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ABSTRACT. This paper explores the application of event-based cameras in the
domains of image segmentation and motion estimation. These cameras offer
a groundbreaking technology by capturing visual information as a continuous
stream of asynchronous events, departing from the conventional frame-based
image acquisition. We introduce a Generalized Nash Equilibrium based frame-
work that leverages the temporal and spatial information derived from the
event stream to carry out segmentation and velocity estimation. To estab-
lish the theoretical foundations, we derive an existence criteria and propose a
multi-level optimization method for calculating equilibrium. The efficacy of
this approach is shown through a series of experiments.

1. Introduction. Event (Neuromorphic) cameras are a class of biologically in-
spired sensors that employ an asynchronous sampling mechanism to record data
based on the change in light intensity at each pixel [1, 7, 21]. Specifically, an
event is triggered at a pixel if and only if the change in light intensity at that
pixel exceeds a predefined threshold. As a consequence, no events are recorded if
there is no change to the scene. In contrast, if the scene is dynamic, either due
to camera movement or due to the movement of an object in the scene each pixel
of the event camera records intensity changes with a temporal resolution on the
order of microseconds [7, 20]. Mathematically, an event camera can be modeled
as a spatio-temporal point process, where the occurrence of an event at a pixel is
a binary-valued function of time [20]. In [1], the authors introduced a mathemat-
ically rigorous bilevel optimization model, including a complete analysis, to carry
out reconstructions from the event data. This model can use both a combination
of traditional frames and event data. Figure 1 illustrates the differences between
traditional and neuromorphic cameras.

Event image segmentation has emerged as a topic of interest, offering promising
solutions to the challenging task of segmenting dynamic scenes captured by event-
based cameras. Under the assumption of constant illumination, event occurrences
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Event Data vs. Traditional Camera Images

F1GUurRE 1. Comparison of the output of a standard frame-based
camera (3 frames are shown) and event camera (dots indicate the
events). The standard camera outputs frames at a fixed rate, thus
sending redundant information when there is no motion in the
scene. However, the event based camera captures the change in
scene. For a model that can utilize all this information to carry
out high quality reconstructions, we refer to [1].

in event-based cameras can be attributed to the relative motion between the cam-
era and the observed scene [8, 22]. As events are primarily indicative of changes in
brightness, they predominantly arise from scene edges, including contours, texture
variations, and similar visual characteristics [25]. In the case of a stationary cam-
era, events solely originate from moving objects within the scene [18]. However,
when the camera itself undergoes motion, events are generated by both the edges
of moving objects and the motion-induced edges of stationary objects [16]. This
interplay between the camera’s motion and the inherent dynamics of the scene adds
complexity to event-based image segmentation, necessitating robust approaches to
effectively distinguish between these sources of event occurrences. Various meth-
ods have been proposed to solve these problems including learning based [18, 27],
probabilistic [26] and contrast maximization models [9, 10, 20, 21, 22, 23, 25].

Contrast maximization has emerged as a promising technique for event image
segmentation. At its core, this approach focuses on finding a motion parameter
such that the contrast is maximized when events are projected to an image plane.
In the case of multiple objects a secondary task of discerning which events belong to
which object must be undertaken [20, 25]. While these models/methods represent
a leap forward but they are largely heuristic in nature and various questions remain
about these models such as the existence of solutions, initialization of parameters,
and optimization procedures to find solutions.

In this paper we provide alternative formulation to the previous methods by in-
troducing a game theoretic model based on a Stackelberg Game. The presented
approach is mathematically and algorithmically rigorous. A Stackelberg game is a
type of non-cooperative game in game theory, named after the German economist
Heinrich von Stackelberg. In a Stackelberg game, players make their decisions se-
quentially, with one player known as the leader or the Stackelberg player, acting
first, and the other player or players, known as the followers, making their decisions
after observing the leader’s choice [12, 13, 15, 17], see also [4] for complexity guar-
antees in the context of multi-leader and multi-follower games. Stackelberg games
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are often modeled mathematically as a Nash Equilibrium Problem or a Generalized
Nash Equilibrium problem [3, 12, 24]. The Generalized Nash Equilibrium problem
(GNEP) provides a mathematical framework for modeling a broad range of real-
world scenarios involving strategic interactions among multiple autonomous agents.
Specifically, GNEPs capture situations in which agents pursue individual objectives
that are interdependent, thereby necessitating the consideration of others’ decisions
in determining their own optimal actions [2, 6].

