicit and implicit ME schemes for the wave equation

We are interested in solving an initial-boundary-value problem (IBVP) for the wave equation in second-order form for a function 
"(!, $) on a domain Ω, with boundary Γ, in %& space dimensions,

'2$ " = ", ! ∈Ω, $ > 0, (1a)
"(!,0) = "0(!), ! ∈Ω, (1b)

'$"(!,0) = "1(!), ! ∈Ω, (1c)
"(!, $) = ((!, $), ! ∈ Γ, $ > 0. (1d)

Here, ! = [)1, ..., )%& ]
* ∈ℝ%& is the vector of spatial coordinates, $ is time, and  is the spatial part of the wave operator,

 def= +2Δ", Δ def=
%&∑
&=1

'2)& , (2)

with wave speed + > 0. The initial conditions on " and '$" are specified by the given functions "0(!) and "1(!), respectively, and 
the boundary conditions, denoted by the boundary condition operator , may be of Dirichlet, Neumann, or Robin type with given 
boundary data ((!, $).

We begin with a description of the three-level ME schemes that ignores the specifics of the spatial discretizations. Details of 
the grids and spatial discretization are left to later sections. The explicit and implicit ME schemes are both based on the standard 
second-order accurate central difference approximation to the second time-derivative of ",

,+$,−$ " =
"(!, $+Δ$)− 2"(!, $) + "(!, $−Δ$)

Δ$2
, (3)

where Δ$ is the time-step and ,+$ and ,−$ are forward and backward divided difference operators in time given by

,+$ "(!, $)
def= "(!, $+Δ$)− "(!, $)

Δ$ , ,−$ "(!, $)
def= "(!, $)− "(!, $−Δ$)

Δ$ , (4)
respectively. Expanding the terms in (3) using Taylor series gives the following expansion,

,+$,−$ " = '2$ "+
Δ$2
12 '4$ "+

Δ$4
360'

6
$ "+⋯ . (5)
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Even time derivatives on the right-hand side of (5) are replaced by space derivatives using the governing equation (1a) to give

,+$,−$ " = "+ Δ$2
12 2"+ Δ$4

3603"+⋯ . (6)

To form a !th order accurate in time scheme, the expansion (6) is truncated to !∕2 terms, and the spatial operators in the resulting 
truncated expansion are discretized with a time-weighted average of three time levels. For example, second-order accurate explicit 
or implicit three-level ME schemes take the form

,+$,−$"(!, $) = 2,ℎ

(
.2"(!, $+Δ$) + /2"(!, $) + 02"(!, $−Δ$)

)
, (7)

where 2,ℎ is a second-order accurate approximation of  on a grid with representative grid spacing ℎ. The coefficients (.2, /2, 02)
are the weights in the time-weighted average of "(!, $). The fourth-order accurate scheme has the form

,+$,−$"(!, $) = 4,ℎ

(
.2"(!, $+Δ$) + /2"(!, $) + 02"(!, $−Δ$)

)

−Δ$22
2,ℎ

(
.4"(!, $+Δ$) + /4"(!, $) + 04"(!, $−Δ$)

)
, (8)

where 4,ℎ is a fourth-order accurate approximation of  and (.4, /4, 04) are coefficients involved in the time-average of the correction 
term. Higher-order accurate schemes for ! = 6, 8, … can be defined in a similar way but for this article we only consider schemes for 
! = 2 and 4. The explicit ME schemes we use have .21 = 021 = 0 and /21 ≠ 0 for 1 = 1 and 2, while the implicit schemes have .21 ≠ 0
for 1 = 1 or 2.

Truncation error analysis can be used to determine the constraints on the parameters .21, /21 and 021 for !$ℎ order accuracy. The 
truncation error of the ! = 2 scheme in (7), denoted by 22(!, $), is

22(!, $) =
(
1− (.2 + /2 + 02)

)"−Δ$
(
.2 − 02

)
'$"+3(Δ$2 + ℎ2). (9)

For second-order accuracy in Δ$ and ℎ we take

.2 + /2 + 02 = 1, (10a)
.2 − 02 = 0. (10b)

These two conditions involving the three parameters (.2 , /2, 02) give a single-parameter family of second-order accurate schemes 
discussed further in Section 3. Note that the condition .2 = 02 implies that the schemes are symmetric in time which implies the 
schemes are time reversible. A similar analysis of the ! = 4 scheme in (8) leads to the conditions

.2 + /2 + 02 = 1, (11a)
.2 − 02 = 0, (11b)
.4 − 04 = 0, (11c)

1
2 (.2 + 02)− (.4 + 04)− /4 =

1
12 . (11d)

The four constraints in (11) involving the six parameters (.21, /21, 021), 1 = 1, 2, implies a two-parameter family of fourth-order 
accurate schemes as discussed further in Section 3. Note that these ! = 4 schemes are also symmetric in time. Choices of the parameters 
that lead to stable schemes for ! = 2 and 4 are discussed in Section 3.2.

3. Implicit modified equation (IME) schemes on Cartesian grids

In order to analyze the proposed IME schemes in more detail we introduce a spatial approximation for Cartesian grids in Section 3.1. 
This allows us to show the form of the fully discrete schemes and to perform a von Neumann stability analysis in Section 3.2.

3.1. Spatial approximation on Cartesian grids

Let the domain Ω = [0, 24]%& be a box in %& dimensions discretized with a Cartesian grid with 5& grid points in each direction. 
Denote the grid points as

!" = [61ℎ1, ..., 6%& ℎ%& ]
* , (12)

for multi-index " ∈ ℤ%& and grid spacings ℎ& = 24∕5& . Let 7%
" ≈ "(!", $%) be elements of a grid function at time $% = %Δ$. Define the 

usual divided difference operators to be

,+!&7
%
"

def=
7%
"+#&

−7%
"

ℎ&
, ,−!&7

%
"

def=
7%
" −7%

"−#&
ℎ&

, ,0!&7
%
"

def=
7%
"+#&

−7%
"−#&

2ℎ&
, (13)

where #& ∈ℝ%& is the unit vector in direction & (e.g. #2 = [0, 1, 0]).
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The compact !$ℎ order accurate discretization of the operator  can be written in the form

!,ℎ
def= +2

!∕2−1∑
1=0

81

[ %&∑
&=1

ℎ21& (,+!&,−!& )
1+1

]
, (14)

where, for example, 80 = 1, 81 = −1∕12, 82 = 1∕90 and 83 = −1∕560. The compact second-order accurate approximation to 2 is just 
the square of the second-order accurate approximation 2,ℎ

2
2,ℎ = 2,ℎ2,ℎ. (15)

Although not used here, note that the compact fourth-order accurate approximation to 2 is not the square of 4,ℎ as (4,ℎ)2 has a 
wider stencil than is needed [32].

Given the accuracy requirements (10), we write the fully discrete second-order accurate ME scheme (denoted by IME2) in terms 
of a single free parameter .2,

,+$,−$7%
" =2,ℎ

(
.27%+1

" + (1− 2.2)7%
" + .27%−1

"

)
. (16)

Note that larger values of .2 correspond to schemes that are more implicit with .2 = 0 being the explicit EME2 scheme. Similarly the 
fully discrete fourth-order accurate ME scheme (denoted by IME4) involves two free parameters .2 and .4,

,+$,−$7%
" =4,ℎ

(
.27%+1

" + (1− 2.2)7%
" + .27%−1

"

)

−Δ$22
2,ℎ

(
.47%+1

" + (.2 − 2.4 −
1
12 )7

%
" + .47%−1

"

)
. (17)

Larger values of .2 and .4 correspond to schemes that are more implicit with .2 = .4 = 0 being the explicit EME4 scheme.

3.2. Stability analysis of the implicit modified equation (IME) schemes

The stability of the IME schemes (16) and (17) is now studied using von Neumann analysis, assuming solutions that are periodic 
in space. Von Neumann analysis expands the solutions in a Fourier series and determines conditions so that all Fourier modes remain 
stable. There are numerous definitions for stability, but for our purposes here we make the following definition:

Definition 1 (Stability). A numerical scheme for the wave equation is stable if there are no Fourier modes with non-zero wave-
number, $ ≠ %, whose magnitude grow in time. For the zero wave-number, $ = %, case the linear in time mode, given by " = +0 + +1$
for constants +0 and +1, is permitted since this is an exact solution to the wave equation.

The explicit ME schemes (with .2 = .4 = 0) are known to be CFL-one stable (at least for ! = 2, 4, 6), meaning stable for

+2Δ$2
%&∑
&=1

1
ℎ2&

< 1. (18)

For implicit ME schemes we are generally interested in unconditional stability, that is stability for any Δ$ > 0. The constraint on .2
for unconditional (von Neumann) stability of the second-order accurate IME2 scheme is summarized by the following theorem.

Theorem 1 (IME2 Stability). The IME2 scheme (16) is unconditionally stable on a periodic domain provided

.2 ⩾
1
4 . (19)

The constraints on .2 and .4 for unconditional stability of the fourth-order accurate IME4 scheme are summarized by the following 
theorem.

Theorem 2 (IME4 Stability). The IME4 scheme (17) is unconditionally stable on a periodic domain provided

.2 ⩾
1
12 , (20a)

.4 ⩾
⎧
⎪
⎨
⎪⎩

1
4.2 −

1
48 , when .2 ⩾

1
4 ,

1
4.2 −

1
48 +

8
9 (

1
4 − .2)2, when 1

12 ⩽ .2 ⩽
1
4 .

(20b)

The proofs of Theorems 1 and 2 are given in Appendix A.1 and Appendix A.2, respectively.
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4. Upwind dissipation and implicit modified equation (IME-UW) schemes

The EME and IME schemes described in previous sections have no dissipation and are neutrally stable. As a result, perturbations to 
the schemes, such as with variable coefficients or when the schemes are applied on overset grids may lead to instabilities. For single 
curvilinear grids, stable schemes can be defined using special discretizations such as summation by parts (SBP) [33–37] methods 
or the schemes described in [31]. Overset grids are a greater challenge and in this case we add dissipation for stability. Upwind 
dissipation for the wave equation in second-order form was first developed in [38] and applied to Maxwell’s equations in [23]. An 
optimized version of the upwind dissipation was developed in [27] and it is this optimized version that we use here as a template for 
the IME scheme.

We first consider upwind dissipation for the explicit ME scheme to establish our basic approach and to introduce some notation. 
For the explicit scheme, dissipation is added in a predictor-corrector fashion,

7 (0)
" = 27%

" −7%−1
" +Δ$2&! 7%

" , (21a)

7%+1
" =7 (0)

" − 9!Δ$2'!

⎡
⎢
⎢⎣

7 (0)
" −7%−1

"
2Δ$

⎤
⎥
⎥⎦
, (21b)

where &! denotes the (full) spatial operator for the !th-order accurate scheme, 9! is an upwind dissipation parameter, and '! is a 
dissipation operator, which on a Cartesian grid takes the form

'!
def=

%&∑
&=1

+
ℎ&

[
−Δ+)&Δ−)&

]!∕2+1
, (22)

where Δ±)& are undivided difference operators corresponding to the divided difference operators defined in (13). Note that the 
dissipation operator '! has a stencil of width ! +3 compared to the stencil width of ! +1 for &!. The wider stencil for the dissipation 
reflects the upwind character of the operator [38]. Also note that the addition of the upwind dissipation does not change the order 
of accuracy of the scheme.

The dissipation operator '! in (21b) acts on an approximation of '$"(!", $%). The treatment of this approximation in the predictor-
corrector scheme in (21) ensures that the scheme, with dissipation, remains explicit and pth-order accurate. For implicit ME schemes, 
there is more flexibility in the treatment of this approximation. Two approaches are described in the next subsections.

4.1. Monolithic upwind dissipation for IME schemes (IME-UW)

Upwind dissipation for the implicit ME schemes can be added directly into the single step update (denoted as the IME-UW scheme) 
as

,+$,−$7%
" = &.!(7%+1

" ,7%
" ,7

%−1
" )− 9!'!

⎡
⎢
⎢⎣

7%+1
" −7%−1

"
2Δ$

⎤
⎥
⎥⎦
. (23)

Here &.! denotes the spatial part of the IME scheme as given in (16) and (17) for some choice of the parameters .2 and .4. A von 
Neumann stability analysis for a Cartesian grid leads to the following result.

Theorem 3. The IME-UW schemes (23) for ! = 2, 4 on a periodic Cartesian grid are unconditionally stable for any 9! > 0 provided .2
satisfies the conditions of Theorem 1 for ! = 2, or .2 and .4 satisfy the conditions of Theorem 2 for ! = 4.

The proof of this theorem is given in Appendix A.3. The monolithic upwind dissipation allows for any 9! > 0 and there are various 
possible strategies for choosing this value [43].

