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Dopamine transients encode reward prediction
errors independent of learning rates
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SUMMARY

Biological accounts of reinforcement learning posit that dopamine encodes reward prediction errors (RPEs),
which are multiplied by a learning rate to update state or action values. These values are thought to be rep-
resented by corticostriatal synaptic weights, which are updated by dopamine-dependent plasticity. This sug-
gests that dopamine release reflects the product of the learning rate and RPE. Here, we characterize dopa-
mine encoding of learning rates in the nucleus accumbens core (NAcc) in a volatile environment. Using a task
with semi-observable states offering different rewards, we find that rats adjust how quickly they initiate trials
across states using RPEs. Computational modeling and behavioral analyses show that learning rates are
higher following state transitions and scale with trial-by-trial changes in beliefs about hidden states, approx-
imating normative Bayesian strategies. Notably, dopamine release in the NAcc encodes RPEs independent
of learning rates, suggesting that dopamine-independent mechanisms instantiate dynamic learning rates.

INTRODUCTION

Reinforcement learning describes how animals or agents learn
the value of states and actions to select actions that maximize
future expected rewards.” Reinforcement learning algorithms,
including temporal-difference learning, update state and action
values using reward prediction errors (RPEs), or the difference
between experienced and expected rewards. The rate of error-
driven learning is often assumed to be constant, but work
across humans, monkeys, rats, and mice has found behavioral
evidence for dynamic learning rates.®® In volatile environ-
ments, dynamic learning rates allow animals to learn faster
when the world is changing and slower when the world is
stable.?""

Dopaminergic inputs to the striatum, the input structure of
the basal ganglia, are thought to convey a biological RPE. In
reinforcement learning models of the basal ganglia, cortical
inputs to the striatum convey the animal’s state, with the
strength of the synapse proportional to the expected future
reward, or value, of that state.”'*'® States with higher values
have stronger synapses that are more likely to drive striatal
action selection. The strengths of these corticostriatal
synapses are updated via dopamine-dependent plasticity,
proportional to dopamine RPEs.'*'” However, reinforcement
learning algorithms update values proportional to the product
of the RPE and learning rate. It is currently unclear whether
dopamine conveys only the RPE, with other substrates
dictating the learning rate, or whether dopamine encodes
the RPE scaled by the learning rate. These scenarios are
indistinguishable if learning rates are static. Here, we lever-
aged the fact that reinforcement learning is dynamic in chang-
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ing environments to characterize dopamine encoding of
learning rates in the nucleus accumbens core (NAcc) by
recording dopamine release in rats performing a task with
latent reward states.

RESULTS

Rats use a dynamic learning rate

We trained rats on a self-paced temporal wagering task with
semi-observable reward blocks'® (Figures 1A and 1B). Rats
were offered different volumes of water rewards (5, 10, 20, 40,
and 80 pL), cued by an auditory tone. On 75%-85% of trials, re-
wards were delivered after variable, unpredictable delays drawn
from an exponential distribution. On 15%-25% of trials, rewards
were withheld. The rats could choose to wait for the water reward
or could opt out at any time to start a new trial. We introduced
uncued blocks of trials with differing reward statistics; low
blocks, which offered the three smallest rewards (5, 10, and
20 pl), and high blocks, which offered the three largest rewards
(20, 40, and 80 pL), interleaved with mixed blocks, which offered
all rewards (Figure 1B).

We measured the time between the rat’s final poke in the
reward or “opt-out” port and the start of the next trial (trial initi-
ation time). Trial initiation times were inversely proportional to
the value of the environment and provided a continuous behav-
ioral readout of rats’ estimates of state values.'® Rats were
slower to initiate trials in low blocks compared to high blocks
(Figures 1C and 1D). Furthermore, when we regressed initiation
times against previous reward offers, coefficients were larger
for more recent offers and gradually decreased for more distant
trials (Figure 1E). This pattern is consistent with canonical
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Figure 1. Trial initiation times are sensitive
to previous rewards and blocks

(A) Task schematic. Rats initiate trials by poking in a
center port. Auditory tones convey reward offers of
different volumes, which are delivered with unpre-
dictable delays, and are withheld on a subset of

reward trials.
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reinforcement learning algorithms, which estimate the value of
the environment as a recency-weighted average of previous re-
wards. We focused on trial initiation times because our previous
work found that initiation times reflected state value estimates
that were updated consistent with standard reinforcement
learning algorithms, whereas willingness to wait during the
reward delay reflected more complex state inference processes
that are distinct from these standard algorithms. '®

