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Abstract. The original KWC system is widely used in materials science. It was proposed in
[R. Kobayashi, J. A. Warren, and W. C. Carter, Phys. D, 140 (2000), pp. 141-150] and is based on
the phase field model of planar grain boundary motion. This model suffers from two key challenges.
First, it is difficult to establish its relation to physics, in particular a variational model. Second, it
lacks uniqueness. The former has been recently studied within the realm of BV theory. The latter
only holds under various simplifications. This article introduces a pseudo-parabolic version of the
KWC system. A direct relationship with variational model (as gradient flow) and uniqueness are
established without making any unrealistic simplifications. Namely, this is the first KWC system
which is both physically and mathematically valid. The proposed model overcomes the well-known
open issues.
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1. Introduction. The Kobayashi-Warren—Carter (KWC) system consists of a
set of nonsmooth parabolic PDEs and is widely used in materials science [23, 24]. Tt is
based on the phase field model of planar grain boundary motion. This model suffers
from two fundamental challenges: (i) Physics: It is difficult to establish the KWC
system as the gradient flow of a variational model. (ii) Mathematics: The solutions
to the KWC system are known to be unique only under special cases. Both of these
challenges make it difficult to rigorously use this model in practice or carry our new
material design via optimization [5, 6].

This article aims to overcome both of these challenges by introducing a pseudo-
parabolic version of the KWC system. Well-posedness (both existence and unique-
ness) of the resulting system (S), which arises from gradient flow based on the KW(C
energy,

F :[n,0] € [L*(Q)]* — F(n,0)

%/Q|Vn|2d:c+/QG(n)dsc+/904(77)|D9\
(1.1) = if [,0] € [H'(2) N L=(Q)] x BV (),

oo otherwise
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is established. In this context,  C RN is a bounded spatial domain of dimension N €
{1,2,3}. | DO| denotes the total variation of the variational measure D6 of § € BV (Q)
(cf. [4, section 3.1]), and [, &(n)|DO| denotes the total variation of § € BV (2) with
the weight a(n) € H(Q) N L*°(Q) given as follows (cf. [29, section 2.1]):

| atwipe)

. : {pn}>>, Cc WHL(Q) such that
.—lnf{nhjrio/ﬂa(nHVnpnMx ©n— 0 in L1(Q) as n — oo

for [n,0] € [H' () N L>=(Q)] x BV(Q).

Namely, this article addresses open issues from previous works that deal with the KWC
system (cf. [26, 29, 30, 31, 32, 35]) and its regularized versions (cf. [5, 6, 7, 22, 25, 38]).

Next, we describe the system (S). Let 0 < T' < oo be a fixed final time, and
let T' := 02 be the boundary of Q. Especially when N > 1, I" is assumed to be
sufficiently smooth, with the unit outer normal nr. Besides, we let @ := (0,T) x
and ¥ := (0,7) x I'. Then the pseudo-parabolic system denoted by (S), with two
constants >0 and v > 0, is given by

(S)
O — A(n+ p20m) + g(n) + o' (n(t)) |Vl = u(t,z) for (t,z) € Q,
V(T} + uQ(?tn) -nr=00n X,
1(0,z) =no(x) for z € Q,

D
ap(n)0:8 — div (a(n)|Dz + u2vate) =o(t,z) for (t,z) € Q,

Do
<a(n)D9| + V2V8t9> -np=0o0n X,
0(0,2) =0y(x) for x € Q.

Here, the unknowns n =7(t,z) and § = 6(t,x) are order parameters that indicate the
orientation order and orientation angle of the polycrystal body, respectively. Besides,
1o =no(x) and 6y = 0y (x) is the initial data. Moreover, u =u(t,z) and v =v(t,x) are
the forcing terms. Additionally, ap = ag(n) and a = «(n) are fixed positive-valued
functions to reproduce the mobilities of grain boundary motions. Finally, g = g(n) is
a perturbation for the orientation order 7, having a nonnegative potential G = G(n),
ie., -G(n)=g(n).

A generic form of the “KWC system” is given by the evolution equation (cf.
[23, 24])

(1.2) — Ao (n(t))% {;’Eg] = (s[af,e]f(”(t)’ 0(t)) + [‘;gﬂ

in [L2(Q))? for t € (0,T),

which is motivated by the gradient flow of the free energy, namely the KWC energy
(1.1), with a functional derivative ﬁ}' , and an unknown-dependent monotone op-
erator Ag(n) C [L?(2)]2. Here, the evolution equation (1.2) can be considered as the
common root of the original KWC system (cf. [23, 24]) and our system (S). Indeed,
our system (S) is derived from the evolution equation (1.2) in the case when
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o
13 aals [ et e a1 = | A0 5] e,

for each n € L%(f), subject to the zero-Neumann boundary condition,

while the original KWC system corresponds to the case when p=v =0.

In recent years, the principal issue has been to clarify the variational structure
(representation) of the functional derivative ﬁ]—' of the nonsmooth and nonconvex
energy F in (1.1). The positive answer to the issue was obtained in [29, 30, 35] by
means of BV theory (cf. [2, 3, 4, 8, 13, 19]), and this work has provided a basis of
the study of the KWC system, e.g., the existence and large-time behavior [29, 30],
the observations under other boundary conditions [31, 32], the time-periodic solution
[26], and so on.

However, the uniqueness of solutions has been a significant challenge, due to
the velocity term ag(n)0:0 and the singular diffusion flux a(n)lg—g‘, both of which
depend on the unknown-dependent mobilities. Therefore, previous researchers have
implemented the following modifications to the modeling framework (1.1) and (1.3):

e resetting g to be a function which is independent of 7 (effectively a constant);
e modifying the free-energy functional to a more relaxed form:

2
)= f(n,9)+%/|v9|2dmfeeH1(Q),
B Q

o0 otherwise

Fo:[n,0) € [L2(Q)?— Fe(n,0

with a small constant € > 0.

These modifications have been pivotal in addressing the uniqueness challenges
(cf. [22, 38]) and several advanced issues, such as the optimal control problems (see
[5, 6, 7, 25]).

In light of this, we can expect that the pseudo-parabolic nature of our system will
effectively address the uniqueness challenge. This is due to the positive constants pu
and v in (1.3), which are expected to bring a smoothing effect for the regularity of
solution.

