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forward propagation, with costs comparable to existing DNNs. NINNs work by adding a feedback control
term to the forward propagation of the network. The feedback term nudges the neural network towards
a desired quantity of interest. NINNs offer multiple advantages, for instance, they lead to higher accuracy
when compared with existing data assimilation algorithms such as nudging. Rigorous convergence analysis
is established for NINNs. The algorithmic and theoretical findings are illustrated on examples from data

assimilation and chemically reacting flows.

Keywords:

Nudging informed neural networks
NINNs

Deep neural networks
Convergence analysis

Data assimilation

Chemically reacting flows

1. Introduction

To illustrate the proposed ideas, let us recall that Residual neural
networks (ResNets) are an established way to do supervised machine
learning and multiple authors have made the connection between
ResNets and ODEs which has helped prove their stability [1-3]. Next,
we introduce a general ResNet with input y,, layers

Yoyl =Ye +TtF(0s,y,) for ¢=0,...,L—-1, 1.1)

where 6, are the weight and bias parameters for the #th layer, and 7 is
a positive parameter. The function F takes the form W (6,)y, + b(6,)
where the matrix W is determined by the weight parameters and
the vector b is determined by the bias parameters. The corresponding
continuous dynamical system is given by

d;y = F(6(), y), ¥(0) = yp. (1.2)

The ResNet (1.1) can be seen as the forward Euler discretization of
the initial value problem (1.2) [3-6]. In this paper, we leverage the

connection between ResNets and ODEs to nudge a ResNet towards a
given quantity of interest (Qol), by introducing a feedback law. This ap-
proach is hereby termed as Nudging Induced Neural Networks (NINNs).
NINNs are applied to data assimilation and realistic chemically reacting
flow problems. Also a rigorous convergence analysis is established for
NINNSs.

Data assimilation techniques are used to improve our knowledge
about the state by combining the model with the given observations.
The standard nudging algorithm is widely used in data assimilation. In
the past, nudging was applied to finite-dimensional dynamical systems
governed by ordinary differential equations with applications in mete-
orology [7-12]. As nudging has matured, it has been extended to more
general situations, including partial differential equations [13-21].
Given a continuous dynamical system

Opu = f(u(®)), 1.3
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with unknown initial conditions, the nudging algorithm entails solving

dw= f(w)— ullyw—w?h),  w0) = w, (arbitrary), 1.4

where I, is a linear operator called the interpolant operator and w?°!
is a quantity of interest (QolI). Here x > 0 is the nudging parameter. In
the case w?! = I,,(u), it is possible to establish approximation error
estimates between « and w solving (1.3) and (1.4), respectively. In the
case w?! # I, (u), w2 is chosen by the user to nudge the solution
towards some desired behavior, i.e. 0 in a particular region of the
domain. Recently in [22], the authors replace the discrete version (2.1)
of (1.4) by a ResNet (1.1). This provides a new and cheaper alternative
to nudging as no expensive simulations are needed to generate the
nudging solution. Error estimates have also been derived. The present
work builds upon and improves the method presented in the article.

Motivated by nudging (1.4), this work presents a completely new
class of algorithms called NINNs which are meant to directly con-
trol DNNs, such as ResNets (1.1), by appropriately applying nudging
(feedback). One example of NINNS is

You1 = Ve +TFOpy0) = THEr 0% yp), £=1,...,L-2. 1.5)

The NINNs feedback term g, is a function that depends on the current
layer y, and the current quantity of interest y2°/. Notice that, the
NINNs feedback term is applied to the forward propagation (1.1) after
the training has been carried out. Furthermore, the NINNs framework
is a type of feedback control for DNNs. This framework offers multiple
advantages, for example, it leads to new data assimilation algorithms
with similar accuracy in comparison to the nudging data assimilation
algorithm for ODEs. One drawback with NINNs is the requirement of
training data for the neural network.

Performance of NINNS is illustrated using two types of examples. In
the first example, we use NINNs as a data assimilation algorithm. In
the second example, we consider a realistic chemically reacting flow
problem to illustrate uses for NINNs in simulating stiff ODEs. In case of
stiff or chaotic systems [23], a proven technique is to learn the update
map u"~! - ", i.e., one time step solution. The neural net takes as input
the state at time #,_; and the output is the approximate state at time
t,. This is the approach we will take for the ResNets in the numerical
section, more details are given in Section 5.1.

Outline: Section 2 contains preliminary material which is necessary
to introduce NINNs in Section 3. Section 4 contains error analysis of
NINNs and Section 5 covers preliminary material for the experiments.
Next we provide experimental results from using NINNs as a data
assimilation algorithm in Section 6. In Section 7, we provide experi-
mental results showcasing NINNs ability to improve previously trained
networks for chemically reacting flows.

2. Objectives and definitions

The goal of this section is to explain the nudging algorithm in more
detail and to describe the ResNet architecture so that in Section 3 we
can smoothly transition into NINNs. The contents of the next three
Sections 2.1-2.3 are by now well-known, see for instance [6,22-24].