In reinforcement learning, the decay time of previous trial
coefficients is directly proportional to the learning rate param-
eter, which is often assumed to be static. However, examina-
tion of trial initiation times aligned to transitions from low or
high blocks into mixed blocks revealed two phases of learning:
an initial phase of fast learning followed by slower dynamics
later in the block, suggestive of higher learning rates immedi-
ately following block transitions (Figures 2A and S1). Previous
work found that the overshoot in trial initiation times after
block transitions could not be explained by a static learning
rate'® and is robust across rats (Figure S2). Consistent with
this result, when we regressed trial initiation times against pre-
vious rewards separately for the first and last 10 trials of each
mixed block, rats integrated over fewer trials earlier in the
block (i.e., had higher learning rates) compared to later in
the block (Figures 2B, 2C, S3, and S4). Across rats, exponen-
tial functions fit to the regression coefficients had significantly
smaller time constants (higher learning rates) for early versus
late trials (Figure 2D).

We next separately fit a simple reinforcement learning model
with a static learning rate to early and late trials (Figure 2E).
The model estimated the value of the environment according
to the recursive equation Vi1 = Vi+a(R: — V4), where Ry —
V: is the RPE, and a is a learning rate that dictates the dynamics
with which values are updated over trials. The trial initiation times
were modeled as inversely proportional to this value, which
captured the rat’s behavior on held-out test data'® (Figure 2F).
Models fit to early mixed-block trials had significantly higher
learning rates (Figure 2G) and fewer significant previous trial co-
efficients (Figure 2H) compared to models fit to late mixed-block
trials. Model comparison confirmed that learning rates fit to early
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and late parts of the block provided better fits to held-out test
data in early and late block trials, respectively (Figure 2H). Over-
all, these data suggest that rats use a dynamic learning rate that
is higher following block transitions compared to later in the
block.

Rats’ dynamic learning rates reflect changing beliefs
about reward blocks

Previous work found that animals adjust their learning rates de-
pending on the volatility in the environment, since it is advanta-
geous to learn faster in dynamic environments.**” To determine
which features of the environment the rats were using to adjust
their learning rates, we tested several classes of dynamic
learning rate models (Figure 3A). Previous studies have pro-
posed that subjects might scale their learning rates based on
salient events or outcomes.'®?° We modeled salience as pro-
portional to the log-reward offer on each trial, so larger rewards
were assumed to be more salient than smaller rewards, which
we call the Mackintosh model."®

Alternatively, previous work suggests that it is advantageous
to modulate learning rates based on perceived volatility in the
environment.>>?" When volatility is high, previous outcomes
are less predictive of future states, so agents should use a higher
learning rate to disregard distal outcomes. We tested two clas-
ses of volatility-based dynamic learning rate models. First, the
model-free Pearce-Hall model adjusts the learning rate propor-
tional to the unsigned RPE of the previous trial.?? Intuitively, large
RPEs indicate that reward expectations are inaccurate, poten-
tially because the environment is changing. Second, we charac-
terized a “model-sensitive” model we developed previously, '®
which we refer to as the A Belief model. This model uses Bayes’
rule to infer the probability of being in each block given the rat’s
current and past reward offers and scales the learning rate by the
trial-by-trial change in the belief about the block (i.e., change in
posterior probability; STAR Methods).

We used these models to generate qualitative predictions
about initiation time behavior. First, the models make distinct
predictions about how the variance of the initiation times should
change within mixed blocks. Higher learning rates imply higher
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variability in initiation times because the value estimate is up-
dated more on each trial. Because the mixed blocks include all
reward offers, the magnitude of RPEs is comparable both early
and late in the blocks. Therefore, the Pearce-Hall model, which
scales the learning rate by the previous unsigned RPE, predicts
similar learning rates early and late in mixed blocks and, thus,
similar initiation time variance (Figure 3C). Similarly, large re-
wards are equally likely early and late in mixed blocks, so the
Mackintosh model, which scales the learning rate with the log-
reward offer, predicts similar initiation time variance across
mixed blocks (Figure 3C). However, the A Belief model, which
scales the learning rate with the trial-by-trial change in the belief
about the inferred block, predicts higher variance in initiation
times early in the block, when beliefs are changing, compared
to late, when beliefs are stable (Figures 3B and 3C). We
measured the variance of the initiation times for the first and
last 10 trials of each mixed block and computed their log ratio
(negative values correspond to higher variance early in the
block). Consistent with the A Belief model, but not the other
models, the variance of rats’ initiation times was higher in the
early mixed block trials compared to later trials (Figure 3D).
Next, we explicitly tested a prediction from the A Belief model,
that rats’ trial-by-trial learning should depend on the change in
belief about the block, controlling for RPEs. We focused on early

Fit learning rate

the first 10 trials of each block. We
compared the trial-by-trial change in initia-
tion times for the same values of RPEs but
conditioned on whether the A Belief on that trial was high or low
(> or < 50th percentile). We found that rats changed their initia-
tion times more for both positive and negative RPEs on trials
with large changes in beliefs compared to trials with the same
binned RPEs but small changes in beliefs (Figure 3E), consistent
with the A Belief model (Figure 3F) but not the other dynamic
learning rate models (Figures 3G and 3H). In summary, rats use
knowledge about the underlying task structure to update their
learning rates.