In fluid dynamics, the pseudo-parabolic regularization is known as Voigt regu-
larization, which is a regularization method proposed by Voigt [37]. Indeed, some
pseudo-parabolic models are named after Voigt, such as the Euler—Voigt equation
(cf. [20, 21]) and the Navier—Stokes—Voigt equation (cf. [33, 34]). A number of pre-
vious works have succeeded in obtaining the well-posedness, including the existence,
uniqueness, and continuous dependence of solution, with stronger regularity than
that in the standard variational framework (cf. [9, 11, 27, 28, 33, 34]). This provides
a strong motivation to try such regularizations for the KWC model. On the other
hand, from the singular diffusion flux a(n)%, it can be expected that the results
of this paper will contribute to the development of research on Bingham-type fluids
(cf. [14, 15]).

Consequently, we set the goal to clarify the similarities and differences between
our pseudo-parabolic system and the original parabolic KWC system. To this end,
we prove the following two Main Theorems, concerned with the well-posedness of our
pseudo-parabolic system (S), i.e., the evolution equation (1.2) under (1.1) and (1.3).

Main Theorem 1. Existence and regularity of solution to (S).

Main Theorem 2. Uniqueness of solution to (S) and continuous dependence with
respect to the initial data and forcings.
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These Main Theorems will provide the positive answer to our earlier expectation
regarding the effectiveness of the pseudo-parabolic nature of our system in resolving
the uniqueness issue. Also, the Main Theorems will focus on two conflicting properties:
the singularity in the diffusion flux a(n)‘g—zl, and the smoothing effect encouraged by
the Laplacian in (1.3). This conflicting situation will be clarified by the differences in
regularity between components: n € W12(0,T; H?(Q2)) and § € W12(0,T; H*(Q)) N
L°(0,T; H%(2)) in Main Theorem 1. Moreover, the results of this paper will form a
fundamental part of the optimization problem in grain boundary motion, which will
be explored in a forthcoming paper.

Finally, we conclude this section by mentioning that there are several works on
the singular limit of the sequence of KWC-type energies {€5}s>0, given as

sn0)= [ [9adot 55 [ -12do+ [ e
for [n,0] € [H(Q) N L>(Q)] x BV(Q) and § >0

as ¢ 0. In [18], the one-dimensional problem is discussed, while in [17] the multidi-
mensional case is discussed. The singular limit of flow has recently been studied in
[16].

Outline. Preliminaries are given in section 2, and on this basis, the Main Theorems
are stated in section 3. For the proofs of the Main Theorems, we prepare section 4 to
set up an approximation method for (S). Based on these, Main Theorems 1 and 2 are
proved in sections 5 and 6, respectively, by means of the auxiliary results obtained in
section 4.

2. Preliminaries. We begin by prescribing the notations used throughout this

paper.
Notations in real analysis. We define

rVs:=max{r,s} and r As:=min{r,s} for all r,s € [—00, 0],
and especially we write
[7]T:=rVv0 and [r]” := —(r A0) for all 7 € [—00, ).

Additionally, for any M > 0, let Tay : R — [~ M, M| be the truncation operator,
defined as

T :r€R—(rV(=M))AM e [—M, M].

Let d € N be a fixed dimension. We denote by |y| and y - z the Euclidean norm of
y € R? and the scalar product of y, z € R?, respectively, i.e.,

lyl:=vyi+--+y? and y-z:=yiz1+ -+ yaza

for all y = [y1,...,vd], 2= [21,--.,24) €R™

Besides, we let
BY:={yeR"|[y/<1} and 8" ":={yeR!||y|=1}.

We denote by £ the d-dimensional Lebesgue measure, and we denote by H? the d-
dimensional Hausdorff measure. In particular, the measure theoretical phrases, such
as “a.e.”, “dt”, and “dx”, and so on, are all with respect to the Lebesgue measure
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in each corresponding dimension. Also on a Lipschitz-surface S, the phrase “a.e.” is
with respect to the Hausdorff measure in each corresponding Hausdorff dimension. In
particular, if S is C!'-surface, then we simply denote by dS the area element of the
integration on S.

For a Borel set E C R?, we denote by xg : R? — {0, 1} the characteristic function

of E. Additionally, for a distribution ¢ on an open set in R? and any i € {1,...,d},
let 9;¢ be the distributional differential with respect to the ith variable of (. We also
consider the differential operators, such as V, div, V2, and so on, in the distributional
sense.
Abstract notations (cf. [10, Chapter II]). For an abstract Banach space X, we
denote by | - |x the norm of X and denote by (-,-)x the duality pairing between X
and its dual X*. In particular, when X is a Hilbert space, we denote by (-,-)x the
inner product of X.

For two Banach spaces X and Y, let £ (X;Y") be the Banach space of bounded
linear operators from X into Y.

For Banach spaces X1,...,Xg with 1 <d €N, let X; x --- x Xz be the product
Banach space endowed with the norm |- |x,x...xx, := | |x, +---+]|x, However,
when all X;,..., Xy are Hilbert spaces, X; x --- X X4 denotes the product Hilbert
space endowed with the inner product (~1, Vxyxoxxy i =()x, +-+ (") x, and the

norm |-|x, x..xx, := (|-1%, +--+|-%,) *- In particular, when all X1,..., X, coincide
with a Banach space Y, the product space X x --- x X is simply denoted by [Y]%.
Basic notations. Let 0 < T < co be a fixed constant of time, and let N € {1,2,3}
be a fixed dimension. Let Q C RV be a bounded domain with a boundary I' := 0,
and when N > 1, I has C*°-regularity, with the unit outer normal np. Additionally,
as notations of base spaces, we let

H:=L*Q), V:=H Q), #:=L*0,T;H), and ¥ := L*(0,T; V).
Let Wy C H?(Q) be the closed linear subspace of H, given by
Wo:={2€ H*(Q)|Vz-nr=0onT}.
Let Ay be a differential operator, defined as
Ay:zeWygCHw— Ayz:=—Az€ H.

It is well known that Ay C H x H is linear, positive, and self-adjoint, and the domain
Wy is a Hilbert space, endowed with the inner product

(Zl,ZQ)WO = (Zl,ZQ)H + (AN,Zl,ZQ)H (: (Zl,ZQ)V) for z; € Wy, k=1,2.
Moreover, there exists a positive constant Cy such that
(2.1) |z\%{2(g) <Co(|Anz|3 + |2]3) for all z € Wy.

Notations for the time discretization. Let 7 >0 be a constant of the time step-
size, and let {¢;}5°, C [0,00) be the time sequence, defined as

tii=a1, 1=0,1,2,....

