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ABSTRACT. This paper introduces a new class of variational inequalities where
the obstacle is placed in the exterior domain that is disjoint from the observa-
tion domain. This is carried out with the help of nonlocal fractional operators.
The need for such novel variational inequalities stems from the fact that the
classical approach only allows placing the obstacle either inside the observa-
tion domain or on the boundary. An analysis of the continuous problem is
provided. Additionally, penalization arguments to approximate the problem
are discussed.

1. Introduction. Let @ ¢ RY, N > 1, be a bounded open set with a Lipschitz
continuous boundary 9. Moreover, let X1, ¥ be nonempty open subsets of RV \ Q
such that 2 NEy =P and T; U, = RY \ Q. In this paper we introduce and study
the following variational problem: Given f € W—*2(RN) ¢ W=%2(Q,%,), z €
W2 (1), an obstacle ¢ € W*2(25), we want to solve the following minimization
problem (in the sense of Definition 3.2 below):

g.lel}% J(u) (1.1)

with the functional J given by

CN s u 2
J(u : //RQN\(RN\Q) | |3(j z |NS-2)5| dxdy - <f, > —s,2(RN),Ws2(RN),
(1.2)
where 0 < s < 1 is a real number, RZV \ (RV \ Q)2 = (@ x Q) U (2 x (RN \ Q) U
(RNV\ Q) x Q), and the set of constraints is given by

K:={uecW*»2R") : u=2in %, u < pin 3s}.
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Notice that K is a closed and convex subset of W*2(R¥). In Section 3 we shall
give the assumptions on the sets ¥; and s that show that the set K is in addi-
tion nonempty. We shall see that W#2(£, %) is a closed subspace of W*2(RY)
so that W—%2(RY) (the dual of W*2(R¥)) can be identified with a subspace of
W=52(Q, %) (the dual of W*2(Q,3)). The precise definition of the Sobolev spaces
involved will be given in Section 2.

Obstacle and equilibrium problems, in general, have a rich history. They can
capture many applications from phase changes to friction. Though in all cases
either the obstacle is placed in the interior of €2 or on the boundary 0€2. We refer
to the monographs [4, 19, 20] for more information and examples.

The main novelty of this paper is the introduction of the model (1.1) which due
to the presence of the nonlocal (fractional) Laplacian, enables placement of the
obstacle ¢ in the exterior of €2 and possibly disjoint from the boundary 0f). After
establishing existence of solutions (using standard arguments) to (1.1), our first
main result is given in Proposition 3.4 which shows the equivalence between the
variational problem (1.1) and three other characterizations:

(i) variational inequality;
(ii) slack variable (Lagrange multiplier) formulation, and;
(iii) weak formulation in the distributional sense.

Notice that similar results in the classical setting are well-known. Due to the non-
local nature of the fractional Laplacian, the existing results do not directly extend
to the fractional setting. Indeed, for instance, one has to carefully account for the
nonlocal normal derivative. Tools from convex analysis such as tangent cone, convex
indicator function are also employed to establish these results. Some of these argu-
ments may appear to be standard, but the details are delicate due to the problem
being nonlocal.

Our second main result corresponds to penalization of the constraints in the set
K, firstly in L%-sense € 2||(u — g0)+||%2(22) (cf. (4.1)) and secondly in the Sobolev
sense | (u — gp)+||%,vs,2(22) (cf. (4.13)). Here v = max{v,0}. The former penal-
ization is associated to the so-called Moreau-Yosida regularization. The latter has
the distinct advantage of being able to provide a direct relationship between the
slack variable for the original problem as formulated in the above item (ii) and its pe-
nalized version. After establishing convergence using Mosco convergence arguments
in Proposition 4.2, we establish a convergence rate in € in Theorem 4.4. We show
that the penalized solution converges linearly in e in W*2(£2, ¥ )-norm. Moreover
the constraint violation converges quadratically in €. Theorem 4.5 provides linear
convergence in £ for both the solution u and the slack variable.

Going forward, several of the techniques developed here will be helpful for the
local problems and also in deriving finite element approximations. Notice that a
popular way to numerically tackle these problems is to solve the penalized problems.
Then the final approximation errors are governed by € (or £) and the discretization
errors. This will be part of a future investigation.

For completeness, we also mention that fractional obstacle problems where the
obstacle is in the interior have also received a significant attention recently. See for
instance [3, 8, 21] for more information and details. However, as pointed out above,
this is the first work that proposes to tackle the exterior obstacle problem.

The paper is organized as follows. In Section 2 we first introduce some notations
and state some preliminary results. Our main work starts in Section 3, where we
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establish several equivalent formulations to the variational problem (1.1). In Section
4 we consider two penalty approaches. In the first case we consider L2-penalty and
in the second case we consider a penalty in a Sobolev norm. Convergence and the
precise rates of convergence with respect to the penalty parameters are established.

2. Notation and preliminaries. We begin this section by introducing some no-
tations and give some preliminary results as they are needed throughout the paper.
Some of the results given in this section are well-known, in particular we follow the
notations from our previous works [2, 24].

2.1. Fractional order Sobloev spaces and the fractional Laplacian. For
Q Cc RN (N > 1) an arbitrary nonempty open set and 0 < s < 1, we first define the
classical Sobolev-Slobodecki space

W2(Q) := {u € L*(Q) : /Q

and we endow it with the norm given by

1
2 |u(@) — u(y)” ) ’
ullwe2q) = U dx—i—/ ———=dxdy | .
H ||W (Q) </§;| ‘ oo ‘QZ‘ — y‘N_A'_QS

W) == {ue WS2RY): u=0in RV \ Q}.

Recall that £, 25 are nonempty open subsets of RY \Q such that 31NX5 = () and
YUY, =RV \ Q. This implies that ¥; and X5 have positive Lebesgue measures.