However, it remains unclear why rats would use the A Belief
model. We found that the A Belief model approximates a norma-
tive algorithm known as Bayesian online changepoint detec-
tion.?® Bayesian online changepoint detection uses sequential
observations (e.g., reward offers) and a model of the environ-
ment to estimate the probability that the underlying distribution
generating those observations (e.g., the reward block) has
changed. These inferred transitions are called changepoints.
Specifically, on each trial, the model generates a distribution
over the number of trials since the last changepoint (run lengths)
and chooses the run length that maximizes the posterior proba-
bility (Figures 31-3K). A run length of K means the model esti-
mates that a changepoint occurred K trials ago (Figures 3J and
3K). While Bayesian online changepoint detection can correctly
estimate changepoints around block transitions in our task
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(B) Block posterior probability from the A Belief model. Beliefs change the most at block transitions.

(C) Examples of learning rate gain from (A).

(D) Trial initiation time variance early vs. late for dynamic learning rate models and rat data (Wilcoxon rank-sum test, N = 347).
(E) Change in trial initiation time for negative and positive RPE bins (inset) for large (red) or small (blue) changes in mixed-block belief (> or < 50th percentile,

Wilcoxon signed-rank test, N = 347).

(F-H) Model predictions for the (F) A Belief, (G) Pearce-Hall, and (H) Mackintosh models.
(l) Bayesian online changepoint detection model run length posterior over trials around block transitions.
(J and K) Example changepoint posteriors for a trial (J) two trials from a changepoint or (K) 20 trials from a changepoint. Arrows indicate trials with maximum

posterior probability.

(L) Simulated changepoint posterior for the Bayesian online changepoint detection model. Top: colored rectangles indicate true blocks, and triangles show
inferred changepoints. Bottom: cumulative probability distribution for number of trials between block transitions and inferred changepoint (N = 200 simulated

transitions).

(M) Average number of trials to detect the changepoint from the A Belief model and Bayesian online changepoint detection model (N = 200 simulated transitions; p

< 0.001, Pearson correlation).

(N) A Belief model learning rate gain correlates with changepoint probability from the Bayesian online changepoint detection model.
(O) Learning rate gain for dynamic learning rate models on inferred changepoint trials. Asterisks indicate p < 0.05. All error bars are mean + SEM.

(Figure 3L), this model is computationally expensive. On each
trial, the model iterates over all previous trials to find change-
points—the number of computations is a quadratic function of
number of trials (STAR Methods). Strikingly, we found that the
gain term from the A Belief model, which is less computationally
expensive, is highly correlated with the changepoint probability
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(Figure 3M). Over many simulated sessions, the A Belief gain
was significantly higher on trials with inferred changepoints
compared to other trials. There was no systematic relationship
between the unsigned RPE (Pearce-Hall model) or log reward
offer (Mackintosh model) and inferred changepoints (Figures
3N and 30). The A Belief model can therefore provide a simple
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approximation of a normative changepoint detection model that
allows rats to detect changes in the environment and adjust
their learning accordingly, similar to previous work that found
behavioral evidence for simpler approximations of changepoint
detection.?*

Dopamine release in the NAcc is not modulated by the
dynamic learning rate

We next sought to find neural correlates of the dynamic learning
rate in the NAcc, where dopamine is thought to mediate trial-by-
trial learning by instantiating a biological RPE.?>*® Mechanisti-
cally, dopaminergic RPEs are thought to mediate plasticity at
synapses onto medium spiny neurons, the principal cells of the
striatum, to increase (or decrease) the likelihood of taking actions
in a state that previously produced positive (or negative) RPEs.
This account of dopamine function implicitly assumes that dopa-
mine release represents the product of the learning rate and the
RPE and so should reflect dynamic learning rates in our task.