2.1. Nudging

Consider a dynamical system given by a differential equation (1.3)
with u(f) € X. Here X is either an infinite dimensional space (in case
of PDEs) or a finite dimensional space X = R in case of vector ODEs.
The continuous nudging algorithm with a continuous in time quantity
of interest (Qol) w?°! is given by (1.4). More realistic is the case with
discrete Qol at times {¢,} [20]:
dw = fw(®) — u(lp (w®) — w1,

Vi € [ty tpr]s w(0) = wy.

(2.1)
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Notice that, in both cases we have Qol of the form {w?°!(f)},cp+ or
{wP!(1,)} | which are an input to the algorithm. Moreover, Iy
X +~ X is an interpolant operator acting on X. In the case of ODEs,
an example of I, is the orthogonal projection operator onto a subset
K of X. In this case X = R? and K = span{¢, fzkl with ¢; = e; the
standard basis elements in R? and d > d.

The goal of nudging is to nudge the solution of (1.4) or (2.1)
towards the given quantity of interest. A typical Qol is given by partial
observations of a particular solution of (1.3), i.e., w?’! = I,,(u), namely
we are nudging w towards a particular solution u. This is useful for data
assimilation where the initial condition is an unknown and the user is
given partial observations of u. In this scenario we desire ||w — u|| — 0,
where w is the nudging solution, u is the reference solution, and || - ||
is an appropriate norm.

2.2. DNN with bias ordering

The next two subsections cover the ResNet details. We are particu-
larly interested in ResNets that approximate a dynamical system (1.3).
A proven technique is to teach the ResNet the update map u(t,) —
u(t,,;) which we denote by .S below. First introduced in [24], consider
the following optimization problem which abstractly represents the
training of the DNNs

min JUGL SN W lp dbe o), (2.2a)
WelgZytbe 1
subject to y, = Fu';({W, )}, {bs)), i=1,....N,, (2.2b)
W<t =1y -1 £=0,.,L-2 (2.20)

The input-output pairs used in training are represented by {u/' }ZX1 and
{S(u")}lfl, with N, denoting the number of samples. The goal is to
minimize the difference between the DNN output (DNN is represented
by F in (2.2b)) y, and the true output S(u') using the loss function J
from (2.2a). Bias ordering is enforced in each layer by (2.2c) and its
purpose is to decrease the parameter search space, see [24] for more
details. The weight matrix is W, € R"#*"s+1, and the bias vector is
b, € R"+ where the Zth layer has n, neurons. The next subsection
describes the exact layout of the DNNs we consider in this article.
In our numerical experiments the loss function J in (2.2a) will be
Ly S L
Ji=os 2; Iy =S@HIZ+5 ;)<||Wf||. +lIb Il +IW 13 +11b113). (2.3)
= =|

where A > 0 is the regularization parameter. The second summation
regularizes the weights and biases. Following [24], and motivated by
Moreau-Yosida regularization, the bias ordering (2.2c) is implemented
as an additional penalty term in J

y L-2np41—1 ) )
Jy=d 42 ;) Z‘f Il min{s/"" — b7 0}]3. (2.4)

Here y is a penalization parameter. For convergence results as y — o,
see [24].
2.3. DNN structure

To introduce NINNs, we will use ResNets with the following form
with input y, € R?, inner layer feature vectors y, € R, and output
feature vector y; € RY"

¥y = oWy + by),
Yoyl =Yy + TU(nyf + bf),
yp =Wy

£=1,...,L-2, (2.5)

The scalar ¢ > 0 and the activation function o are user defined.
For the purpose of this work, we have chosen a smooth quadratic
approximation of the ReLU function,

() = {maX{O,x}

Lyaplyqe
Xt ox+g [x] <e.

|x| > e,
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o [«p ResNet i) (o0 yQof

Input Output

Fig. 1. The figure depicts a ResNet with input/output in R*. The goal is to nudge the
ResNet output towards the given y2°! (second component).

The ReLU function is given by taking ¢ = 0 in the above definition.
The connection between ResNets and ODEs described in Egs. (1.1) and
(1.2) motivates the use of ResNets in this work. The nudging algorithm
is known to be an effective tool for control of ODEs and PDEs. The
objective of this work is to show that the ResNet (2.5) can be effectively
nudged towards a given Qol in the same manner the nudging algorithm
nudges ODEs and PDEs as described in Section 2.1.

3. NINNs

The user provides a trained ResNet of the form (2.5) and a QoI y?°/.
Then a general NINN introduces a feedback law into the ResNet:

1 = o(Wo(o — 12!, yo)) + by) — Tug (321, 3)),
Ver1 = Ve +16(Wyye +by) — Tﬂgﬂ+1(yQUI> ye) ¢=1...L=-2 (31
v =Wy — TﬂgL(yQﬂleL—l)'

The goal is to choose functions {g,} Lé:o and parameter 4 € R such
that the output y, of (3.1) is nudged towards y2°!, i.e. the quantity
lyr — ¥2°!| € R is minimized, see Fig. 1. Notice, g, controls the input,
g; controls the output, and the remaining g, control the inner layers.
Next we present choices for the functions g, and the details in the
following subsections (see Fig. 1).