Now, throughout the remainder of the paper we assume that the open set Q ¢ RV
is bounded and has a Lipschitz continuous boundary. We define the space

|u(z) — u(y)?

dady < oo p |
o lo—yNres T OO}

We also let

WoA(0,5) = {u € WRRY) + u=0in 31}

which is a Hilbert space endowed with the norm induced by W*?2?(R¥). We observe
that in the definition of the space W*2(Q, ¥1) the set 2 is a priori not involved. But
this is consistent with the literature where this space has been defined. Additionally,

in Proposition 2.1 below it will be clear why 2 has been introduced in the definition.
Next, for u € W*2(Q, %), we let

1/2
Ju(z) — u(y)l?
- B =29 ded 2.1
sy <//]RZN\(RN\Q)2 o=y 2y

where we recall that
R\ (RY\ Q)2 =(Qx QU Qx RY\Q)U(RY\Q) xQ).
The following result is contained in [1, Proposition 5].

Proposition 2.1. The norm || - [[ws2(q,x,) given in (2.1) is equivalent to the one
induced by W*2(RN). As a consequence, (W*2(Q, 1), - lwe2a,5,)) is a Hilbert
space with the scalar product

_ (u(z) — u(y))(v(z) —v(y))
(wolw2@zy = //RzN\oRN\mz |2 — y| N+ .
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The norm given in (2.1) is the motivation for introducing the set Q in the def-
inition of the space W*2(Q,%;). In addition, we observe that the norm does not
depend on ;.

We denote the dual spaces of W*2(RY) and W*2(,%;) by W~2(R") and
W=%2(Q, %), respectively. Moreover, we will use (-,-), to denote their duality
pairing whenever it is clear from the context.

Next, we introduce the fractional Laplace operator. For 0 < s < 1 we set

LY RY) := {u :RY — R measurable and - MTS))ILMG dzr < oo} .
For u € LL(RY) and ¢ > 0, we let
u(z) — u(y) N
(~B)zu(a) = O | dy, z€RY,
{yeRN Jy—a|>e} [& —y|VH2
where the normalized constant C s is given by

s 2s+N
522 (2510
72T(1—s)
and T is the usual Euler Gamma function (see, e.g. [5, 9, 7, 8, 10, 22, 23, 24]).
Then, the fractional Laplacian (—A)? is defined for u € LL(RY) by the formula

Cn,s =

)

: (2.2)

s u(z) —u(y) , s N
(—A)’u(x) = CnsP.V. /]RN Wdy = 161?8(7A)5u(x), r e RY, (2.3)
provided that the limit exists for a.e. € RY. We refer to [10] and the references
therein for the class of functions for which the limit in (2.3) exists.
It has been shown in [6, Proposition 2.2] that for u,v € D() (the space of all
continuously infinitely differentiable functions with compact support in §2), we have
that

lim v(—=A)u dx = —/

vAudx:—/vAudx:/Vu-Vvdx.
sT1 JrN RN Q Q
This is where the constant Cn s given in (2.2) plays a crucial role.

Next, we introduce the realization in L?(Q) of the operator (—A)® with the
mixed zero Dirichlet exterior condition in »; and zero nonlocal Neumann exterior
condition in Ys. For this, consider the continuous, closed and coercive bilinear form
E:W=2(Q,3) x W2(Q,%;) — R given for every u,v € W*2(Q, %) by

Cn.s - —
E(u,v) = N // (u(z) —u(y))(v(z) —v(y)) dudy. (2.4)
2 R2N\(RN\Q)2

|z — y| N2

Let (—A)3;, be the self-adjoint operator in L?(£2) associated with £ in the following
sense:
D((=A)5,) := {u e W2(Q, %), 3f € L*(Q) :
E(U,v) = (f, ’U)Lz(Q) Yv € WS’Q(Q, 21)} y (25)
(A)x,u=f in Q.

Remark 2.2. Since () is assumed to have a Lipschitz continuous boundary, assum-
ing that ¥; has a continuous boundary, and as functions in W*?2(Q, ¥;) are zeros
on Y1, and C°(RY \ ¥1) € D((—A)%,), one can use known results on density of
continuous functions in fractional order Sobolev spaces (see e.g. [15, Chapter 1] and
[13]) to show that D((—A)3; ) is dense in L*(2) and in W*2(Q, y).
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In the forthcoming discussion, we also make use of the local fractional order
Sobolev space

Win2(RN\ Q) := {u e LL, (RN \ Q) : up e W?RN\Q), Vo e DRV \Q)}.
(2.6)
Furthermore, for u € W*2(R¥), using the terminology from [11], we define the
nonlocal normal derivative (or interaction operator) N as follows:

Niu(z) := Cy / = |N+25 ) 4y, zeRY \ Q. (2.7)

Clearly N is a nonlocal operator and it is well defined on W*2(R") as we discuss
next.

Lemma 2.3. By [14, Lemma 3.2|, the interaction operator Ny maps continuously
W2(RN) into VVI‘Z(?(RN \ Q). As a consequence we have that if u € W2(RYN),
then Nyu € L2 (RN \ Q).

Despite the fact that A is defined on RV \ €, it is still known as the “normal”
derivative. This is due to its similarity with the classical normal derivative, that is,
it plays the same role for (—A)® that the normal derivative does for the negative
Laplace operator —A (see e.g. [2, Proposition 2.2]). Following the terminology from
[2], we shall call N the interaction operator since it allows interaction between Q
and the exterior domain RY \ Q.

We conclude this subsection by stating the integration by parts formulas for the
fractional Laplacian, see [11, Lemma 3.3] for smooth functions and [2, Proposition
2.2] for functions in Sobolev spaces (by using some density arguments).

Proposition 2.4 (The integration by parts formula I). Let u € W*2(RY) be
such that (—A)*u € L*(Q). Then, for every v € W2(R™) we have that

Cns (u(z) — u(y))(v(x) —v(y)) ;
2 //RQN\(RN\Q)Q |q; _ y|N+2$ d dy

:/Qv(—A)Su dg:+/ vNyu da. (2.8)

RN\Q

We observe the following.

Remark 2.5. Let (—A)3; be the operator defined in (2.5). Using the integration
by parts formula (2.8) we can deduce that

{ (A)s,) = {lu e W=2(Q, %)) : Nyu=0 in %y, (~A)]q € L2(Q)},
(A5 u=

A3 (=A)*u in Q. (2.9)

The version of the integration-by-parts formula we will frequently use in this
paper is the following (see e.g. [1, Proposition 6]).