NAcc, which is thought to determine the

vigor of motivated behaviors.>® Recent
work from our lab has also found that dopamine RPEs in the
NAcc causally determine initiation times on subsequent trials.*°
We recorded dopamine release in the NAcc (N = 14; Figure S4)
using fiber photometry and a fluorescent G-protein-coupled re-
ceptor-activation-based DA sensor (GRABpa)."' We observed
robust phasic dopamine responses at the time of the offer cue
that were consistent with an RPE. First, an RPE should correlate
with reward offer. We found that NAcc dopamine release scaled
monotonically with offered reward volume in mixed blocks, with
dips for smaller rewards (Figures 4B and 4D). An RPE signal
should also scale inversely with expectations. Focusing on
20-uL trials, which appeared in all blocks, dopamine increased
on 20-pL trials in low blocks, when reward expectations were
low, and decreased on 20-puL trials in high blocks, when expec-
tations were high (Figures 4C and 4E). Third, when we regressed
NAcc dopamine release (area under the curve from 0 to 0.5 s;
AUC) against reward history, we found positive coefficients for
the current trial and negative coefficients for previous trials, a
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hallmark of RPE encoding?® (Figure 4F). Finally, NAcc dopamine
release correlated with RPEs estimated from the behavioral
model (Figures 4G and 4l). We related NAcc dopamine from
the first and last 10 trials of mixed blocks to RPEs estimated
from separate model fits to early and late block trials,
respectively.

Next, we compared NAcc dopamine release early vs. late in
the block when the rats used different learning rates. If dopamine
release is the product of the RPE and the learning rate, then
dopamine should be influenced by fewer trials in the past when
the learning rate is higher (Figure 4H inset). However, there
was no significant difference between previous trial regression
coefficients fit to NAcc dopamine release early or late in the
block (Figure 4H). This hypothesis also predicts that dopamine
release would be greater for the same RPE earlier in the block,
when the learning rate is higher, compared to later in the block,
when beliefs are stable and learning rates are lower. To account
for nonlinear encoding of RPEs, we fit separate regression lines
to dopamine encoding (AUC) of positive and negative model
RPEs for each session. There was no significant difference in
the slope parameters fit to early or late trials in each session
across rats, and this was true for both positive and negative
RPEs (Figures 41, 4J, and S5). Therefore, despite strong behav-
ioral evidence for higher learning rates earlier in mixed blocks
when beliefs about hidden states are changing, we did not find
differential NAcc dopamine dynamics between early and late
block trials.

Previous work found that the activity of ventral tegmental area
dopamine neurons can reflect beliefs about hidden task states if
rewards are probabilistic and variable in their timing.*? We there-
fore examined NAcc dopamine during the delay period. Because
rewards were omitted on a subset of trials, as animals waited for
the reward, there is ambiguity about whether they are in a re-
warded or unrewarded trial. Sorting rewarded trials based on
delay duration revealed negative dopamine ramps during the
delay (Figure 4K), consistent with previous studies.”” These
negative ramps were also apparent as different baselines when
the data were aligned to the cue indicating that a reward was
available (Figure 4L). These ramps have been interpreted as
moment-by-moment negative RPEs as the animals wait without
receiving a reward.®> When a cue indicated that a reward was
available, there was a large phasic dopamine response in the
NAcc whose magnitude scaled with the delay (Figures 4K-4M).
This pattern cannot be captured by traditional model-free tem-
poral difference learning and requires additional knowledge
about the task structure®?; the probability of being in an unre-
warded trial increases over time, so the reward cue is more un-
expected given beliefs about the trial. Therefore, NAcc dopa-
mine reflects beliefs about hidden states at the time of
probabilistic rewards but not about latent reward blocks at the
time of the offer cue.

DISCUSSION
Our results offer a nuanced, “model-sensitive” view of dopa-
mine activity in which different aspects of state inference differ-

entially modulate dopamine release in the NAcc. On one hand,
NAcc dopamine at offer cues encodes RPEs independent of
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inference about the latent reward block despite beliefs about
the blocks strongly influencing reinforcement learning and
behavior (Figures 4H-4J). This is consistent with traditional
model-free interpretations of dopamine activity. However, at
the end of the delay period, we found delay-dependent pat-
terns of NAcc dopamine release that cannot be explained by
model-free temporal difference learning, consistent with previ-
ous work*? (Figures 4K—-4M). These results add to a body of
work expanding dopamine beyond traditional, model-free
learning algorithms.>>*3