Let X be a Banach space. Then, for any sequence {[t;, z;]}32, C [0,00) x X, we define

the forward time-interpolation [Z]; € L{2.([0,00); X), the backward time-interpolation
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[z], € L2 ([0,00); X), and the linear time-interpolation [z], € W,2([0,00); X) by

loc loc
letting
21 (1) = X(—oo.0120 + D X(tio1.t:) (D)2
i=1
[2]-(t) ::ZX(ti,tHl](t)Zi inX fort >0,
i=0
= t—ti_ t;—t
00 = 300 (T ).
respectively.
In the meantime, for any ¢ € [1,00) and any ¢ € L] ([0,00); X), we denote by
{¢i}2y C X the sequence of time-discretization data of ¢, defined as
I
(2.2a) C:=01in X and ¢;:=— ¢(¢)ds in X fori=1,2,3,....
T Jtiy

As is easily checked, the time-interpolations [(],[(], € L{ .([0,00); X) for the above
{Giye, fulfill

(2.2b) €] = Cand [¢]; = ¢ in L] ([0,00); X) as 70.

loc

3. Main results. In this paper, the main assertions are discussed under the
following assumptions:
(A1) p>0 and v > 0 are fixed constants.
(A2) g : R — R is a locally Lipschitz continuous function with a nonnegative
primitive G € C*(R). Moreover, g satisfies the following condition:

liminf g(¢§) = —o0, limsup g(§) = oo.
=0 £ro0
(A3) a9 : R — (0,00) is a locally Lipschitz continuous function, and « : R —
[0,00) is a C'-class convex function, such that
a'(0)=0 and &, :=infag(R)>0.
(A4) u,ve L2 ([0,00); H), and u € L>=(Q).

loc

(A5) The initial data [y, 8] belong to the class [Wy]? C [H2(Q)]%.
Now, the main results are stated as follows.

MAIN THEOREM 1 (existence and regularity). Under assumptions (Al)-(Ab),
the system (S) admits a solution [n,0] € [#]? in the following sense:

(S0) [n,0] € [WH2(0, T3 Wo) N L®(Q)] x [WH(0,T5V) x L>(0,T; W)
(S1) n solves the following variational identity:

@n(t),0)m + (V(n+ p20m) (), Vo) n + (9(n(t), )
+a' () IVOE), ) m = (ult), ©)u
for any o €V and a.e. t€ (0,T).

(S2) 6 solves the following variational inequality:
((a0(m)2:0)(£),0(t) =) +12(VIH(2), V(B(t) — ) s}
+ [ at@)volds < [ a@)Velds+ (0),60) )
Q Q
for any ¢ €V and a.e. t€(0,T).
(S3) [1(0),0(0)] = [, 0] in [H]*.
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MAIN THEOREM 2 (uniqueness and continuous dependence). Under assumptions
(A1)—(A5), let [n*,0%], k=1,2, be two solutions to (S) with two initial values [nk,0k)
and two forcings [u*,v¥], k = 1,2. Then, there erists a constant C; = C1(v) > 0,
depending on v, such that

J(t) <C1)(J(0) + [ul —u?[5 + |v" —v*|%)
for any t €[0,T] and any T > 0,

where

J(t):=I(n" =) O + 12V (" = n*)(O)fyw + [V ao(n') (0" — 0%) (1)
+ 2|V (0 — 92)(t)|[2H]N for any t > 0.

Remark 3.1 (cf. [1]). In Main Theorem 1, we note that the variational inequality
in (S2) has an equivalent form as an evolution equation. Indeed, referring to [1, Main
Theorem 2], this variational inequality can be reformulated as follows:

(3.1) {ao (n(£)20(t) — div (a(n(t)w* () + 12 V,0(t)) = v(t) in H,
(aln(t)w*(£) + v2VA0(t)) -np =0 in H-3(I),

with a vectorial function w* € L2(0,T;[H]Y) satisfying
(3.2) w*(t) € Sgn(VH(t)) a.e. in Q,

where Sgn C RY x RY denotes the subdifferential of the Euclidean norm of RY. In
mathematics, the condition (S2) would be more useful for the efficient proofs of the
Main Theorems than (3.1) with (3.2).

Remark 3.2. In the proof of Main Theorem 1, the restriction of spatial dimension
N € {1,2,3} will be important to guarantee the embedding H?(2) C L*°(), and
it will be essential to obtain the regularity as in (S1) (see Remark 5.1 in section 5).
Additionally, the positivity of the both constants p and v associated with the pseudo-
parabolicity of the system (S) will play a key role, too.

Meanwhile, in the proof of Main Theorem 2, it can be said that the assumptions
N € {1,2,3}, u > 0, and v > 0 are just sufficient conditions. For instance, it is
possible to prove Main Theorem 2 by using only the embedding H'(Q) C L*(Q2) that
immediately follows from N € {1,2,3}. Furthermore, for the pseudo-parabolicity, we
note that the constant C;(v) for the estimate will actually be obtained independently
of the constant p > 0, i.e., the pseudo-parabolicity of 7. Hence, in our proof of the
uniqueness, it can be expected that the essence would be only the pseudo-parabolicity
of 8, and our method could be extended to the case of 4 = 0 under the standard
parabolic regularity of 7.

4. Approximating method. In the Main Theorems, the solution to (S) will
be obtained by means of the time-discretization method. In this light, let 7 € (0,1) be
a constant of the time-step size, and let £ € (0,1) be a relaxation constant. Based on
this, we adopt the following time-discretization scheme (AP)S as our approximating
problem of (S):

(AP): To find {[m;,0;]}22, C [Wo)? satisfying

=i ’
It (o + 0 00 ) + ol T

+ o/ (Tams )7 (VO5) =w; in H,

(4.1)
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ao(Tan;—1)

2
+ —An(0; —0;_)=v;in H
T
for i =1,2,3,..., subject to [15,05] = [0, 0] in [H]?.