4.2. Predictor-corrector upwind dissipation for IME schemes (IME-UW-PC)

One disadvantage of the upwind scheme (23) is that the dissipation operator changes the implicit matrix, increasing the stencil 
size. This may increase the cost of the implicit solve and be undesirable, if for example, one wants to use an existing multigrid solver 
not designed for this special matrix. Dissipation can be added to the IME scheme is a separate explicit correction step as in (21). 
Allowing for multiple corrections leads to the implicit-predictor, explicit-corrector upwind scheme (IME-UW-PC)

7 (0)
" − 27%

" +7%−1
"

Δ$2
= &.! (7

(0)
" ,7%

" ,7
%−1
" ), (24a)

7 (:)
" =7 (:−1)

" − 9!Δ$2'!

⎡
⎢
⎢⎣

7 (:−1)
" −7%−1

"
2Δ$

⎤
⎥
⎥⎦
, : = 1,2,… ,%u, (24b)
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7%+1
" =7 (%u)

" , (24c)
where %u denotes the number of upwind correction steps. The sequence of corrections in (24) can be combined and written succinctly 
as

7%+1
" =(%u

! 7 (0)
" + (; −(%u

! )7%−1
" , (25)

where

(!
def= ; −

9!Δ$
2 '!. (26)

The conditions on 9! for stability are specified in the following theorem. The theorem covers the cases of using an implicit or an 
explicit ME predictor.

Theorem 4. The upwind predictor-corrector scheme (24) is stable on the periodic domain provided the non-dissipative predictor scheme 
(explicit or implicit) is stable and provided

0 ⩽ 9! <
<%u

2!+1∑%&
&=1 =)&

, (27)

where <%u = 2 for %u even and <%u = 1 for %u odd, and where =)& is the CFL parameter in coordinate direction &,

=)&
def= +Δ$

ℎ&
. (28)

The proof of Theorem 4 is given in Appendix A.4. In practice a reasonable choice might be

9! =
>? <%u

2!+1∑%&
&=1 =)&

, (29)

where >? ∈ (0, 1) is a safety factor.
Note from (27) that the coefficient of dissipation, 9! , decreases as the CFL parameter increases, and thus less dissipation is added 

as the CFL number increases. Thus, for large CFL it may become necessary to use more than one correction step.

5. Spatially partitioned implicit-explicit (SPIE) ME schemes

The IME and EME schemes can be combined in a spatially partitioned manner. For overset grids, the IME scheme is used on certain 
components grids while the EME scheme is applied on all other component grids. A typical strategy is to employ the EME scheme on 
background Cartesian grids and any curvilinear grids with grids spacings close to a nominal Cartesian value, and then use the IME 
scheme on any curvilinear component grids that have a minimum grid spacing that is relatively small as compared to the nominal 
value.

5.1. Formulation of the SPIE scheme

Let e denote the set of grids that use explicit time-stepping (e.g. Cartesian grids), and let i denote the set of grids that use 
implicit time-stepping (e.g. curvilinear grids). The SPIE algorithm consists of the following three stages:
Stage 1. Update explicit grids,

7 (0)
(, " − 27%

(, " +7%−1
(, "

Δ$2
= &! 7%

(, ", ( ∈ e. (30a)

Stage 2. Update implicit grids, interpolating from the solution on explicit grids from Stage 1,

7 (0)
(, " − 27%

(, " +7%−1
(, "

Δ$2
= &.! (7

(0)
(, " ,7

%
(, ",7

%−1
(, " ), ( ∈ i. (30b)

Stage 3. Add dissipation to all grids. For example, if all grids use a predictor-corrector upwind formulation, then use

7%+1
(, " =7 (0)

(, " + 9!Δ$2'!

⎡
⎢
⎢⎣

7 (0)
(, " −7%−1

(, "
2Δ$

⎤
⎥
⎥⎦
, ( ∈ i ∪ e. (30c)

Multiple upwind correction steps can also be used as discussed in Section 4.2.
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Fig. 2. One-dimensional overset grid used to assess the stability of the SPIE scheme. The explicit scheme is used on the left grid and the implicit scheme is used on 
the right. Interpolation points are marked as circles.

5.2. GKS stability analysis of a model problem for the SPIE scheme

This section investigates the stability of the SPIE scheme for a one-dimensional overset grid. Normal mode (GKS) analysis [39,40]
is used to show that the second-order accurate SPIE scheme is stable when solving the wave equation on an overset grid for a one-
dimensional infinite domain. Matrix stability analysis on a finite domain is presented later in Section 7 and the result of the matrix 
analysis supports the conclusions of the GKS analysis discussed in this section.

Consider the one-dimensional overlapping grid for Ω = (−∞, ∞) shown in Fig. 2. Let )@,6 = (6 +1)ℎ and )A,6 = 6ℎ denote the grid 
points for the left and right grids, respectively. Let 7>,6 , for > =@, A, denote the discrete solutions on the two grids. The grids overlap 
by a distance ℎ and the solution is interpolated at the interpolation points shown in Fig. 2. The second-order accurate SPIE scheme is 
used. The explicit (EME2) scheme is applied on the left grid and the implicit (IME2) scheme is applied on the right grid. The discrete 
equations are

,+$,−$7%
@,6 = +2,+),−)7%

@,6 , 6 < 0, (31a)
,+$,−$7%

A,6 = +2,+),−)

[
.27%+1

A,6 + (1− 2.2)7%
A,6 + .27%−1

A,6

]
, 6 > 0, (31b)

|7%
@,6 | <∞, 6 → −∞, (31c)

|7%
A,6 | <∞, 6 →∞, (31d)

7%
@,0 =7%

A,1, (31e)
7%

A,0 =7%
@,−1, (31f)

where we have assumed that the solution is bounded as |6| → ∞. Each individual scheme is assumed to be stable and so we take 
= = +Δ$∕ℎ < 1 and .2 ⩾ 0. Note that the IME2 scheme is unconditionally stable for .2 ⩾ 1∕4, but .2 ⩾ 0 is sufficient when = < 1.

Before proceeding with the stability analysis, it is useful to first state the following lemma related to the stability of the EME2 and 
IME2 schemes for the Cauchy problem.

Lemma 5.1. Suppose B is a root of quadratic equation,

B2 − 2CB+ 1 = 0, (32a)
where C is defined in terms of some 8 ∈ℂ by

C
def=

1 + ( 12 − .2)=2 (8 − 2 + 8−1)
1− .2 =2 (8 − 2 + 8−1)

. (32b)

Then, |8| = 1 implies |B| = 1, when (i) = < 1 and .2 ⩾ 0 or when (ii) = > 0 and .2 ⩾ 1∕4.

The proof of Lemma 5.1 is given in Appendix A.5. We are now ready to prove the main theorem of this section.

Theorem 5. The SPIE scheme in (31), for the one-dimensional infinite domain overset grid, has no unstable solutions provided = < 1 and 
.2 ⩾ 0.

Proof. We look for unstable mode solutions of the form

7%
@,6 = B%86

@, (33a)
7%

A,6 = B%86
A, (33b)

for some B ∈ ℂ with |B| > 1. Note that the same amplification factor B must appear in both the left and right grid functions in order 
to match the interpolation equations (31e) and (31f). Substituting the ansatz (33) into (31a) and (31b) implies,

B1 − 2B+ B−1 = =2(8@ − 2 + 8−1
@ ), (34a)

B1 − 2B+ B−1 = =2(8A − 2 + 8−1
A )

(
.2B+ (1− 2.2) + .2B−1

)
. (34b)
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Fig. 3. Left: composite of a background grid (D1 , blue) and a boundary-fitted grid (D2 , green) in physical space for the domain defined by the interior of the red 
boundary. The grid points on D1 with green dots interpolate from D2 and the grid points on D2 with blue dots interpolate from D1 . Middle: Plot of D1 showing 
interpolation points, ghost points (grid points which exist outside the physical boundary), and unused points (grid points which do not affect the computation). Right: 
The green boundary fitted grid, D2, is mapped to a unit square. The plot shows interpolation points and ghost points.

The equations (34) can be written as quadratics for 8>,

82
> − 2C>8> + 1 = 0, (35a)

for some C>, > =@, A, with roots denoted by 8>,±. The general solutions for the left and right sides then take the form (using 8− = 8−1
+ )

7%
@,6 = B%(++8

6
@+ + +−8

−6
@+), (36a)

7%
A,6 = B%(&+8

6
A+ + &−8

−6
A+), (36b)

where +± and &± are constants. Note that both equations in (34) are of the form (32) of Lemma 5.1. Since we have assumed |B| > 1, 
it follows from Lemma 5.1 that the roots 8>,± cannot have magnitude equal to one. Since the product of the roots 8>,± is one, we can 
therefore, without loss of generality, take |8>,+| < 1, > =@, A.

The boundedness conditions (31c) and (31d) at infinity imply ++ = 0 and &− = 0, reducing the solutions to

7%
@,6 = B%+−8

−6
@+, (37a)

7%
A,6 = B%&+8

6
A+. (37b)

Applying the interpolation conditions (31e) and (31f) gives

+− = &+8A+, (38a)
&+ = +−8@+, (38b)

which implies, assuming +− ≠ 0 and &+ ≠ 0, that

8@+8A+ = 1. (39)
This last equation cannot hold since |8@+8A+| < 1. Therefore, only the trivial solution remains, thus yielding no unstable solutions 
with |B| > 1. □

6. Overset grids, implicit first step, and implicit solvers

The new ME schemes have been implemented for complex geometry using overset grids, which are also known as composite 
overlapping grids or Chimera grids. As shown in Fig. 3, an overset grid, denoted as , consists of a set of component grids {D(}, 
( = 1, … ,  , that cover the entire domain Ω. Solutions on the component grids are matched by interpolation [41]. Overset grids 
enable the use of efficient finite difference schemes on structured grids, while simultaneously treating complex geometry with high-
order accuracy up to and including boundaries. Each component grid, D( , is a logically rectangular, curvilinear grid defined by a 
smooth mapping from a unit cube in %& dimensions (called the parameter space with coordinates )) to physical space !,

! =*(()), ) ∈ [0,1]%& , ! ∈ℝ%& . (40)
All grid points in  are classified as discretization, interpolation or unused points [41]. The overlapping grid generator Ogen [42]
from the Overture framework is used to construct the overlapping grid information.

6.1. Discrete approximations on curvilinear grids

Approximations to derivatives on a curvilinear grid can be formed using the mapping method. Given a mapping ! =*(()) and its 
metric derivatives, 'E#∕')1, #, 1 = 1, … , %& , the derivatives of a function "(!) = 7 ()) are first written in parameter space using the 
chain rule, for example,



Journal of Computational Physics 520 (2025) 113513

11

A.M. Carson, J.W. Banks, W.D. Henshaw et al.

'"
')1

=
%&∑
#=1

'E#
')1

'7
'E#

. (41)

Derivatives of 7 with respect to E# are then approximated with standard finite differences. Let )+ denote grid points on the unit cube, 
where F: = 0, 1, … , 5:. Let ΔE: = 1∕5: denote the grid spacing on the unit cube with )+ = (F1ΔE1, F2ΔE2, F3ΔE3). Let 7+ ≈ 7 ()+) and 
define the difference operators,

,+E#7+
def=

7++## −7+

ΔE#
, ,−E#7+

def=
7+ −7+−##

ΔE#
, ,0E#7+

def=
7++## −7+−##

2ΔE#
, (42)

where ## is the unit vector in direction #. Second-order accurate approximations to the first derivatives, for example, are

,)1 ,ℎ7+
def=

%&∑
#=1

'E#
')1

||||+
,0,E#7+, (43)

where we assume the metric terms 'E#∕')1 are known at grid points from the mapping. We do not, however, assume the second 
derivatives of the mapping are known (to avoid the extra storage) and these are computed using finite differences of the metrics. 
Using the chain rule, the second derivatives are

'2"
')1')%

=
%&∑
:=1

%&∑
G=1

'E:
')1

'EG
')%

'27
'E:'EG

+
%&∑
:=1

{ %&∑
G=1

'EG
')%

'
'EG

'E:
')1

}
'7
'E:

. (44)

The second derivatives are approximated to second-order accuracy using approximations such as
'27
'E:'EG

||||)+
≈,+E:,−EG7+, for : = G, (45)

'27
'E:'EG

||||)+
≈,0E:,0EG7+, for : ≠ G, (46)

'
'EG

( 'E:
')1

)|||||)+
≈,0EG

( 'E:
')1

||||+

)
. (47)

Fourth and higher-order accurate approximations are straightforward to form using similar techniques.