Proposition 2.6 (The integration by parts formula IT). Letu,v € W52(Q, ).

Then,
Cn,s (u(x) —u(y))(v(z) — v(y))
//RZN\ RN\Q)2 |z — y|N+2s dxdy

= {(-A)’u, v)yw- 5.2(Q,8),We2(Q, 21)4—/ vNsu dz. (2.10)
X2
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Proof. We notice that (2.10) has been stated differently in [1, Proposition 6] without
providing a proof. They have replaced the duality map (-, -) with the scalar product
(*s-)r2(0)- We think the right formulation is as given in (2.10). For that reason we
include the proof. We proceed in two steps.

Step 1: Firstly, we observe that (—A)3; defined in (2.5) can be viewed as a bounded
operator from W*2(Q,X;) into its dual W=%2(Q, ;) given for u,v € W2(Q, ;)
by

(= A)zlu V)w-s:2(Q, El)Ww(Q 1)

C'N Cn,s (u(z) —u(y))(v(z) — v(y))
//Rzzv\ RN\Q)? |z — y|N+2s dxdy.

Step 2: Let u, € D((—A)3;,) be a sequence that converges to u in W*2(Q, %), a
n — oo. Existence of u,, follows from Remark 2.2. It follows from Proposition 2. 4
that for every n € N and v € W*2(Q, %), we have that

Cn.s (n (@) — un () (v(2) — 0(W))
2 //RzN\(RN\Q)z |z — y|N+2s dzdy

:/v(—A)sun dx—i—/ N, dz
Q

RN\Q

= <(—A)sun7’U>W—s,2(Q7El)7WS,2(Q7ZI) +A vj\fsun dx, (211)
2

where we have also used that v = 0in ;. Since u,, converges to u in WS’Z(Q, ), as
n — o0, it follows from Step 1 that (—A)%u,, converges to (—A)u in W=52(Q, %),
as n — o0o. It also follows from Lemma 2.3 (the continuity of the operator Nj)
that Nyu, converges to Myu in L?(¥3), as n — co. Finally, using all the above
convergences and taking the limit of both sides of (2.11), as n — oo, we get (2.10)
and the proof is finished. O

2.2. Useful results from convex analysis. We will additionally require the fol-
lowing fundamental concepts from Convex Analysis. Consider a general problem of
the form

Héiv?/ f(w) subject to G(w) € Kg, weC (2.12)

where W and V are Banach spaces and f: W — R, G : W — V are continuously
Fréchet differentiable. Further, suppose that C C W is a nonempty, closed set and
convex and Kg C V is a closed, convex cone.

The feasible set is defined by

F={weW:Gw)eKg,weC} (2.13)
Then, when F' C W is nonempty, we define the tangent cone of F' at w € F by
T(F;w):={r € W: foreach k € N,Iry > 0wy € F: li)rgowk =w,
kli—{go r(wp —w) =7} (2.14)
and the linearization cone at a point w € F' by
L(F;w):={rh:r >0, he W, G(w)+ G'(w)h € Kg, w+ h € C}. (2.15)

For an optimal solution w of (2.12), it can be shown that the existence of La-
grange multipliers and construction of first order optimality conditions is dependent
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upon the linearization cone at w € F' to be contained in the tangent cone of F' at
w € F. That is,

L(F;w) C T(F;w).
This is sometimes referred to as the Abadie Constraint Qualification or just Con-
straint Qualification. A more detailed discussion of constraint qualifications has
been addressed in [16, 17, 25].

When formulating the Lagrangian in Section 3 it is necessary to introduce a
few additional definitions. We refer to [12] for more details. As before, suppose
that W is a real Banach space and let W* denote its topological dual with duality
pairing (-, Yy« w. Given f : W — R U {400}, its Fenchel conjugate is defined by
f* i W* - RU{+o0}, where

TN = SE%’V“’\’WW*’W — flw)}. (2.16)

Additionally, for a convex set W C W we define the indicator functional of W
by Iy : W — R U {400} given by

0 ifueW
I = 2.17
w() {Jroo ifu & W. (2.17)

In light of (2.16) and (2.17) we have the following result.

Lemma 2.7. Consider the sets W~ :={w € W : w < 0} and Wt :={n e W*:
n >0}, If W is reflexive, then I, (A) = Ly+(N) and I}, (u) = Ly (u).

Proof. Notice that the Fenchel conjugate of Iy - is given by I}, : W* — RU{+o0}
where,
I-(\) = sup {(\, w)yw=w — - (w)} = sup (N, 0)w+w = L+ ().
weW veEW™

The second equality in the lemma follows in a similar fashion. The proof
is finished. O

3. Well-posedness of the variational inequality. Throughout the rest of the
paper €, 31, ¥y are as in the previous sections. We also assume the following
regularity on ¥; and 3s.

Assumption 3.1. We assume that 31 has a continuous boundary and Yo has the
extension property in the sense that for every o € W*2(X,), there exists a function

O € W*2(RN) such that ®|g, = ¢

— W (S
The assumption that ¥ has a continuous boundary implies that D(%1) ) _

W52 (21) (see e.g. [13]) and the assumption that ¥ has the extension property
shows that there is a constant C' > 0 such that for every p € W*2(3;) we have the
following estimate:
[@llwsz2@myy < Cllellws2(s,),
where ® is the extension of .
Next, we introduce the notion of solutions to the minimization problem (1.1).
Before doing that we recall that given z € Wg'*(2;) and ¢ € W*2(25) we have let

K= {ueWs’Q(RN) cu=zin Xy, u<pin Xa}.
We also set
Ko:={weW?2R") : w=0in%;, w<gin D}
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Now, assume in addition that 2, 3; and Y5 also have Lipschitz continuous bound-
aries so that Assumption 3.1 holds. Let z € Wg'*(21) and ¢ € W*2(23). Define
the function u : RN — R by

_ z in >4
“Tle mRN\X,
where ® € W*2(RY) is the extension of ¢ in the sense of Assumption 3.1. A simple
computation shows that u € W*2(R¥) and this function can be used to show that
both sets K and Ky are nonempty as we explain below.