(605 — 07_1) — div(ans (15_1) V2=(V65))

In this context, 7. € CO1(RY)NC>(RY) is a smooth approximation of the Euclidean
norm |- | € CO1(RY), defined as

Yoy €RN 5. (y) = /e2 + |y]2 €0, 00).
Also, we define an approximating free-energy F. on [H]? by setting
Fe:[n,0] € [H) = Fe(n,0)

3 |t [ G+ [ Fanne0o)

if [n,0] € Hl(Q) x BV (Q),
oo otherwise

(4.3) =

for any 0 <e <1,

where @y € CYH(R) and Gy € C1(R) are nonnegative primitives of o/ o Ty €
W (R) and g o Tar € WH(R), respectively, and

7] ) 'Vs

{ontnz, cWHH(Q)
=inf{ lim / an (mMe(Ven)dx | such that ¢, — 6 in
n—o0 /6 LY(Q) as n— o0

for [n,0] € H*(Q) x BV(Q), and 0 < e < 1.
Finally, u;,v; are given as in (2.2).
The solution to (AP)S is given as follows.

DEFINITION 4.1. The sequence of functions {[nf,05]}2, is called a solution to
(AP) iff {[ng, 0513152, C [Wol?, and [nF, 05] fulfills (4.1) and (4.2) for anyi=1,2,3,....

In this paper, the following theorem will play an important role for the proof of
the Main Theorems.

THEOREM 4.2 (solvability of the approximating problem). There exists a suffi-
ciently small constant 19 € (0,1) such that for any 7 € (0,79) and € € (0,1), (AP)S
admits a unique solution {[ns,05]}52,. Additionally, the following energy inequality
holds:

1 w2 Oa
(4.4) el n?_ll?q + V0 = i) ey + 5105 — 051 [
*|V(9E D) Py + Fe(nf, 05)

§fe(ni_1,9f_1) §|uz|12q + ﬁh’zﬁl for anyi=1,2,3,....
«

Theorem 4.2 is proved through several lemmas.
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LEMMA 4.3. For arbitrary fe V, g € Wy, and uw € H, we consider the following
elliptic problem.:

1 ~ w2 _ , ~
45) L)+ A (14 S0 0) ) + o(Taon) + o (Toano(99) =1 in A

;
Then, there exists a small constant 11 € (0,1), depending only on |g'| e~ a,ny, and
for any 0 <1 <1, the elliptic problem (4.5) admits a unique solution n € Wy.

Proof. First, for any n' € V, we define a functional Y : H — (—00, 00] as follows:
1 = 12 1 2 /142 / ~ \(2
— - d = d — — d
27_/9\2 7o | :17+2/Q|Vz| :17+QT Q\V(z Mo)|* dzx
+/9(TM77T)ZCZ$+/ anr(2)7=(V0) da
Q Q

—/Ezdas if zeV,
Q

Y:ze H—Y(z):=

oo otherwise.

As is easily checked, T is proper, l.s.c., strictly convex, and coercive, and its unique
minimizer solves the following elliptic equation:

(46) =)+ Aw (14200 ) ) +a(Tosn) + o/ (Toanyo(99) = m 1

Now, we define an operator S, : V — H2(Q) which maps any 1 € V to the unique
solution to (4.6) and consider the smallness condition of 7 for S to be contractive.
Here, let ny := 5777;2 € H?(Q), k = 1,2. By taking differences of (4.6), multiplying
both sides by 71 — 12, and applying Young’s inequality, we see from (Al) and (A2)
that

1A p?
27

T|gl‘%oo(7M,M)
2

1 — 2]} < I} —n3|%

Therefore, if we assume that

1
LA p? ’
(4.7) O<7<m:= (u) ,

91— a1,00)

then the mapping S, becomes a contraction mapping from V into itself. Therefore,
applying Banach’s fixed point theorem, we find a unique fixed point € V of S,
under the condition (4.7). The identity S,77 =7 implies that 7 is the unique solution
to (4.5). 0

LEMMA 4.4. For arbitrary 71 € H?(Q), 50 € Wy, and v € H, we consider the
following elliptic equation:

0— 0, _ 2 =\ -
Oé(](TIVIﬁ)fO —div (aM(mV'yE(VQ) + %V(G - 90)) =7 a.e. in Q,
VO -nr=0 a.e. onT.

(4.8)

Then, for any 0 <7 <1, (4.8) admits a unique solution 6 € Wy.
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Proof. Let us consider a proper, l.s.c., strictly convex, and coercive function Y,
defined as follows:

1 ~ ~ i~
o7 | aolTuilz ol do+ [ Gas(7)r(V2)da
T Ja Q

. -—_ 2 ~
Yoize Ho Tu(z):= +L/ \V(z—@o)\zdm—/ﬁzdx if z€V,
2T Q 0

oo otherwise.

As is discussed in [1, Theorem 1], the unique minimizer 6 of Y, solves (4.8), and 6
belongs to Wy. O

Proof of Theorem 4.2. Let us fix any 7 € (0,71) and any € € (0,1). Then, for any
i € N, we can obtain 65 € Wy by applying Lemma 4.4 in the case that

T=ni_,, Bp=0;_,, and D=v; in H.

Moreover, for any ¢ € N, the component n{ € Wy can be obtained by applying Lemma
4.3 in the case that

0= 07, no:=n_q, and u=w,; in H.
Thus, we can find the unique solution {[n$,05]}5°, C [Wy]? to (AP)=.

Next, we verify the inequality (4.4). Multiplying both sides of (4.1) with nf —n5_,,
we see that

1 u? 1 1
(4.9) 5\77? — i lar + 7|V(’7i6 - 771'571)|[2H]N + §‘V77§‘[2H]N - §|V77%€71|[2H]N

.
+ (g(Tarnd) oS =5 1)y + (o (Tarmd)v= (VO S — 5y )y < §Iuil?q
fori=1,2,3,...

via the following computations:
£ (> £ 1 g
(Vn;, V(n; *771—1))[H §(|VT71|H]N |V77i—1|[2H]N)’

2

U

7(V(ﬂf = 0i—1), V(0§ = m5_1)) [~y = *IV(m 15 ) ey
and

£ £ 1 £ £ T
(ui,n; —mi_1)m < g\m —ni_1H+ 5‘“1‘%1
In addition, by using (A2), it is obtained that
(@10)  (o(Taand)i =)y > [ Goatof)do = [ Gaalot 1) da
1
+ (9(Tanl) = 9(Taami 1) = mi-a) gy = 519 | (-aran 0 = nia [

~ - 3

> [ Guitof)da— [ Gastoiy)de = 519/ anan o — i
Q Q

fori=1,2,3,...,

and by the convexity of ay,
(411) (0! (Tagt (V0o = 1) > [ G (965

—/ an(m5_1)7e(VOF)dx for i=1,2,3,....
Q
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On account of (4.9)—(4.11), it is inferred that
2

1 37 / 1 € 5 2 I & € 2
(4.12) (2 - 7|9 |L°°(—M,M)) ;\m — il + 7|V(77i - 771'71)|[H]N

1 ~ ~
4519 s+ [ Guataf)do+ [ Gaalrc (V05 da

1 ~ ~ T
<51l + [ Gy dat [ Gl 1)c(V) da+ Tl
fori=1,2,3,....

