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This work focuses on solving the system identification problems of the high-fidelity digital
twin based on the measured data via an optimization process. The cost function formulation
is based on the aggregated error between measured and computed displacements in di!erent
locations. The work aims to test di!erent optimization algorithms with the Vertex Morphing
regularization technique. The Nesterov accelerated gradient method is reviewed, studied on a
representative structural benchmark, and compared to well-known base methods, such as the
steepest descent method.

I. Nomenclature

𝐿 = Cost Function
𝑀 = Vertex Morphing filtering matrix
𝜴 = measured or computed data at the point
𝑁 = Young’s modulus
𝜶 = search direction
𝑂 = step size
𝜷 = unknown system identification parameters
𝑃 = scalar value a
𝜸 = vector a
𝜹 = matrix A

II. Introduction

D!"#$% their lifecycle, structures change their properties due to di!erent reasons; for instance, it can be due to damage,
corrosion, or fatigue. With the increasing maturity of sensor technology and numerical simulation techniques, it is

possible to have a digital representation (Digital-Twin) of complex structures. A Digital-Twin can be defined as follows
[1–4]:

A set of virtual information constructs that mimic the structure, context, and behavior of an individual/unique
physical asset, or a group of physical assets, is dynamically updated with data from its physical twin throughout its life
cycle and informs decisions that realize value.

One of the most important steps in digital-twining is system identification (SI), which involves identifying the current
state of the material properties and localizing the weakening. The ability to detect and examine the possible damages in
aircraft parts may improve the aircraft’s maintenance e"ciency, robustness, and security and reduce general material
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waste. System Identification requires solving the inverse problem using a suitable parameterization of the structure.
Typically, this can be done using an optimization process, where the digital twin computes the data of interest at the
given locations, and the computed data is fitted to match the measurements. The adjoint-based technique presented in
[5] is based on displacement and strain measurements. A combination of several sensor approaches would also appear
highly promising in future applications [6], including risk measures and uncertainty quantification [7].

The challenges of determining material properties from loads and measurements one needs to consider are:
1) The optimization problem is ill-posed;
2) Many di!erent spatial distributions of material properties can yield similar or equal deformations under fixed

load case;
3) The Finite Element (FE) model governs the cost function; hence, each functional evaluation and adjoint analysis

is relatively expensive. One should apply robust optimization algorithms and line search techniques;
4) To localize damage, many material parameters are required, for instance, modifying Young’s modulus at each

element. This leads to many parameters and the need for gradient-based optimization algorithms.
5) The computed gradients via adjoints are discrete and noisy and lead to high-frequency solutions. The problem

requires regularization.
6) Minimizing the sum of the sensor error is similar to the min-max problem, where the component with the highest

error would mainly contribute to the search direction due to the highest sensitivity magnitude. As a result, the
cost function is very noisy and hard to minimize. Special techniques have to be applied, such as weighting of the
sensors, normalization, etc.

Frequent updates between numerical and physical assets are an important property of the digital twin in practical
applications. Live monitoring requires a fast solution to the system identification problem to analyze and update the
system. The components of rapid and accurate solutions are high-quality measured data and its location, reasonable cost
function modeling, regularization techniques, and optimization algorithms.

In this work, we propose using the Nesterov accelerated gradient method [8] with the Quasi-Newton Barzilai-Borwein
correction step. The Nesterov accelerated gradient method is well-known for being used in solving noisy problems like
neural network training [9]. The Quasi-Newton Barzilai-Borwein method (QNBB) method was the first time introduced
in combination with a relaxed gradient projection algorithm to solve large node-based shape optimization problems
[10, 11]. It has shown improved convergence and stability of the solution process compared to Barzilai-Borwein line
search or constant step size. The Nesterov accelerated gradient method with Quasi-Newton Barzilai-Borwein correction
step is studied and compared to the well-known algorithms on two industrial relevant examples.

All numerical models are carried out using finite element code KratosMultiphysics∗ [12, 13], where the cost
function and its derivative are implemented in SystemIdentificationApplication. The studied optimization algorithms
are implemented in OptimizationApplication.