It remains unclear why some aspects of state inference modu-
late NAcc dopamine while others do not. In a conditioning para-
digm with probabilistic rewards, during the delay period, there is
ambiguity about the state the animal is in: whether it is in the
delay period or whether it has transitioned to the inter-trial inter-
val on an unrewarded trial. In other words, there is uncertainty
about the current state. However, this type of uncertainty is qual-
itatively different from the uncertainty about the latent reward
blocks in our task. Uncertainty in the timing of probabilistic re-
wards reflects expected, or irreducible, uncertainty.?’ Even
with a perfect model of the world, there is inherent uncertainty
in the outcome of stochastic events—one can know the proba-
bilities of a coin toss but cannot predict the outcome of the
next flip. This contrasts with unexpected uncertainty, which is
related to the volatility of the environment—a perfect model of
the world now may not be perfect if the world changes.?"** In
other words, unexpected uncertainty about the reward blocks
can be reduced with additional observations, while expected un-
certainty about probabilistic reward timing is irreducible. We find
that dopamine release in the NAcc reflects expected but not un-
expected uncertainty. Together, these results suggest that
different types of uncertainty may map onto neurobiologically
distinct mechanisms with potentially dissociable consequences
for learning.®:21:34:44-46

Previous work has suggested that dopamine release in the
NAcc directly encodes the learning rate,*” implicating dopamine
in a broader class of policy-learning algorithms beyond tradi-
tional value learning. However, our work examines distinct
phases of learning from Coddington et al.*” We exclusively re-
corded from expert, as opposed to naive, animals. Presumably,
our expert rats have already learned their final behavioral policy
and must only learn about the current state of the environment.
By contrast, task-naive animals are simultaneously learning the
associative structure of the environment and how to optimally
behave in that environment. Such distinct learning goals likely
engage NAcc dopamine differently and could explain the differ-
ences in our findings.

One key future question is what could be driving the dynamic
learning rate at the level of synaptic plasticity. Previous work has
shown that plasticity at corticostriatal synapses depends on the
coordinated activity of dopamine’*~'” with other neuromodula-
tors, like acetylcholine*® and serotonin.*®=>' Serotonin neurons,
which project to the NAcc from the dorsal raphe nucleus,®”
have been shown to encode unexpected uncertainty” and can
causally influence learning rates in mice.® Other neuromodula-
tors that have been hypothesized to encode unexpected uncer-
tainty, like norepinephrine,”* do not strongly project to the
NAcc®~°° but could influence learning in other neural circuits.
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Future studies clarifying task-related dynamics of other neuro-
modulators may elucidate the circuit mechanisms that combine
dopaminergic RPEs with trial-by-trial changes in beliefs to
modulate the rate of learning at behavioral and synaptic levels.

Limitations of the study

Our current study focused on recording dopamine release in the
NAcc. However, given recent findings that show considerable
heterogeneity in dopamine activity across the striatum,®”~%®
additional studies are required to understand how dopamine ac-
tivity across striatal subregions is modulated by hidden-state
inference. More specific recording techniques, such as optoge-
netically tagged recordings or cell-type-specific fluorescent im-
aging, may help elucidate the dynamics of different classes of
dopamine neurons and their implications for behavior.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

GFP Polyclonal Antibody

Goat anti-Rabbit IgG (H + L) Cross-Adsorbed
Secondary Antibody, Alexa Fluor™ 488

Thermo Fisher Scientific
Thermo Fisher Scientific

Cat# A11122; RRID: AB_221569
Cat# A11008; RRID: AB_143165

Bacterial and virus strains

pAAV-hsyn-GRAB_DA2h
pENN.AAV.CB7.Cl.mCherry.WPRE.RBG (AAV9)

Sun et al.*’

James M. Wilson

Addgene AAV9; 140554-AAV9
Addgene AAV9; 105544-AAV9

Deposited data

Raw and analyzed behavioral data
Raw and analyzed photometry data

This paper

Golden et al. *°

https://doi.org/10.5281/zenodo.13748709
https://doi.org/10.5281/zenodo.13891951

Experimental models: Organisms/strains

Long-Evans Rats Hilltop Lab Animals Hla®(LE)CVF®

Long-Evans Rat Charles River 006

Software and algorithms

MATLAB MathWorks R2023a, R2024a

Custom analysis for behavioral and photometry data This paper https://doi.org/10.5281/zenodo.13819804

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A total of 347 Long-evans rats (Rattus norvegicus; 215 males, 132 females) between the ages of 6 and 24 months old. We previously
found no differences between male and female rats.'® We found no effect of age on the main behavioral findings (Figure S6). This
cohort included 24 TH-Cre rats, 8 ADORA2A-Cre, and 3 DRD1-Cre rats. We also did not find any effect of genotype on the main
behavioral findings (Figure S7) Animal procedures were approved by the New York University Animal Welfare Committee (UAWC
#2021-1120) and carried out in accordance with National Institute of Health standards.

Rats were typically pair-housed. To motivate behavioral performance, rats were water restricted from Monday to Friday, during
which time they received water during behavioral training sessions, typically 90 min, followed by 20 min of ad libitum water. Rats
were given ad libitum water following training on Friday though mid-day Sunday. Rats were weighed daily.

