Optical Enantiodifferentiation of Chiral Nitriles
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ABSTRACT: Chiroptical sensing of nitriles is achieved with excellent functional group tolerance by hydrozirconation and subse-
quent transmetalation of the corresponding iminate to a chromophoric palladium complex. A one-pot workflow that uses the
Schwartz’ reagent and [(1*-1-tert-butylindenyl)(u-C1)Pd]» as sensor generates a palladium complex displaying red-shifted CD induc-
tions and characteristic UV changes. These chiroptical responses are accurately correlated to the enantiomeric ratio and total concen-

tration, respectively, of the original nitrile.

Chiral nitriles are attractive building blocks with widespread
use in organic synthesis and an important structural component
in natural products and pharmaceuticals including Cyanocy-
cline A, Pregnenolone 16 a-carbonitrile, Vildagliptin, Sax-
agliptin and Alogliptin. The versatility of nitriles, which may
serve as precursors of various other functionalities such as
amines, aldehydes, ketones, amides, carboxylic acids and N-
heterocycles, makes them a popular choice in asymmetric syn-
thesis and the incorporation of a cyano group, for example, as
metabolically stable bioisostere of a carbonyl or halogen moi-
ety, has become a viable drug development strategy.! Not sur-
prisingly, the broad utility and general significance of chiral ni-
triles have received considerable attention and inspired the de-
velopment of asymmetric methods that provide access to a large
variety of enantioenriched structures.”!'! By contrast, the stere-
ochemical analysis of chiral nitriles is routinely restricted to tra-
ditional enantioselective chromatography'>!* although sensing
of the absolute configuration of cyanohydrins'* and elegant
NMR methods that rely on the formation of nontransient dia-
stereomeric adducts'>!® have also been reported.

The current dependence on HPLC, GC and NMR methods
which are inherently serial techniques, that is, they follow labo-
rious, time-consuming workflows by analyzing one sample at a
time, imposes critical high-throughput screening limitations. To
overcome these and other shortcomings, intriguing alternatives
based on mass spectrometry,!”” UV,'"® fluorescence,'*?! gas-
phase rotational resonance,? IR,? electronic circular dichroism
(ECD),?* fluorescence-detected CD spectroscopy,” and bio-
chemical methods?® have been introduced. Among these ad-

vances, chiroptical sensing methods which are compatible with

separation-free high-throughput experimentation equipment
and allow parallel analysis of hundreds of samples using auto-
mated liquid dispensing and multi-well plate technologies have
probably been most impactful.”’*° To date, the optical sensing
field has largely seen the development of probes that bind
amines, amino alcohols, amino acids, diols and hydroxy acids
to generate sufficiently strong, red-shifted CD signals for accu-
rate concentration and er determination.3*® In particular Schiff
base formation with primary amino groups has become a privi-
leged sensing motif while other functionalities remain challeng-
ing.*™** Noteworthy progress has been made with cucurbiturils,
pillararenes, calixarenes and other macrocycles but they typi-
cally generate weak, blue-shifted CD maxima.’%? As a result,
methodically new binding and CD induction strategies are
needed to extend the current chiroptical sensing space to other
classes of compounds.®*

Quantitative optical sensing of chiral nitriles has been largely
unattainable to date. The lack of a small-molecule chiroptical
probe that targets nitriles can be attributed to several challenges.
Nitriles are weakly coordinating ligands which disfavors stoi-
chiometric binding assays with a chromophoric metal complex.
The local C.y symmetry of the linear cyano group and the free
rotation around its axis impede well-defined stereochemical in-
teractions and distinct CD induction upon binding to a sensor.
In addition, the considerable distance between the stereogenic
center and the metal-coordinating nitrogen atom further dimin-
ishes effective chirality imprinting onto the metal complex
which therefore remains unlikely to generate a strong chiropti-
cal response to the binding event. We now show how these dif-
ficulties can be overcome with a novel reaction-based sensing



assay in which the commercially available Schwartz’ reagent
plays a critical role to desymmetrize the nitrile group into a rigid
iminate that is readily transmetalated from the zirconium center
to a chromophoric palladium complex. This process induces a
strong, red-shifted chiroptical signal that is directly correlated
to the enantiomeric composition of the nitrile substrate. We use
an achiral Pd complex as sensor to avoid formation of diastere-
omers, which simplifies concomitant concentration and er anal-
ysis, and we demonstrate the viability of this concept with a
large variety of chiral nitrile compounds.
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Figure 1. Chiroptical sensing strategies for weakly nucleophilic
compounds.