3.1. Methods

Let fyo 1 (x) :=yp +to(Wyx +b,) for £ =1,...,L —2 and f;(x) :=
W, _,x. Next, we consider multiple cases: (a) y;, y2°! € R and the layer
width n; =n, = --- = n;_, is constant and (b) general ResNet.

Case 1 (y,,y% €R, ny =ny = =n;_,):

Qol ) 1

Wi _
Wl =

gr i=(fro...ofpp (¥p) =y for/=1,...,L—1.

(NINN #1)

(NINN #1) is designed to control y, during the forward propagation
of the ResNet such that the quantity |y, — y?°/| € R is minimized.
The difference f;o...0f,,.;(y,) — y?°l € R is a measure of the close-
ness of the current layer y, to the target Qol y2°!. The n, vector
me_l € R" serves to match the current layer width and
to ensure |W;_,y;_; —y9°!| is being minimized. This method comes
with two restrictions on the ResNet. First, the neural network output
y; € R and second, constant layer width. By training one of the
aforementioned ResNets per output component, see Fig. 2, we can build
ResNet systems to handle general output y, € R”. One downside of
(NINN #1) is the extra computational cost associated with calculating
fro...ofppye)fore=1,...,L-1.

Case 2 (General ResNet):

8o ‘= Yo — yﬁ‘j,f,,, &L =Wi iy — y,,Q,f;;u,

and g, =0for/=1,...,L - 1. (NINN #2)

(NINN #2) modifies only the input and output to the neural network.
This method can be applied to any neural network as we are controlling

the input and output only. Note, the introduction of yg;i , and ygf;; 1S 10
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Fig. 2. A ResNet system consisting of 3 ResNets. Each ResNet is responsible for one
component of the output. Nudging a component of the output towards a Qol requires
the user to apply NINNs to the corresponding ResNet.

handle the case of different input and output dimensions. For example,
when learning ODEs in Section 6, the dimension of yg,z: , agrees with

the full state dimension and the dimension of Y%r;lmr is one. This is a

product of using ResNet systems pictured in Fig. 2.

3.2. System of ResNets

In some cases, is it desired to use a system of ResNets instead of
one ResNet. Each ResNet is then responsible for some of the output
components. The benefits include increased surrogate accuracy and
parallelization of the training, see Section 5 where we utilize the
structure in our numerical examples and previous work [22-25]. To
apply the NINNs framework (3.1) to a system of ResNets, such as shown
in Fig. 2, we simply require applying the framework to each ResNet in
the system the user desires to control. To control the first component
of the output pictured in Fig. 2 requires applying the NINNs framework
to ResNet #1 only.

4. Error analysis

In this section we provide error analysis resulting from applying
NINNs to ResNets trained to learn a dynamical system,

o,u = f(u(t)), 4.1

We will assume u is finite dimensional, either by construction or dis-
cretization. Given partial/incomplete Qol (or observations) taken from
a dynamical system (4.1) solution, we will show NINNs can recover the
solution under certain assumptions. First, we introduce the necessary
definitions and assumptions.

u(0) = u.

Definition 4.1 (Resnet State Space). Consider a ResNet with inner
layers of size n, with # = 1,..., L — 2. The ResNet state space is given
by R . If the ResNet is a collection of Nz ResNets, then we define
ny = Z’Z’]‘ ng,, where n,_is the size of the ¢th inner layer for the ith
ResNet.

Fig. 3 shows a ResNet system where each ResNet contains two layers
with three neurons (also known as components) each. The ResNet state
space is R°. The components of the ResNet state space ordering is
shown in the figure.

We introduce J ,

L R"s — R", as an indicator type function that
sets components without any NINNs feedback law to zero. Let x € R"7,
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Fig. 3. A ResNet system consisting of 3 ResNets. Each ResNet contains two layers with
three neurons in each layer. The ResNet state space is R°. Components of the ResNet
state space are labeled from top to bottom.

then the ith component of )( 2 l(x) is defined as:

0 ifig Q.
o, = ’ 4.2)
U(rzgo: ]‘ {[x],. ifi € Qg,r,
where
Qoo = i€ {1,2,...,n,}]
x ith component of ResNet state space is nudged.}. (4.3)

The notation [x]; signifies the ith component of a vector. It is easy to
see has the following proper
X g, wing property,

|X_QQ01(x)| <I|x|, VxeR™. (4.4

| - | represents the 2-norm in this paper. We re-introduce the interpolant
operator I,, : RY — R? where d accounts for the dimension of « in
(4.1), recall (1.4).

Assumption 4.2 (Stability of I,;). For all x in R, there exists a
constant ¢y, > 0 such that |I,(x) — x| < cj,]x|.