III. Determining material properties via optimization
The determination of material properties (or damages) may be formulated as an optimization problem for the

unknown material parameters 𝜷: Given 𝑄 number of the di!erent sensor types and 𝑅 given load cases 𝝐𝐿 , 𝑆 = 1, 𝑅;
𝑅 · 𝑄 · 𝑇 corresponding measurements at 𝑇 measuring points of their respective data 𝜴:

minimize : 𝐿 ( 𝜷, 𝜴( 𝜷)) = 1
𝑇

𝑀∑
𝑁=1

𝑂∑
𝐿=1

𝑃∑
𝑄=1

ω(𝑈𝑁𝐿 𝑄 , 𝜴
𝑃𝑅
𝑁𝐿 𝑄 , 𝜻

𝑅
𝑁𝐿 𝑄𝜴𝑁𝐿 ( 𝜷)) (1)

where 𝜷 is an unknown vector with model parameters to identify; 𝑈𝑁𝐿 𝑄 are the sensor weights; 𝜴 are state variables; 𝜻𝑅𝑁𝐿 𝑄
are interpolation matrices that are used to obtain the computed value from the finite element mesh at the measurement
locations; ω(𝑈𝑁𝐿 𝑄 , 𝜴𝑃𝑅

𝑁𝐿 𝑄 , 𝜻
𝑅
𝑁𝐿 𝑄𝜴𝑁𝐿 ( 𝜷)) is weighted aggregation function, for instance, weighted square sum:

ω =
1
2
𝑈𝑁𝐿 𝑄 [𝜴𝑃𝑅

𝑁𝐿 𝑄 → 𝜻
𝑅
𝑁𝐿 𝑄𝜴𝑁𝐿 ( 𝜷)]2 (2)

The measured 𝜴
𝑃𝑅
𝑁𝐿 𝑄 or computed data 𝜴𝑁𝐿 𝑄 can be displacements, strains, eigenfrequency, etc. In this work, system

identification process will modify the existing Young’s modulus to fit computed and measured displacements (𝑄 = 1).
However, the proposed method is not limited to this case and can be applied to other problems with various system

∗https://github.com/KratosMultiphysics/
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parameters and measured data types in a similar manner. If weighted square sum is used with only one load case (𝑅 = 1),
the cost function simplifies to:

minimize : 𝐿 (𝜼, 𝜽(𝜼)) = 1
2

𝑃∑
𝑄=1

𝑈 𝑄 (𝜽𝑃𝑅
𝑄 → 𝜻

𝑅
𝑄 𝜽(𝜼))2 (3)

The system identification process will modify the existing Young’s modulus by a computed Young’s modulus change,
as depicted in Eq. 4, where 𝜼0 is the initial guess and 𝑆𝑉𝑃𝑆𝑇 is the number of iterations the optimization process has
executed:

𝜼 = 𝜼
(0) +

𝐿𝑈𝐿𝑀𝑁∑
𝐿𝑈=1

𝛚𝜼 (𝐿𝑈 ) (4)

This ε𝜼 (𝐿𝑈 ) governs how the Young’s modulus of the numerical model will be updated based on the sensor values. One
can place sensor in a such a way that it becomes possible to update the Young’s modulus of every element. For instance,
if the steepest descent optimization algorithm is applied, then ε𝜼 (𝐿𝑈 ) is computed as given in Eq. 5, where 𝑂 is the step
size, A is the regularization matrix (see Section IV):

ε𝜼 (𝐿𝑈 ) = →𝑂AA𝑉 𝑊𝐿

𝑊𝜼

(𝐿𝑈 )
(5)

One can compute gradients of the cost function w.r.t. the elements’ Young’s modulus by applying the chain rule:

𝑊𝐿

𝑊𝜼
=

𝑋𝐿

𝑋𝜼
+ 𝑋𝐿

𝑋𝜽

𝑊𝜽

𝑊𝜼
=

𝑋𝐿

𝑋𝜽

𝑊𝜽

𝑊𝜼
(6)

where, 𝑊𝑋
𝑊𝜴 = 0 because 𝐿 does not depend directly on 𝜼. The derivative of the cost function 𝐿 can be represented as a

weighted sum of each sensor contribution 𝜴 𝑄 at the measurement point 𝑌 for fixed load case 𝑆 and measured data type 𝑍 .
If the square sum aggregation is applied, as follows:

𝑋𝐿

𝑋𝜽

𝑊𝜽

𝑊𝜼
= → "#

$
𝑃∑
𝑄=1

𝑈 𝑄 (𝜽𝑃𝑅
𝑄 → 𝜻

𝑅
𝑄 𝜽)

%&
'
𝑊𝜽

𝑊𝜼
(7)

In the optimization cycle, the derivative of the sensor cost function 𝑅𝑋
𝑅𝜴 can be computed using either the finite

di!erence approach or the adjoint approach. In this study, we have used the adjoint approach due to its ability to
compute gradients with respect to a large number of degrees of freedom with less computational resources by avoiding
the computation of 𝑅𝜶

𝑅𝜴 . Adjoint approach requires first solving a primal problem which is depicted in Eq. 8 in residual
form where K is the sti!ness matrix, 𝜽 is the displacement vector and 𝝐 is the load vector.

𝜾 = K𝜽 → 𝝐 (8)

Then, the adjoint problem depicted in Eq. 9 is solved where 𝜿 is the Lagrange multiplier. Thereafter, this 𝜿 is used as a
post-processing step to compute the final sensitivities, which is depicted in Eq. 10.

(
𝑋𝜾

𝑋𝜽

)𝑉
𝜿 = → 𝑋𝐿

𝑋𝜽
(9)

𝑊𝐿

𝑊𝜼
=

𝑋𝐿

𝑋𝜼
+ 𝜿

𝑉 𝑋𝜾

𝑋𝜼
(10)

A lot of performance optimization can be achieved by solving the adjoint system of equations because, 𝑊𝜷
𝑊𝜶 = K and K is

symmetric, hence we can re-use the existing left-hand side of the primal problem and only have to change the right-hand
side to obtain 𝜿.

IV. Vertex Morphing
Without appropriate regularization measures, node-based shape and topology optimization produces high-frequency,

noisy geometries. Similarly, without regularization, the distribution of the obtained material properties will be noisy
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in system identification, and one cannot use it for real-world applications. Therefore, one option is to subject the raw
material to smoothing using filters. In the context of Vertex Morphing, thus, the physical material properties, for
instance, Young’s Modulus 𝜼 is indirectly controlled by an unsmoothed control field 𝜷 and a kernel or filter function 𝑀,
for example, on the surface ϑ with surface coordinates (𝑎, 𝑏, 𝑐):

𝜼 (𝑎0, 𝑏0, 𝑐0) =
∫
ϑ
𝑀(𝑎 → 𝑎0, 𝑏 → 𝑏0, 𝑐 → 𝑐0) 𝜷(𝑎, 𝑏, 𝑐)𝑊ϑ (11)

In the context of shape optimization, Vertex Morphing belongs to the direct filtering techniques as opposed to the
indirect ones, such as Sobolev smoothing ([14–16]). There is great freedom in selecting kernel functions. For the
choice of simple polynomials on compact support (including a piecewise linear hat function and splines), it is shown
that Vertex Morphing is identical to a generalized CAD-based approach with indirectly defined spline base functions
([17]). When taking the Gauss bell-shaped distribution function, the technique has additional equivalent properties
compared to indirect smoothing ([18]). After discretization of the structural geometry 𝜼 = [𝑁1, 𝑁2, ..., 𝑁𝑂] and control
function 𝜷 = [𝑑1, 𝑑2, ..., 𝑑𝑃] by standard techniques such as the finite element method, Vertex Morphing appears as:

𝜼 = 𝜹𝜷 (12)

where 𝜼 is Young’s modulus of elements, and they are arranged sequentially. 𝜹 is the filter operator matrix, and 𝜷 is
the vector of discrete control field parameters, again arranged sequentially. The most straightforward approach is to add
control parameters to every element. In shape optimization, the parameter is added to every node, i.e., vertex, of the
finite element model, which motivates the term “Vertex Morphing”. The entries 𝑀𝐿 𝑄 of 𝜹 reflect the filter e!ect as the
interaction between two di!erent centers of the elements 𝑆 and 𝑌 , their center’s spatial position vectors 𝑒𝐿 and 𝑒 𝑄 , and
their Euclidean distance