In contrast to previous work we define the motion parameter as a function of
the neuromorphic events versus defining the events as a function of their associ-
ated motion parameter. Our players will adopt a strategic approach by assigning a
confidence value to each event within the dataset, indicating their level of certainty
regarding the association between events. Using the confidence values for the events
we then use linear regression to estimate the motion parameter that best fits the
events. Furthermore, utilizing contrast maximization techniques we then evaluate
the chosen strategy of each player. This allows us to identify the events that were
generated by the same object and perform event based image segmentation. We
enforce a restriction on the sum of confidence scores assigned to each event, lim-
iting it to a maximum value of one. This results in a jointly constrained strategy
space. In order to model this problem effectively we resort to the Generalized Nash
Equilibrium model versus the Nash Equilibrium. In the remainder of the paper we
seek to:

1. Introduce a Generalized Nash Equilibrium Problem for the segmentation of
events.

. Establish existence of equilibrium for the proposed model.

3. Propose and validate an N-level optimization method to find equilibrium.

4. Demonstrate the effectiveness of the model.

[\

Connection to SciML: In recent years, the field of Scientific Machine Learning
(SciML) has emerged as a transformative approach at the intersection of science,
engineering, and machine learning. At its core, SciML embodies the fusion of sci-
entific principles and data-driven modeling techniques to unravel complex phenom-
ena. Scientific investigations often necessitate the extraction of valuable insights
from vast datasets, and this is where SciML thrives. By harnessing machine learn-
ing algorithms and optimization methods, SciML empowers researchers to not only
uncover hidden patterns within data but also to ground these discoveries firmly in
the context of established scientific principles.

However, applying SciML to certain problems, such as Generalized Nash Equi-
librium Problems (GNEPs) with players having non-convex objective functions,
presents formidable challenges. The inherent non-convexity of these objectives pre-
cludes the application of traditional methods, such as quasi-variational inequality
approaches, which rely on convexity both in the objective functions and the joint
convexity of the strategy space. Consequently, alternative techniques become im-
perative to seek equilibrium solutions in such complex scenarios. One such approach
is multi-level optimization, a strategy that dissects the problem into multiple levels
and systematically optimizes them iteratively.

In this context, each optimization problem utilizes the SciML methodology by
leveraging domain specific knowledge about neuromorphic imaging and the dynam-
ics of event-based data. These dynamics can be thought as physics based model
given by a discrete dynamical system (see [1, Eq. (2.6)]). Additionally, we employ
a more traditional SciML technique (linear regression) to precisely estimate motion
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parameters from the chosen data and perform image segmentation. This results in
our ability to extract meaningful information from the complex neuromorphic data.
Even though we are not using advanced SciML techniques (such as deep learning)
here, but we believe that the GNEPs could be an interesting framework to train
adversarial neural networks.

Outline. The article has been organized as follows: Section 2 focuses on notations
and preliminary work. In particular, working of GNEPs and neuromorphic cameras
have been described. Then in section 3, we review the previous contrast maxi-
mization methods. In sections 4 and 5 we introduce our model as well as provide
results pertaining to existence of solutions. Moreover, in section 6 we provide the
experimental set-up for our results. Subsequently, several examples are considered
in section 7.

2. Preliminaries.
2.1. Generalized Nash equilibrium problems (GNEPs).

2.1.1. Owverview. A Generalized Nash Equilibrium Problem (GNEP) is a mathemat-
ical formulation used to find the equilibrium solution in games involving multiple
players, each with their own independent decision-making. The problem involves
determining a set of strategies for all players such that no player can unilaterally im-
prove their payoff by changing their strategy while taking into account the strategies
chosen by the other players. We seek to find a solution that satisfies the objective
function of each player while considering the strategies of the other players.

2.1.2. Notation. Consider a set of j = 1,..., N agents that have control over N, =
Zévzl n; variables where n; represents the number of variables that agent j controls.

We denote the variables agent j controls by the vector z/ € R™. Additionally, we
denote the vector of all decision variables as:

z:=(z' 2% .- zN)T e RN,
We extend this notation such that
2= (2t 22 . ZTh T zN)T e RNv—m
represents the decision variables of all agents except agent j. The goal of each agent
is to minimize their own objective function which we denote by J7(z7,z77) while
taking into account the strategies of all other players. The feasible strategy set for
player j is denoted by Z7(z~7). This set captures the strategies available to player
7 while considering the constraints imposed by the strategies chosen by the other
players. We can then express the minimization problem for each player j as:
min  J/(z7,277). 1

min J(= =) (1)
Our goal is then to solve the above minimization problem to find an optimal solution
vector which we now define.