Firstly, we remark that in the classical setting with H}(Q)-space and u < ¢ a.e.
in 2, we need a compatibility condition on the obstacle ¢. More precisely, we need
¢ >0 on 9. Indeed, if p < 0 on 9Q, then u ¢ H}(Q). Secondly, one possible way
to translate this condition to the current setting is that we need ¢ > 0 on 0¥, N0%s.
Otherwise, u # 0 on 9% N %4, which is especially required for % < s < 1 because
z =0 on 0¥1 N0Y5. All the boundary values are understood in the trace sense.
Under these assumptions, we have that both sets I and Ky are nonempty. The
assumption that % < s<1listhat,if0<s < % and O C RY is an open set with
a Lipschitz continuous boundary, then Wg*(0) = W*2(0) with equivalent norms,
so that functions in W*2(0) do not have well defined traces on 9O. (see e.g. [15,
Chapter 1] for more details and [23] for more general assumptions on O).

Next, we give our notion of solutions to (1.1).

Definition 3.2. Given f € W*2(RYN), z € W*(X,) and an obstacle ¢ €
W*2(%,), we say that u € K solves (1.1), if w := (u — z) € Kg solves the min-
imization problem

Jnin J(w), (3.1)

where we recall that the functional J is given by (1.2).
Notice that K and Ky only differ by the fact that functions in Ky are zero in

31. The next result states the well-posedness of the minimization problem (1.1)
according to Definition 3.2.

Theorem 3.3. Let f € W2(RYN), z € WS*(2,) and ¢ € W52(53). Then,
there exists a unique solution u € K to the minimization problem (1.1) according to
Definition 3.2.

Proof. Let u € K and set w := u—z. Notice that w|y, = 0 so that w € W2(Q, %;).
Then, using the definition of the functional .J, the minimization problem (3.1) can
be rewritten as follows:

. Cnys lw(z) —w(y)?
1Y J = —_— d d — W—s,2 Ws.2 ;
i J(w) 4 //RzN\(RN\Q)z o — g[V2s T rw) (R, W22 ()

weko

(3.2)
where we have used that W*2(2, %) < W2(RY) and that f € W=52(RY). We
recall from Proposition 2.1 that the norm

1
w(z) —w(y)|? 2
[wllwe2@,5) = // % dady
rREN\RM\Q)2 [T~ Y

is equivalent to the one induced by the space W*2(RY). Since Ky is nonempty,
closed and convex, the existence of solutions to the minimization problem (3.2)
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follows from the direct method of the calculus of variations. Uniqueness is due to
the fact that J is strictly convex. O

Throughout the remainder of the paper £ denotes the bilinear form defined in
(2.4) with domain D(€) = W*2(Q,%;).

We have the following important result on various equivalent formulations to the
minimization problem (1.1), hence to (3.1).

Proposition 3.4. Let f € W2(RY), z € WS (%)) and ¢ € W*2(y). Then,
the following assertions hold.
(a) A function u € K solves the minimization problem (1.1) in the sense of Defi-
nition 3.2 if and only if w:= (u — z) € Ky satisfies the variational inequality
E(w,v—w) = (f,v —w)w—s2@yyws2@y) =0, Yv € Ko. (3.3)
(b) The variational inequality (3.3) is equivalent to the following. There exists a
non negative functional A € W~2(3) such that,

S(w,v) + <)\, ’U>Wfs,2(22)’Ws,2(Z2) = <f, 'U>Wfs,2(RN)7Ws,2(RN) Yv € VVS’Q(Q7 21)

w< @ m Yo
B w—o2(m) wo2(5g) < O VieK™
(A w = @) w—s2(n,),we2(xy) = 0,
(3.4)
where
K™= {0 € W"%(%,) : & < 0}. (3.5)

(c) Additionally, if the obstacle p € W*2(32)NC(32) and the variational inequal-
ity (3.3) has a solution w € W*2(Q,1)NC(X2), then (3.3) is also equivalent
to the Fuler-Lagrange equations

(“AYw=f inDEQ),
(=AY¥w=0 inDX),

Nyw <0 in Yo, (3.6)
Nyw =0 in 3o N {u < ¢},
u< @ m Do.

The last two conditions of (3.6) are also equivalent to the complementarity
condition

(u—@)Nsw =0 in . (3.7)

Proof. Let f € W=52(RN), z € W?(£;) and ¢ € W52(£,). We proceed in three
steps.

Step 1: Let u € K solve the minimization problem (1.1) in the sense of Definition
3.2. Then, by Definition 3.2 w := (u — z) € Kq solves (3.2). From the convexity of
Ko, for all v € Kq and all ¢ € [0, 1], we know that w + t(v — w) € Ky. As a result,
for every ¢ € (0, 1], we have that

0< 1<J(w Ftv—w)) — J(w))

_Cns |(w+ v —w))(z) = (w+tw-w)P
B / /WN\(RN\Q)Z ey

4t |x — y|N+2s
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1
- *<f’ w+t(v— w)>W—S’2(RN),WS=2(]RN)

CNa w(z) —w(y)|? 1
———— dxd — —5,2(RN 5,2(RNY.
//RQN\ v\ |T— Y|Vt Tay + t<f7w>w (RN),W=2(RN)
Calculating we obtain that for every t € (0, 1],
1
0<- <J(w+t(v —w)) — J(w))
_Cw. / / (w(x) ~ wE) (0~ v)@) - = w))

|$ _ y|N+23

> —5.2(RN) Ws2(RN)

— _ _ 2
+CN,S / / 0= W) = @),
R2N\ (RN \Q)2 |93 - y|

—S(w v—w f,’l)— > —8:2(RN),Ws:2(RN)

CNS (v —w)(z) — (v —w)(y)|? .
//RZN\ RN\Q)2 |l‘— |N+2s d dya

so that taking the limit, as ¢ | 0, we get (3.3).
Conversely, if u — z =: w € K satisfies (3.3), then for any v € Ky, after a simple
calculation we obtain that

J) =J(w+ (v —w))
CNS w(x) — ()|2
d d - —s,2 5,2
//R?N\RN\Q) ey Y Vo whw—ea @) wea @)

CN,S w(@) — wy) (v —w)(z) = (v = w)(y))
" / /R"’N\(RN\Q)2 ey

o=y
(f’U— W—s.2(RN),W 2(RN)
_ _ _ 2
CN s // (v —w)(x) ](Vv+2 w)(y)] dady. (3.8)
R2N\ (RN \Q)2 |z — y|N+2s

Since by (3.3),
COnys (w(z) = w(y) (v = w)(z) = (v - w)(y))
//Rw\ RN\Q)2 ey

o=y

>W s, Z(RN) Ws, Q(RN) > 0
it follows from (38) that
Jw)=J(w+ (v—w)) > J(w).