++𝑒𝐿 → 𝑒 𝑄

++. For the case of the Gauss distribution as kernel and approximating integration by
summation, it holds:

𝑀𝐿 𝑄 = 𝑓 (𝑒𝐿 , 𝑒 𝑄 )/𝑔𝑕𝑇
𝑔𝑕𝑇 =

∑
𝑄

𝑓 (𝑒𝐿 , 𝑒 𝑄 ) (13)

where:

𝑓 (𝑒𝐿 , 𝑒 𝑄 ) =
{

exp(→
++𝑒𝐿 → 𝑒 𝑄

++2 /2𝑖2)
++𝑒𝐿 → 𝑒 𝑄

++ < 𝑖

0.0
++𝑒𝐿 → 𝑒 𝑄

++ ↑ 𝑖
(14)

and 𝑖 is the filter radius. By changing the filter radius, one can adjust the filtering intensity. Fig. 1 shows the e!ect of
Vertex Morphing.

(a) Without Vertex Morphing (b) With Vertex Morphing

Fig. 1 Adjusted Young’s Modulus of the FE model
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V. Optimization Algorithms

A. Steepest Descent
The steepest descent method is the most simple but robust first-order optimization technique to solve an engineering

optimization problem. The search direction is the negative objective gradient:

𝜶 = →↓𝐿 ( 𝜷) (15)
and the design change is:

ε 𝜷
(𝐿) = 𝑂 (𝐿)

𝜶
(𝐿) (16)

where di!erent line search techniques or approximation techniques can find the 𝑂 (𝐿) step length. The new solution point
is:

𝜷
(𝐿+1) = 𝜷

(𝐿) + ε 𝜷
(𝐿) (17)

Algorithm 1 shows the workflow of the steepest descent method with Vertex Morphing. The algorithm solves the
optimization problem in the control design space, and the solution process is not di!erent from the standard problem
process. Additional necessary steps are forward and backward mapping. During these steps, the shape gradients are
mapped to design gradients, and the design update is mapped to the model parameter update.

Algorithm 1: Steepest Descent method with Vertex Morphing
Start: 𝝀0, 𝑂, 𝑆 ↔ 0
while Optimality criteria are not met do

Evaluate: 𝑗 (𝜼 (𝐿) ),↓ 𝑗 (𝜼 (𝐿) );
Compute filtering matrix: 𝜹;
↓ 𝑗 ( 𝜷 (𝐿) ) ↔ 𝜹

𝑉↓ 𝑗 (𝜼 (𝐿) );
𝜶
(𝐿) ↔ →↓ 𝑗 ( 𝜷 (𝐿) ) ;
𝜶
(𝐿) ↔ 𝜶

(𝐿) /
++𝜶 (𝐿)++;

Line Search finds: 𝑂 (𝐿) ;
ε 𝜷

(𝐿) ↔ 𝑂 (𝐿) ↗ 𝜶 (𝐿) ;
ε𝜼 (𝐿) ↔ 𝜹ε 𝜷

(𝐿) ;
𝜼

(𝐿+1) ↔ 𝜼
(𝐿) + ε𝜼 (𝐿) ;

𝑆 ↔ 𝑆 + 1;
end

The steepest descent method has been successfully applied to solve unconstrained optimization problems with Vertex
Morphing, [19–22]. It is often used with constant step size, where a fixed design update size is applied every iteration.