Definition 2.1 (Generalized Nash Equilibrium [6]). A point Z is said to be a
(generalized Nash) equilibrium or a solution to the Generalized Nash Equilibrium
Problem (GNEP) if it satisfies the following:

z=(z4 2 ... 2N
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such that
Z e Zi(z79) forall j=1,2,...,N.

For more information on GNEP’s and their solutions we refer the reader to
[6, 11, 14, 19].

2.2. Neuromorphic cameras.

2.2.1. Owverview. Neuromorphic cameras consist of individual pixels that indepen-
dently detect changes in light intensity in real time. These cameras sample light
intensity at a rapid rate, typically on the order of microseconds, and record events
when the intensity exceeds a preset threshold c¢. The use of high-speed sampling and
the independent nature of neuromorphic camera pixels make them highly resistant
to issues such as overexposure and image blurring. The latter has been recently
explored in detail in [1], both from a theoretical and algorithmic point of view.

2.2.2. Data representation. The output of a neuromorphic camera is of the form:
e = (z,y,t,p). If we consider k = 1,..., N, distinct events, then we can describe
each event individually with the following definition:

R*4 5 er := (Tr, Yr, tr, Pr)-

where subscript k£ in x; denotes the k-th component of vector &. Moreover,
(r,yr) € X ={1,2,...,N,} x{1,2,..., N, } denotes the pixel location of event k
with N, x N, being the resolution of the camera. Moreover, t;, € R represents the
time at which event k occurred and py € {—1, 1} represents the polarity of event k.

The polarity recorded by a neuromorphic camera at a given pixel (xg,yx) is a
function of the instantaneous light intensity (gx) recorded at (xx,yx) at time &j.
Furthermore, the reference light intensity for pixel (xx,yx) at time ¢ is given by
Gref, - Using these quantities we define the polarity as:

+1, log (—q:’e’}k> >c

QTefk

-1, log (q—’“) < —c.

No event is recorded if px € (—c,c¢). Notice that, ¢ here indicates the camera
threshold.
Next, we can describe a collection of N, € N events with the following definition:

RNeX4 5 e .= (x,y,t,p).

We are interested in whether an event has occurred or not, the positive or negative
sign on polarity is not relevant here. Therefore, we will omit the polarity column
vector and redefine e as:

RNeX3 5 e := (x,y,t).

A visual representation of event data is given in Figure 2.

2.3. Warping function. In the context of this paper the warping function refers
to a mapping W : R? — R2. In general, given some motion parameter 8 and a
reference time ¢y € R we project the events, e to this reference time. This process
is shown visually in Figures 14, 15 in Appendix A.
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05 = (X5 V5 by

FIGURE 2. In this figure we isolate an event, e, shown as the red dot.

2.4. Row-wise 2-Norm. We define the operator || - ||z, : RM*N — RM to be a
row-wise 2 norm. Given a matrix V € RM*¥ we have the following:
IVlizer = (Viasllz 1Vizlle - Vg ll2) T

Here V{(y,.) represents the M-th row of V.

3. Prior work. The approach presented in this paper draws inspiration from the
Contrast Maximization (CM) technique, which we now formally introduce. The
CM method seeks to find a set of motion parameters {8',6%,... 8"} (one for each
object in the scene) that maximizes the contrast in an image of warped events.
For a visual interpretation of 87, we refer to Appendix A. This image of warped
events, denoted as I € RN=*Nv is generated by projecting clusters of events onto
a reference time, ty € R, via a warping function (cf. Appendix A). When the
parameter @7 accurately captures the motion of a specific object, the projected
events associated with that object coalesce into a distinct and well-defined cluster
within the image I. The level of clarity in this image can be assessed using various
functions, such as Image Variance, Magnitude of the Image Gradient, and Image
Entropy [8]. The level of clarity serves as a metric for how accurately the motion
parameter @ approximates the true motion. Furthermore, given a set of motion
parameters, {67 };-V:l, we are then able to perform event based image segmentation
by segmenting the events by their respective motion parameters. A general outline
for techniques centering on contrast maximization (for a single object) is given by
[25]:

1. Estimate/Initialize a motion parameter, 6.

2. Use a warping function, W (8), to project events to a reference time, ¢y, which

generates an image of warped events, I.
3. Evaluate I with a reward function.
4. Perform an optimization step with respect to the motion parameter 6.

Some care has to be given to initializing € since this problem is inherently non-
convex and there are multiple local minima to consider [20]. Previous efforts have
utilized prior knowledge such as optical flow information or other initialization tech-
niques as shown in [10, 20, 23, 25]. In scenarios where multiple objects coexist within
a scene several challenges arise:
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1. The difficulty in initialization of motion parameters is compounded due to
multiple objects.