The partial/incomplete Qol (or observations) taken from (4.1) will
be in the form {1 w u(kAn)}2 where At € R is a positive real number.
Next we introduce the concept of a continuous ResNet, i.e., a ResNet
with an infinite amount of layers. The forward propagation through the
continuous ResNet is determined by W (¢) : R — R"*"7 p(f) : R » R"”
and activation function ¢ : R" ~ R". We combine these functions
into fyn(x,1) =o(W @#)x + b(t)). We represent the forward propagation
of the whole continuous ResNet by the function A(f) : [0,00) — R"#
satisfying

oh = fyn(h(1),1),

'
h(t):/ Inn(h(s), s)ds + x.
0

R(0) = x,.
(4.5)

If we discretize (4.5) using Forward Euler then we arrive at (2.5).

Assumption 4.3 (Continuous ResNet). There exists a continuous ResNet
that, given u(¢) at time ¢ > 0, can replicate the behavior of u(t + 4r)

(solution to (4.1)) with 4r > 0.

(i) The ResNet input and output lies in R9.'

1 In this section we are considering ResNets that replicate dynamical
systems. In this setting is it natural for the input and output dimensions to
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Fig. 4. The figure depicts the evolution of an arbitrary initial condition through the
trained ResNet.

(i) The layer width n, is the same except for the input and output.
(iii) The forward propagation is given by (4.5) with fy, being
Lipschitz continuous with Lipschitz constant K.

Definition 4.4 (Input-Output Transformation). Define, L := L;,0L,,.
L, : R" ~ R? is a linear transformation with Lipschitz constant K,
that maps objects from the ResNet state space (R"#) into the ResNet
output space (RY). L;, : R? = R" is a transformation, with Lipschitz
constant K;,, that maps objects from the ResNet input space (RY) into
the ResNet state space (R"#). L has Lipschitz constant K; = K;,K,,;.

In the notation of (2.5), the transformation L is the action of W;_,
(=: L,,) and c(Wyy, + by) (=: L;,). It is reasonable to assume that
L is Lipschitz with Lipschitz constant K; = K;,K,,,. For instance, the
action of W, _, is linear and when ¢ is ReLU, L,, is Lipschitz. These
transformations are shown in Fig. 4 where the evolution of an arbitrary
initial condition through the ResNet state space is depicted.

Next, we rewrite the continuous ResNet (4.5) with input coming
from (4.1). This will be crucial to compare NINNs with « solving (4.1).

90 = fyn W), Vvt € (k4t, (k + 1)Ar),
v(kAr) = L, (u(kAt)), (4.6)
v(0) = uy,

with v € R" and L;, given in Definition 4.4. This is the best approxi-
mation of the dynamics (4.1) in the ResNet state space. It will be useful
for the rest of the section to introduce the notation z~ to indicate a limit
from the left. The following ResNet error term quantifies how good the
approximation v is in comparison to the dynamics (4.1).

Definition 4.5 (ResNet Error €, y). The ResNet error term ey is the
maximum value of |L,, (v~ (k4t)) — u(kAr)|? across all k € Z*, where u
and v are respectively given by (4.1) and (4.6).

We define the map Fyy : R? x [0,4f] - R as follows. Fyy
takes the input x, € R? and applies the trained continuous ResNet
(Assumption 4.3) to produce the evolution in time. In other words,

t
Fyn(xg.1) := h(t) = / Ian(h(s), $)ds + Ly, (xp). 4.7)
0

This map is Lipschitz in the first component with Lipschitz constant K,
we establish this next.

Theorem 4.6. Assume that Assumption 4.3 holds. Recall fy and L;, are
Lipschitz with Lipschitz constants K and K;,, from Assumption 4.3 (iii) and

be equal. Our analysis can be easily extended to handle the case of additional
input parameters.
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Definition 4.4 respectively. Then the map (x,1) — Fyn(x,1) := h (cf. (4.7))
with x € R? denoting the input is Lipschitz in the first component with
Lipschitz constant K = eX4'K,,.

Proof. Let x;,x, € R?. Lifting x,, x, to R" with L;, and denoting the
two separate evolution’s in (4.6) by h,, h, with h = h; — h,, we obtain
that

5171 = fun(h) = Fun(hy).

Multiply both sides by 7 and using the Lipschitz property of f NN>
%a,|7z|2 —RiR’ <o.

After integrating,

~ 2 = ~ = 2

IR < XY [RO)] = 84| Ly, (x)) = Liy(xp)] < KK, |x) = x,.
The proof is complete. []

We remind the reader that the analysis in this section takes into
account a system of ResNets, such as in Fig. 2. To account for this, we
will rewrite the ith (NINN #1) feedback control term as

g =(fro..0fp(e) - yQOI);WL—l =Nz

W1l '
with N} = (f10...0fp11(5,) = %) € R and z,, := mWL_] €
R"4i. N @ z € R" will represent the (NINN #1) feedback terms for the
whole ResNet system. Here ' = [N}, ..., Ny, ] with N, e Rand z =
(24505 2y, N With 2, € R"i. Moreover N' © z is defined as N © z :

[Nizg, o Ny, Zey, | € R™ where Ny is the number of ResNets in the

system and n, = ZZ’I‘ n,, which is defined in Definition 4.1. If ResNet i
does not have a NINN feedback term then we assume Nz, =0 € R"i.