On the other hand, by multiplying both sides of (4.2) by 65 — 65_,, and using
(A3) and the convexity of 7., we have

50( & & V2 & & ~ € &
(4.13) ?|91 — 05|+ —IV(; _9i71)|[2H]N "‘/ an (1i-1)7=(VO;) do
T T Q
-

25&\%@, for i=1,2,3,...

< / Gt (11 )= (V65 ) di +
Q

via the following computation:
1 15 15 5 15 50& 15 5 2
;(O‘O(TMni—l)(Qi —0;_1),0; —0;_1)u > 7“91 —0; 11,

(@nr (107-1) Ve (VO7), V(07 = 07_1)) )

> /Q Gt (717 (V05) da — /Q G (1) (VO5_ ) da,

and

O T
(ui, 05 —0;_1)m < *27\95 — 05 |5+ % g7
«

Now, let us set 79 as

1

/} , with the constant 71 as in Lemma 4.3.
61g’| Loo (—ns,01)

Tp := min {7’17
Then, from (4.12) and (4.13), we obtain that

i| H |- +/L2|v( - y)|? +5£|9a9_9€ |2
AT B Ni—1lH T UA Mi—1 [H]N o171 i—11H
2
1% ~
+7|V(92§_ ;:71)|[2H]N + F= (5, 65)
< F(f0,050) + Gluilh + g [lfy fori=1,2,3,....

Thus, we conclude the proof of Theorem 4.2. ]

5. Proof of Main Theorem 1. Main Theorem 1 is proved by verifying several
claims, which are divided in the following subsections.

Subsection 5.1. Boundedness of {[n],} in W12(0,T; Wy).
Subsection 5.2. Boundedness of {[6%],} in L(0,T;Wy).
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Subsection 5.3. Existence of a limit [, 6] for a subsequence of {[[n°],[6°]-]}.
Subsection 5.4. Verification of (S0)—(S3) for [, 6].

Remark 5.1. We note that the assumptions N € {1,2,3}, © > 0, and v > 0,
mentioned in Remark 3.2, will be essential to deriving the boundedness of {[6°].}.

To prepare the proof, we set
(5.1) n, :=min{n e N|nr >T}.

Additionally, under the notations as in Theorem 4.2, we invoke (2.2a) and (2.2b), and
take a small constant 7, € (0,7p), such that

n,
TZ(|UZ|%_I +vilH) < |ulp + [v]% + 1 whenever T € (0,7).
i=1

Also, with (A1), (A3), (A4), and (A5) in mind, we set the constant M > 0 of trunca-
tion, so large to satisfy that

(5.2) M > |nolze ), 9(M) > |u|ps(q), and g(=M) < —|ulpe(q)-
Then, it immediately follows that

(5.3) Gar(no) = G(no), and da (o) = (o).

Additionally, we prepare the following lemmas.

LEMMA 5.2. Let us fix e > 0, w € Wy, and a® € L>®(Q)NV. Then, for any
L > |a®|pe(q), there exists a constant C4(L) > 0, depending only on L, and being
independent of € and w, such that

(div(a°Vy=(Vw)), Aw) ;> = [V?w|fy v — Ca(L)(|°} + 1) (Jw]f, +1).

Proof. This lemma is immediately obtained as a straightforward consequence of
[1, Lemma 3.2]. 0

LEMMA 5.3 (comparison principle). We assume that nt,n? € Wh2(0,T; W),
ng,me EWo, 0 €V, ue A, and

(-1)! (@ni — Ay + p20n") + g(Tarn') + OZI(TMniNvgl)
(5.4) < (1)1 a.e. in Q,
n"(0) =n} a.e. in Q.

Then, there exists a constant Cg >0 such that
2 2
" = n?IT ()], < Collng —m3) Ty, for any t €[0,T].

Proof. Taking the difference of two inequality (5.4) for n’, i = 1,2, and multiplying
both sides by [n! — 1?7 (t), we see that
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2
pod 1 2 2
j@‘v[ﬂ =N ]+(t)’[H]N

VI = PO + (T (0) — g(TaarO), bt — 71 (0)
+/Q(O/(TM771(15)) =/ (Tun? (1) IVOD), [ = 0] (1) de
<0 for ae. t€(0,T).

(655) gl — IO+

Here, from assumption (Al), it is deduced that
(9(Tarn* () — 9(Tarn* (@), [n* = 01" ()
(5.6) > ¢ | aaan| [0 =PI (E)]3 for ace. te (0,T).
Also, by the monotonicity of o o Ty, we can say that
(& (Tun') = (Tun?)) " —n*]T >0 ae. in Q.

Hence one can see that

/Q(O/(TMWI(L‘)) =/ (Tar (1) VOO, [n* —0?]* (1) da
(5.7) >0 for ae. te(0,7).

Now, in light of (5.5)—(5.7), it is deduced that

2
< 2|gI|L:x:(_M7M)|[771 — 772]+(t)|H for a.e. t € (0,T).
Applying Gronwall’s inequality, we arrive at

(5.8) " =T ()] + 12|V = 7?1 @)y
<215l (|1gd — o) 2+ 2|Vl — ) )

for any t € [0,T].
Inequality (5.8) finishes the proof of Lemma 5.3 with the constant

2
_ L+p eQTlg/‘LOO(—M,IW).

Co:=
9 1/\#2 0

Now, the claims of subsections 5.1-5.4 are verified as follows.

Subsection 5.1. Boundedness of {[n¢],} in W12(0,T; Wy). In this sub-
section, we prove the following lemma, which provides the uniform estimate of {[n°],}
in Wh2(0, T; We).