Hence, w € Ky is a minimizer of J. By definition, this shows that u solves (1.1) in
the sense of Definition 3.2. The proof of Part (a) is complete.

Step 2: First, we observe that W*2(£), %) is a closed subspace of W*2(RY)
and under Assumption 3.1 we have that W*2(RY) is continuously embedded into
W#2(3,) so that we have the following continuous embeddings:

WH2(Q,%) — WSERY) — W2(%,).

Now, let us consider another characterization of the solution to (3.2). In partic-
ular, we are able to include the constraint w € Ky into the minimization problem if
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we instead consider the functional J given by

~ C s — 2
oy [ [
R2N\ (R\Q)2 lz -yl

< W)y —s.2®yy,we2®N) + k- (W — ), (3.9)
where K™ is given in (3.5) and Ik is the indicator function defined in (2.17). It fol-
lows from Lemma 2.7 that I}, (w—¢) = Ix- (w—¢), where K* = {n € W—*2(5,) :
n > 0}. In the definition of K, by 7 > 0 we mean that (1, v)y -<2(s,) we2(s,) > 0
for all v € W*2(35) with v > 0 a.e. in 5. Therefore,

- 2
inf J(w) = inf (CN’S // M dxdy
weWs2(Q,1) weW2(02,%1) 4 R2N\ (R\2)2 |.’17 — y| +2s

—(fyw)w-s2@Nywe2@yy + Tx- (W — @))

o 2
— i (CN / / ) = 0O vy
wEW=2(Q,51) 4 R2N\ (R\Q2)2 |l‘ — yl +2s

—{f, U}>W—s,2(RN)’Ws,2(]RN) + I]Ier (w — (p)) . (3.10)

Applying the definition of I3, further shows that the right hand side of (3.10)
becomes

Cn.s — 2
( ok // () Nig' dzdy (3.11)
wGW 2(Q 1) R2N\ (R\Q)2 ‘.’E — y| s
— <f’ IU>W75,2(]RN),W5,2(RN)+ sup {<>\,w—()0>W—s,2(22)’Ws,2(22) — Ig+ (/\)})
AEW —5:2(%,)

Since the supremum in (3.11) can only be reached when A € KT, we can deduce

that
Cn,s — 2
<N /] fote) = w)? g,
weW* 2(9 1) R2N\ (R\)2 |33 —y|Vre

— (fyw)w-s2@n)we2@yy + sup (A w — 90>W—S‘2(22),WS‘2(22)>
AeK+

o 2
= inf ( Nys // % dxdy
wEW=2(Q,51) ,\eK+ R2N\ (R\(2)2 |z — y[N+2s

—{f, u}>W75,2(RN)’Ws,2(]RN) + (A w— (p>W—s,2(22)7Ws,2(22)> . (3.12)

The above identities motivate the introduction of an associated Lagrangian £ given
by

_Ons // |w(z) —w(y)]*
L(w,n) dxdy
R2N\ (R\Q2)2 |90 — y|NH2s

>W s2(RN),Ws2(RN) <T}, w — 90>W 52(8,),Ws2(Sy)- (313)

Next, we deﬁne the tangent cone of Ky at w € Ky by
T(Ko;u) ::{n € W*2(Q,%) : for each k € N, Ir, > 0,wy € Ko

: lim wg = w, hm rp(wp —w) = H}
k—o0
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and the linearization cone at w € g by
L(Ko;w) = {rh r>0,h e W25, wth—pe K—}.

Notice that, whenever w € Ky solves (3.2) we have that L(Ko;w) C T(Ko;w).
Indeed, suppose that x € L(Kg;w). Then, for some 7 > 0 and h € W*2(Q, %) we
have that kK = rh where w + h < ¢ in Y. It follows from the convexity of Ky that
w + %h € Ko for any k € N. Then, choosing wy = w + %h and r; = kr, we have
that limy_, ., wr = w and
1

lim ri(wg —w) = lim kr(w+ —h —w) =k

k—o0 k—o0 k
so that k € T (Ko; w).

It is well-known (see e.g. [17]) that there exists a Lagrange multiplier A €
W=%2(3,) so that (w, \) satisfies the KKT conditions (3.4). It follows from the
third condition in (3.4) that A is non-negative in the sense that (A, ¥)y —s.2(5,)w=2(x,)
> 0 for every ¥ € W*2(3;) with © > 0 a. e. in 3s.

Conversely, taking v := v — w in the first identity in (3.4) with v € Ko, we get
that for every v € K,

E(w, v —w) — (f,v —wW)w—s2@N),Wws2®N)

=—(\v— w>W*S,2(22),W&2(22)

==\ v =P+ Q- Ww-sz(s,)Wwe2(5,)

= —<>\, v — 90>W—s,2(22)7ws,2(22) + <>\, w — (p>W—s,2(E2)7Ws,2(22). (314)
It follows from the last identity in (3.4) that

<)\, w — (p>Wfs.2(E2)’Ws,2(22) = 0. (315)
Since (v — ) € K7, it follows from the third inequality in (3.4) that
—(Av— <P>W—sv2(22),st2(22) > 0. (3.16)

Combining (3.14), (3.15) and (3.16) we can deduce that

5(11}, v — w) — <f, (U 'LU>W—s,2(]RN)7Ws,2(RN) > 0,
for every v € Ky, and we have shown (3.3).
Step 3: It remains to show Part (c). Suppose that w := (u — z) € Kqy solves
(3.3). Applying the integration by parts formula given in (2.10), we can rewrite the
variational inequality (3.3) as follows: For all v € Ky, we have that