To be more specific, we will write
N (@) = Iy (Lo [Fyy(w(@), (k + 1)At — )] — u(kAr)), Vi € (k4t, (k + 1)Ar).

Here I,,(u(kAtr)) is the Qol. Next, I,(L,,(Fyn@(@®),(k + 1At — 1))
evolves w(t) to w((k + 1)Ar) and produces output with L, . Using
Assumption 4.2 we can estimate | N[,

INO] = 11y (Logg [ Fy y (@), (k + 1At = 1)] = u(kdo)|
< (e + DI Loy (Fy y (@), (k + 1At = 1)) = u(kdn)| 4.8)
= cpr| Loy (Fy n(w(@), (k + DAt — 1)) — u(k4y)],

for t € (k4t,(k + 1)Ar). By rescaling, z satisfies |z| = 1. We define
the continuous NINN using (NINN #1) as described in Section 3.1 with
partial observations {1, (u(kAt)}}? ) occurring every Ar time units,

Q= fynw) =u} o (N02.  Viekar(k+Dan. (49

wkan) = L( lim_w(®),

w(0) = L;,(wy).

Next we add and subtract i = v—w to (4.9) and define € := N ©z+w.
This gives us the alternate formulation of (4.9),

= fynw) = u}Y g =[v+e). Vi€ kAL (k+ 1)),
(4.10)
w(kAr) = L(x—li&,— w(t)),

w(0) = L;, (wy).

We will need the following metric G in the proof which represents
the cost of translating between the state space of the dynamics and the
state space of the ResNet (see Fig. 4).

Definition 4.7 (G-metric).
with k € Z*.

Let G := maxy | Ly, oL, (u(kAn) — u(kAD)|
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Before, we prove our main results we introduce an assumption on
)(_Q defined in (4.2).
'Qol

Assumption 4.8 (Stability of J Ogaz)' Let v be as given in (4.6) and
let w represent the continuous NINNSs solution (4.9). If @(t) = v(t)—w(t),
then we assume that for all ¢ € [0, 00),
Ja > 0 such that l)(-%uz (w()) — ()| < a|iw@)| with 0 < a < 1.

The above assumption is likely to hold. Assume a = 1 is the smallest
a such that the inequality in Assumption 4.8 holds. Since « is smallest,
it follows that ll}/ﬂg I(ﬁ(t*)) —w(*)| = |w@*)| for some t* € [0, ).

This in turn implies ){ 2 I(ﬁ(;*)) = 0. The equality holds from the

definition of in (4.2). Next, we can infer from j} (W) =0

_ ‘QQoI . . . QQaI )
that [iw(r*)]; = O for all i € Q4,, which is unlikely to occur given
the presence of neural network error, NINN error and incomplete
observations.

Lemma 4.9. Assume that Assumptions 4.2 and 4.3 hold. Let w satisfy
(4.9), v satisfy (4.6) and u satisfy (4.1). Recall Lipschitz constant K,
from Definition 4.4. Then € := N O z + w satisfies the following bound
for t € (k4t, (k + 1)4r),

el < IVI(1+ — @11)

G
) + €2, (A1) + .

N out

out

where the error term ¢, ,, — 0 as At — 0.

Proof. Recall |z| = 1 which implies | N ® z| < |N'|. Then we have

le] = |N @z + |

SN®Z+|NOZ|T INOz|iu_w
CNK014t|w| CNKautlwl
N Oz|—cpyK,,|w
<IN+ 1 )+|| | — e Kol ||. 4.12)
en Kou e Kour

The second term in the above estimate is handled next. Let t € (k4t, (k+
1)4At) and recall the estimate (4.8).
[NV © 2] <IN O] < epr| Loy (Fy ny (), (k + 1)At — 1)) — u(kAr)|
=cp| Ly, (w) = L, (w)+ L,,(v)— L,,(v)
+ L, (Fyn (@), (k+ 1)At — 1)) — u(kAt)|
< epr Ko Fy n (), (k + 1At — 1) — w(t)|
+ cpr| Loy (V) — u(kAD)| + ¢ 0 K,y |0
< ey Ko Fyn (@), (k + DAt — 1) — w(t)|
+ €A1 Ly (0) = Ly Ly (u(kAD))|
+ cpr| Loy o Ly (u(kAt)) — u(kA)| + ¢ Koy | 0]
This implies
IN Ozl - e Kol 01| < epr Koy | Fy y (@), (k + 1At — 1) — w(1)]
+ cp Koy lv = L, (u(kAr))|
+ cpr| Loy o Ly (u(kAD) — u(kAt)).