LEMMA 5.4. Let 7 € (0,74). Then, there exists a constant Cy >0, independent of
€ and T, such that

1 &
(5.9) = Z 05 = 1511t () < Ca(InolFrz(ay + 100l3 + |ule + 0[5 +1).
i=1
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Proof. First, from the definition of F. (4.3), (5.3), and the embedding Wy C
L>(Q) under N <3, it is seen that

1 ~ ~
75(770790)25/ V0 d$+/ GM(??o)d$+/ an (n0)7:(Vbo) dx
Q Q Q
1
—5 [ IV dat [ Glw)de+ [ alm)r.(V60) ds
Q Q Q
1
< §|770|%/ +1G (o) 1) + (o) [72q) + £V () + (6ol
Hence,

Cp:= sup F.(1,00) < 0.
€€(0,1)

Also, from (4.4), (5.1), Theorem 4.2, and Holder’s inequality, it is observed that

nr 2
(5.10) 16513 <2(60f +2 (Z 107 — 9§1|v>

i=1

n,

1
<2[00lF +2(T+1 —05 — 0513

<2/0oly, +2(T + );T| P =0V

AT+1) [ = 1
< 20003 + ——2 ( Fe(no,00) + ——— (Jul? 2, +1
<2000} + 2 (o 00) + 55 e + ol + 1)
A(Cp+1)(T +1
< (Cr+ DT+ )(\90|%/+|u|§f+|v|§g»+1) for any i1 =1,2,3,...,n,.

- 1A AVA

Next, we verify the estimate (5.9). Multiplying both sides of (4.1) by —A(n§ —
n5_,) and applying Young’s inequality, it can be seen that

% A(nE — 2 < 1 Ant 2 Ant 2
(5.11) 47 1AM = mi-1)lE < B (| Ni-1la — | An; |H)
+ (9(Tan;), AW = mia ) + (@ (T )v=(V67), A(nf —ni_1))m

+ %|ul|%, fori=1,2,3,...,n,
1
via the following calculations:

(1A% [ — | Ans_y %)

N | =

(—An;, —Am; —ni_1))e >

and
Mz 2 T 2
(ui, =AM —ni_1))m < EM(?%E —ni—)|w + E|“1|H

In addition, we compute that

(5.12) (9(Taam5), A5 —ni_1))m
T2 N I e e 2
< E|9|L°°(71M,M)[’ Q)+ EM(W —0—1)|E
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and
(5.13) (@ (Tarn; )7=(V0), A(ng —ni_1))m

2
T 13 M £ £
< E|O‘/|%°°(—M,M) /9(52 +|VO;|?) dx + EM(W —n_)lH

2
T 1
< E|O/|%°°(—M,M)(LN(Q) +1651%) + E\A(ms — i)l
fort=1,2,3,...,n,.

On account of (5.10)—(5.13), we infer that

o
(5.14)  TIAME =01l
T
Loiiae . TLN(Q)
< 5(\Am_1|%r — 495 13) + T(\gﬁm(—M,M) + [ oo (— a1, 01))
Ar(Cr + 1)(T+ D [Ze _prany 2 2 2
+ ,u2(1/\634 /\1/4) (|90|V + |U|% + |v|9f + 1)
1 ~
< 5(\&7?_1@1 — A1) + 705 (160l + [ule + 0[5 +1)
fori=1,2,3,...,n,,
with
& e 4(Cp+LY(Q) +1)(T + 1)(|9\%w(—M,M) + |O/|%°°(—M,JM) +1)
3= 2 2 A4 :
w2 (LA 82 Avd)
Hence, taking the sum of (5.14) with respect to i =1,2,3,...,n,, one can deduce from
(2.1), (4.4), and (5.14) that
1”7 e __ &g |2 <@nT A € __ € 2 e __ € |2
72‘771' Mi-1l2 () < - Z(| N =) E A+ 10f =i |F)
i=1 i=1
Co =
=— ) (1A(mF —ni_)l5 + Inf —nial%)
i=1
20, 4CoCs(T +1
< 200 any + 2B 103+ fufe + ol +1)
~ 1
4 00) + = (|ul? 2, +1
+ CO <fs(n0a 0) + 2(1 /\6&) (|u‘%+ |v|9f + )>
2NCy 4CyCs(T + 1)
< 2 70l 7r2(0) + T(WOI%’ +ulZe + 0|5 +1)
4Co(Cr+1)
+ Tuu'if + |U|3f + 1)
< O (|10l 20y + 1003 + [ule + 0[5 +1),
where
o .n ANC(T +1)(Cs + Cr +1)
2 1A 2 Adg '
Thus, we conclude the proof of Lemma 5.4. ]

Subsection 5.2. Boundedness of {[6¢];} in L*°(0,T; Wy). The objective
of this subsection is formalized as establishing the following lemma.
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LEMMA 5.5. There exist a small time-step size T € (0,74) and a constant Cs > 0
such that for any 7 € (0,Twx), the following estimate holds:

2
(5.15) 165 1712 (2 < Cs (10l 2y + 100z 2y + [ule + 015 + 1)
fori=1,2,3,...,n;,.

Proof. First, we note that Lemma 5.4 leads to the boundedness of {n$};”, in
H?(Q), with the following estimate:

nr 2
(5.16) |77i€\§{2(9) < 2\770@12(9) +2 (Z i — 77i€—1|H2(Q)>
i1
n, 1
< 2\770@2(9) +2(I'+1) Z ;Inf - 771‘871@{2(9)
i=1

< 2T +1)(C2 + 1)(Imolir ) + 100f% + [ulZe + [vl5 + 1)

fori=1,2,3,...,n,.
Moreover, by (5.16) and continuous embedding from H?(Q) to L>() under N < 3,

we see that aps () € L>®(Q)NV for any i =1,2,3,...,n,, with the following estimates
holding:

(5.17) |aM(ni€)|%°°(Q) <2a(0)* + 2\a'|%oo(—M,M) \7716|2Loo(9)
<20(0)% +2(Chrz )| |F e (arany 175 32 )

and

(5.18) @ ()2 < £ (90)[an (1) Boe ey + 10" Boear.an) [V By
<2LN(Q) (a(0)* + (015020)2|a/|%oo(71u,1\/1)|771'E\%12(Q)) 10 (oo (Caran I |2
S 06(‘7716|2H2(Q) + 1) for i = 132735 ceeyNpy
where CL; is a constant of the embedding from H?(Q) to L>=(£), and
Co :=2(LN ()a(0)? + LY (Q)(Ch2 ) +1) (I [Foo (—pr,ar) +1)-