6.2. Boundary conditions and upwind dissipation

Careful attention to the discrete boundary conditions is important for accuracy and stability, especially for the wave equation 
which has no natural dissipation. We use compatibility boundary conditions (CBCs) which are generally more accurate and stable 
than one-sided approximations [32]. A simple CBC uses the governing equation on the boundary. More generally, CBCs for the case 
of the wave equation are formed by taking even time-derivatives of the boundary condition and then using the governing equation 
to replace '2$ by . For flat boundaries with homogeneous Dirichlet or Neumann boundary conditions, CBCs lead to odd or even 
reflection conditions, respectively. For more details on CBCs see [31,32] for example.

The upwind dissipation operator '! was introduced in Section 4 and defined in (22) for the case of a Cartesian grid. More generally 
for a curvilinear grid the upwind dissipation operator is taken as

'! =
%&∑
#=1

+ ‖∇!E#‖
ΔE#

(
−Δ+E#Δ−E#

)!∕2+1, (48a)

where

‖∇!E#‖2 =
%&∑
1=1

[ 'E#
')1

]2
. (48b)

Here, Δ±E# are undivided difference operators in the # coordinate direction of the parameter space ) corresponding to the divided 
difference operators defined in (42).

6.3. Implicit first time-step

Implicit three-level ME schemes require two time levels to initiate the time stepping. The solution at $ = 0 is found directly from 
the initial condition (1b). The solution at the first time-step $ = Δ$ could be found from a Taylor series in time using both initial 
conditions (1b), and (1c), together with the governing equation (1a). It would be convenient to use an explicit version of this Taylor 
series approximation to obtain the solution at the first time-step; formally this would not change the stability of the scheme. In 
practice, however, very large errors can be introduced in the first explicit time-step at $ = Δ$ when the CFL number is large, often 
rendering the full computation useless. Thus the first-time step should be taken implicitly when the CFL number is large. Further, it 
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would be convenient if this implicit first time-step utilized the same implicit matrix as subsequent time steps of the full three-level 
scheme. In this section we show how this can be accomplished.

6.3.1. Implicit first time-step: second-order accuracy
Consider the second-order accurate implicit IME2 scheme, re-written here for clarity,

7%+1
+ − 27%

+ +7%−1
+

Δ$2
=2,ℎ

[
.27%+1

+ + /27%
+ + .27%−1

+

]
, (49)

which has the implicit operator

H2
def= ; − .2Δ$22,ℎ. (50)

Given the initial conditions,

"(!,0) = "0(!), (51a)
'$"(!,0) = "1(!), (51b)

approximate (51b) to second-order accuracy using

,0$7%
+ =

7%+1
+ −7%−1

+
2Δ$ = "1,+, (52)

with % = 0. Solving for 7%−1
+ gives

7%−1
+ =7%+1

+ − (2Δ$)"1,+. (53)
Substituting (53) into (49) and dividing by 2 gives the following implicit scheme for the first step (% = 0),

7%+1
+ −7%

+ −Δ$"1,+
Δ$2

= 2,ℎ

[
.27%+1

+ + 1
2/27

%
+ − .2Δ$ "1,+

]
. (54)

This gives the following update for the first time-step (% = 0)

H27%+1
+ =7%

+ +Δ$ "1,+ +Δ$22,ℎ

[1
2/27

%
+ − .2Δ$ "1,+

]
, (55)

that uses the same implicit operator H2 as the later time steps.

6.3.2. Implicit first time-step: fourth-order accuracy
Consider the fourth-order accurate implicit IME4 scheme, re-written here for clarity,

7%+1
+ − 27%

+ +7%−1
+

Δ$2
=4,ℎ

[
.27%+1

+ + /27%
+ + .27%−1

+

]
−Δ$22

2,ℎ

[
.47%+1

+ + /47%
+ + .47%−1

+

]
. (56)

Scheme (56) has the implicit operator

H4
def= ; − .2Δ$24,ℎ + .4Δ$42

2,ℎ. (57)
To approximate the second initial condition (51b) to fourth-order accuracy, we use

'$" =,0$"−
Δ$2
6 '3$ "+3(Δ$4). (58)

To treat the '3$ " term in (58), take the first time derivative of the governing equation and write it in the form

'3$ " = '2$ ('$") =('$"). (59)
Using this expression for '3$ " in (58) gives the approximation

,0$7%
+ − Δ$2

6 2,ℎ"1,+ = "1,+, (% = 0). (60)

Solving (60) for 7%−1
+ gives

7%−1
+ =7%+1

+ − (2Δ$)"1,+ −
Δ$3
3 2,ℎ"1,+, (61a)

=7%+1
+ −I+, (61b)

where
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I+
def= (2Δ$)"1,+ +

Δ$3
3 2,ℎ"1,+. (61c)

Substituting (61b) into (56) and dividing by 2 gives the following fourth-order accurate implicit scheme for the first step (% = 0),

7%+1
+ −7%

+ − 1
2I+

Δ$2
=4,ℎ

[
.27%+1

+ + 1
2/27

%
+ − 1

2.2I+
]

−Δ$22
2,ℎ

[
.47%+1

+ + 1
2/47

%
+ − 1

2.4I+
]
. (62)

Rearranging (62) gives

H47%+1
+ =7%

+ + 1
2I+ +Δ$24,ℎ

[1
2/27

%
+ − 1

2.2I+
]
−Δ$42

2,ℎ

[1
2/47

%
+ − 1

2.4I+
]

(% = 0), (63)
and substituting for I+ leads to

H47%+1
+ =7%

+ +Δ$ "1,+ +
Δ$3
6 2,ℎ"1,+ (64a)

+Δ$24,ℎ

(1
2/27

%
+ − .2(Δ$ "1,++

Δ$3
6 2,ℎ"1,+)

)
(64b)

−Δ$42
2,ℎ

(1
2/47

%
+ − .4(Δ$ "1,++

Δ$3
6 2,ℎ"1,+)

)
. (64c)

The terms in blue4 are dropped, based on accuracy, and this keeps the stencil compact. Note that scheme (64) has the same implicit 
operator H4 as scheme (56). If the red term 2,ℎ"1,+ in (64) is replaced by 4,ℎ"1,+, then the form of (64) is similar to the usual interior 
update and the same code can be used for both the first step and later steps with the appropriate choice of coefficients.

6.4. Solution of the implicit time-stepping equations

For the overset grid results presented in this article the implicit equations are solved either with a direct sparse solver (for problems 
that are not too large) or with a Krylov space method (bi-CG-stab with an ILU preconditioner). All two-dimensional examples presented 
in this article use a direct sparse solver. For the three-dimensional sphere problem, a fixed (relative) residual tolerance of 10−10 is used 
with the bi-CG-stab method. When iterative methods are used, the initial guess for the iterative solver at each time step is chosen by 
linear extrapolation in time. In general, the residual tolerance could be chosen based on the expected truncation error in the discrete 
solution, thus reducing the cost of the iterative solve. However, doing this could affect the stability properties of the scheme and thus 
this strategy requires some study. We leave this to future work.

The approach we currently use to solve the implicit systems is not efficient since an implicit matrix is formed for all grids points, 
on both explicit and implicit grids. The implicit matrix entries corresponding to the equations at points treated explicitly are simply 
the identity. This approach was done so that existing software could be used. A more efficient approach would be to only form a 
system for the implicit points. Moreover, it is often the case that the implicit points on different component grids are not coupled and 
in this case multiple smaller implicit systems could be formed.

7. Matrix stability analysis on one-dimensional overset grids

In this section, matrix stability analysis is used to study the behavior of the new schemes on a collection of one-dimensional overset 
grids. A large number of overset grids with different grid spacings are considered to determine the stability behavior for a wide range 
of grid configurations. A scaled upwind dissipation coefficient 90 = 09! is used with 0 ∈ [0, 1] to show how the stability of the scheme 
depends on the amount of dissipation ranging from no dissipation 0 = 0 to full dissipation 0 = 1. In particular, the results for 0 = 0
show the necessity of upwind dissipation. For some cases, the number of upwind corrections, %u , must also be chosen greater than 
one for stability.

The time-stepping update on an overset grid is written in the form of a single vector update for the active unknowns (i.e. unknowns 
corresponding to the interior equations) excluding the constraint unknowns (i.e. unknowns associated with the boundary conditions 
and interpolation equations). For homogeneous boundary conditions, this update is written in terms of the matrices J1 and J2 and 
the vector ,% of active unknowns at time $%,

,%+1 =J1,% +J2,%−1. (65)
For a given overset grid, the associated eigenvalues and eigenvectors can be determined and this shows whether discrete solutions 
grow in time or not.

4 For interpretation of the references to colour please refer to the web version of this article.
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Fig. 4. One-dimensional overset grid used for the matrix stability analyses. Interpolation points are marked as circles, ghost points are marked as squares.

7.1. Matrix stability formulation

Some details on the construction of the matrix stability equation (65) are now described. We assume the problem domain is 
Ω = [−1, 1] and let it be discretized with an overset grid as shown in Fig. 4. The left domain is Ω@ = [−1, C@], where C@ may vary, and 
the right domain is fixed at ΩA = [0.5, 1]. The right grid is meant to model the boundary-fitted grid on a more general overset grid. It is 
known from experience that a difficult case for stability is when there are relatively few grid points on the boundary-fitted grid; in this 
case perturbations in the solution generated by the interpolation points can reflect back and forth between the interpolation points 
and the nearby boundary perhaps leading to an unstable growth. Let 7%

@,6 and 7%
A,6 denote grid functions on the left and right grids, 

respectively, at time $%. The active points on the left grid are 6 = 1, 2, … , 5@, while those on the right grid are 6 = 0, 1, 2, … , 5A − 1. 
Dirichlet boundary conditions are given at 6 = 0 (left grid) and at 6 =5A (right grid). The interpolation points on the left grid are 
at 6 =5@ + 1, … , 5@ + %ghost , where %ghost = !∕2 + 1 is the number of ghost points. The interpolation points on the right grid are at 
6 = −%ghost , … , −1. The grid spacings for the left and right grids are uniform with ℎ@ = (C@ + 1)∕5@ and ℎA = 0.5∕5A. In our study 
of stability for a collection of overset grids, 5A is held fixed and thus ℎA is also fixed. We then select a ratio of the grid spacings 
K = ℎ@∕ℎA which implies C@ = −1 + KℎA5@. The value for 5@, and the corresponding value for C@, is chosen to minimize the grid 
overlap while maintaining the assumption of an explicit interpolation as discussed in more detail below. The sampling of overset 
grids is performed for grids for a range of grid spacing ratios K ∈ [Kmin, Kmax] as noted below.

In Stages 1 and 2 of the SPIE scheme in (30), the solutions for the left and right grids are advanced one time step (without 
dissipation) and the boundary/interpolation conditions are applied. This step can be written in matrix form as

L0-(0) =L1-% +L2-%−1, (66)
where -% is a vector holding all of the unknowns on the two grids (including ghost points and interpolation points). The equations 
in (66) include the interior equations, boundary conditions and interpolation equations. The matrix L0 is equal to the identity matrix 
at active points using an explicit scheme, while the matrix has values corresponding to the implicit operators H2 in (50) and H4 in (57)
at active points corresponding to the second and fourth-order accurate implicit schemes, respectively. The matrix L0 also includes 
the boundary conditions and interpolation equations; the corresponding rows in L1 and L2 are zero. For example, the boundary 
conditions on the left grid are

7 (0)
@,0 = 0, (67)

7 (0)
@,−6 = −7 (0)

@,6 , 6 = 1,… ,%ghost , (68)
where the odd symmetry conditions on the ghost points are determined from compatibility conditions. The boundary conditions on 
the right grid are similar. The values at interpolation points are found using Lagrange interpolation for a stencil of ! + 1 points. For 
example, an interpolation point on the left grid is found using a formula of the form

7 (0)
@,: =

!+1∑
6=1

M@
:,6 7

(0)
A,1:+6

, (69)

where 1: denotes the left index of the interpolation stencil, chosen to make the interpolation as centered as possible, and M@
:,6 are 

interpolation weights. The values on the right hand side of (69) are known as donor points. The interpolation is taken to be explicit 
so that none of the donor points for one grid are interpolation points for the other grid. The interpolation stencil is of width ! + 1 as 
needed for a !-order accurate scheme when the width of the overlap scales with the mesh spacing [41].