Notice the first two terms on the right hand side tend towards 0 as
At — 0. To see this, the first term is equal to
(k+1) At~
/ Fnnds
0

by (4.7). Then recall that t+ € (k4t,(k + 1)At). Thus the above right-
hand-side goes to zero as Ar — 0. Similarly, the second term is equal
to

e Kot | Fy n (W), (k + DAt — 1) — w(®)| = cpr Kyt

’

e p Koy |000) = L (u(kAt))| = 57 K
X | Fyn (L (u(kAt), t — At) — L, (u(kAt))|

t—At
/ Snnds
0

= cn Koy

>
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which also goes to zero as Ar — 0. Recall fy is Lipschitz by Assump-
tion 4.3, therefore it is continuous and both integrals converge to 0 as
At — 0. Let us return to estimate (4.12) and recall G from Definition 4.7.
Then an appropriate bound is

lel < |N|(1 + (4.13)

G
) + e, (A1) + .

out

N Bout
This concludes the proof. []

Next we prove an error estimate for (NINN #1).

Theorem 4.10. Assume that Assumptions 4.2, 4.3 and 4.8 hold. Let u in

21n (2K2 e
(4.9) satisfy u > max{ —CKL 2K\ pecall K, is given in Definition 4.4

(I-a)4t ° 1-a
and ey y is given in Definition 4.5. Then for u and w satisfying (4.1) and
(4.10) respectively, the following estimate holds

2

8K
| Ly (W™ (kD)) — u(kAD)|* < deyy + a )2 max [e|? + 27wy — uo|*.
—-a

Proof. Define w0 = v — w and assume ¢ € (kA4t, (k + 1)At). Then from
(4.6) and (4.10) it is easy to see that

0,0 = fynO) = fynw) - ”XQQO,(E) - ﬂxgga,(e)-
Multiply both sides by w,
SO+ U1 = (Fn ©) = foy @), @)

~HX g, @) = @0.0) = u(Y g (€),D). (4.14)

Each term on the right hand side is estimated next. Recall (4.4), Young’s
inequality, and we immediately obtain that

I(Fnn @) = Fyn @), @) < 1fyn©) = fyn @)@ < K@)

1- (I)M |ﬁ|2

~ ~ M
HX g, €0 < plelld] < 2

T 2(l-a
Next, using 4.8, we obtain that

>|e|2+(

~ o~ o~ ~ o~ ~2
WY g, (@) = T < ul Y o (@) = BI1] < pal @)
'Qol 'Qol
Substituting the above estimates in (4.14), we obtain that

- 1- N\
la,|w|2+(ﬂ—l<)|w|2< e

2 2 =2(1-a)

After choosing u large enough to satisfy % -K> (1’4—")“ or u> %’
~ 1- ~

ol + L= < K ep? 4.15)

2 T (l-a)
Recall v and w from (4.6) and (4.10) at ¢ = kAt. In particular, we have
that w(kAt) = v(kAt) — w(kA4r) = L;,(u(kAt)) — L(w~(kAt)). We use the
notation z~ to indicate a limit from the left. Integrating (4.15), from
kAt to (k + 1)At, we obtain that

|5 ((k + DAD)? < T le|? + e~ (l=omdt/2) g Apy 2 (4.16)
—-a
= a 7 max le|? + e~(I-@mdt/2
-

X |L(w™(kAD) — Ly, (u(kA)|*.
= 2 max |e|? + e~(-®ma/2 g2

(I1—a)? ¢ in
X | Loy (W™ (kAD)) — u(kAD)|?,

where in the last step we have used that L = L;,0oL . By the triangle
inequality and Definition 4.4 we have for all k,

|L,,(w™ (kAD) — u(kAD)| < K,

ou

N0~ (kA + | L, (0™ (kA1) — u(kAr)|
(4.17)

ou

< Koy [0 (kA + (e )2
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By Young’s inequality (4.17) becomes,

| Ly (0™ (kAD) — u(kAD)|? < 2K2 (@~ (kAN + 2ex x-

out

(4.18)

The first term has been estimated in (4.16). The second term is a ResNet
error which we have denoted by ey v, see Definition 4.5. Choose y such
that e=(1-0nd/2K2 < %, recall K, = K;,K,,, from Definition 4.4. This

. 21n(2K?2)
results in y > =

hand side of (4.18),

. Next, we insert the (4.16) estimate into the right

2

4K
| Lo (0™ ((k + 1)AD) — u((k + 1)AD|* < 26y + a ”“’)2 max le|?
—a

+ %ILou,(w’(kAt)) — u(kAn)|?.

After applying this estimate recursively,

2
out

(1 -a)?

1-27k
1-2-1
+ 27wy — uy|?

2
out

(1-a)?

| L (w0 (kA1) — u(kdAt)]> < (zeNN + max |€|2)

<deyy + mtax|€|2+2_k|wo—uo2

This concludes the proof. []

4.1. Error summary

The estimate in Theorem 4.10 consist of three terms. The first term,
eyy (Definition 4.5), is expected to be small in practice as the user
has freedom over which ResNet is used. The middle terms consist of
€ = Ny, + w and is estimated by (4.11). This error can be minimized
by choosing ResNets with Ar and G small. The third term is the standard
exponential decay term that arises in nudging error estimates.