At the onset of this study, we followed a previously reported
strategy that is based on the self-assembly of CD-active alkene
transition metal complexes formed through in situ halide ab-
straction with silver salts in the presence of the sensing target
which proved highly successful for chiroptical terpene and ter-
penoid analysis (Figure 1).% Comprehensive screening of 25
sensor candidates comprising a series of metal halides and
dihalides using silver tetrafluoroborate to generate a vacant
binding site and (S)-2-methylbutyronitrile as test analyte
showed first hits and induced CD (ICD) signals in chlorinated
solvents (SI). However, this protocol failed when (S)-2-(naph-
thalene-2-yl)propanenitrile was employed, indicating a limited
application scope. We hypothesized that the major challenge
was not to form metal coordination complexes with the nitrile
compounds but that the rotational freedom and the local Cay
symmetry of the linear cyano group would considerably dimin-
ish chirality imprinting onto the chromophoric metal sensor,
which was considered a crucial prerequisite for strong CD in-
ductions. We therefore decided to address these issues with a
methodologically different approach and investigated the pos-
sibility of chiroptical nitrile sensing via hydrozirconation and
subsequent transmetalation of the iminate moiety, which would
exhibit a desymmetrized structure with less rotational freedom,
to a chromophoric metal halide complex. Indeed, this appeared
to work under anhydrous conditions with several metal com-
plexes and particularly well with [(n®-1-tert-butylindenyl)(p-
CI)Pd],, 3 (Figure 2).

We were pleased to observe that the reaction between nitrile
12 and Schwartz’ reagent 13 followed by transmetalation to the
Pd complex 3 yields red-shifted ICD maxima beyond 400 nm
which is advantageous because it reduces the risk of possible
interferences when chiral impurities that typically display chi-
roptical effects at shorter wavelengths are present and it simpli-
fies the adaption to automated multiwell plate readers that are

known to allow high-throughput screening of hundreds of sam-
ples but have technical problems with recording CD signals in
the region around 400 nm.%

PPh
@_\20|4zd oc. [ co FPhs
Fe i P N PhsP—Rh—PPhg
i /¢l oc” N/ e n
> —phn, ~ B cl cr 8
Cl_ P(Cy)Ph Cl\ PPhs
Ni N
, PhyP
‘ Ph(Cy),P s O
PhsP~ | “PPhs
9 10 1
o 0N O
r
<5 Us,., 0
13 N 3(056q)

CpZZrCIZ |
N _S
CD-active P(\’

CD-silent
ﬁ ﬁ ICD effect t—Bu’%

3' ’ééhé.’n’g of (R)-and |

ﬂ )-12 gives opp05|te

L Cotton effects !

204~ TTTTmToommoosmmosmssees
Figure 2. Representative examples of sensors screened (top). Chi-
roptical nitrile sensing via hydrozirconation and transmetalation to

the palladium complex 3 (bottom). The CD spectrum was obtained
at 0.8 mM in CH2Cla. S=solvent.
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Having developed the first chiral nitrile sensing method, we
decided to investigate the mechanistic features of the chemical
reaction-based assay and the underlying chirality recognition.
As mentioned above, CD sensing of chiral alkenes devoid of
any other functional group via metal coordination, for example
by in situ halide abstraction of [(Ph;P);Rh(I)C1], 8, is known to
give strong CD effects but this strategy failed when applied to
nitrile compounds. We were able to show that stoichiometric
metal coordination indeed occurs under similar conditions by
growing a single crystal derived from (S)-2-methylbutyroni-
trile, 16, which turned out to be CD-silent (Figure 3). A closer
look at the crystal structure reveals that the end-on nitrile bind-
ing motif places the chirality center remote from the propeller-
like triphenylphosphine Rh ligands. This supports our initial hy-
pothesis that metal coordination occurs and that the lack of CD
induction is likely a result of insufficient chirality imprinting
onto the sensor. We then turned our attention to the hydrozirco-
nation reaction. NMR monitoring showed that this is a fast pro-
cess and the addition of Cp,ZrHCI to 2-phenylpropanenitrile,
18, was quantitative and complete within 5 minutes without by-
product formation. This reaction is characterized by an upfield
shift of the methyl and methine protons in the reduced nitrile
substrate and by the appearance of the characteristic imine pro-
ton around 8.5 ppm. We suspected that formation of rapidly in-
terconverting E/Z-zirconium iminate isomers is possible and
this was confirmed by variable-temperature NMR experiments
(ST). Unfortunately, attempts to follow the transmetalation step
NMR spectroscopically gave inconclusive results. But we were
able to grow a single crystal of Cp,ZrCl, directly from the reac-
tion mixture which corroborates the proposed reaction pathway



(SI). UV/CD and ESI-MS experiments verified that the iminate
formation is essential for the optical nitrile sensing and that it is
transferred to the indenylpalladium complex which may also
carry a solvent molecule.
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Figure 3. Halide abstraction and coordination of (S)-2-methyl-
butyronitrile using (PPh3)3RhCl (top) and NMR study of the hy-
drozirconation of 2-phenylpropanenitrile (bottom). The hydrogens
are omitted in the crystal structure for clarity. See SI for details.