Explicit upwind dissipation is incorporated in Stage 3 of the SPIE scheme. Assuming %u applications of the dissipation, the updates 
of the solution at this stage have the matrix form

#0-(:) = #1-(:−1) + #2-%−1, : = 1,2,… ,%u, (70)
where #0, like L0, includes the boundary/interpolation equations. Finally, the solution at the new time is

-%+1 =-(%u). (71)
Combining the time step in Stages 1/2 and the corrections in Stage 3 leads to a three-level matrix equation of the form

-%+1 =H1-% +H2-%−1, (72)
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Fig. 5. Example stable and unstable cases for the SPIE2-UW-PC scheme with 0 = 0.3. Middle left: amplification factors B for the stable case corresponding to the grid 
on the top, grid-ratio K = .5. Middle right: amplification factors B for the unstable case corresponding to the grid on the bottom, grid-ratio K = 1.55.

where H1 and H2 are coefficient matrices generated from the ones in (66) and (70). The constraint unknowns in (72) can be eliminated 
by row operations and this leads to the compressed form in (65). The correctness of the matrices J1 and J2 in (65) is checked by 
comparing, at each time-step, the solution computed using the SPIE scheme in (30) with the solution arising from the compressed 
form (65).

To investigate the growth of solutions to the discrete problem (65) we look for solutions of the form ,% = B%,0 which leads to a 
quadratic eigenvalue problem for B given by

(B2; − BJ1 −J2),0 = 0. (73)
This quadratic form can also be written as a regular eigenvalue problem of twice the dimension,

[
3 ;
J2 J1

][
,0

,1

]
= B

[
,0

,1

]
. (74)

The eigenvalue problem in (74) is solved easily with standard software.
For the stability studies, we set 5A = 10 for the right grid with fixed domain ΩA = [0.5, 1]. This right grid represents the local 

boundary grid in a general overset grid. The grid spacing on the left grid is determined by ℎ@ = KℎA, where K is the ratio of grid 
spacings. This ratio is varied from 1∕2 to 2 to represent typical overset grids where the grid spacings in the overlap are chosen to 
be nearly the same. For each value of K, the parameters C@ and 5@ for the left grid are determined based on the grid overlap as 
discussed above. Finally, the parameter 0 for the scaled upwind dissipation coefficient 90 = 09! is varied between 0 and 1 to study 
how much dissipation is needed to stabilize the SPIE scheme for the different cases considered.

Fig. 5 shows some sample results for the SPIE2-UW-PC scheme. The left grid uses the EME2 explicit scheme with CFL = 0.9, 
while the right grid uses the IME2 implicit scheme. Explicit upwind dissipation is added in a corrector step with 9! given by (29)
and %u = 1 corrections. The safety factor for 9! is chosen as >? = 0.9. Two grid cases are shown for 0 = 0.3; one with grid-ratio 
K = 0.5 and one with K = 1.55. The grid plotted on the top of the figure is stable as shown in the middle left plot; all eigenvalues 
of B satisfy |B| ⩽ 1 + tolB, where tolB = 10−8. The grid on the bottom has two unstable modes, as illustrated on the middle right 
plot. The conclusion for this representative case is that there is insufficient dissipation for the SPIE2-UW-PC scheme with 0 = 0.3 and 
%u = 1.
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Fig. 6. Overset grid EMEp: Fraction of unstable grids versus dissipation parameter 0 for the EMEp scheme on an overset grid. The color of each dot corresponds to the 
value of |B| − 1 for the most unstable mode.

Fig. 7. Overset grid IMEp: Fraction of unstable grids versus dissipation parameter 0 for the IMEp scheme on an overset grid. The color of each dot corresponds to the 
value of |B| − 1 for the most unstable mode.

7.2. Matrix stability numerical results

Results are now presented using different combinations of explicit and implicit schemes; different orders of accuracy (! = 2 and 
! = 4), and different numbers of upwind corrections. The following cases are considered

1. EMEp: explicit pth-order accurate ME schemes are used on the left and right grids.
2. IMEp: implicit pth-order accurate ME schemes are used on the left and right grids.
3. SPIEp: An EMEp scheme is used on the left grid and an IMEp scheme is used on the right grid.

Explicit upwind dissipation is used in all cases. Unless otherwise specified, the IME schemes use the parameters, .2 = 1∕4 and 
.4 = 1∕12. For each value of upwind scaling factor 0 , the grid-ratio K is varied form 0.25 to 2 using 5K = 101 different values (i.e. 
5K different overset grids).

Fig. 6 shows results for the EMEp scheme. The time-step is chosen so that the CFL number is 0.9 on the side with the smallest grid 
spacing. The number of unstable grids is plotted versus 0 , the scaling factor of the dissipation coefficient 9! . For ! = 2 and 0 = 0 (no 
dissipation), roughly 60% of the grids tested are unstable. This number drops to about 25% when 0 = 0.1, and there are no unstable 
grids for 0 ⩾ 0.3. For ! = 4 a value of about 0 = 0.5 is sufficient to stabilize all the grids tested.

Fig. 7 shows results for IMEp schemes. Note that these schemes use a single implicit solve over both grids (i.e. the implicit solves 
are coupled, not partitioned). For ! = 2 (! = 4), the time-step is chosen so that CFL number is 4.0 (5.0) on the side with the smallest 
grid spacing. The number of explicit upwind corrections is set to %u = 4 for ! = 2 and %u = 5 for ! = 5. This choice is made since the 
value of 9! for the IME schemes scales with the inverse of the CFL. The results in Fig. 7 show that the schemes have no unstable grids 
for 0 ⩾ 0.1.

Fig. 8 shows results for the implicit-explicit SPIE scheme. The left grid uses an explicit solver and the overall time-step is chosen to 
match a CFL number of 0.9 on this grid. The CFL number on the implicit grid varies between grids and reaches a maximum of 1.8. The 



Journal of Computational Physics 520 (2025) 113513

17

A.M. Carson, J.W. Banks, W.D. Henshaw et al.

Fig. 8. Overset grid SPIE: Fraction of unstable grids versus dissipation parameter 0 for the SPIE scheme on an overset grid with weights .2 = 1∕4, and .4 = 1∕12. The 
color of each dot corresponds to the value of |B| − 1 for the most unstable mode.

left column of plots show results for the second-order accurate SPIE2+UW+PC scheme using %u = 1 (>? = 0.9) and %u = 2 (>? = 1.9) 
upwind corrections. With %u = 1 there are no unstable grids for 0 ⩾ 0.8. For %u = 2, which incorporates more dissipation, there are no 
unstable grids for 0 ⩾ 0.3. The right column of plots show corresponding results for the fourth-order accurate SPIE4+UW+PC scheme 
using %u = 1 (>? = 0.9) and %u = 2 (>? = 1.9). This fourth-order accurate SPIE scheme presents a more difficult case to keep stable. 
With %u = 1, there are some unstable grids even for 0 = 1, while the grids are stable for 0 ⩾ 0.6 using %u = 2.

A possible reason the SPIE schemes may require more dissipation to remain stable compared to the other cases is that there 
is a mismatch in the truncation errors between the left and right grids, the IME schemes generally having larger errors than the 
corresponding EME schemes. Some support for this hypothesis comes from results shown in Fig. 8 when using the trapezoidal IME 
scheme with .2 = 1∕2 and .4 = 5∕24. The Trapezoidal scheme has a larger truncation error compared to the default scheme. As seen 
in Fig. 9 the trapezoidal scheme is more difficult to stabilize.

8. Numerical results

In this section we present numerical results to demonstrate the accuracy, stability, and efficiency of the proposed new implicit 
modified equation schemes. The results are organized into two groups. The results in the first group are aimed at demonstrating 
the accuracy and stability of the schemes. For this group, numerical solutions are computed for several problems in two and three 
dimensions where exact solutions are available. In addition, long-time simulations are performed for problems in two and three 
dimensions with random initial conditions as a demonstration of the stability of the schemes. The results in the second group are 
used to illustrate the performance of the SPIE schemes for problems with geometric stiffness.

In all examples the wave speed + is taken to be one. For overset grid problems using the SPIE scheme, the curvilinear grids are 
taken to be implicit and the Cartesian grids are taken to be explicit. Unless otherwise specified the IME schemes use the implicit 
weighting parameters

.2 =
1
4 , .4 =

1
12 . (75)
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Fig. 9. Overset grid SPIE + Trap: Fraction of unstable grids versus dissipation parameter 0 for the SPIE scheme on a overset grid with trapezoidal weights .2 = 1∕2, 
and .4 = 5∕24. The color of each dot corresponds to the value of |B| − 1 for the most unstable mode.

This choice for .2 and .4 is made to reduce the magnitude of the coefficient in the leading term of the truncation error (see [43]). 
For a grid ( that uses an implicit method, the coefficient of upwind dissipation is chosen as

9! =
>?

2!+1
√
%&

1
=(

, (76)

where >? is the safety-factor and where =( is the CFL number for grid (, which on a Cartesian grid is given by

=(
def= +Δ$

√√√√
%&∑
&=1

1
ℎ2&

=

√√√√
%&∑
&=1

=2)& . (77)

For grids using an explicit method we take

9! =
>?

2!+1
√
%&

, (78)

since =( ≈ 1 for such grids according to the CFL condition. Unless otherwise stated, all computations use a safety factor >? = 1 and 
%" = 1 upwind correction steps.

8.1. Accuracy and stability of the IME and SPIE schemes

We begin with numerical results illustrating the accuracy and stability of the second and fourth-order accurate IME and SPIE 
schemes.

8.1.1. Eigenmodes on a disk
In this section, eigenmodes of the unit disk in two dimensions are computed. We look for time-periodic solutions to the wave 

equation. In polar coordinates (E, N), these solutions have the form
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Fig. 10. Results for the disk. Left: overset grid (2)
disk for a disk. Middle: computed eigenfunction (1N , 1E) = (2, 1). Right: error. Implicit time-stepping, order four, grid 

(4)
disk .

Fig. 11. Left: Grid convergence for the IME-UW-PC scheme. Right: Grid convergence for the SPIE-UW-PC scheme.

"1N ,1E
(E,N, $) = O1N

(:1N ,1E
E) PF1NN PFQ$, (79)

where O1N
is the Bessel function of the first kind of (integer) order 1N , :1N ,1E

, 1E = 1, 2, … are the positive zeros of O1N
(for the case 

of Dirichlet boundary conditions) or O ′
1N

(for the case of Neumann boundary conditions). The frequency of vibration for a particular 
eigenmode is given by

Q = + :1N ,1E
. (80)

The initial conditions use the exact solution and its time derivative at $ = 0.
Numerical solutions are computed using the fully implicit IME-UW-PC scheme and the mixed explicit/implicit SPIE-UW-PC scheme 

using the overset grid for the unit disk consisting of a background Cartesian grid (blue) and an annular boundary-fitted grid (green) 
as shown in Fig. 10. The grid, denoted by (6)disk , has a target grid spacing of Δ>(6) = 1∕(106), where the index 6 determines the size 
of the grid spacing. The figure also shows a representative solution at $ = 1 computed using the IME scheme and the grid (4)disk for 
the case (1N , 1E) = (2, 2) and Dirichlet boundary conditions. For this Dirichlet case, :1N ,1E

≈ 8.41724414, while :1N ,1E
≈ 6.70613319

for Neumann case (not shown). The rightmost plot in the figure shows the (signed) max-error in the solution. The error is seen to be 
smooth with negligible artifacts due to the interpolation at the grid overlap.

Fig. 11 shows grid convergence results. Numerical solutions are computed using a time-step Δ$ = 0.04∕6 for grids (6)disk , 6 =
2, 4, 8, 16. Max-norm errors at $ = 0.7 are plotted as a function of the grid spacing. The left-plot in the figure shows results for the 
eigenmode (1N , 1E) = (2, 2) using the IME-UW-PC scheme for both Dirichlet and Neumann cases. The results show that the numerical 
solutions are converging at close to the expected rates (as indicated by the reference lines in the log-log plots). The right-plot in 
the figure shows results for the same eigenmode, but using the SPIE-UW-PC scheme with time-step determined by the explicit grid. 
As with the case of the fully implicit scheme, the results show that the numerical solutions are converging at close to the expected 
rates.
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Fig. 12. Scattering from a cylinder. Left: overset grid for scattering from a cylinder. Middle and right: solution and errors for SPIE-UW-PC, order four, grid (8)
scat , : = 10.

Fig. 13. Left: Grid convergence for the IME-UW-PC scheme. Right: Grid convergence for the SPIE-UW-PC scheme.

8.1.2. Scattering from a 2D cylinder
We consider the scattering of a plane wave from a cylinder of radius B in two dimensions. The incident field is taken to be

"inc(!, $) = PF:()−+$), (81)
where : is the wave number of the incident field in the reference direction given by ). The exact solution is written in polar coordinates 
(E, N) with the usual assignment ) = E cosN. A homogeneous Dirichlet boundary condition on the cylinder is assumed so that the total 
field (incident plus scattered) is given by

"(E,N, $) = P−F:+$
∞∑
1=0

R1 F1
[
O1(:E)−

O1(:B)
S (1)

1 (:B)
S (1)

1 (:E)
]
cos(1N), (82a)

= PF:()−+$) − P−F:+$
∞∑
1=0

R1 F1
[

O1(:B)
S (1)

1 (:B)
S (1)

1 (:E)
]
cos(1N), (82b)

where R0 = 1 and R1 = 2 for 1 > 0, and S (1)
1 (T) = O1(T) + FU1(T) is the Hankel function of the first kind of order 1 defined in terms 

of the Bessel functions of the first and second kind. Real-valued solutions are obtained by using either the real or imaginary parts of 
the solutions in (82). The initial conditions use the exact solution and its time derivative at $ = 0.