4.2. Discrete dynamics and convergence estimates

In the previous section we proved convergence error results for the
continuous NINNs described in (4.9). Notice, that the discrete NINNs
have ResNet structure (2.5). To derive the estimates in the discrete
setting, we can simply use a triangle inequality. Let u represent the true
solution (4.1), w,,, represent the continuous NINN solution and let w
represent the time discrete NINN solution. Then for all k € Z*,

| Loy (w™ (kA1) — u(kAr) ||<
| Loy (w™ (kA1) = L, (W, (KAD)|
+ | Ly (w,, (kAD) — u(kAD)||.

cont

The first term on the right-hand-side is the time discretization error
for DNN, for instance, forward Euler. The approximation of the second
term has been discussed in Theorem 4.10.

5. Experimental introduction

The purpose of this section is to set a stage for our numerical ex-
periments. Section 5.1 details how the training is done for the ResNets
in the experiments. Section 5.2 details the setup required for the data
assimilation experiments and the evaluation metric. Section 5.3 covers
a technique useful when applying nudging algorithms. The following
sections contain the numerical experiments. In Section 6, NINNs are
implemented as data assimilation algorithms, where we test the algo-
rithms on the chaotic Lorenz 63 and 96 ODE systems. In Section 7,
NINNs aid ResNets in replicating stiff ODEs arising from chemically
reacting flows.
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Time Avg. Rel. Error: 0.24706 (Nudging) 0.1498 (NINN #1) 0.11642 (NINN #2)

- = NINN #2
- = Nudging
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Time Avg. Rel. Error: 0.14941 (Nudging) 0.07865 (NINN #1) 0.07614 (NINN #2)
20 : : : '

—true
= = NINN #1
0 - = NINN #2
- = Nudging
‘ ‘ ‘ [

-20

20F

0

-20

50

Fig. 5. Left: x-component observations. Right: y-component observations. From top to bottom the x,y,z components of the reference (true), (NINN #1), (NINN #2), and nudging

solutions over 10 time units for the Lorenz 63 model.

5.1. ResNet training

The ResNet systems in Sections 6 and 7 are trained using the
specifications in this section. The systems will be comprised of multiple
ResNets where each ResNet has output in R and is responsible for one
component of the output. Fig. 2 is one such example for a system with
input/output in R3. Additionally, the ResNet systems will be trained on
15,000 training samples. The training samples are input/output pairs
generated from a dynamical system corresponding to a specific time
step. Specifically, many random initial conditions are generated and
propagated forward using the dynamical system. In Section 6, the time
step size for the Lorenz ODEs is 10~2 and in Section 7 the time step size
is 5- 1078 for the chemically reacting flow ODEs. The training samples
will be split 80-20, i.e. 80% of the samples will be used for training
and 20% will be used for validation. A patience of 400 iterations is
used with the training data. The latter means that if the validation
error increases then training will continue for 400 more iterations. The
BFGS optimization routine is used in conjunction with bias ordering,
see Section 2.2 for the details. The parameters are initialized with box
initialization [26].

5.2. Data assimilation protocol

In Section 6, ResNets are trained to learn the Lorenz 63 and 96 ODE
systems. We generate synthetic partial observations and, by equipping
the ResNets with NINNs, recover the solution corresponding to the
partial observations. Therefore showing NINNs are effective as data
assimilation algorithms. The time averaged relative error will be used
to measure the convergence and is computed as the approximation of
the integral,

1 /T I - x ol
0

- 5.1
T llxre/ Ol e

Here xALC represents the algorithm we are computing the error for,
(NINN #1), (NINN #2), or nudging (2.1). The goal is to drive (5.1)
towards zero by combining the ResNet model and the observations of
x"/ using NINNs.

5.3. Exponential decay

As stated in Section 5.1, the ResNets in Section 6 are given training
samples corresponding to a time step size of 1072. As stated in be-
low in Section 6, the synthetic observations are available every 10!
time units. Therefore, NINNs compute 10 ResNet evaluations before
the observations are updated again. During this time, the observation
becomes outdated as more ResNet evaluations are done, advancing in
time. We dampen the y parameter between observations with e=*4 for
k=0,1,...,9, i.e. u » pue A, For the experiments in Section 6 we use
an exponential decay factor of A = 1.

6. Data assimilation

In this section we apply NINNs to ResNets which have learned the
Lorenz 63 and 96 ODEs. (NINN #1) and (NINN #2) will be compared as
data assimilation algorithms on the Lorenz ODEs.

6.1. Lorenz 63

The Lorenz 63 model is given by the three coupled ODEs

d,x =o(y—x), (6.1a)
diy=x(p—-2)—-, (6.1b)
d;iz=xy—pz. (6.1¢c)

We set ¢ = 10, f = 8/3, p = 28, which is known to exhibit chaotic
behavior [27]. The Egs. (6.1a)-(6.1c) are solved using an explicit
Runge-Kutta (4,5) in MATLAB. The training data is generated from
1000 different initial conditions. The initial conditions are generated
from three i.i.d. normal distributions with mean 0 and standard devi-
ation of 10. The initial conditions are propagated forward to 110 time
units using the ODEs (6.1a)-(6.1c), and observations are selected every
6 = 0.1 time units starting at 100 time units. The ResNets trained on
the training data have 8 layers each with a width of 15. We will focus
on two types of observations, x component only and y component only
observations. In Fig. 5, we compute solutions for the two NINNs and
nudging on a randomly generated reference solution that is outside
of the training set. The initial condition for the reference solution
is generated from three i.i.d. normal distributions with mean 0 and
standard deviation of 50. For (NINN #2), we found it was only necessary
to control the output of the ResNets. This corresponds to g, = 0 and g;
as defined in (NINN #2). Both NINNs solutions are performing better
than nudging based on the time averaged relative error provided on
Fig. 5.