2. When faced with events generated by multiple objects, the task extends be-
yond identifying motion parameters for each object. It becomes crucial to ac-
curately discern the specific events associated with each object. This results
in the need for a clustering step to be added to the contrast maximization
outline. [20, 25].

3. Additional prior knowledge may be needed such as number of objects in the
scene [20].

Our work is a departure from the above standard approach. We do not use the
motion parameter, @, as our optimization variable. Instead we establish a GNEP
framework where the motion parameters {67 j»vzl are formulated as a function of
the events and the strategies chosen by each player. We then seek to optimize the
strategy of each player. With this framework we are able to avoid the need for
prior knowledge in order to initialize the motion parameters and we do not need
to perform an alternating optimization method as in [20] and [25]. In these prior
methods, two variables had to be optimized, the motion parameters {6’ };VZI and
the cluster associations for each event, P; j,, with one variable being held fixed while
the other is iteratively optimized. Additionally our method does not require any
prior knowledge such as optical flow or the number of objects in the scene.

4. A GNEP based model. In our model, each player is assigned the task of
selecting a strategy that maximizes their own local objective function, denoted as
J7. The chosen strategy involves assigning a confidence value to each event, where
the confidence value assigned to event k reflects the player’s level of certainty that
the events with non-zero confidence scores are generated by the same object. An
outline for each player is given as follows:

1. Player j chooses a strategy z/ while taking into account the strategies of the
other players, z77/. We show an optimal strategy for two players in Figure 13.

2. Calculate the motion parameter for player j, denoted by 67, using a least
squares approximation. This average motion of events is formally defined in
Section 4.2. The slope of the lines shown in Figure 14 represent 6.

3. Calculate the image of warped events, I’ based upon the strategy chosen, z7.
An optimal image of warped events is shown in Figure 15.

4. Evaluate the image of warped events, I7, with regard to a reward function.

5. Perform an optimization step with respect to the strategy z7.

Next, we describe our model mathematically.

4.1. Generalized Nash equilibrium model. Consider a set of N players such
that 5 = 1,...,N and event data e € RN<*3, We will denote the j-th player
strategy as:

2l e Zi(z7) = {zj € [0,1] Ne lg(z) < 0}. (2)

The strategy 2z’ represents the confidence values assigned by player j to indicate
their level of confidence in the relationship between the events. Recall N, is the
total number of events and g(z) is a set of linear constraints given by:

N
g(z) = sz — b,
j=1
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with
bi=(1 1 - 1) eRNe,

The linear constraints, represented by the function g(z), impose a restriction on the
sum of confidence values assigned to each event. This restriction ensures that the
cumulative confidence values for each event do not exceed a maximum value of 1.
By incorporating these constraints, we maintain the coherence and integrity of the
confidence assignments, enabling a more accurate representation of the associations
between events. Next we will begin building our objective function starting with
calculating 6.

4.2. Average motion of events. The average motion of events is the least squares
approximation of the change in z,y directions with respect to time of the chosen
strategy. We denote H(s) to be the Heaviside step function:

1, s>0

H(s) := {0 s<0. ®)

We then calculate the change in the z-direction with respect to time of the events
chosen in strategy 27 by the following:
T . .
9j . H(Z]) ((t—,ut(zﬂ)b)@(az—,um(zf)b)) (4)
x T N T . . :
H(z7) ((t—pu(27) - b) © (t — p(27) - b))
Notice that H acts component-wise when applied to vectors. Furthermore i (z7)
and p,(z7) are defined as

. H(29) 't . H(z) @
W) =S ey M )T S e ©)

We calculate 92{ similarly using y in place of & in Equation (4). This gives us:

07 = (67,07).

z Yy
4.3. Warping function. We define a velocity based warping function as follows:
RN*2 5 W (e, tg,27) == (@,y) + (to - b—t) @ (¢ - b, 67 - b). (6)

Here the symbol ® represents element-wise multiplication known as the Hadamard
product. Note that we have defined a warping function that describes linear motion.
If non-linear motion is expected then this warping function can be updated to
accommodate. Next we formally define an image of warped events for each player

VE

4.4. Image of warped events. The image of warped events is the result of trans-
lating the events chosen by strategy z7 to a given time, to € R with the warping
function W(e,tg,z7). We describe this process mathematically for a given pixel,
(Z,9) € Q, as follows:

R> Ij((g}ag%t()?zj) = (zj)T(s(”Wj(e?thzj) - (:i : ba :L,A/ : b)HZ,r) . (7)

Here || - [|2,» is the row-wise 2 norm defined in Section 2.4 and ¢ refers to the
Kronecker delta centered at 0 defined as:

(8)
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and is applied elementwise to vectors. We describe the full image of warped events
as:

I (Q,tg,27) € RN=*Ny,

For the remainder of the paper we will omit tg from I? and W7 for ease of notation.