Numerical solutions are computed using an overset grid, denoted by (6)scat , consisting of two component grids, a background 
Cartesian grid covering [−2, 2]2 and an annular grid with inner radius B = 0.5 and outer radius C = 0.8. The inner radius represents 
the cylindrical scatterer with a homogeneous Dirichlet boundary condition applied there, and the boundary conditions on the outer 
boundaries of the Cartesian grid are set to the exact solution. The target grid spacing is approximately equal to Δ>(6) = 1∕(106) in all 
directions.

Fig. 12 shows the overset grid (2)scat and contours of the computed solution and errors at $ = 1 using the fourth-order accurate 
SPIE-UW-PC scheme. The grid (8)scat is used for this calculation with : = 10. The errors are seen to be smooth.
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Fig. 14. Sphere eigenmodes. Left: exploded view of the surface patches of the overset grid for the interior of a sphere. Middle and right: Computed solution and errors 
for the fourth-order accurate SPIE-UW-PC scheme on grid (4)

> , eigenmode (1V, 1N , 1E) = (2, 1, 1). A coarsened version on the grid is shown.

Fig. 15. Left: grid convergence results for the IME-UW-PC scheme. Right: grid convergence results for the SPIE-UW-PC scheme.

Fig. 13 shows grid convergence results at $ = 0.4 for an incident field with : = 2 using the second and fourth-order accurate 
IME-UW-PC and SPIE-UW-PC schemes. Max-norm errors are plotted as a function of the grid spacing and the solutions are seen to be 
converging at close to the expected rates.

8.1.3. Eigenmodes on a sphere
We now consider eigenmode solutions of a solid unit sphere assuming a homogeneous Dirichlet boundary condition on the surface 

of the sphere. Introduce spherical polar coordinates (E, N, V), where E is the radius, N ∈ [0, 24] is the angle in the )-W plane and V ∈ [0, 4]
the angle from the T-axis. We assume time-periodic eigenmodes with frequency Q having the well known form

"1E ,1N ,1V
(E,N,V, $) = E−1∕2 O1V+

1
2
(=1V ,1E

E)#1N
1V (cosV) P

F1NN PFQ$, (83)

where O1V+
1
2
, 1V = 0, 1, 2, …, are Bessel functions of fractional order, #1N

1V , 1V ⩾1N , are associated Legendre functions, and =1V ,1E
, 

1E = 1, 2, …, are zeros of O1V+
1
2
. The frequency of vibration is given by Q = + =1V ,1E

. The initial conditions use the exact solution and 
its time derivative at $ = 0.

The composite grids for the solid sphere of radius one, denoted by (6)> , consist of four component grids, each with grid spacing 
approximately equal to Δ>(6) = 1∕(106). The sphere is covered with three boundary-fitted patches near the surface as shown on the 
left in Fig. 14. There is one patch specified using spherical polar coordinates that covers much of the sphere except near the poles. 
To remove the polar singularities there are two patches that cover the north and south poles, defined by orthographic mappings. 
A background Cartesian grid (not shown) covers the interior of the sphere. The middle image in the figure shows the solution at 
$ = 0.5 for the eigenmode with (1V, 1N , 1E) = (2, 1, 1) and =1V ,1E

≈ 5.7634591968945. This solution is computed using the fourth-
order accurate SPIE-UW-PC scheme and the grid (4)> . The right image shows the max errors which are smooth (Fig. 14).

Fig. 15 shows grid convergence results for the eigenmode (1V, 1N , 1E) = (2, 1, 1) at $ = 0.4. Results are shown for the second and 
fourth-order accurate IME-UW-PC and SPIE-UW-PC schemes. The graphs demonstrate that the solutions are converging at close to 
the expected rates.
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Fig. 16. Long time simulations. Left: disk, SPIE-UW-PC. Middle: sphere, SPIE-UW-PC. Right: disk, IME-UW-PC.

8.1.4. Long-time simulations with random initial conditions
In this section we perform some very long-time simulations to confirm numerically that the solutions computed using the IME and 

SPIE schemes with upwinding remain stable and bounded. Initial conditions are chosen with random grid values on [0, 1] so that all 
eigenmodes, including any possible unstable ones, would be seeded with an order one amount of energy. The numerical schemes are 
integrated to very long times and the solutions are monitored for any growth. Due to the upwinding, the magnitude of the computed 
solutions for a stable scheme is expected to decay slowly to zero over time.

To assess the growth or decay of the solution we plot a discrete approximation to the energy given by

($) = 1
2

(
‖'$"‖2Ω + +2‖∇"‖2Ω

)
, (84)

where ‖ ⋅ ‖Ω denotes the @2-norm over the domain Ω. We note that the energy defined in (84) remains constant in time for exact 
solutions of the wave equation on Ω assuming homogeneous Dirichlet or Neumann conditions specified on the boundary of Ω. For 
purposes of this study, a first-order accurate approximation to (84) is sufficient, denoted by ℎ. The backward time-difference ,−$7%

+is used to approximate the time derivative in (84) and first-order accurate backward differences are used to approximate the spatial 
derivatives, for example on a Cartesian grid ')" ≈,−)7%

+ . Note that the discrete energy ℎ would remain approximately constant if the scheme is stable, but with upwind dissipation included the discrete energy is expected to decay over time.
Fig. 16 shows results from some long-time simulations for both the SPIE and IME schemes. In all cases the schemes remain stable. 

The left plot shows the discrete energy ℎ($) over time for a computation on the disk grid (4)disk as described in Section 8.1.1. The 
final time is $ = 104 for the simulation and approximately 6 × 105 time-steps are used. Results are shown for the second and fourth-
order accurate SPIE-UW-PC schemes. The discrete energy is seen to decay rapidly at first as the high-frequency components of the 
solution are damped by the high-order upwind dissipation. As time progresses the solution becomes smoother and the energy decays 
more slowly. The discrete energy for the fourth-order accurate scheme decays more slowly than the second-order accurate scheme 
since its dissipation scales as (ℎ5) compared to (ℎ3) for the second-order accurate scheme. The middle plot shows results for the 
three-dimensional solid sphere grid (4)> as described in Section 8.1.3. In this case the final time is $ = 103 and the calculation requires 
approximately 105 time-steps. The results show that the discrete energy decays and schemes remain stable for the spherical case in 
qualitative agreement with the results for the disk case.

The right-most plot of Fig. 16 compares the energy decay for the (fully implicit) IME4-UW-PC scheme on the disk grid (4)disk for three different values of the CFL number, 1, 5 and 10. In each case the scheme remains stable and the discrete energy ℎ decays. The 
dissipation parameter 9! is the same for each case. Note that the CFL=10 run takes 10 times fewer time-steps than the CFL=1 run, 
and thus the dissipation has fewer time-steps to act.

8.2. Performance of the SPIE scheme

We now turn our attention to a set of examples that posses some geometric stiffness. For such problems it is demonstrated that 
the SPIE scheme can be much faster than the fully explicit schemes. Importantly, it is also shown that the accuracy of the computed 
solutions from the SPIE scheme are, in general, quite similar to the accuracy of the explicit ME solutions. Thus, at least for the cases 
shown here, taking a large CFL time-step using an implicit ME method in small parts of the domain where geometric stiffness occurs 
does not appear to have a significant effect on the overall accuracy.

8.2.1. Scattering from a small hole
This section studies the accuracy and performance of the SPIE scheme for the scattering of a plane wave from a small cylinder in 

two space dimensions. The incident wave, exact solution, and overset grid topology were described previously in Section 8.1.2. The 
results presented in this section show that the SPIE scheme can compute solutions much faster than the EME scheme but with similar 
errors.
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Fig. 17. Scattering from a small hole. Left: overset grid (2)
scat and magnified views. Right: max-norm errors over time for the EME4 and SPIE4 schemes on grid (4)

scat . 
The SPIE4 scheme achieves similar errors to the EME4 scheme but at a factor 21 reduced CPU cost.

Fig. 18. Scattering from a small hole. Left: contour plot of the total field ". Middle: surface plot of the scattered field ">. Right: errors in ". Solution at $ = 1 computed 
on grid (4)

scat using the EME4-UW-PC scheme.

A very small cylindrical hole of radius B = 0.01 sits at the center of a square domain [−2, 2]2 . The overset grid is shown in Fig. 17. 
An incident field with wave-number : = 10 impinges on the hole where a homogeneous Dirichlet boundary condition is applied. 
The exact solution is imposed on the outer boundaries of the square. The solution is computed to a final time of $ = 10 using the 
EME4-UW-PC scheme and the SPIE4-UW-PC scheme with %u = 2 upwind corrections.5 For the SPIE scheme, implicit time-stepping 
is used for the boundary-fitted annular grid with radial stretching near the small hole, while explicit time-stepping is used for the 
Cartesian background grid. Fig. 18 shows the computed solution at $ = 1 for the total field, ", the scattered field, "> , and the error in ". 
Note that there is a significant scattered field for this case even though the radius of the cylinder B = 0.01 is fairly small compared to 
the wavelength, 24∕: ≈ 0.63, of the incident field. The error is seen to be smooth with the largest errors distributed throughout the 
domain; there are no particularly large errors in the vicinity of the hole.

The right graph in Fig. 17 compares the max-norm errors over time for the EME4 and SPIE4 schemes. The error in the EME scheme 
starts out smaller but then becomes similar in magnitude to the errors in the SPIE4 scheme. The time-step for the EME4 scheme is 
approximately 30 times smaller than that for the SPIE4 scheme, and the CPU time required to compute the solution at $ = 10 using 
the SPIE4 scheme is approximately 20 times smaller than that needed for the EME4 scheme.

These results thus illustrate that for longer times the problem can be considered geometrically stiff since an implicit algorithm 
can obtain the required accuracy faster than an explicit one. On the other hand, if high accuracy is needed over short times then a 
fully explicit scheme may be more efficient.

8.2.2. Scattering of a modulated Gaussian plane wave by a collection of small holes
We consider the scattering of a modulated Gaussian plane wave from two different arrays of small holes. This example demonstrates 

an interesting scattering problem for a geometry with small geometric features for which the SPIE scheme gives a good speedup over 
the explicit scheme. The incident field consists of a modulated Gaussian plane wave traveling from left to right and given by the 
formula

5 Using %u = 1 is not sufficient for stability for this problem; as noted in Section 4.2, the dissipation coefficient on implicit grids decreases with increasing CFL 
number and for large CFL numbers it may be necessary to use a larger %u.
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Fig. 19. Left: Closeup of the aligned hole grid. Middle: Closeup of the offset hole grid. The white dots on the right plots are small holes with a grid around each as 
shown on the left. Right: comparison of the implicit-explicit SPIE solution (top half of computation) to the explicit EME scheme (bottom half of computation) on the 
aligned hole grid. The results are nearly indistinguishable.

"(!, $) = P−/()−)0−+$)2 cos(24 :0 ()− )0 − +$)), (85)
where the Gaussian shape parameter is / = 20, the modulation wave-number is :0 = 8, and the center of the pulse is at )0 = −2
initially. The initial conditions use (85) and its time derivative at $ = 0.

Two configurations of holes are considered for the region [−3, 2] × [−2, 2]. The first, called the aligned-hole configuration, contains 
an array of X) ×XW holes, each of radius B = 0.01, with X) = 7 and XW = 26. The centers of the holes are located at

!1) ,1W
=
[
1) >)
1W >W

]
− 1

2

[
(X) − 1)>)
(XW − 1)>W

]
, 1) = 0,1,… ,X), 1W = 0,1,… ,XW, (86)

where >) = 0.15 and >W = 0.15 denote the hole separations in the ) and W directions, respectively. The second configuration, called the 
offset-hole configuration, also contains X) = 7 columns of holes, but every second column is shifted vertically by >)∕2 and contains 
27 holes instead of 26.

The overset grid for the aligned-hole configuration, denoted by (6)h,a , consists of a background Cartesian grid for the region [−3, 2] ×
[−2, 2], together with small annular grids around the holes as shown in Fig. 19. The nominal grid spacing is Δ>(6) = 1∕(106) with 
the grid lines on the annuli slightly smaller and clustered near the boundary as shown in the figure. The overset grid for the offset-
hole configuration, denoted by (6)h,o, has a similar construction to that of the aligned-hole grid following its placement of holes. The boundary conditions are taken as Dirichlet on the holes, Dirichlet on the left and right ends of the outer rectangle and periodic in the 
y-direction of the outer rectangle.