(A)Y°w, v —w)w-s2(0,5,),w2@,5,) + / (v —w)Nsw dx
Y

2

= ((-A)’w,v — 'LU>W—S,2(]RN))WS.2(RN) + / (v —w)Nsw dx
PP

> <f, v — ’U}>W—s,2(RN)’Ws,2(RN). (317)

Let ¢ € D(2) be arbitrary. It is clear that (w + () € Ky, so letting v := w+ ( in
(3.17) yields

(=AY’ w = f,Qw-s2@y)ws2@y) = 0.
Since this is also true for —(, we can deduce that
(=A)*w — f,Q)w—s2@vy,ws2@yv)y =0 forall ¢ € D(Q). (3.18)
That is, (—A)*w = f in D(Q)".
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Now, suppose that 1) € D(X3). Then,
Cn.s () —w ) —
=G [ )= W) VW)
R?N\(RN\Q)? lz —yl

N /Q A w(x)ﬁi(ﬁw_&(y)) dxdy)
v [ o [ 2D )
g P(z)Now(x) da.

Combining this with (2.10) shows that

<( ) w ’L/)> —52(Q,5,),Ws2(Q,5;) = 0 for all 1/) S D(ZQ) (3.19)

so that (—A)*w =0 in D(Zg) .
Now, let ¢ € W*2(X3) NC(X2), assume that the solution w of (3.3) also belongs
to C(33), and consider the set E := {z € 3a : w(x) < ¢(z)}. Since w,p € C(X2),
we have that the set F is open. Let ¢ € D(FE), the space of test functions in E. For

sufficiently small € > 0 we have that v := w + eyp € Ky. Our variational inequality,
along with (3.19) yields

. ’L/JNS’U) dx > €<f, w>W—s,2(RN))Ws.2(RN).

Since this is also true for —, we have that

1/}./\/811) dx = <f,'l/)>Wfs,2(]RN)7Ws,2(RN) for all ¢ € D(E) (320)
PP

Since f € W=2(RV) — W=%2(€, %), it follows from the Riesz representation
theorem there exists a unique f € W*2(Q,%;) — W*2(RY) such that for every
¥ € D(E),

(fo ) w-s2@mywez@yy =, V) wez5)

- (f (@) = F) (@) =9 (y)) .
B / /R2N\(]RN\Q)2 ‘IE — y|N+2s dxdy.
(3.21)

Since ¢ = 0 outside of ¥y and R2V\(RM\Q)2 = (2 x Q) U (2 x RM\Q)) U
(RM\Q) x Q), we have that the identity (3.21) reduces to the following:

//R?N\ RN\Q)2 x)|f;(g))y(%%lw(y)) dxdy
/ EQw |x7 TN+2S dxdy—i—/22/ Yy |:c— N+25( y) dxdy
/Zz/w |x_y|N+2§ ) ayds +// wlx_wa ) 4yds
‘2/22/¢ L lw; D) g
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—2 [ Y@N()() do. (3.22)

Yo
It follows from (3.20), (3.21) and (3.22) that for all ) € D(E) we have that

[ v (Wewto) = 2 ) ) = . (3.23)

We can deduce from the fundamental lemma of the calculus of variations that

Now = 2N, (f) in S, (3.24)
whenever w < ¢ in Xs.

Next, since W*2(£, %) is a linear subspace of L?((2), it follows from the Hahn
Banach Theorem that, there exists a linear functional f € (L?(2))* = L2?(f2) such
that for every ¢ € D(E),

(fo ) w-s2 @y wez@yy = (F,¥) 12(0)- (3.25)
It follows from (3.21), (3.22) and (3.25) that for every ¢ € D(E),

2 [ @M (7)(o) do = / (o) f(x) da =0,

where we have also used that supp[¢] C Xa. It follows from the fundamental lemma
of the calculus of variations that

No(f) =0 in Xs.
This fact together with (3.24) implies that
Now=0 1in{z € Xy :u(z) < ¢(z)}.

Now, suppose that ¢ € D(X3) with ¢ > 0. Substituting v := w — % into (3.3),
we can see that

g YNw dr < <f,’(/}>w—s,2(RN)’Ws,2(]RN) (3.26)
2

for all non-negative test functions ¢ defined in 3s. Since ¥ € D(X5), the right-
hand-side in (3.26) vanishes. Therefore,

/ YNsw dx <0
Yo
for all ¢ € D(X3) with ¢» > 0. As a result,
Nyw <0 in .
Conversely, suppose that w satisfies (3.6). Then, for all v € Ky we have that

E(w,v —w) =((=A)*w,v —w)w-s2(Q,5,),w2(Q,5,) + / (v —w)N;w dx

3

=(f,v— w>W—s,2(]RN),Ws,2(RN) + / (v — w)./\/;w dx
{zeXow(z)<p(z)}

+ / (v —)Nsw dx
{zeXs:w(z)=¢(z)}

Z<f, v — w>W—s,2(]RN),Ws,2(RN).
It remains to show the last assertion of the proposition. Indeed, since Nyw = 0
in 3o N {u < ¢} and v < ¢ in Xy, it follows that (u — )Ns;w = 0 in Xy, We have
shown that the last two conditions in (3.6) implies (3.7). Now, assume that (3.7)
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holds. This implies that © — ¢ = 0 in X3 or Nyw = 0 in X5. This trivially implies
that Nsw =0 in o N{u < ¢} and u < ¢ in X5. The proof is finished. O

4. Penalization. We now consider a variety of penalty formulations, whose pur-
pose is to incorporate the constraint into our minimization problem and approxi-
mate our original formulation by a sequence of Fréchet differentiable functionals.
We begin this section by analyzing a Moreau-Yosida type penalty formulation in
L?(%5), namely

min_ J(w) (4.1)

with
1 € ? 412
Je(w) = §S(w,w) — <f, ’U}>W—s,2(RN)’Ws,2(]RN) + 7 [(w — (p) } dzx,
PP

where € > 0 is the penalty parameter and, for ¢ € W#2(3,), we denote the positive
part of ¢ as pt := max{p,0}. Further, we denote the negative part of ¢ to be
™ := min{y, 0} and notice that ¢ = T + ¢~

As before, the direct method of the calculus of variations ensures a unique min-
imizer to J., denoted by w.. Before stating our first result in this section, we recall
the convergence in the sense of Mosco.