METHOD DETAILS

Behavioral training

We have previously published a detailed description of the behavioral shaping procedure for this task. '® Rats performed a self-paced
temporal wagering task. Rats initiated trials by maintaining a nose poke in the center port for a variable period drawn from a uniform
distribution over [0.8, 1.2] seconds. As the rat maintained the nose poke, the reward offer on that trial was conveyed by an auditory
tone [1, 2, 4, 8, 16 kHz], which mapped onto one of five rewards ([5, 10, 20, 40, 80ulL] for males, [4, 8, 16, 32, 64uL] for females).
Following the reward tone presentation, rats could either wait a random delay drawn from an exponential distribution with mean
of 2.5 s to receive their reward, or could opt-out at any time to immediately start a new trial. On 15-25% of trials (catch trials), reward
was withheld to force the rats to exercise the opt-out option.

Training for male and female rats

We collected data from both male and female rats (215 males, 134 females). Male and female rats were trained with the same shaping
procedure. Early cohorts of female rats experienced the same reward set as the males. However, because female rats are smaller,
they consumed less water and performed substantially fewer trials than the males. Therefore, to obtain sufficient behavioral trials
from both, females reward offers were slightly reduced while maintaining the logarithmic spacing: [4, 8, 16, 32, 64uL]. For behavioral
analysis, reward volumes were treated as equivalent to the corresponding volume for the male rats (e.g., 16uL trials for female rats
were treated the same as 20yl trials for male rats). The auditory tones were identical to those used for male rats. We did not observe
any significant differences between the male and female rats, in terms of contextual effects, or behavioral dynamics at block tran-
sitions.'® Photometry data in this study was collected from females.
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Criteria for including behavioral data

To determine whether rats sufficiently understood the mapping between auditory cues and water reward volumes, we evaluated their
wait times on catch trials as a function of offered rewards. For each session, we first removed wait times that were greater than two
standard deviations from the mean, which likely reflected lapses in attention/task disengagement. Next, we regressed wait time
against offered reward. We included sessions with significant positive slopes that preceded at least one other session with a positive
slope. We excluded trials with trial initiation times above the 99th percentile of the rat’s cumulative trial initiation time distribution
pooled over sessions.

Behavioral modeling
To model trial initiation times, we developed computational models based on,
given the value of the environment, V, as

1859 which describe the optimal trial initiation time, T1,

D
T ==
%

where D is a scale parameter. We developed multiple computational models that instantiated different algorithms for estimating the
value of the environment. We estimate the value of the environment on trial ¢, V;, by the recursive formula

Vir = Vi+ (R = V)

where a; = g;- g is the learning rate, g is the learning rate gain, and R; is the log, (reward) on the current trial. For the static learning
rate model, g = 1 for all trials.

Dynamic learning rate models
We tested several models of dynamic learning rates.

(1) Mackintosh surprise model In this model, the gain on the learning rate is proportional to the salience of that trial,'® which we
assumed to be directly proportional to the reward offer volume on that trials so,

gt = log,(Ry)

where «q is the base learning rate.
Pearce-Hall model In this model, the learning rate gain is directly proportional to the inferred volatility of the environment.
Volatility in this model is “model-free” as estimated as the unsigned RPE on the previous trial,? so

gt = ‘RPEt_1|

©

where RPE ;_ 1 is the reward prediction error on the previous trial.

(3) A Belief model In this model, as in (2), the learning rate is directly proportional to the inferred volatility of the environment. In
this model, volatility is calculated using the trial-by-trial change in the belief of being in a mixed block, using Bayes rule and
knowledge of the underlying block structure,'® so

1

%=1 B, - B

where B; = P(Block = Mixed| R;). We used the mixed block probability as a summary statistic for the full posterior distri-
bution over blocks, as there is always some ambiguity about whether the animal is in a mixed block, and the block probabilities
all need to sum to one. Therefore, changes in the probability of being in a mixed block reflect changes in the full posterior dis-
tribution on each trial.'®

Fitting and evaluating models

We fit the models by minimizing the negative-log-likelihood of the the model using MATLAB’s constrained minimization function,
fmincon, assuming log-normal noise with constant variance (variance = 1.7, selected from cross-validated grid search on a subset
of rats). We used 100 random seeds and selected the fit with the lowest negative-log-likelihood. We have previously validated our
fitting procedure by fitting the models to generative datasets with known parameters.'® We used 5-fold cross-validation to fit five
sets of parameters to each rat (one for each fold), and selected the parameters with the lowest negative log likelihood per trial on
that fold’s test set. Finally, we evaluated the performance of the model fits on a final held-out validation set of trials.