6.2. Lorenz 96

The Lorenz 96 model is given by the following set of ODEs:

i=1,2,...,40, (6.2)

(6.3)

dix; = (Xpy1 = X)X = X; + F,

X_| =Xz9, Xg=X4, and x4 =x.

We set F = 10 which is known to exhibit chaotic behavior [28].
We follow a similar procedure as with the Lorenz 63 model and we
consider two different observation patterns. We observe approximately
33%,and 50% of the state which corresponds to observing 13 and 20
components, respectively. Specifically, we observe every third compo-
nent and every even component, respectively. The ResNets are trained
using the same setup from the Lorenz 63 section with one major differ-
ence. We use the structure of (6.2) to reduce the input for the ResNets
to R* from R*’. The ResNet corresponding to the ith component of the



H. Antil et al.

Time Avg. Rel. Error: 0.3296 (Nudging) 0.19721 (NINN #1) 0.26047 (NINN #2)
P
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Time Avg. Rel. Error: 0.64159 (Nudging) 0.6613 (NINN #1) 0.62452 (NINN #2)

10 ) —true
5 - - NINN #1
= = NINN #2
0 - = Nudging

Fig. 6. Left: 20 observations on even components. Right: 13 observations on every third component. From left to right, top to bottom the first 6 components of the reference

10 —true
10 5 ] - = NINN #1
5 - - NINN #2
0 0 - - Nudging
5 -5
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10 20
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0 0
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0 5 10
10 20
10
0
0
-10
5 10 0 5 10

0 5 10
10 ' 10 .
5 » , ¢ 5 |l A
0/ f 0
5 oy " B 5
0 5 10 0 10

(true), (NINN #1), (NINN #2), and nudging solutions over 10 time units for the Lorenz 96 model.
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state vector takes in as input the i —2,i — 1,i,i + 1 components of the
state vector. We refer to these ResNets as being reduced as their input
size is 4 compared to the state space size of 40. The ResNet used in the
experiments has 9 layers each with a width of 15. In Fig. 6, we compute
solutions for the two NINNs and nudging on a randomly generated
reference solution. For (NINN #2), we found it was necessary to control
the input and output of the ResNets. This corresponds to g, and g; as
defined in (NINN #2). For this particular reference solution, all three
algorithms are performing similarly based on the time averaged relative
error provided on Fig. 6.

7. Chemical kinetics
The purpose of this section is to demonstrate the effectiveness of

NINNs in improving pre-existing neural networks. In particular we
show how NINNSs can be used to aid neural networks designed to learn

ODEs describing chemically reacting flows. We present an experiment
where ResNets learn one time step of a stiff ODE modeling a reduced
H, — O, reaction. The model tracks the reactions of eight species
and temperature over time, for more details on the model we refer
the reader to the Ref. [29]. For more information approximating the
model with ResNets see the recent works [23,24]. The training data
for the ResNets is generated by CHEMKIN [30]. For each species and
temperature there corresponds a ResNet for a total of 9 ResNets. The
training data is generated from initial conditions with an equivalence
ratio of one, H, = 2 mol and 0, = 1 mol. In addition, the temperature
ranges from 1300 to 2500 Kelvin in increments of 12 K. Training data
is collected every 5 - 1078 time units with 1000 samples per solution.
The ResNets used in this example have 7 hidden layers with a width
of 30. This particular ResNet system is able to replicate the dynamics
well for temperatures above 1600 K and struggles with capturing the
dynamics for temperatures below 1600 K with 1300 K being the worst.
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To improve the ResNet accuracy we can introduce NINNs. As we are
given the exact initial data, we can nudge each of the 9 ResNets towards
the initial data for a period of time initially. This nudge corrects the
ResNet in the lower temperature region. See Figs. 7 and 8. For this
example we used (NINN #1).

8. Conclusions

This paper has introduced nudging induced neural networks
(NINNSs). NINNs can be implemented onto pre-existing neural networks
which allow the user to control the neural network given observations
or a quantity of interest. We demonstrated how NINNs are effective as
data assimilation algorithms on the Lorenz 63 and Lorenz 96 ODEs.
NINNs were able to outperform the classical nudging data assimilation
algorithm in our experiments while retaining the ease of computation
found in neural networks. One drawback of NINNs in comparison
to standard data assimilation methods is the requirement of training
data for the neural network. We demonstrated the uses of NINNs in
replacing stiff ODE dynamics with a neural network. The convergence
analysis gave us insight into the errors involved with NINNs and how
to minimize them.
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