Definition 4.1. Let B be a Banach space. A sequence F,, : B — R, n € N, is said

to converge to F' : B — R in the sense of Mosco, writing F, M, F,asn— oo, if
for every v € B, the following two conditions are satisfied.

(a) There is a sequence (v, ), that converges to v in B, as n — oo, and

lim sup F, (v,) < F(v).
n— oo
(b) For every sequence (vy,), that converges weakly to v in B, as n — oo, we have
that

lim inf F, (v,) > F(v).
n—roo
We have the following convergence result where in abuse of language we use the
terminology sequences instead of nets.

Proposition 4.2. For every ¢ > 0, there exists a unique solution we to (4.1).
Additionally, there exists a sub-sequence, that we still denote by (w,)e, of solutions

that converges weakly to w € Ky, as € ] 0, so that J. Mg (in the sense of Mosco),
as €] 0.

Proof. For each ¢ > 0 and the minimization problem corresponding to J¢, consider
the resulting sequence of solutions (w¢)eso. From the coercivity of J, there exists
a constant C' > 0 independent of € such that ||we|yws2q 5,) < C. Then, there is a
subsequence that we still denote by (w.), that converges weakly to w € W*2(Q, %),
as € | 0. From the weak lower semi-continuity of J, we have that

el0 el0

=2
J(w) < liminf J(w,) < liminf (J(we) + 5 /E [(we — @) *]? dw)

= hrg%)nf Je(we). (4.2)
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Further, we claim that the weak limit, w, belongs to Ky. Indeed, let v € Ky be fixed
but arbitrary. Then, from the optimality of w, it follows that

€2 €2

T+ G [ o=y P dr < I+ 5 [ (0= P o= 0. @3)
2 Sy 2 o
where we have used the fact that (v — ¢)* = 0 in 3g. It follows from (4.3) that
/ [(we — @) T)? do < 263(J(v) — J(w)) < Ce.
P
As a consequence of the weak lower semi-continuity, we have that
/ [(w—¢)]? <liminf | [(we—¢)*]*=0
PP

6,1,0 22

so that w € Ky, and the claim is proved.
Further, from (4.2) we have that

J(w) < lilrﬁ)nf Je(we).

Now, if w € W*2(£2, %), choosing the constant sequence (w).~o gives us that

lim sup J.(w) = J(w).
el0

We have shown that the conditions (a) and (b) in Definition 4.1 are satisfied. Hence,
we have the convergence in the sense of Mosco. The proof is finished. O

Remark 4.3. We observe that generally, w. € W*2(Q,%;) will fail to satisfy
we < @ in Ys. Therefore, it is necessary to estimate the error created by this
penalization. Notice that Proposition 4.2 establishes convergence, but not the rate
of convergence.

The next result shows a rate of convergence with respect to e.

Theorem 4.4. Assume that the complementary condition (3.7) holds. Then, the
unique minimizer we € W*2(Q, 1) of the penalized functional J. satisfies

-2

7”(106 - ‘P>+||2L2(22) < €2||Nsw||%2(22)7 (4.4)

where we recall that the operator Ny is given in (2.7).

COnslw— wﬁH%/VSvZ(Q,El) +

Proof. For any specified € > 0, the minimizer w,. of (4.1) satisfies for all v €
WS’Q(Q,El),

E(we,v) + 672/ (we — @) o de = (f, V)W —s2(RN),We2(RN)-
o

Applying the integration by parts formula given in (2.10), we obtain that
<(_A)sw6aU>W*S’2(Q721)7W5’2(Q,Zl) +/ UNswe dx + 6_2/ (we - (p)+’l) dx
Yo PP
= ([, v)w-s2@®@y) we2®N) (4.5)
for all v € W*2(Q, %).

Further, from (2.10) and (4.5), taking v := w — w, as a test function, we obtain
that,

CN,S 2
?Hw - wEHWSv?(Q,Zl)
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= ((=A)¥(w — we), w — We)ws2(Q,5,),W2(Q,5,) + / (w — we)Ns(w — w,) dzx

P
= ((—A)Sw,w - we>W*S:2(Q,21),WSvQ(Q,El) +/ (w - we)Nsw dx
Yo
+ 672/ (we — @) (w — we) dz — (f,w — we)w-s2@N) we2 @ - (4.6)
Yo

The first two identities in (3.6) imply that
((—A)Sw7 w — w6>W75,2(Q721)7W5,2(9721) - <f, w — w6>W—s,2(RN),Ws‘2(RN) =0. (47)
By (3.7), we have that
/ (w—@)Nsw dz = / (u— @)Nsw dx = 0.
P PP
Then, using (4.7) we see that (4.6) becomes

Cn.s _
2w = wellfeo,m) = — / (we — Q) Now dar + €72 / (we — @) (w — we) da.
2 ! s s
(4.8)
Since w < ¢ in X5, we have that
6_2/ (we — )T (w — we) da
PP
—-? [ - do— e [ (- p) (o) do
PP P
< —672/ (we — @) T (we — ) dz. (4.9)
P3P}
Since (we — @) T (we — )~ = 0, the right-hand-side in (4.9) becomes
— [ w9 P o= [ (o) (- ) do
22 22
= —6_2/ [(we — ) T]? da. (4.10)
PP
Combining (4.6)-(4.10) and recalling that N;w < 0 in X5, we get
Cn,s _
]2\[, H’LU - weHI%VS’Z(Q,Zl) < 7/2 (we - @)Mgw dr — € 2/2 [(we - <P)+]2 dx
2 2

- (= )N d / (= ) Now da
- [ = )" e

<[ (= )N dr — 2 [ lwe=o)F o

PP

This implies that
CN,S
2

< _/ (we - (p)JrMsw dz
PP

= wellfyea@mn) + €2l we = 9)F e, do
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e? €2
< TH(WE — o) ey + §||Nst%2(22)a (4.12)

where in the last step we have used Holder’s inequality and Young’s inequality. We
have shown (4.4) and the proof is finished. O

In the above penalized formulation (cf. (4.1)) and subsequently in Theorem 4.4,
we have considered a penalization in the L?(32)-norm. Next, we instead consider a
penalization in the W*2(33)-norm. The advantage being that the optimality con-
ditions for the penalized problem can be directly related to the original optimality
system (3.4).