Additional ICD time and stoichiometry experiments showed
that the formation of a Pd complex exhibiting equimolar
amounts of the indenyl ligand and the iminate is complete after
9 hours. We note that these findings are in agreement with the
monomeric palladium complex 15 while formation of a dinu-
clear complex cannot be excluded. Importantly, the rhodium
complex 8 which failed to give an ICD effect in the halide ab-
straction procedure gave a distinct chiroptical response, albeit
not as strong as 3, when it was applied in the hydrozircona-
tion/transmetalation method.

The chiral nitriles shown in Figure 4 were used to evaluate
the scope of our chiroptical sensing method. These compounds
comprise purely aliphatic scaffolds, structures with various ar-
omatic rings that were prepared according to a literature proto-
col® as well as multifunctional substrates and pharmaceutically
relevant ones. Compound 26 is a precursor to Isavuconazole, an
antifungal drug, and Pregnenolone 16a-carbonitrile, 27, is a ste-
roidal antiglucocorticoid and a pregnane receptor agonist. In all
cases, red-shifted ICD signals were measured which demon-

strates the broad utility and functional group tolerance of ke-
tone, alcohol, ester, carbamate, alkene and heterocyclic struc-
tures (SI).
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Figure 4. Structures of chiral nitrile compounds used in this study
and ICD effects obtained by sensing of the enantiomers of 22 and
23. Only one enantiomer is shown. See SI for details.

Finally, ten samples containing 12 at varying concentrations
and enantiomeric compositions were prepared to test the use of
the chiroptical nitrile sensing protocol (SI). To achieve this, we
analyzed CD induction effects and concomitant UV changes.
The ICD maxima generated by the hydrozirconation/transmeta-
lation sequence can be directly correlated to the enantiomeric
ratio of the nitrile analyte with the help of a calibration curve.
Because we are using an achiral sensor we avoid formation of
new diastereoisomers during the Pd coordination. This greatly
simplifies the analytical task, eliminates complications regard-
ing potentially erroneous dr to er conversions, and we can take
advantage of the inherently enantioselective nature of CD spec-
troscopy to determine enantiomeric ratios, [R]/[S].

Table 1. Quantitative sensing of the concentration and en-
antiomeric ratio of 10 samples of nitrile 12.

Actual Composition CD Sensing Results

Sample #

Conc (mM) er (R:S) Conc (mM) er (S:R)
1 22.50 93.5:6.5 20.80 97.0:3.0
2 12.50 10.0:90.0 15.60 13.5:86.5
3 23.75 65.0:35.0 24.50 61.0:39.0
4 10.00 97.5:2.5 8.00 98.0:2.0
5 17.50 70.0:30.0 18.80 66.5:33.4
6 15.00 82.5:17.5 14.60 82.0:17.0
7 20.00 21.0:79.0 19.40 21.5:78.5
8 8.00 0.0:100.0 8.40 1.0:99.0
9 18.00 85.0:15.0 18.90 79.0:21.0
10 21.00 12.5:87.5 20.10 8.0:92.0

Simultaneous changes observed in the UV spectra, however,
are non-enantioselective, i.e. independent of the enantiomeric
sample composition, and therefore allow determination of the



total analyte concentration, [R]+[S]. The results of this compre-
hensive CD/UV sensing concept are shown in Table 1. In gen-
eral, the nitrile analysis gives accurate concentration and er val-
ues with error margins that wouldn’t allow analysis of near-ra-
cemic samples but are comparable to previously reported opti-
cal sensing methods.?

In summary, we have demonstrated that chiroptical sensing
of nitriles is possible via hydrozirconation and subsequent
transmetalation of the corresponding iminate to a chromophoric
palladium complex. This strategy overcomes previously un-
addressed challenges with nitrile sensing, e.g. the local Cay
symmetry of the linear cyano group and the free rotation about
its axis, that weaken chirality imprinting onto metal coordina-
tion complexes, a widely accepted prerequisite for strong chi-
roptical signal induction. Using Schwartz’ reagent and [(n’-1-
tert-butylindenyl)(u-Cl)Pd],, which are both commercially
available, a continuous workflow that yields red-shifted circular
dichroism inductions and characteristic UV changes with a va-
riety of substrates including multifunctional scaffolds and phar-
maceutically relevant molecules was introduced. The utility of
this protocol was highlighted with the determination of the en-
antiomeric composition and total concentration of ten chiral ni-
trile samples. The optical assay is compatible with generally
available high-throughput experimentation equipment and mul-
tiwell CD plate readers if parallel analysis of hundreds of sam-
ples is desirable.
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