4.5. Objective function. Finally, we define our objective function J7 as:
o A . A , A A .
P = B EA) + 3 (V) + V) + RIEEE O

Where E(I7) is a modified entropy function given by:

Nz Ny

MM=ZZPw@ﬁH%@Mm%» (10)

#=19=1

V(z,x) = AZ((H(zj) @w) — g (27) - b>T<<H(zj) @a:) — pg(279) - b).
(11)

Similarly, we define V' (z7,y). Notice that V (27, -) denotes the variance penalty term
with A; > 0 being the penalty parameter. A larger Ay penalizes associating events
that are spatially further apart. Tuning of this parameter allows us to differentiate
between objects that have similar motion parameters but are spatially distinct in
the image. Furthermore we have the regularization term 22 ||H(27)[|3 with A» > 0.
This term serves to limit the number of extraneous events (noise) chosen by each
player. Then we have the following model for each player, j =1,..., N:

min  J7(27), (12)
subject to 27 € ZI(z77),
where Z7(z77) is defined in (2).
Since the objective functions, J7(z7), are not convex we are not able to solve
(12) directly using the standard approach of quasi-variational inequalities. Instead
we rely on leader / follower methods in the form of a N-level optimization problem

to search for equilibrium of (12), where N is the number of players [5, C.3, S.4,
pp.68-73]. We present the N-level optimization problem as:

min JN (M) (13)

zNeZN(z—N)

subject to
2 = argmin{ﬂ(zj) 1> zi<b e, 1]Ne} forj=1,...,N—1.
=1

We notice a subtle difference between (13) and (12). Each player in (12) has com-
plete information of all other player strategies. While in (13) each player only takes
the strategy of the previous players into account. For example, for player 2 we have
the following problem:

2
2?2 = argmin{J2(z2) | Zzi <b, 2% €0, 1]NE}.

i=1
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Expanding the constraint we get:

2
E 2t =zt 4 22
i=1

Hence we must first calculate z! before calculating J?. Notice that, the player N
accounts for the strategies of players 1,..., N — 1. For this reason, problems from
(13) will need to be solved in ascending order starting with player 1. We note that
we solve this problem in a single pass.

Algorithm 1 N-level Optimization Algorithm

Input: e - Event data, A1, Ay - Penalty parameters

1: for j =1to N do

2: Initialize ng‘t

3: Calculate 27 shown in Equation (13) > z) . is used as the initial value.

4: end for .

5: Return z = (21 z2 ... ZN) > This is the approximation to solution in
Def. 2.1.

In the next section we show the existence of solutions for (13), and that the set
of solutions for j =1,..., N corresponds to an equilibrium of (12).

5. Analysis of the proposed model.

5.1. Existence of equilibrium. To establish the validity of the N-level opti-
mization presented in Equation (13) as a method for computing an equilibrium
to (12), we begin by demonstrating the existence of a solution. This process in-
volves several steps, with the initial focus on establishing the finiteness of the set
{H(=9) | 27 € [0,1]V:}.

Lemma 5.1. The set {H(z7) | 27 € [0,1]V¢} is finite.

Proof. For ease of notation we omit the superscript j from z. We notice that
H(z) € {0,1}" for all 2, thus {H(z) | z € [0,1]"} C {0,1}"e. Furthermore the
set {0, 1} has cardinality of 2V¢ and is therefore finite. Hence {H(2) | z € [0, 1]}
is finite. O

Next we show that the quantities V(z,-) and V(H(z),-) are equal.

Lemma 5.2. For any z € RNe we have V(z,-) = V(H(2),-).

Proof. This follows directly from the definition of V in (11). O
We are now ready to establish existence of solution to (13).

Theorem 5.3. There exists a solution to each level of the optimization problem

(13).

Proof. For ease of notation we omit the superscript j.