Fig. 20 shows the solution at three times for the two grid configurations of aligned and offset holes. The solution is computed 
with the SPIE4-UW-PC scheme on grids (16)h,a and (16)h,o . Note that there are some edge effects in the solutions near the top and bottom 
periodic boundaries of the domain, due to the arrangement of the hole grids near these boundaries. The solution at $ = 1 shows the 
incident Gaussian plane wave just starting to impact the first column of holes. At $ = 2 the wave has traveled through most of the 
holes and a reflected wave is beginning to appear. By $ = 3.5 most of the incident wave has been reflected or transmitted, although 
some residual wave motion resides within the array of holes. Perhaps surprisingly, the transmitted wave is much stronger for the 
offset arrangement of holes.

Returning to Fig. 19, the right plot compares contours of the solutions computed using the SPIE and EME schemes. The top half 
of the plot shows the SPIE4 solution, while the bottom half shows the EME4 solution. After accounting for the reflection symmetry 
about the horizontal centerline, the results are nearly indistinguishable. The speedup of the SPIE scheme over the EME scheme was 
about a factor of 2 for this case. The SPIE time-step is about 4 times that for the EME scheme. A better implementation of the implicit 
solvers should show an even bigger speedup of perhaps a factor of 3 or more (see the comments in Section 6.4).

8.2.3. Scattering of a modulated Gaussian plane wave from a knife edge
In this example, a modulated Gaussian plane wave given by (85) travels from left to right and diffracts off a thin knife edge as shown 

in Figs. 1 and 21. This example demonstrates a problem that is geometrically stiff due to a sharp corner in the domain geometry, and 
one for which only a small portion of the overset grid is treated implicitly.

The overset grid for the geometry, denoted by (6)ke , is shown in Fig. 1, and consists of four component grids. A background Cartesian 
grid covers the domain [−1.25, 1] × [0, 1]. Two other Cartesian grids lie adjacent to the lower sides of the knife edge which has a total 
height of 0.5. A curvilinear grid is used over the tip of the knife edge. The nominal grid spacing is Δ>(6) = 1∕(106), although the tip 
grid uses a finer mesh with stretching to resolve the sharp tip of the knife edge.

Fig. 21 shows contours of the solution for three times computed on grid (16)ke using the fourth-order accurate SPIE4-UW-PC scheme. 
The Gaussian is centered at )0 = −0.75 initially and the Gaussian shape parameter is taken as / = 80. Neumann boundary conditions 
are used on the outer boundaries of the domain and a Dirichlet condition is used on the knife edge. The initial conditions use (85)
and its time derivative at $ = 0. The SPIE scheme is used with only the curvilinear tip grid treated implicitly. As a result, the scheme is 
able to use a time-step that is about 20 times larger than that required by the fully explicit EME-UW-PC scheme. The speedup factor 
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Fig. 20. Scattering of a modulated Gaussian plane wave by small holes (the white dots are small holes with a grid around each as shown in Fig. 19). Top: Offset holes. 
Bottom: Aligned holes.

Fig. 21. Scattering of a modulated Gaussian plane wave from a knife edge. Contours of the solution at times $ = .6, .8, 1 for the modulation wave number :0 = 20 using 
the fourth-order accurate implicit-explicit scheme SPIE4-UW-PC. The time-step was about 20 times larger compared to the corresponding explicit scheme.

over the fully explicit scheme is found to be about 11 for both the second and fourth-order accurate SPIE schemes. Note that the 
tip grid has just 1, 760 grid points out of a total of 928, 765, or 0.2% of the points. Obviously a more efficient implementation of the 
implicit solver should lead to speedups closer to a factor of 20, a task for future work.

9. Conclusions

We have described and analyzed a class of new implicit and implicit-explicit time-stepping methods for the numerical solution 
of the wave equation in second-order form. These single-step, three time-level, schemes are based on the modified equation (ME) 
approach. Second and fourth-order accurate schemes are developed, although the approach supports higher-order accurate schemes. 
The coefficient matrix implied by the implicit scheme is definite and well suited for solution by modern Krylov methods or multigrid. 
Conditions for accuracy and unconditional stability of the implicit ME (IME) schemes are derived. Several approaches for incorporating 
upwind dissipation into the IME schemes are discussed. A predictor-corrector approach that adds the upwinding in a separate explicit 
step appears to be quite useful. For problems on overset grids that are geometrically stiff due to locally small cells, we have developed 
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a spatially partitioned implicit-explicit (SPIE) scheme whereby component grids with small cells are integrated with the IME scheme 
while others grids use an explicit ME (EME) scheme. We have shown that for geometrically stiff problems the resulting SPIE scheme can 
be many times faster and more accurate that using the EME scheme everywhere. The unconditionally stable and high-order accurate 
implicit modified equation schemes developed here should also be useful for other discretization approaches such as finite-element 
methods. These IME schemes overcome some of the limitations of traditional implicit multi-step methods such as the trapezoidal 
scheme (only second-order accurate) or BDF schemes (excessive dissipation for wave propagation). Although developed for the wave 
equation, the new schemes can be extended to other wave propagation problems written in second-order form such as Maxwell’s 
equations of electromagnetics, and the equations of elasticity, and acoustics.
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Appendix A. Stability proofs

For the stability analyses we consider a Cartesian grid on a 24 periodic domain Ω = [0, 24]%& . Von Neumann analysis expands the 
solution in a discrete Fourier series in space. The stability condition is enforced by ensuring each Fourier mode satisfies the condition.

A.1. Stability of the second-order accurate implicit ME scheme (IME2)

Here is the proof of Theorem 1, the statement of which is repeated here for clarity.

Theorem (IME2 Stability). The IME2 scheme (16) is unconditionally stable on a periodic domain provided

.2 ⩾
1
4 . (A.1)

Proof. We look for solutions consisting of a single Fourier mode,

7%
" = B% PF$⋅!" , (A.2)

where B is the amplification factor and $ = [:1, :2, :3]* is the vector of wave numbers, with :& = −5&∕2, −5&∕2 + 1, … , 5&∕2 − 1, 
assuming 5& is even. Substituting the anstaz (A.2) into (16) leads to a quadratic equation for B

B2 − 2CB+ 1 = 0, (A.3a)
where

C
def=

1 + (.2 −
1
2 ) =̂

2
2 T

1 + .2=̂22 T
, (A.3b)

=̂22
def= −̂2,ℎ, T

def= Δ$2, (A.3c)
and where ̂2,ℎ is the Fourier symbol of 2,ℎ,

̂2,ℎ
def= +2

%&∑
&=0

−4 sin2(:&ℎ& )
ℎ2&

. (A.4)

Note that =̂22 ⩾ 0, with strict inequality =̂22 > 0 when $ ≠ 0. It is not hard to show that for stability (Definition 1) we require C ∈ℝ and 
|C| < 1 (the end cases C = ±1 lead to double roots B = ±1 and linearly growing modes). Thus, when $ ≠ %, we require
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−1 <
1 + (.2 −

1
2 ) =̂

2
2 T

1 + .2=̂22 T
< 1, (A.5)

for all T > 0. The right inequality in (A.5) gives

1 + (.2 −
1
2 ) =̂

2
2 T < 1 + .2=̂22 T, (A.6a)

⟹ − 1
2 =̂22 T < 0, (A.6b)

which is always true. The left inequality implies

− (1 + .2=̂22 T) < 1 + (.2 −
1
2 ) =̂

2
2 T, (A.7a)

⟹ − 2 + 1
2 =̂

2
2T < 2.2=̂22 T, (A.7b)

⟹ .2 >
1
4 − 1

=̂22 T
. (A.7c)

Therefore we require

.2 ⩾
1
4 , (A.8)

and this completes the proof. □

A.2. Stability of the fourth-order accurate implicit ME scheme (IME4)

Here is the proof of Theorem 2, the statement of which is repeated here for clarity.

Theorem (IME4 Stability). The IME4 scheme (16) is unconditionally stable on a periodic domain provided

.2 ⩾
1
12 , (A.9a)

.4 ⩾
⎧
⎪
⎨
⎪⎩

1
4.2 −

1
48 , when .2 ⩾

1
4 ,

1
4.2 −

1
48 +

8
9 (

1
4 − .2)2, when 1

12 ⩽ .2 ⩽
1
4 .

(A.9b)

Proof. Using the anstaz (A.2) in (16) leads to following quadratic for the time-stepping amplification factor B,

B2 − 2CB+ 1 = 0, (A.10)
where

C
def=

1− 1
2/2 =̂

2
4 T−

1
2/4 =̂

4
2 T

2

1 + .2=̂24 T+ .4=̂42 T
2

, (A.11)

=̂24
def= −̂4,ℎ, =̂22

def= −̂2,ℎ, T
def= Δ$2, (A.12)

and where

/2 = 1− 2.2, /4 = .2 − 2.4 −
1
12 . (A.13)

For stability we require that |C| < 1 for $ ≠ %,

|||
1− 1

2/2=̂
2
4 T−

1
2/4=̂

4
2 T

2

1 + .2=̂24 T+ .4=̂42 T
2

||| < 1, (A.14)

which will give constraints on .2 and .4. Requiring (A.14) leads to two conditions,

1− 1
2/2=̂

2
4 T−

1
2/4=̂

4
2 T

2 < 1 + .2=̂24 T+ .4=̂42 T
2, (A.15a)

− (1 + .2=̂24 T+ .4=̂42 T
2) < 1− 1

2/2=̂
2
4 T−

1
2/4=̂

4
2 T

2. (A.15b)
These can be simplified to
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1
2 =̂

2
4 T+ (12.2 −

1
24 )=̂

4
2 T

2 > 0, (A.16a)

(.4 −
1
2/4)=̂

4
2 T

2 + (2.2 −
1
2 )=̂

2
4 T+ 2 > 0. (A.16b)

Inequality (A.16a) must hold for all T > 0 which implies

.2 ⩾
1
12 . (A.17)

Inequality (A.16b) is a quadratic inequality in T =Δ$2,

HT2 +JT+[ > 0, (A.18)

H
def= (.4 −

1
2/4)=̂

4
2, J

def= (2.2 −
1
2 )=̂

2
4, [

def= 2, (A.19)

which must hold for all T > 0. This quadratic must be flat or concave upward which implies H = .4 −
1
2/4 ⩾ 0 or

.4 ⩾
1
4.2 −

1
48 ⩾ 0, when 1

12 ⩽ .2. (A.20)

The minimum of the quadratic with T ⩾ 0 occurs when T1 = −J∕(2H) ⩾ 0, which implies J ⩽ 0 or .2 ⩽ 1
4 . The minimum value of the 

quadratic is [ −J2∕(4H) and this should be greater than or equal to zero which implies J2 ⩽ 4H[ or

(2.2 −
1
2 )

2=̂44 ⩽ 8(.4 −
1
2/4)=̂

4
2, when 1

12 ⩽ .2 ⩽
1
4 . (A.21)

This last inequality is re-arranged as a condition on .4 in terms of .2, (using (A.13)),

.4 ⩾
1
4.2 −

1
48 + 1

2 (.2 −
1
4 )

2 =̂
4
4

=̂42
, when 1

12 ⩽ .2 ⩽
1
4 . (A.22)

Using =̂
4
4

=̂42
⩽ (4∕3)2 in the last term gives

.4 ⩾
1
4.2 −

1
48 + 8

9 (
1
4 − .2)2, when 1

12 ⩽ .2 ⩽
1
4 . (A.23)

In summary .2 must satisfy

.2 ⩾
1
12 , (A.24)

while .4 is constrained by

.4 ⩾
⎧
⎪
⎨
⎪⎩

1
4.2 −

1
48 , when .2 ⩾

1
4 ,

1
4.2 −

1
48 +

8
9 (

1
4 − .2)2, when 1

12 ⩽ .2 ⩽
1
4 ,

(A.25)

which completes the proof. □

A.3. IME stability with single stage upwind dissipation (IME-UW)

In this section we prove Theorem 3, which is repeated here or clarity.

Theorem. The IME-UW schemes (23) for ! = 2, 4 on a periodic or infinite domain Cartesian grid are unconditionally stable for any 9! > 0
provided .2 satisfies the conditions of Theorem 1, for ! = 2, or .2 and .4 satisfy the conditions for Theorem 2 for ! = 4.

Proof. We show the proof for ! = 4, the case ! = 2 is similar. Using the anstaz (A.2) in (23) leads to following quadratic for the 
time-stepping amplification factor B,

B2 − 2CB+ + = 0, (A.26)
where

C
def=

1− 1
2/2 =̂

2
4Δ$

2 − 1
2/4 =̂

4
2Δ$

4

1 + Λ̂+ 9!
2 Δ$ \̂

2
!