Next, we verify the inequality (5.15). Let us consider multiplying both sides of
(4.2) by —A6¢.
By applying Young’s inequality, we have

l/2 I/2
(5.19) (A0 —071).—A0) = o (| A6 [y — A6 4 [3)
and
1 1
(5.20) (vi, — A0S ) g < §|A9§|§, + §|vi|§q for i=1,2,3,...,n,.
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Moreover, from (4.4) and (A3), we see that

1
(5.21) (oo (Tarmi1)(0F — 07_1), —A87)

-
1 IS4 14 1 I3
2 —ﬁ\OLOﬁm(—M,M)Wi — 05 4|H - §|A9i I

|a0|%°°(—M7M) 1 = e pe T (€ €
7_57';(]:6(771'791')_]:5(772'71791'71))

oo Loo (0,01, 01) 1 1
- T(Mﬁ{ + 5*|’Uz‘|§{> - §|A0i5|§{

fort=1,2,3,...,n,.
Using (2.1), (5.16)—(5.18), and applying Lemma 5.2 to the case that

a® =ap(ni_;) and w=406; for each i € {1,2,...,n.}

and
L=2a(0)* + 2(CHZO)2‘O/‘%°°(—M,M)
2T +1)(Ca + 1) (Inol2 () + 1003 + [l + [vl5 +1),
it is observed that
(5.22) (div(@ar ;1) VA= (VE)), A65)
> | V205 [Fvn — Ca(L)(|an (05 )T + D655 + 1)
> —Co(|AnG; | +165 1)
— Cu(L)(Co (-1 Fr2 gy +1) + 1) (1657 + 1)
> —Co|A6; |3 — (C4(L) + Co)(Co + 1) (16713 + 1) (In5-11Fr2() + 1)
fori=1,2,3,...,n,.
Now, by using (5.19)—(5.22), we will obtain that
(5.23) E(Xi — X, 1) <Cy(X;+ F;) fori=1,2,3,...,n,,
T
with

|ovol7 ~
X = 12| 465 [y + —S L (0, 65)

o fori=1,2,3,...,n,,
Fyx= (16513 + uwliy + loilF + 1) (1051 2 () +1)

and

~ 2(04(L)+Co+1)(56+1)(|040|%oo(_M,M) +1)
Cri= 1AG2 A2 =2

Here, let us take 7., € (0,7y) satisfying

1 ~ 1
Tex < 1NIN {T*, ~} , and in particular, 1 — 7,,C7 > —.
2C; 2
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Then, applying the discrete version of Gronwall’s lemma (cf. [12, section 3.1]) to
(5.23), one can see from (5.10), (5.16), and (5.23) that

i=1

(5.24) X; < Crpe?Cr(T+) (Xo + TZF)

2
< 576267(T+1) <V2|A90|2H + |040|L00((;M7]\/[)CF>

AC2C1 T+ (Cp 4 3)(T + 1)?
1A62 AVt
-2(T +1)(C2 +2) (InolFr2q) + 100l + lulZe + [v3e + 1)

~ 2 .
S CS(V]OE—]Q(Q) + |90|%{2(Q) + |U|2” —+ |’U|(2}f + ].) fOI' 1= 1,2,3, ey Npy

(160[% + lul3e + [vl3e +1)

where

= 8Ce2C1 T+ (O + 3)(T + 1)3(Co + Nv? + Jovo| oo (— MM)+2)
8 1AG2 AV

In light of (2.1), (5.10), and (5.24), we arrive at

165 1 Fr2(0) < Co(|AnO; 3 +1651%) = Co (1465 3 + 165 %)
Co 4Co(Cr+1)(T+1)
<X,
it 1AG2 AvA
_ 4Co(Cp + Cs +1)(T +1)
- 1A AVt

(160f% + [ulZe + [vl% + 1)

2
(0l 12y + 1001 %20y + lulZe + [vl% + 1)
fort=1,2,3,...,n;

Thus, we conclude the proof of Lemma 5.5 with the constant

ACy(Cp + Cs + 1)(T +1)

C =
> LAG2 AV

d

Subsection 5.3. Existence of a limit [n, 8] for a subsequence of {[[n°].,
[0¢]+]}. As a consequence of Lemmas 5.4 and 5.5 and Theorem 4.2, the following
boundednesses are derived:

o {[n°]-|e€(0,1),7 € (0,74s)} is bounded in W12(0,T; Wp);
. {[ “lrle € (0,1),7 € (0,7ws)}, {[n°]-]€ € (0,1),7 € (0,7%s)} is bounded in
L>(0,T5 Wo);
o {[6°],|e€(0,1),7 € (0,7sx)} is bounded in L>(0,T; Wy) and in W12(0,T;V);
{[ -

le € (0, 1) 7€ (0,7us)}, {[6°]7]€ € (0,1),7 € (0,74x)} is bounded in
L0, T Wo).

Therefore, by applying Aubin’s type compactness theory (cf. [36, Corollary 4]), we can

find sequences {g,}2°; C (0,1), {7, }2%; C (0, 7xx) and a pair of functions [n,§] € [#)?

such that £, \,0 and 7, \,0 as n — 0o, and we obtain the following convergences as
n— oo:

o
0

N = [0°"]5, —n in C([0,T];V) and weakly in W2(0,T; W),
(5.25) 0, := [6°"],, — 0 in C([0,T]; V) and weakly in W'2(0,T;V)
and weakly-+ in L>°(0,T; Wy).
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Besides, having in mind:

N I 1

7 ,Tn

max { |01, = Oulv, |87, — Ouly } < / 000y dt < oo,

where A; ;= [t;—1,t;) N (0, T)n
we can derive that
Ny, =[0"]s, =nandn =], —nin L>(0,7;V) and
weakly-* in L°°(0,T; Wy),
O,:=[0"],, —0and 0, :=[0°"],, =0 in L>(0,T;V) and
weakly-+ in L°°(0,T; Wy).

(5.26)

Thus, we have verified the claim of subsection 5.3.

Subsection 5.4. Verification of (S0)—(S3) for [n,0]. Now, we verify that
the limiting pair [n, 6] satisfies (S0)—(S3). The initial condition (S3) can be easily
confirmed as follows:

n(0) = le 7 (0) =m0 and 6(0) = li_>m 0,(0) =6y in H.