’ Part I: Single player case. | We focus on player 1 as the result will directly apply to

other players. First we observe for any z € [0, 1]V
H(z)<b



GNEP BASED DYNAMIC SEGMENTATION AND MOTION ESTIMATION 11

by definition of the Heaviside function given in Equation (3). Next we note from
Lemma 5.1 that the set {H(z) | z € [0,1]V¢} is finite. Since the set is finite we
know there exists some 2 € [0, 1]™¢ such that z := H(2) fulfills

J(2) < J(H(z)) forall ze[0,1]Ne. (14)

Here z is our candidate for a solution to (13). Next we show for arbitrary z that
J(H(z)) < J(2). If z = H(z) then we are done. Else, there exist some k =1,..., N,
such that 0 < z < 1. Then for any (Z, §) € 2 and setting

= |W(e,z) — (&b, §-b)]a,

we immediately obtain that
20 ()k < H(z)- 0 ()k : (15)

where § ()k represents the k-th element of § () . Using Equation (15) and the

fact that log is a monotone increasing function we have the following inequality:
PN ()k -log (zk -0 ()k> <H(zg) -6 ()k -log (H(zk) -0 ()k) . (16)

We note the common definition of 0-log(0) := 0, hence this holds even for § () L
0. Using the definition of I(€2,-) in (7) and Equation (16) we have:

I((2,9),z) < I((2,9),H(2)).
Taking the sum over all possible (&, ) € € gives us:

E(I(Q,2)) < E(I(Q,H(2))). (17)
Combining Equations (14) and (17) along with Lemma 5.2 we have for any z €
[0, 1]Ne:

J(z) > JH(z)) > J(Z).

We conclude that a solution to (13) exists for a single player.

’Part II: Two player case. ‘ We now show that given

zl = argmin{Jl(zl) | z' <b, 2! €0, l]Ne},

a solution exists for
2
min{J2(z2) | Zzi <b, 22 €0, 1]N€}.
i=1

First we notice from that the components of z! are either 0 or 1. Now,
define the set

M={m=1,...,N, | (z'),, =1} c R¥M |

Then for m € M€ we have (2!),, = 0 € R#*M"_ Since we have
2 51 52
b> i _ (_Z )meM-ﬁ-(% )mGM)'
- ;z ((zl)mel\/fc + (2%)mene
Using the definition of b, for m € M, we have that (22),, = 0 € R#*M and for

m € M® we have that (22),, € [0,1]#M". This proves the existence of z2. Similar
arguments helps prove existence of 23, etc. and the proof is complete. O
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Next, we show that the N-level optimization presented in Equation (13) produces
an equilibrium point to (12).

Theorem 5.4. The N-level optimization described in (13) produces a Generalized
Nash Equilibrium to (12).

Proof. Let z7, j =1,...,N, be the resulting argmin from each level of (13). Then
we have the following:

N

N
szgb = sz—bgo.

Jj=1 Jj=1

Furthermore, from (13) we know 27 € [0,1]"<. Then for each j we have
N . . .
Z e {[0, Y|y 2 -b< 0} =: Z7(z7).
i=1

We conclude by Definition 2.1 z = (2! 2* --- EN)T is an equilibrium point of
(12). 0

6. Experimental setup.

6.1. Event data pre-processing. We observe that the dimension of z7 directly
corresponds to the number of events under consideration. As the number of events
increases, so does the dimensionality of the variable, potentially leading to compu-
tational challenges. To mitigate this issue, we employ a pre-processing step where
we selectively remove time intervals of events from our data. This is accomplished
by breaking the time interval into a series of sub intervals, and then removing every
other interval from the dataset. By doing so, we effectively limit the dimensionality
of the optimization variable, allowing for more efficient and manageable computa-
tions while still preserving the essential information contained within the dataset.
Figure 3 gives a visual example.

s %108
x10 124
104 10 4 - e -
L g “
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44 . L
4] RON At
24 . 3 2 N . 2 Ares
0 : LT R . oI A
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100 100 00—
00 2000 199 0 100 200

FI1GURE 3. In this figure we see the original event data in the left
panel and the pre-processed data in the right panel.

6.2. Numerical relaxations. We make several numerical relaxations in order to
allow for gradient based methods.
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6.2.1. Heaviside relazation. First we relax the Heaviside function described in (3)
to a continuous approximation given by:

H(27) := %(1 + tanh(m - (27 —n - b))).

Figure 4 gives a visual representation of the approximation. For the purposes of this
paper we chose m = 25 and n = 0.25 for each of our examples. Through testing we
found for m > 50 that the gradient of FHI(27) becomes unstable. We see this visually
in Figure 5. Furthermore, we choose n > 0 to ensure H(0) ~ 0 and H(1) ~ 1. If
this is not the case, then the quality of the results decreases significantly.

i pproximati m =25and n =0.25

L L L L
-1 -0.5 0 0.5 1

FIGURE 4. In this figure give a visual representation of the Heavi-
side relaxation function H(z) (for z € [—1, 1])