, (A.27)

+
def=

1 + Λ̂ − 9!
2 Δ$ \̂

2
!

1 + Λ̂+ 9!
2 Δ$ \̂

2
!

, (A.28)
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Λ̂ def= .2=̂24Δ$
2 + .4=̂42Δ$

4, (A.29)

\̂2!
def= '̂!, (A.30)

and where '̂! > 0 (for $ ≠ 0) is the symbol of the dissipation operator '! in (22),

'̂!
def=

%&∑
&=1

+
ℎ&

[
4 sin2(ℎ&∕2)

]!∕2+1 . (A.31)

The conditions for stability come from the theory of Schur and von Neumann polynomials [44,45] which for the quadratic (A.26) are

|+| < 1, (A.32a)
|C| ⩽ 1

2 |1 + +|. (A.32b)

Note that the magnitude of the product of the roots + in (A.28) is now less than 1, |+| < 1, when 9! > 0, since we have assumed Λ̂ > 0
for $ ≠ %. Thus the first condition (A.32a) is true. Note that

1
2 (1 + +) =

1 + Λ̂+ 9!
2 Δ$ \̂

2
! + 1 + Λ̂ − 9!

2 Δ$ \̂
2
!

1 + Λ̂+ 9!
2 Δ$ \̂

2
!

= 1 + Λ̂
1 + Λ̂+ 9!

2 Δ$ \̂
2
!

, (A.33)

and thus 1 + + > 0. The inequality (A.32b) thus requires the two conditions
1− 1

2/2 =̂
2
4Δ$

2 − 1
2/4 =̂

4
2Δ$

4

1 + Λ̂+ 9!
2 Δ$ \̂

2
!

⩽ 1 + Λ̂
1 + Λ̂+ 9!

2 Δ$ \̂
2
!

, (A.34a)

− 1 + Λ̂
1 + Λ̂+ 9!

2 Δ$ \̂
2
!

⩽
1− 1

2/2 =̂
2
4Δ$

2 − 1
2/4 =̂

4
2Δ$

4

1 + Λ̂+ 9!
2 Δ$ \̂

2
!

, (A.34b)

or upon multiplying through by the denominator,

1− 1
2/2 =̂

2
4Δ$

2 − 1
2/4 =̂

4
2Δ$

4 ⩽ 1 + Λ̂, (A.35a)

− (1 + Λ̂) ⩽ 1− 1
2/2 =̂

2
4Δ$

2 − 1
2/4 =̂

4
2Δ$

4. (A.35b)
These last two conditions (note that 9! has dropped out) are satisfied since these are essentially the same inequalities (A.15) hold 
from Theorem Appendix A.2 (the only difference is that ⩽ is replaced by < in (A.15)). This proves the theorem. □

A.4. IME stability with predictor-corrector upwind dissipation (IME-UW-PC)

Here is the proof of Theorem 4.

Proof. We prove the result for ! = 2, the proof for ! = 4 follows in a similar fashion. The second-order accurate IME-UW-PC scheme 
with multiple stages is

7 (0)
" − 27%

" +7%−1
"

Δ$2
= &.! (7

(0)
" ,7%

" ,7
%−1
" ), (A.36a)

7%+1
" =(%u

! 7 (0)
" + (; −(%u

! )7%−1
" , (A.36b)

where

(!
def= ; −

9!Δ$
2 '!. (A.37)

Substituting the ansatz 7 (0)
" = 7̂ (0) PF$⋅!" and 7%

" = 7̂ % PF$⋅!" leads to

7̂ (0) − 27̂ % + 7̂ %−1

Δ$2
= −=̂22

(
.2 7̂ (0) + (1− 2.2) 7̂ % + .2 7̂ %−1

)
, (A.38a)

7̂ %+1 = Â%u
! 7̂ (0)

" + (; − Â%u
! )7̂ %−1

" , (A.38b)
where

Â! = 1−
9!Δ$
2 \̂!. (A.39)
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Solving (A.38a) for 7̂ (0),

7̂ (0) = 2
1− =̂22Δ$

2( 12 − .2)

1 + .2=̂22Δ$2
7̂ % − 7̂ %−1, (A.40)

and substituting into (A.38b) gives

7̂ %+1 =
Â%u
!

1 + .2Δ$2 =̂22

[
27̂ % − 7̂ %−1 −Δ$2=̂22

(
(1− 2.2) 7̂ % + .2 7̂ %−1)]+ (1− Â%u

! ) 7̂ %−1, (A.41a)

= 2
1−Δ$2=̂22 (

1
2 − .2)

1 + .2Δ$2 =̂22
Â%u
! 7̂ % + (1− 2Â%u

! )7̂ %−1. (A.41b)

Now looking for solutions of the form 7̂ % = +0 B% for some constant +0 leads to a quadratic equation for a,

B2 − 2CB+ + = 0, (A.42)
where

C
def= Â%u

!
1−Δ$2=̂22 (

1
2 − .2)

1 + .2Δ$2 =̂22
, (A.43)

+
def= −1 + 2Â%u

! . (A.44)
For stability we require the two conditions (A.32) from Section Appendix A.3,

|+| < 1 ⟹ |1− 2Â%u
! | < 1, (A.45)

|C| ⩽ 1
2 |1 + +| ⟹ |Â!|%u

||||||

1−Δ$2=̂22 (
1
2 − .2)

1 + .2Δ$2 =̂22

||||||
⩽ |Â!|%u . (A.46)

If we assume the parameters .2 and =̂2 are chosen to make the scheme without dissipation stable then
||||||

1−Δ$2=̂22 (
1
2 − .2)

1 + .2Δ$2 =̂22

||||||
⩽ 1, (A.47)

and (A.46) is satisfied. Condition (A.45) implies 0 < Â%u
! < 1 or

0 <
(
1−

9!Δ$
2 \̂!

)%u < 1, (A.48)
which implies (ignoring the special case when 9!\̂2 = 0)

9!Δ$
2 \̂! <

{
2 if %u is even,
1 if %u is odd.

(A.49)

The conclusions of the proof now follow. □

A.5. Proof of a lemma

Here is the proof of Lemma 5.1.

Proof. If |8| = 1 then it can be written as 8 = PFN for N ∈ℝ. Then, using 8 − 2 + 8−1 = −4 sin2(N∕2) gives

C =
1− 4( 12 − .2)=2 sin2(N∕2)

1 + 4.2 =2 sin2(N∕2)
. (A.50)

Note that C ∈ℝ and |C| ⩽ 1 since C ⩽ 1 implies

1− 4( 12 − .2)=2 sin2(N∕2) ⩽ 1 + 4.2 =2 sin2(N∕2), (A.51)
⟹ − 2=2 sin2(N∕2) ⩽ 0, (A.52)

which is true, while C ⩾ −1 implies
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− (1 + 4.2 =2 sin2(N∕2)) ⩽ 1− 4( 12 − .2)=2 sin2(N∕2), (A.53)
⟹ (1− 4.2)=2 sin2(N∕2) ⩽ 1, (A.54)

which holds when = < 1 and .2 ⩾ 0, or for any = > 0 when .2 ⩾ 1∕4. Now, when C ∈ℝ and |C| ⩽ 1 then the magnitude of the roots B
of (32a) satisfy

|B| = |C±
√
C2 − 1| = |C± F

√
1− C2| =

√
C2 + (1− C2) = 1. (A.55)

This proves the lemma. □

Data availability

Data will be made available on request.

References

[1] A. Taube, M. Dumbser, C.-D. Munz, R. Schneider, A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations, 
Int. J. Numer. Model. 22 (1) (2009) 77–103, https://onlinelibrary .wiley .com /doi /abs /10 .1002 /jnm .700.

[2] D. Appelo, F. Garcia, O. Runborg, WaveHoltz: iterative solution of the Helmholtz equation via the wave equation, SIAM J. Sci. Comput. 42 (4) (2020) 
A1950–A1983.

[3] T. Rylander, A. Bondeson, EM-WaveHoltz: a flexible frequency-domain method built from time-domain solvers, IEEE Trans. Antennas Propog. 70 (7) (2022) 
5659–5671.

[4] D. Appelö, F. Garcia, A. Alvarez Loya, O. Runborg, El-WaveHoltz: a time-domain iterative solver for time-harmonic elastic waves, Comput. Methods Appl. Mech. 
Eng. 401 (2022) 115603, https://www .sciencedirect .com /science /article /pii /S0045782522005655.

[5] M.J. Grote, M. Mehlin, T. Mitkova, Runge–Kutta-based explicit local time-stepping methods for wave propagation, SIAM J. Sci. Comput. 37 (2) (2015) A747–A775, 
https://doi .org /10 .1137 /140958293.

[6] M. Almquist, M. Mehlin, Multilevel local time-stepping methods of Runge–Kutta-type for wave equations, SIAM J. Sci. Comput. 39 (5) (2017) A2020–A2048, 
https://doi .org /10 .1137 /16M1084407.

[7] M. Dablain, High order differencing for the scalar wave equation, Geophysics 51 (1986) 54–66.
[8] G.R. Shubin, J.B. Bell, A modified equation approach to constructing fourth order schemes for acoustic wave propagation, SIAM J. Sci. Stat. Comput. 8 (2) (1987) 

135–151.
[9] M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984) 484–512.
[10] L. Liu, X. Li, F.Q. Hu, Nonuniform-time-step explicit Runge–Kutta scheme for high-order finite difference method, Comput. Fluids 105 (2014) 166–178, https://

www .sciencedirect .com /science /article /pii /S0045793014003454.
[11] M.J. Grote, S. Michel, S.A. Sauter, Stabilized leapfrog based local time-stepping method for the wave equation, Math. Comput. 90 (332) (2021) 2603–2643, 

https://libkey .io /10 .1090 /mcom /3650.
[12] J. Diaz, M.J. Grote, Energy conserving explicit local time stepping for second-order wave equations, SIAM J. Sci. Comput. 31 (3) (2009) 1985–2014, https://

doi .org /10 .1137 /070709414.
[13] O. Beznosov, D. Appelö, Hermite-discontinuous Galerkin overset grid methods for the scalar wave equation, Commun. Appl. Math. Comput. Sci. 3 (3) (2021) 

391–418, https://doi .org /10 .1007 /s42967 -020 -00075 -5.
[14] S. Britt, E. Turkel, S. Tsynkov, A high order compact time/space finite difference scheme for the wave equation with variable speed of sound, J. Sci. Comput. 76 

(2018) 777–811, https://api .semanticscholar .org /CorpusID :207198477.
[15] K. Li, W. Liao, Y. Lin, A compact high order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient, J. 

Comput. Appl. Math. 361 (2019) 113–129, https://www .sciencedirect .com /science /article /pii /S0377042719301992.
[16] A. Kahana, F. Smith, E. Turkel, S. Tsynkov, A high order compact time/space finite difference scheme for the 2d and 3d wave equation with a damping layer, J. 

Comput. Phys. 460 (2022) 111161, https://www .sciencedirect .com /science /article /pii /S0021999122002236.
[17] H. Lim, S. Kim, J. Douglas, Numerical methods for viscous and nonviscous wave equations, Appl. Numer. Math. 57 (2) (2007) 194–212, https://doi .org /10 .

1016 /j .apnum .2006 .02 .004.
[18] S. Kim, H. Lim, High-order schemes for acoustic waveform simulation, Appl. Numer. Math. 57 (4) (2007) 402–414, https://www .sciencedirect .com /science /

article /pii /S0168927406001012.
[19] Serge Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, ESAIM: M2AN 4 (5) (2006) 815–841, 

https://doi .org /10 .1051 /m2an :2006035.
[20] J. Verwer, Component splitting for semi-discrete Maxwell equations, BIT Numer. Math. 51 (2) (2011) 427–445, https://doi .org /10 .1007 /s10543 -010 -0296 -y.
[21] J. Chabassier, S. Imperiale, Fourth-order energy-preserving locally implicit time discretization for linear wave equations, Int. J. Numer. Methods Eng. 106 (8) 

(2016) 593–622, https://onlinelibrary .wiley .com /doi /abs /10 .1002 /nme .5130.
[22] M. Hochbruck, A. Sturm, Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell’s equations, Math. Comput. 

88 (317) (2018) 1121–1153, https://libkey .io /10 .1090 /mcom /3365.
[23] J. Angel, J.W. Banks, W.D. Henshaw, High-order upwind schemes for the wave equation on overlapping grids: Maxwell’s equations in second-order form, J. 