B. Barzilai-Borwein method
The Barzilai-Borwein (BB) method suggests a step size approximation using current and previous sensitivity

information. The Barzilai-Borwein method computes a new step size as follows:

𝑂 (𝐿) =
𝝁
(𝐿→1) ,𝑉

𝝁
(𝐿→1)

𝝁
(𝐿→1) ,𝑉

𝝂 (𝐿)
(18)

or where 𝝂 (𝐿) = ↓ 𝑗 ( 𝜷 (𝐿) )→↓ 𝑗 ( 𝜷 (𝐿→1) ) is a change in the sensitivities of the objective function and 𝝁
(𝐿→1) = 𝜷

(𝐿)→ 𝜷
(𝐿→1)

is the previous update of the design variables. Therefore, if 𝜶 (𝐿) is a search direction at iteration 𝑆, the design update is:

ε 𝜷
(𝐿) = 𝑂 (𝐿) · 𝜶 (𝐿) (19)

In this work, to prevent numerically invalid FE model, we limit the material update at one optimization iteration by
𝑂 (𝐿)
𝑃𝑆𝑇 = 𝑂 (0)

𝑃𝑆𝑇/
++𝜶 (𝐿)++, hence the eq. 18 modifies as:

𝑂 (𝐿) = min

(
𝑃𝑘𝑔

[
𝝁
(𝐿→1) ,𝑉

𝝁
(𝐿→1)

𝝁
(𝐿→1) ,𝑉

𝝂 (𝐿)

]
, 𝑂 (𝐿)

𝑃𝑆𝑇


(20)
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C. Quasi-Newton Barzilai-Borwein method
Unlike the original method, the Quasi-Newton Barzilai-Borwein (QNBB) method independently computes each

design variable’s step size. Therefore, each design parameter has its step size based on the local sensitivity information.
The design update can be found as follows:

𝑂 (𝐿)
𝑁 = min

(
𝑃𝑘𝑔

[
𝝁
(𝐿→1) ,𝑉
𝑁 𝝁

(𝐿→1)
𝑁

𝝁
(𝐿→1) ,𝑉
𝑁 𝝂

(𝐿)
𝑁

]
, 𝑂 (𝐿)

𝑁,𝑃𝑆𝑇


(21)

𝝃
(𝐿) = [𝑂 (𝐿)

𝑁 ] (22)

𝝂
(𝐿)
𝑁 = 𝜶

(𝐿→1)
𝑁 → 𝜶

(𝐿)
𝑁 (23)

ε𝝀 (𝐿) = 𝝃
(𝐿) · 𝜶 (𝐿) (24)

where 𝜶 (𝐿) is a search direction computed by the optimization algorithm at iteration 𝑆 and𝑂 (𝐿)
𝑁,𝑃𝑆𝑇 is a maximum allowed step

size at design variable 𝑍 , that can be scaled using L2-norm (or max-norm) of search direction 𝑂 (𝐿)
𝑁,𝑃𝑆𝑇 = 𝑂 (0)

𝑁,𝑃𝑆𝑇/
++𝜶 (𝐿)++.

The QN-BB method can be extended to various direction-based constrained and unconstrained methods, where the
computation of 𝝂 (𝐿)𝑁 = 𝜶

(𝐿→1)
𝑁 → 𝜶

(𝐿)
𝑁 is based on the search direction 𝜶

(𝐿)
𝑁 . If 𝜶 (𝐿)𝑁 = →↓ 𝑗 (𝝀 (𝐿) ), eq. 23 transforms into the

original Barzilai-Borwein computations, 𝝂 (𝐿) = ↓ 𝑗 (𝝀 (𝐿) ) → ↓ 𝑗 (𝝀 (𝐿→1) ). The reader can find an example of coupling
constraint optimization method with QN-BB step in [11].

D. Nesterov accelerated gradient
Momentum-based gradient descent is a gradient descent optimization algorithm variant that adds a momentum term

to the update rule. The momentum term is computed as a fraction of the previous design update. The weight of the
momentum is controlled by a hyperparameter 𝑏:

𝜷
(𝐿+1) = 𝜷

(𝐿) + 𝑏(ε 𝜷
(𝐿→1) ) → 𝑂𝐿↓ 𝑗 ( 𝜷 (𝐿) ) (25)

where ε 𝜷
(𝐿→1) = 𝜷

(𝐿) → 𝜷
(𝐿→1) . The Nesterov accelerated gradient (NAG) algorithm [8] builds upon the Momentum

optimization method by introducing a notion of "prescience" to the momentum term. The di!erence in the methods is
that NAG first adds the momentum component and then computes the descent direction on the "momentum" points:

𝜷
(𝐿+1) = 𝜷

(𝐿) + 𝑏(ε 𝜷
𝐿→1) → 𝑂𝐿↓ 𝑗 ( 𝜷 (𝐿) + 𝑏(ε 𝜷

(𝐿→1) )) (26)

The advantages of using the NAG optimization algorithm, in contrast to gradient descent optimization, can be summarized
as follows:

1) Improved convergence: Momentum helps accelerate the convergence of the optimization process by accumulating
velocity in the direction of consistent gradients. This allows the optimization algorithm to make larger steps in
regions of consistent gradient direction, leading to faster progress towards the minimum.

2) Dampening oscillations: By incorporating momentum, the algorithm dampens oscillations, especially in
scenarios where the response function strongly oscillates. This helps to stabilize the optimization process and
prevent it from getting trapped in oscillatory behavior around local optima.

3) Increased responsiveness: By making a big jump in the direction of the previously accumulated gradient,
measuring the gradient, and then making a correction, NAG prevents the optimization process from going too fast.
This increased responsiveness ensures that the algorithm can adapt more e!ectively to changes in the steepest
directions, resulting in improved performance, particularly in problems with non-quadratic response functions.

VI. 2D Plate with hole
The FE model of the 2D plate with a hole is shown in Fig. 2a, where the left side is fixed, and the distributed force

is applied on the right side. Fig. 2b shows displacements of the damaged model and the mapped displacements to
the sensors. These displacements are used as “measured” displacements to identify the given damage. The damaged
material can be seen in Fig. 2c.
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(a) FEM model (b) Displacements and sensor values

(c) Damaged model

Fig. 2 2D Plate with hole

The cost function is based on the measured and computed displacements in the x-direction. It can be defined as:

minimize : 𝐿 ( 𝜷, 𝜽( 𝜷)) = 1
2

𝑃∑
𝑄=1

𝑈 𝑄 (𝑕𝑇𝑃𝑅
𝑄 → 𝑕𝑇 𝑄 )2

𝑈 𝑄 = 1010

(27)

The filtering radius is chosen to be constant and 𝑖 = 5, covering approximately 4 FE elements. The optimization process
stops when the maximum error in the sensor reaches 10→5:

max
𝑄

𝑃𝑘𝑔(𝑕𝑇𝑃𝑅
𝑄 → 𝑕𝑇 𝑄 ) < 10→5 (28)

which is computed when the objective value calculation is called.

A. Kratos Methods
In the first set of the tests, Kratos optimization algorithms, see Section V are compared to study the performance of

the proposed NAG algorithm. In this work, we test three versions of the steepest descent method:
1) with a constant 𝑂, ref as SD_Const;
2) with an adaptive 𝑂, which is computed using Barzilai-Borwein method eq. 18, ref as SD-BB.
3) with adaptive step, which is computed using eq. 21 - 24, ref as SD-QNBB.

and three versions of the NAG algorithms with 𝑏 = 0.9:
1) with a constant 𝑂, ref as NAG-Const;
2) with an adaptive correction 𝑂, which is computed using Barzilai-Borwein method eq. 18. 𝜶 (𝐿) is computed at the

momentum point 𝑆, 𝝁 (𝐿→1) is an update between (𝑆) and (𝑆 → 1) momentum points, ref as NAG-BB.
3) with adaptive correction step, which is computed using eq. 21 - 24, ref as NAG-QNBB.
Fig. 3 shows the convergence rate to drop maximum sensor error by various algorithms vs a number of functional

evaluations. Table 1 summarizes the number of functional evaluations and gradient computations. In this set of tests,
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the number of gradient computations is equal to the number of functional evaluations. The SD-Const shows the slowest
convergence rate. However, the SD-BB method improves the convergence rate by approximately 16 times. Its noisy
behavior can be observed in our example, which is well studied in [23]. Our modification, SD-QNBB, improves
the behavior of the steepest descent method, but only by approximately 5 times compared to SD-Const. Nesterov’s
accelerated gradient method with scaled constant step size converges faster than SD-Const, but it is slower than SD-BB
and SD-QNBB. One can also see zig-zagging oscillations after 100 iterations, which slows the convergence. Applying
the Barzilai-Borwein adaptive step to correction move reduces oscillations and speeds up the convergence. However,
SD-BB solves the problem faster compared to NAG-BB. NAG-QNBB shows the best convergence rate, and it is 20
times faster than SD-Const.