We fit the static learning rate model to the rats’ trial initiation times in early and late trials separately. From previous work,
sequential learning effects were primarily driven by post-violation trials,'® so we fit the model to only post-violation trials. Further-
more, the distribution of trial initiation times was generally heavy-tailed, and seemed to reflect multiple processes on different in-
teracting timescales (e.g., reward sensitivity on short timescales, attention, motivation, and satiety on longer timescales). To cap-
ture only task-engaged trials, we removed trial initiation times above the 90th percentile of trial initiation times pooled over
sessions for each rat.
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Bayesian Online Changepoint Detection model
We compared the dynamic learning rate models to a normative Bayesian online changepoint detection model.?®> This model
identifies abrupt changes, or changepoints, in the underlying generative distribution of sequentially observed data, which in
our case corresponds to block transitions. The time between changepoints is called the run-length. On trial t, the model looks
at the last N trials (N ranges from 0 to f) and estimates the probability that these N observations come from a different distri-
bution than the trials before them. If that probability is high, then the model returns a run-length of N, meaning a changepoint
occurred N trials ago.

Let x; denote the observation on trial t and x;,+, be the sequence of observations from t1 to t, inclusive, i.e., {X¢, Xt +1,....Xt, - 1,Xt, }-

On trial t, the run-length, r; can range from 0 to t. Finally, given a run-length, r, let x(m be the observations since the last changepoint,
that is, x;_ ,.+. We calculate the probability of each potential run-length, known as the run-length posterior, with

P(r: | X14) = P(rs,X1.) / P(X1.t)

We can simplify the above by marginalizing over the previous run-lengths, r; _ 1, applying the chain rule, and the assumptions that
our data are independently generated, giving us

rt>X1t ZP re |- 1 (t

-1

rm.,X§"">)P(rt71,x1;t71)

Thefirstterm, P(r; | r; _ 1) is called the changepoint prior and captures how often changepoints occur, which depends on the hazard
rate. Given a previous run-length, r; _ 1, the next run-length can only be r; 1 + 1 (a changepoint did not occur) or 0 (a changepoint did
occur). As described in,'® for simplicity, we assume that the hazard rate is constant with a value of 1/40, so we have

E, ifrt:()

Plrln-1) = 1—41—07 ifre=ri_1+1

0, else

The second term, P(x; | ri— 1,x§" ‘)), is called the predictive probability. This term calculates the high level intuition given above:

given some hypothetical run-length, are the data since that run-length consistently from one distribution. To calculate this, we as-
sume that the rats have knowledge of the underlying block structure. We can calculate the predictive probability by marginalizing
over the blocks, B, giving us

P (xt

reog, X\ ) Zth | B) < reog, X\ ))
The first term is simply the likelihood of x; given a block. We can use Bayes rule to calculate the second term, giving us
P(B ‘ I’t,1,X(r"1)) o P(X(rt’”

= [I PxIBP®B)

I=t—ri_1

B)P(B)

which calculates the likelihood that each datapoint since the hypothetical changepoint belongs to each of the three blocks, and
weights by the prior for that block. For simplicity, we assume that the block prior is constant and flat, meaning P(B) = 1/3 for all
blocks.

The final term, P(r;_1,X1.t—1) is simply the posterior from the previous trial, so we can recursively update the posterior using the
estimate from the previous trial, multiplied by the changepoint prior and the predictive probability, appropriately normalized. The
probability of a changepoint was defined as the probability density atr; = 1, that is, the probability that a changepoint just occurred.

On each trial, the number of computations grows linearly for each trial, so the model has time complexity O(N?), meaning that
doubling the number of trials roughly quadruples the number of computations, which can become costly for long sessions. For
this paper, following,?® we implement a modified version that only calculates run-lengths < 75 trials. This modification allows us
to run the model with constant time complexity, O(0), and returns essentially equivalent results as the full model since changepoints
occur every 40 trials and thus we do not expect potential run lengths > 75. It is worth noting, however, that this truncated implemen-
tation still requires 75 computations per trial and requires remembering the previous 75 rewards in order, so is still unlikely to be
feasible for rats to be performing.

Sterotaxic surgeries

We performed all surgeries using a Neurostar Robot Stererotaxic system on rats after 4 months of age. All rats were induced with
3% isofluorane in oxygen at a flow rate of 2.5 L/min, which was reduced to 2% isofluorane in oxygen at a flow rat of 1.75 L/min
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for maintenance for the duration of the procedure. NAcc injections and implants were targeted to AP 1.3; ML 1.65; DV -6.9 with an
8 — 10 ° angle from the midline for bilateral implants.