Let us take an arbitrary open interval I C (0,7"). Then, in light of (4.1), (4.2), and
the convexity of e, the sequences as in (5.25) and (5.26) should fulfill the following
two variational forms:

(5.27) /I(atnn(t),go) dt + /I(V(ﬁn + 120 ) (1), Vo) v dt

4 / (O(Tot T (1)), +0 (Tt T (8))e (VB (1)), 0) 1 lt = / (@, (£), ) dt
I I
forall peV and n=1,2,3,...,n,

and

[T, 000,500 ~0) gt + [ [ty 092:(¥8,0)

I
(5.28) 402 / (V060 (1), ¥ (B (t) — 1)) sy dt
< [ [ aln,Oye(vo)dadt+ [ (5, 0.0,0) = )
forally eV and n=1,2,3,...,n;,
On this basis, having in mind (5.25), (A1), (A2), and the fact that

Ye — | - | uniformly on RY as e — 0,

letting n — oo in (5.27) and (5.28) yields that
/I(é?m(t),w) dt + /I(V(n + 12 0m) (1), Vo) v dt

+ / (9(Tar () + o' (Tar () [VO(0)], ) g dt = / (ult), o) dt

I T
for any p e V
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and

[ (@olTamane.o0 - o) yae+ [ [ atuepivow)asa
2 [ (9080000 = ) it
// \Vz/)|dxdt+/( (t),0(t) — ) dt for any ¢ €V,

respectively. Since I C (0,7) is arbitrary, [n,0] should satisfy (S1) and (S2) if
(@) < M.
Finally, we verify n € L>(Q). By (5.2), the following inequalities can be obtained:

M — A(M + 120, M) + g(M) + o/ (M)|VO(t)| > u,
Op(=M) = A((=M) + 20, (=M)) + g(=M) + o' (=M)|V(t)| < u

a.e. in Q.
Hence, applying Lemma 5.3 to the case when

[nlanzagam = [U,Mﬂ,u]’ [776777(2)] = [7707M]

and

[nlvnzaavm = [7Ma77797u]7 [77(1)’77(2)} = [7M,770]7

we arrive at

(5.29)

— Mt <o M =
{H?? 0]y < Collno Iy for any ¢t € [0,7],

2 2
[[=M — )" (t)|}, < Co|[-M —no]*||, =0,
respectively. This implies that
17(t)| Lo () <M for any t € [0,T].

Thus, we complete the verifications of (S0)—(S3) and conclude that [n,6] is a
solution to (S).

6. Proof of Main Theorem 2. Main Theorem 2 will be obtained by means of
a Gronwall-type inequality.

Let [n*,0%], k = 1,2, be the solutions to (S) corresponding to initial values 7%, 0§
and forcings u”*, v*, k=1,2. Let us set

(6.1) Mo :=n"|p=@) V [1*|1=(@) and 6, (v) :==1Ad4 AV?
and take the difference between the variational formulas for n*, k = 1,2, and put

= (n'—=n?)(t). Then, by using (A1), the monotonicity of ’, and Young’s inequality,
we see that
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62 (PO WV ) Ofe)
~ |91z (Mo 210) | (0" = ) ()|
< [ @ )2 - )OI 0] ds
Q

+ / o (P (0) (7! — 1) (D) V6 (1) o
Q
(' = 7)(0), (ut —2)(1)) ,
/ (7 (1)) — alr®(£)) [V (6" — 0%)(8)] da
= P Olal — ) (0)]n
et (10 2y )3+ 96"~ 0)0)

|(77 -7 )(t)|H+§|(u —u?)(t)|%, for ae. t>0.

+

N =

On the other hand, by putting 1 = 02 in the variational inequality for #', and ) = 0!
in the one for 62, and by taking the sum of two inequalities, we have

(6.3) (c0(n"):0 (1) — a0 (n*)0:6% (1), (0" — 6°)(2))

5 5 IV =) O n)
< [ atrt ) (98 (0)] - [96'(2)) do
Q

+/Q D)(IVO' (0)] — [VO(1)]) da
(0" ><t>,<v1 — )(t))H
s/g|a< (1)) -

a(n?(1)|[V (0" - 6%)(¢)| da
+1(0" = 60*)(1)|m| (0" —v*) ()|
< =) (31 o)y 4 196~ 67)(0) g
510" )W + 510 AW ae >0

Here, we can compute the first term in (6.3) as follows:

(54 (oalr'©)00'() ~oalr' >>at02< (6" = 6)(D)
= 5 VOO~ @~ 5 [ abn' o' (016"~ 62) (0 da

+ / (o (0" (1)) — (1 (£)))2:0° (£) (0" — ) (t) da.
Q

Also, by using (6.1), the continuous embedding from H'(Q) to L*(Q) under N < 3,
and Young’s inequality, one can see that
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(6.5) */ ag(n' (1)dm* (1) (6" — 62)(t)|* da
Q
> —|ag| oo (— Mo 010) 1060 (8) ] (61 = 62) (1) 74
—(CE2 0] Lo (— o 110 |00 (D) (01 — 02) (1)}

(CE)2 bl (—ao00) | o
> 5* (1/) 10 ()| 1

(Vo' (0))(0" = 0*)B) 7 + V(0" = 0%) () Py

and
(6.6) / (c0(n' (1)) — a0 (2 (1)) 0% (1) (6" — 62)(t) da

> — || oo (— 1o, 0)|0:0° () Loy [ (1" = 1) ()| (6" — 62)(E)| La )

> —(CED2 | o (- b 1) |88 () [ (7" — 172) () 218" — 62) (1) v
> (Clgli)Q‘O‘ML""(*Mo’Mo) 9,62 1 2 2 1 2 2
> - 5 10:60° () v (I(n" = ™) (®)|F + (6" = *)()[})
<cf,‘i>2\aa|Loo<,Mo,Mo> 2
'(|(771_77 |H+|\/a0 |H+V2|V( — 0 )(t)|[2H]N)
for a.e. t>0,

where CL is a constant of the continuous embedding from H'(Q) to L*(£).
Therefore, putting

Ji(t) = |(u' —u®)()|F + (0! = *)(#)|F for t>0
and
Cro = 2(10 oo (Mo o) + 19115 (- 110 + (CF1)? | oo (- vtp 1) + 1)
it is deduced from (6.2)—(6.6) that
0=
Applying Gronwall’s lemma in (6.7), it can be obtained that for any 7" > 0,

J(t) <Oy (v < / Ji(s s) for any t € (0,77,

Cy(v) :=exp (C;*({

Thus, we finish the proof of Main Theorem 2.

(6.7)

(18 (6)| & + |8:62() |y + 1) J(t) + J1(t) ae. >0,

with

(10" 22 + 1040 | v + f))
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