Method Number of Func. Eval. Number of Grad. Eval.
Kratos SD-Const 8019 8019
Kratos SD-BB 522 522
Kratos SD-QNBB 1430 1430
Kratos NAG-Const 2206 2206
Kratos NAG-BB 1218 1218
Kratos NAG-QNBB 200 200

Table 1 Summary of Kratos algorithms performance

Fig. 3 Convergence rate of the compared methods.

Fig. 4 compares the found damages by compared methods. There is a slight di!erence between the found solutions,
which is explained by the nature of the multimodal optimization problems. This means there are several local minima
with the same objective value. All methods find weaknesses close to boundary conditions on the left and right side,
and SD-QNBB and NAG-QNBB amplify these weaknesses more than other methods. However, the di!erences in
the solutions are negligible for the practical application, and all main damage zones are correctly found. One should
consider di!erent sensor positioning, sensor types, and load cases to further improve the solution quality.
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(a) SD-Const (b) SD-BB

(c) SD-QNBB (d) NAG-Const

(e) NAG-BB (f) NAG-QNBB

Fig. 4 System Identification results: weakening zones.
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B. External Libraries
In order to compare other first-order algorithms, two external optimization libraries, SciPy† [24] and PyRol‡, are

integrated with KratosMultiphiscs Optimization Application. SciPy algorithms are Broyden-Fletcher-Goldfarb-Shanno
algorithm (BFGS), Limite memory Broyden-Fletcher-Goldfarb-Shanno bounded algorithm (L-BFGS-B), conjugate
gradient algorithm (CG), Trust-Region Constrained Algorithm (TRC). The Lin-More trust region algorithm (LM-TR)
and the steepest descent method with back-tracking line search (SD) are applied from the PyRol library. In this work,
we skip introductions to the aforementioned methods. Interested readers should check the library’s documentation for
details. All tests are run on a single processor to ensure that the algorithms converge after the same number of iterations
from run to run.

Fig. 5 shows the convergence rate of various external minimization methods. Table 2 summarizes the number of
functional evaluations and gradient computations. All methods except SciPy CG solve the given problem. SciPy TRC,
SciPy BFGS, and L-BFGS-B methods find the solution faster than other methods. PyRol SD performs similarly to
Kratos SD-Const with slightly more functional evaluations but with less gradient computations. PyRol LM-TR and
Kratos NAG-QNBB are slower than SciPy methods, but their performance is in a similar range.

Method Number of Func. Eval. Number of Grad. Eval.
Kratos NAG-QNBB 200 200
PyRol LM-TR 359 359
PyRol SD 8362 6650
SciPy CG 39 27
SciPy BFGS 136 136
SciPy TRC 78 78
SciPy L-BFGS-B 112 112

Table 2 Summary of algorithms performance

Fig. 5 Convergence rate of the compared methods.
†https://scipy.org/
‡https://pyrol.readthedocs.io/en/latest/intro.html
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Fig. 6 shows found solutions by the tested methods. The SciPy CG method failed to find the damage correctly,
while all other methods found all five damages well. SciPy L-BFGS-B, BFGS, and TRC methods find solutions with
sharper damage regions and without weakening zones along the right and left sides. In contrast, the Kratos NAG-QNBB
method has more blurred damage zones.

(a) Kratos NAG-QNBB (b) PyRol LM-TR

(c) PyRol SD (d) SciPy CG

(e) SciPy L-BFGS-B (f) SciPy BFGS

(g) SciPy TRC

Fig. 6 System Identification results: weakening zones.
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VII. 3D Bridge example
The second model is represented by a FE model of the concrete bridge with steel pre-stressed cables inside, see Fig.