Photometry

We measured dopamine release using fiber photometry and GRAB pa sensors (AddGene #140554). We injected AAV9-hsyn-
GRAB_DA2h to drive expression of the GRAB sensor, as well as AAV1-CB7-Cl-mCherry-WPRE-RBG (AddGene #105544)
to drive the expression of mCherry to correct for motion artificats. Rats received 60 nL, both delivered over a range of DV
values. We implanted 400um, 0.5 NA chronically implantable optic fibers (Thorlabs) over the injection site (DV -6.7 to —6.9).
We simultaneously recorded GRAB pa and mCherry fluorescence with Doric Lenses hardware and software (Doric Neurosci-
ence Studio).

We preprocessed the data and corrected for motion using Two-channel Motion Artifict Correction (TMAC).”° First, slow changes in
the DC signal due to photobleaching over time were removed by subtracting an exponential decay fit to the session. Next, TMAC
removed motion artifacts from the GRAB channel using the control fluorescent channel (either mCherry of isosbestic recordings
of GFP). Briefly, TMAC subtracts motion artifacts inferred from the control channel, while accounting for statistically independent
sources of noise in both channels. For a subset of rats, we corrected for motion artifacts using both the mCherry signal as well as
isosbestic recordings of GFP. We found similar results for both methods. Finally, individual sessions are z-scored using the entire
sessions mean and standard deviation (Figure S8).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sensitivity to reward blocks

To assess sensitivity to blocks across the population, we z-scored each rat’s trial initiation time using the cumulative mean and stan-
dard deviation pooled across sessions, and averaged z-scored trial initiation times over blocks. For the example rat, we compared
the median trial initiation time pairwise for each possible pair of blocks using a Wilcoxon sign-rank test. Across the population, we
compared average trial initiation time for each pair of blocks using a paired Wilcoxon sign-rank test.

Block transition dynamics

To examine how behaviors changed around block transitions, for each rat, we z-scored their trial initiation times. We removed satiety
effects by regressing trial initiation times against trial number and subtracted the fit. We then averaged the z-scored trial initiation
times based on their distance from a block transition, including violation trials (e.g., averaged all trials five trials before a block tran-
sition). Finally, for each transition type, we smoothed the average transition curve using a causal filter (in order to not introduce pre-
transition artifacts) of 10 trials individually for each rat. Finally, we averaged transition curves across rats for each transition type.

Previous reward regression

To capture the trial history effects, we regressed trial initiation time against previous rewards. We focused on mixed blocks only. We
linearized the rewards by taking the binary logarithm of each reward, log, (reward), and set the reward for unrewarded trials (e.g.,
violation or catch trials) to 0, since rats do not receive a reward on those trials. We regressed the previous nine log, (reward) offers,
not including the current trial, with a constant offset using MATLAB’s builtin regress function. We set the first non-significant coef-
ficient (coefficient whose 95% confidence interval overlapped with 0) and all subsequent coefficients to 0. To quantify the timescale
of the coefficients, we fit a negative exponential decay curve of the form coefficient coefficient; = D exp (—x /7) to each rat’s previ-
ous trial coefficients, and reported the time constant (7) for each rat. If rats had one or fewer significant previous trial coefficients, tau
was reported as NaN. For early and late block regressions, we used an identical procedure, but only on the first or last 10 trials of a
mixed block. To assess the number of significant previous coefficients, for each regression coefficient, we compared the population
median coefficient to 0 using a Wilcoxon signed-rank test. To compare 7 early and late T fit to the regression coefficients, we used a
paired Wilcoxon Sign-rank test across the population.

Photometry

For all photometry analyses, to quantify dopamine release, we measured the AUC of the dopamine response by integrating the dopa-
mine fluorescence from 0 to 0.5 s from the event alignment. DA signals were not baseline corrected with the exception of Figure 4M.
In that case, for each trial, baseline was defined as the average response from 0.5 to 0 s before delay end, which was subtracted out
from that trial. Except where noted, all dopamine analyses were restricted to mixed blocks. To assess reward history effects on NAcc
dopamine fluorescence, we used similar methods as above, with the inclusion of an additional coefficient for the current trial offer. To
compare dopamine AUC to model estimates of reward prediction error for early and late trials (first or last 10 trials), we used the RPE
estimates fit to the respective trial type and the dopamine responses only on those trials. Then for each individual session, we re-
gressed the NAcc dopamine response against RPEs separately for positive and negative RPEs, given the rectification of negative
RPE encoding, using MATLAB’s builtin robustfit function.
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