Motivated by Kikuchi and Oden [18, Chapter 3], we look for a penalty functional

of the form
1

1 §
Js(w) = 55(11’,“}) —({f, w>W*S=2(]RN),WSv2(RN) + TH(W - <P)+H%sz2(z:2)' (4.13)

From the strict convexity of J¢ as well as the direct method of the calculus
of variations we know that Je has a unique minimizer, which we denote by wg.
Furthermore, w¢ satisfies the optimality conditions

1
E(we,v) + g((ws — )T ) wez(sy) = (s V)w-s2@y)we2®y) (4.14)

for all v € W*2(Q,%;). As we will see, considering such a penalty functional gives
us a method to relate our penalized problem back to the optimality system in (3.4).
More precisely, we have the following result.

Theorem 4.5. Suppose that w € Ko and X\ € W5%(3y) C W=52(Q, %) satisfy
(3.4). Additionally, suppose that we minimizes Je for a given & > 0. Let A¢ be the
unique element in W~2(3,) satisfying (by the Riesz representation theorem)

1
(Ae, V)w—s2(s,),we2(s,) = <(w£ - 90)+7v) for all v e W*?(5s).
§ W2 (s,)
(4.15)
Then, there is a constant C = C(N, s,Q) > 0 independent of £ such that
[we = wllwez2,51) < CEIAw-2(s,) (4.16)
and
[Ae = Allw—s2(2,) < CEIAw—s2(55)- (4.17)

In particular, we have that we — w in W2(Q,%51) and A\¢e = X in W=5%(,), as

£10.
In addition, there is a constant C' > 0 independent of £ such that

l(we = @) Fllw2(s,) < CE. (4.18)
Proof. 1t follows from (3.4), (4.14) and (4.15) that
E(we —w,v) = (Ae = N\ 0)w—s2(35), we2(5) (4.19)
for all v € W#2(,$;). Taking v := we — w in (4.19) yields
E(we — w,we —w) = (Ae — A\, We — W)w—s.2(5,),W=2(5,)- (4.20)

Since by (3.4)
A w = Q) w-s2(5,),we2(z,) =0,
it follows that

(A= Agw — w&)W*&?(ZQ),st?(EQ) =A = A w—p+p— w§>W*Sv2(22),W&2(22)
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=(=Ae, W — Q)w-22(5,),W=2(5,)
- <)\ - )\vag - 30>W_Sv2(22),WSv2(22)' (42]‘)

It follows from the abstract result given in [18, Section 3.3], that for h € W2(3,),
h* is characterized by the variational inequality

(h+ —h,g— h+)Ws,2(22) >0, (4.22)

for all g € Kt := {g € W*2(33) : g > 0}. In addition, since h™ € K we can easily
deduce that

(W™ h ) wezey) =0, (97, h )wazs,) <0, (BT, A )wez(s,) >0,
for all h, g € W*2(3,). Notice also that from the definition of A¢, we have that
e =A€7 Hwe = @) ) ws2(mpy wez () = e = XA o2z, -
Using all these facts and (4.15), we get from (4.21) that

A =Aes w0 —we)w—s2(zy), we2(my) =(A = A6, W — @ + @ — We)w—+2(55),We2(2a)

(A= Ag, we — )w W=:2(32),W2(22)
T A=A w = Q) w—s2(55),wa2(5,)

- (A= /\5,w5 — PIW e 2(5), W2 (5,)
T A w = @) w—s2(s,),we2(s,)

— A6y W — Q)w-s2(5,) We2(,)

— (A= Ae, we — w}w—s,2(22),w-§’2(22)
+ AW = @ws2(my)We2(5s)

£(Ws—s0)+7w—<p) :
Ws,2(22)

Since, (w — )T = 0 in 33, we have that

(2(105 -0t w— w)
Ws,2(22)
_ (1<wg o (- <P)+> " (1<wg o (- w)‘)
3 Ws2(25) 3 We2(X2)

_ <;(w§ — <P)+) (w — ‘p))ws‘z(zz)

<0.

Notice also that
(Aer (we = @) w-s2(z),we2(s5) = 0
and
(A, (we = ) ") w=s2(s),we2(s2) < 0.
Using all the above facts we can deduce that
<)\ — )\5, w — ’U)§>W—s,2(22),ws,2(22) S<)\£ — )\, wg — LP>W75,2(22)7W3,2(22)
<S¢ = A (we = @) hw—sz(s) wez(s,)
=—&(Ae — A )\E)W*sz(Ez)

==& = A Ae = A4 Voo
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= §H>‘§ - >“|%/I/—Sv2(22) - 6 ()‘E - >‘a /\)W*Sv2(22)
ZEA = Aellw—s2 (o) IMlw—s.2(s5) -

This latter estimate together with (4.20) and the coercivity of the bilinear form &
yield that there is a constant C' = C(N, s,) > 0 independent of £ such that

lwe = wllfye20,5,) < CEIX = Aellw-e2(m) I\ lw—+2(5)- (4.23)

On the other hand, it follows from (4.19) that there is a constant C' > 0 independent
of £ such that

A = Aellw-s2(5,) < Cllwe — wllw:2(0,5,)- (4.24)
Combining (4.23)-(4.24) we obtain that

|lwe — wllws25,) < CEAlw—s2(s,)

and we have shown (4.16). Combining (4.16) and (4.24) we get (4.17). Finally, the
last assertion follows from (4.24).

It remains to prove (4.18). Indeed, taking v := (wg — )T € W2?(2,) as a test
function in (4.15) we obtain the following estimate:

[(we = @) [fye2(my) =Ees (we = @)D w—o2(my). w2 (3)
<EAellw o2 (z) 1 (we = @) F lwoz(s)-

Since A¢ = X in W™2(33), as £ — 0, it follows that the sequence (A¢)¢ is bounded
in W=2(%,). This fact together with the previous estimate gives (4.18). O
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