Comput. Phys. 352 (2018) 534–567.
[24] J. Angel, J.W. Banks, W.D. Henshaw, M.J. Jenkinson, A.V. Kildishev, G. Kovačič, L.J. Prokopeva, D.W. Schwendeman, A high-order accurate scheme for Maxwell’s 

equations with a generalized dispersion model, J. Comput. Phys. 378 (2019) 411–444.
[25] J.W. Banks, B. Buckner, W.D. Henshaw, M.J. Jenkinson, A.V. Kildishev, G. Kovačič, L.J. Prokopeva, D.W. Schwendeman, A high-order accurate scheme for 

Maxwell’s equations with a generalized dispersive material (GDM) model and material interfaces, J. Comput. Phys. 412 (2020) 109424.
[26] Q. Xia, J.W. Banks, W.D. Henshaw, A.V. Kildishev, G. Kovačič, L.J. Prokopeva, D.W. Schwendeman, High-order accurate schemes for Maxwell’s equations with 

nonlinear active media and material interfaces, J. Comput. Phys. 456 (2022) 111051.
[27] J.B. Angel, J.W. Banks, A. Carson, W.D. Henshaw, Efficient upwind finite-difference schemes for wave equations on overset grids, J. Comput. Phys. 45 (5) (2023) 

A2703–A2724.
[28] D. Appelö, J.W. Banks, W.D. Henshaw, D.W. Schwendeman, Numerical methods for solid mechanics on overlapping grids: linear elasticity, J. Comput. Phys. 

231 (18) (2012) 6012–6050.
[29] J.W. Banks, W.D. Henshaw, A. Kapila, D.W. Schwendeman, An added-mass partitioned algorithm for fluid-structure interactions of compressible fluids and 

nonlinear solids, J. Comput. Phys. 305 (2016) 1037–1064.

http://refhub.elsevier.com/S0021-9991(24)00761-7/bibEB26F70E00EE35F4519848F7791D5529s1
https://onlinelibrary.wiley.com/doi/abs/10.1002/jnm.700
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibEB26F70E00EE35F4519848F7791D5529s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib0F4CD6ADCBC315045018601E756357F8s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib0F4CD6ADCBC315045018601E756357F8s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib4F54EB4FD725AC618AC7C8916FE32641s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib4F54EB4FD725AC618AC7C8916FE32641s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib2F38F189382731205E344BE0E70B1159s1
https://www.sciencedirect.com/science/article/pii/S0045782522005655
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib2F38F189382731205E344BE0E70B1159s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC56CAF6C54A6DCCED87AA62B956138E4s1
https://doi.org/10.1137/140958293
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC56CAF6C54A6DCCED87AA62B956138E4s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib304D2AE6793C03CF83477535D38DC4B6s1
https://doi.org/10.1137/16M1084407
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib304D2AE6793C03CF83477535D38DC4B6s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib7C4FA05B92C6024D2D0B6009BDA1EC08s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibBF25E6F34FD4A5D925BFC7685FD1CC09s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibBF25E6F34FD4A5D925BFC7685FD1CC09s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib00BAAA76DEE3513C446B841416DC3436s1
https://www.sciencedirect.com/science/article/pii/S0045793014003454
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6AD3A7CD63F7376ED271E6FB17AC0713s1
https://www.sciencedirect.com/science/article/pii/S0045793014003454
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6AD3A7CD63F7376ED271E6FB17AC0713s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib15BA17E26B6D3655E7895223F3366355s1
https://libkey.io/10.1090/mcom/3650
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib15BA17E26B6D3655E7895223F3366355s1
https://doi.org/10.1137/070709414
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC45037A2C023EE8119C0F4F9C967987Es1
https://doi.org/10.1137/070709414
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC45037A2C023EE8119C0F4F9C967987Es1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib9FD4A3A63D11D499870DC6DD84392FDDs1
https://doi.org/10.1007/s42967-020-00075-5
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib9FD4A3A63D11D499870DC6DD84392FDDs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC57FB0D3148B2F4A414352DA65B5746Bs1
https://api.semanticscholar.org/CorpusID:207198477
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC57FB0D3148B2F4A414352DA65B5746Bs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib8F32982A6AC1F4568B65738136A85086s1
https://www.sciencedirect.com/science/article/pii/S0377042719301992
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib8F32982A6AC1F4568B65738136A85086s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6B94B5DEBFEE7C925982B89D8D8A2334s1
https://www.sciencedirect.com/science/article/pii/S0021999122002236
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6B94B5DEBFEE7C925982B89D8D8A2334s1
https://doi.org/10.1016/j.apnum.2006.02.004
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibEB11CFA941E193DB9B6C120774A066A0s1
https://doi.org/10.1016/j.apnum.2006.02.004
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibEB11CFA941E193DB9B6C120774A066A0s1
https://www.sciencedirect.com/science/article/pii/S0168927406001012
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibDB14C7C6B2C0F2640D86605DEF589EA4s1
https://www.sciencedirect.com/science/article/pii/S0168927406001012
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibDB14C7C6B2C0F2640D86605DEF589EA4s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib7C93AB96BCA7E3C4893DAD9F9A808AA2s1
https://doi.org/10.1051/m2an:2006035
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib7C93AB96BCA7E3C4893DAD9F9A808AA2s1
https://doi.org/10.1007/s10543-010-0296-y
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibB1F4E9B7709D3A492A41B32D488332A9s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib07F6EF1DAB4865F7C0AB4561C12A991Cs1
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5130
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib07F6EF1DAB4865F7C0AB4561C12A991Cs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib9667E56B55764943F6A75A87336F5EBDs1
https://libkey.io/10.1090/mcom/3365
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib9667E56B55764943F6A75A87336F5EBDs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibEA9820C479FFE97DF110810BC941FB33s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibEA9820C479FFE97DF110810BC941FB33s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibFF952CED514AFC96CB4CED38F792D5F2s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibFF952CED514AFC96CB4CED38F792D5F2s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib4439CAAEECA2F0AF2B1CBBB454D021EDs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib4439CAAEECA2F0AF2B1CBBB454D021EDs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC5C3DB3C3BB0A03C57A673D5AF6592FAs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibC5C3DB3C3BB0A03C57A673D5AF6592FAs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6A8B99E7765D766D627B28A61623D27As1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6A8B99E7765D766D627B28A61623D27As1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibCD3730D30CB57C23FF10EFF260D70068s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibCD3730D30CB57C23FF10EFF260D70068s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib189147A6EC31E2DF61A1E53A493D1430s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib189147A6EC31E2DF61A1E53A493D1430s1


Journal of Computational Physics 520 (2025) 113513

32

A.M. Carson, J.W. Banks, W.D. Henshaw et al.

[30] J.W. Banks, W.D. Henshaw, A. Newell, D.W. Schwendeman, Fractional-step finite difference schemes for incompressible elasticity on overset grids, J. Comput. 
Phys. 488 (2023).

[31] W.D. Henshaw, A high-order accurate parallel solver for Maxwell’s equations on overlapping grids, SIAM J. Sci. Comput. 28 (5) (2006) 1730–1765.
[32] N.G. Al Hassanieh, J.W. Banks, W.D. Henshaw, D.W. Schwendeman, Local compatibility boundary conditions for high-order accurate finite-difference approxi-

mations of PDEs, SIAM J. Sci. Comput. 44 (2022) A3645–A3672.
[33] B. Strand, Summation by parts for finite difference approximations for d/dx, J. Comput. Phys. 110 (1994) 47–67.
[34] P. Olsson, Summation by parts, projections, and stability. II, Math. Comput. 64 (1995) 1473–1493.
[35] K. Mattsson, J. Nordström, Summation by parts operators for finite difference approximations of second derivatives, J. Comput. Phys. 199 (2004) 503–540.
[36] D. Appelö, N.A. Petersson, A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, Commun. Comput. Phys. 5 

(2009) 84–107.
[37] K. Duru, G. Kreiss, K. Mattsson, Stable and high-order accurate boundary treatments for the elastic wave equation on second-order form, SIAM J. Sci. Comput. 

36 (6) (2014) A2787–A2818.
[38] J.W. Banks, W.D. Henshaw, Upwind schemes for the wave equation in second-order form, J. Comput. Phys. 231 (17) (2012) 5854–5889.
[39] H.-O. Kreiss, Stability theory of difference approximations of mixed initial boundary value problems. I, Math. Comput. 22 (1968) 703–714.
[40] B. Gustafsson, H.-O. Kreiss, A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems. II, Math. Comput. 26 (119) 

(1972) 649–686.
[41] G.S. Chesshire, W.D. Henshaw, Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys. 90 (1) (1990) 1–64.
[42] W.D. Henshaw, Ogen: an overlapping grid generator for Overture, Research Report UCRL-MA-132237, Lawrence Livermore National Laboratory, 1998.
[43] A.M. Carson, Efficient upwind and partitioned implicit/explicit finite difference schemes for the second-order wave equation on overset grids, Ph.D. thesis, Dept. 

of Mathematical Sciences, Rensselaer Polytechnic Institute, 2024.
[44] J.J.H. Miller, On the location of zeros of certain classes of polynomials with applications to numerical analysis, IMA J. Appl. Math. 8 (3) (1971) 397–406.
[45] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth and Brooks/Cole, 1989.

http://refhub.elsevier.com/S0021-9991(24)00761-7/bib5797B74512566FD341450D512F6918CBs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib5797B74512566FD341450D512F6918CBs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib061EB2FDBE58207746CA4D0DB8BEB5BDs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibA46F243EEE3AFC68B083C9D4C66463F2s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibA46F243EEE3AFC68B083C9D4C66463F2s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibBD179AD457BC2E4E9819846D0EC8FA05s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib3604EBF573C99D8DC74B0E48C1C8D0FDs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib4C32E0D2D4A138BB969728E1AB5BEDF0s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6DAB62EDC5A1FC542C20970ECFC096E9s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6DAB62EDC5A1FC542C20970ECFC096E9s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib28476DA136C25A16FA9E2E55740C5294s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib28476DA136C25A16FA9E2E55740C5294s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibE29F0C4F4D3E4F04DEEB15D0BE90A9A6s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib75848D4068B19945D07256C0A0803455s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib188FA6665B25015BF7837E7C67E8C9ABs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib188FA6665B25015BF7837E7C67E8C9ABs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib2754AB98B25996F76E2591BC08A98B9Cs1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib5223DD7F889EA77A35086300021F78C6s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibB8EC58BAA9DC1420D13B0D576890443As1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bibB8EC58BAA9DC1420D13B0D576890443As1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib670B729C51658629C356105A4DB00C28s1
http://refhub.elsevier.com/S0021-9991(24)00761-7/bib6AA6A6677C61DEFC0F598CB8DBC08DC7s1

	High-order accurate implicit-explicit time-stepping schemes for wave equations on overset grids
	1 Introduction
	2 Three-level explicit and implicit ME schemes for the wave equation
	3 Implicit modified equation (IME) schemes on Cartesian grids
	3.1 Spatial approximation on Cartesian grids
	3.2 Stability analysis of the implicit modified equation (IME) schemes

	4 Upwind dissipation and implicit modified equation (IME-UW) schemes
	4.1 Monolithic upwind dissipation for IME schemes (IME-UW)
	4.2 Predictor-corrector upwind dissipation for IME schemes (IME-UW-PC)

	5 Spatially partitioned implicit-explicit (SPIE) ME schemes
	5.1 Formulation of the SPIE scheme
	5.2 GKS stability analysis of a model problem for the SPIE scheme

	6 Overset grids, implicit first step, and implicit solvers
	6.1 Discrete approximations on curvilinear grids
	6.2 Boundary conditions and upwind dissipation
	6.3 Implicit first time-step
	6.3.1 Implicit first time-step: second-order accuracy
	6.3.2 Implicit first time-step: fourth-order accuracy

	6.4 Solution of the implicit time-stepping equations

	7 Matrix stability analysis on one-dimensional overset grids
	7.1 Matrix stability formulation
	7.2 Matrix stability numerical results

	8 Numerical results
	8.1 Accuracy and stability of the IME and SPIE schemes
	8.1.1 Eigenmodes on a disk
	8.1.2 Scattering from a 2D cylinder
	8.1.3 Eigenmodes on a sphere
	8.1.4 Long-time simulations with random initial conditions

	8.2 Performance of the SPIE scheme
	8.2.1 Scattering from a small hole
	8.2.2 Scattering of a modulated Gaussian plane wave by a collection of small holes
	8.2.3 Scattering of a modulated Gaussian plane wave from a knife edge


	9 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Stability proofs
	A.1 Stability of the second-order accurate implicit ME scheme (IME2)
	A.2 Stability of the fourth-order accurate implicit ME scheme (IME4)
	A.3 IME stability with single stage upwind dissipation (IME-UW)
	A.4 IME stability with predictor-corrector upwind dissipation (IME-UW-PC)
	A.5 Proof of a lemma

	Data availability
	References