Relaxed Heaviside m = 1 5 Relaxed Heaviside m = 50

0.45

0.4

0.35

0.3

o

0.25

0.2 0
-1 -0.5 0 0.5 1 -1
Relaxed Heaviside m = 2500

-0.5 0 0.5 1

-1 -0.5 0 0.5 1

FIGURE 5. In this figure we plot VH(27) for m = 1, 50, and 2500.
As m increases, VH(27) approximates an impulse which can be
unstable in numerical calculations.
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6.2.2. Kronecker Delta relaxation. We also use the function:

exp (=9 - [3)

to approximate the Kronecker delta 6(|| - ||2) defined in (8). Here = is chosen to
be large enough such that the bump function decays rapidly. For the purposes of
this paper we choose v = 30. For v < 5 there can be a drop off in the quality
of results due to the bump function significantly overlapping more than one pixel.
This can be seen numerically in the following example: exp(—2-||(1,1)—(1,2)||3) =
0.1353. We notice that (1,1) and (1,2) are one pixel apart, yet because v is small
0 < exp(—=2-|(1,1) — (1,2)||3), i.e., we have a poor approximation of Kronecker
delta. Figure 6 gives a visual representation of the relaxation function with v = 30.

. Kronecker Delta Approximation: v=30

09 |

08

0.7 |

06

0.5

04

03

02

0.1

0

-1 -0.5 0 0.5 1

FIGURE 6. In this figure give a visual representation of the Kro-
necker Delta relaxation function exp(—~ - ||2||3) (for z € [-1,1])

6.2.3. Entropy relazation. We relax the Entropy function E defined in (10) by in-
troducing two scalars parameters o and [3:

Ng Ny

B =33 I ((3.9). ) - log ((a) D ((#,9),7) +/3).

=14=1

These parameters are introduced in order to avoid log(0) numerically. We must
impose the constraint: o = 1 — 3 to ensure log(c + ) = 0. Under this condition
the theoretical proofs in section 5 hold. We only check one of the key inequalities
(16) next.

Lemma 6.1. If a+ 8 =1 where o, 8 € (0,1] then the inequality (16) becomes
2-5(]|- %) -log ((a)'2'5(|| : ||2)+5> < H(2)-6(]|-|*) -log ((Oé) -H(2)-6(]|- ||2)+5>

for any z € [0, 1].

Proof. Let a« + f = 1. Then for z = 0 or z = 1 we have z = H(z) and we are
done. Furthermore if §(|| - [|?) = 0 we get equality and we are done. Now, suppose
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0<z<1andd(]]||*) =1. Then we have the following:

80117 g (@) 260117+ 8) = =10 ( () -+ ) < logta+ ) =
Furthermore we have:
) 301+ 2) - og (@) HG) 301 [2) +8) =
We conclude
20119 10g (@280 [2)+.8) < BG:) -] 1)-log (@) Ba) -1 [2)+.8).
given a + f = 1. 0
6.3. Solvers: Genetic algorithm and SQP algorithm.

6.3.1. Initialization using genetic algorithm. For our examples, we first use the
MATLAB genetic algorithm, ga, to calculate an initial value for use in a gradi-
ent based method. Recall in Theorem 5.3 we showed that min .J7(27) will occur
at a boundary point, H(z). For this reason, we give the Genetic Algorithm integer
constraints of 0 and 1. Since the Genetic Algorithm is not a gradient method we
do not use the function relaxations given in Section 6.2.

6.3.2. SQP algorithm. Once the Genetic Algorithm has completed we then use the
output as input to the MATLAB ‘sqp’ algorithm which is part of fmincon. Since
this is a gradient based method the relaxations shown in Section 6.2 are used.

7. Numerical examples. Several examples of our method are shown. For each
of these results, a combination of a Genetic Algorithm and SQP Algorithm as
described in section 6.3 were used. The tolerances for these methods were 1072
and 104, respectively. All data used in these examples is freely available via the
PROPHESEE website.

In Figure 7, 2016 events are used. The original (unprocessed) event data is
shown in the left pane while the image of warped events for both players is shown
in the right pane. As shown our method is able to fully segment the image into
two distinct objects with player 1 associating events generated by the vehicle and
player 2 associating events to the pedestrian. These results for player 1 required
447 iterations of a genetic algorithm and an additional 14 iterations from the SQP
algorithm. In addition, the results for player 2 required 366 genetic algorithm
iterations and 27 SQP iterations. Furthermore, for player 1, Figure 8, compares the
output of the genetic algorithm to the output of the SQP algorithm. As shown in
Figure 8 the genetic algorithm does associate like events. The drawback being that
there are events that should be associated that are left off. In contrast the SQP
algorithm associates many more like events. Moreover, for this particular example
the tolerance for each algorithm has been set to 10~ for a fair comparison.