7. We let 77𝑍 3d tetrahedral elements represent the concrete domain and 800 beam elements represent steel tendons.
The bridge is statically loaded, and all the measured data (displacement in x-direction, Fig. 7d) is numerically generated
by solving the damaged system, Fig. 7c. The optimization process stops when the maximum error in the sensor is below
the given tolerance or the algorithm reaches 1000 functional evaluations:

max
𝑄

𝑃𝑘𝑔(𝑕𝑇𝑃𝑅
𝑄 → 𝑕𝑇 𝑄 ) < 10→6 (29)

(a) Bridge photo (b) Geometry with steel cables inside

(c) Numerically damaged regions

(d) Sensor positions and measured displacements

Fig. 7 3D Bridge Model.
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A. Algorithm tests
The tested algorithms are: SciPy Limite memory Broyden-Fletcher-Goldfarb-Shanno bounded algorithm (L-BFGS-

B), SciPy conjugate gradient algorithm (CG), SciPy Trust-Region Constrained Algorithm (TRC), PyRol the steepest
descent method with back-tracking line search, PyRol Lin-More trust region algorithm (LM-TR) and Kratos Nesterov
accelerated gradient method with Quasi-Newton Barzilai-Borwein correction line search (NAG-QNBB) and the steepest
descent method with Barzilai-Borwein method (SD-BB).

Fig. 8 shows the convergence rate to solve the system identification problem. The Kratos NAG-QNBB solves the
problem in 609 iterations and identifies all three damage regions. The Kratos SD-BB and PyRol-SD methods require
more than 1000 functional evaluations to reach the requested sensor error. As a result, they found middle damage
well, while the other two regions were only slightly identified. The SciPy CG method has done su"cient number of
optimization steps to identify the middle damage before it has been terminated with the error message: "Desired error
not necessarily achieved due to precision loss." In total, four methods are able to identify the middle damage correctly,
while only Kratos NAG-QNBB and Kratos SD-BB also identify the other two damaged zones. Other methods have
failed to find any damaged area and they converge to the local minimum next to the initial state. The SciPy TRC method
has diverged, which is very di!erent compared to the performance on the 2D plate example, where it converges the
fastest. Also, SciPy TRC has the most extensive internal computation time to find a new design point compared to other
methods.

Fig. 8 Convergence rate of the compared methods.

The warm start has been applied to help PyRol LM-TR and SciPy L-BFGS-B methods converge. 100 steepest
descent iterations have been performed using the Kratos SD-BB method to start with a better initial guess, where the
damaged regions are initially identified. However, both methods still fail to find the correct solution, and both converge
to a local minimum next to the initial state, Fig. 9.
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Method Number of Func. Eval. Number of Grad. Eval.
Kratos NAG-QNBB 609 609
Kratos SD-BB 103 103

PyRol SD 103 995
PyRol LM-TR 63 53
SciPy CG 844 832
SciPy TRC 8 8
SciPy L-BFGS-B 16 16

Table 3 Summary of algorithms performance

Fig. 9 Convergence rate of PyRol LM-TR and SciPy L-BFGS-B with warm start.
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(a) Kratos NAG-QNBB (b) Kratos SD-BB

(c) PyRol SD (d) SciPy CG

Fig. 10 Found damaged regions in the bridge example
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VIII. Conclusion
This work applies the Nesterov accelerated gradient algorithm to solve the system identification problems. It brings a

good improvement in the convergence rate compared to the steepest descent method. Combined with the Quasi-Newton
Barzilai-Borwein method, it speeds up the convergence rate by approximately six times compared to NAG with a
constant correction step and is comparable to the SciPy L-BFGS-B method. It has also been shown to be more robust
than SciPy L-BFGS-B because it is able to solve both given examples. However, the convergence rate is not enough for
large high-fidelity digital twins where each functional evaluation is very expensive. For instance, if one FEM solution of
the bridge case takes around 10 min, the solution will be found in more than 100 hours. In future research, the system
identification problem should be improved to avoid the necessity of solving the problem till very low sensor errors, for
instance, by adding additional measurements or load cases.
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