Figures 9 - 10 show our method applied to a multi-vehicle scenario. In Figure 9,
1490 events were used in the model. As shown (right) our model is able to segment
the image into two distinct vehicles. For player 1 these results required 211 iterations
of the genetic algorithm and an additional 8 iterations from the SQP algorithm. For
the second player, 97 iterations of the genetic algorithm and 4 iterations of the SQP
algorithm were required.
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FIGURE 7. In this figure we show the original data in the leftmost
pane. The results of our method with two players is shown in the
right pane. In this example N, the number of total events, is 2016,
M =103 =1, 8=01and a=0.09.
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FIGURE 8. In this figure we show the the result of the genetic
algorithm in the leftmost pane. In the right pane we show the
result of the SQP algorithm, using the strategy produced by the
genetic algorithm as an initial value. Notice that no relaxation of
Heaviside function or Kronecker delta is used in case of the genetic
algorithm. This example motivates that the results with relaxation
are meaningful.

Figure 10 shows an additional multi-vehicle scenario with N = 2 players. For
this example 2132 events were used. As shown in the right pane, our model is able
to segment the image with only two pixels being classified incorrectly. These results
required 211 iterations of the genetic algorithm and an additional 14 iterations of the
SQP algorithm for player 1. Player 2 required 76 iterations of the genetic algorithm
and 8 iterations of the SQP method.

As shown in Figure 11 we have N = 4 players. These results used 1964 events
with algorithm iterations shown in Table 1. Left pane shows the processed input
data, while the right pane shows our result. We note that there is slight overlap
between a few pixels of players 1 and 4 and players 2 and 4 in this result.
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FIGURE 9. In this figure we show the processed data in the leftmost
pane. The results of our method with two players is shown in the
right pane. In this example N, the number of total events, is 1490,
A =1073, Ay = 10, 3 = 0.1 and o = 0.9.
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FIGURE 10. In this figure we show the processed data in the left-
most pane. The results of our method with two players is shown

in the right pane. In this example N, the number of total events,
is 2132, Ay = 1073, A\ = 1.1, 3=10.1 and a = 0.9.

TABLE 1. Algorithm Iterations for each player in the 4 player example.

Genetic Algorithm | SQP
Player 1 583 7
Player 2 455 14
Player 3 402 2
Player 4 269 2

Conclusion, limitation, and future work. In conclusion, this paper proposes a
game theoretic model for the approximation of object velocities and segmentation of
event data from a neuromorphic camera. The experimental results demonstrate the
effectiveness of the proposed model in achieving accurate and robust segmentation of

the event data. Furthermore, we have shown existence of solution to the Generalized

17
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FIGURE 11. In this figure we show the processed data in the left-
most pane. The results of our method with four players is shown
in the right pane. In this example N, the number of total events,
is 1964, Ay = 1073, A\ =0, 3= 0.1 and o = 0.9.

Nash Equilibrium Problem and we have proposed a N-level optimization method
for calculating equilibrium.

Though our method is able to generate equilibrium there are some limitations.
For instance, manual tuning of A\;, Az, and the highly nonconvex nature of the
objective function leads to challenges for initial guesses for the iterates of gradient
based methods. In addition, we need to solve N-optimization problems. Finally,
the dimension of the optimization variable z is equivalent to the number of events
considered this leads to protracted run times for both the Genetic Algorithm and
SQP algorithm’s. Both of which can take in the between tens of minutes and single
digit hours depending on the number of events considered.

In future work we look to explore techniques that will allow us to use the convex
hull of the objective function in order to use quasi-variational techniques to calcu-
late equilibrium. Furthermore, we look to incorporate more advanced equations of
motion for our warping function.
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Appendix A. Visual representation of our method. Figure 12 illustrates the
event data for two circular events over five timesteps. Player 1 and 2 respectively
selects the right and left events. This is shown in Figure 13. A projection mecha-
nism, from 3D to 2D along the lines with slopes 8! and 62, is shown in Figure 14.
The projected data itself is given in Figure 15.
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FicURE 13. In this figure we give a visual representation of the
ideal strategies of Player 1 (blue) and Player 2 (red), respectively
for the event data given in Figure 12.
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« Player 1
* Player 2

FIGURE 14. In this figure we show the events chosen by Player 1
and Player 2 given in blue and red, respectively. Additionally, we
plot projection lines given in black for player 1 and in green for
player 2 that have slopes 8! and 6?2 respectively.

* Player 1
* Player 2

FI1GURE 15. In this figure we show the result of our method when
applied to the data shown in Figure 12 with strategies of Player 1
and Player 2 shown in Figure 13.
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