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SUMMARY

Biological accounts of reinforcement learning posit that dopamine encodes reward prediction errors (RPEs),
which are multiplied by a learning rate to update state or action values. These values are thought to be rep-
resented by corticostriatal synaptic weights, which are updated by dopamine-dependent plasticity. This sug-
gests that dopamine release reflects the product of the learning rate and RPE. Here, we characterize dopa-
mine encoding of learning rates in the nucleus accumbens core (NAcc) in a volatile environment. Using a task
with semi-observable states offering different rewards, we find that rats adjust how quickly they initiate trials
across states using RPEs. Computational modeling and behavioral analyses show that learning rates are
higher following state transitions and scale with trial-by-trial changes in beliefs about hidden states, approx-
imating normative Bayesian strategies. Notably, dopamine release in the NAcc encodes RPEs independent
of learning rates, suggesting that dopamine-independent mechanisms instantiate dynamic learning rates.

INTRODUCTION

Reinforcement learning describes how animals or agents learn

the value of states and actions to select actions that maximize

future expected rewards.1 Reinforcement learning algorithms,

including temporal-difference learning, update state and action

values using reward prediction errors (RPEs), or the difference

between experienced and expected rewards. The rate of error-

driven learning is often assumed to be constant, but work

across humans, monkeys, rats, and mice has found behavioral

evidence for dynamic learning rates.2–8 In volatile environ-

ments, dynamic learning rates allow animals to learn faster

when the world is changing and slower when the world is

stable.9–11

Dopaminergic inputs to the striatum, the input structure of

the basal ganglia, are thought to convey a biological RPE. In

reinforcement learning models of the basal ganglia, cortical

inputs to the striatum convey the animal’s state, with the

strength of the synapse proportional to the expected future

reward, or value, of that state.1,12,13 States with higher values

have stronger synapses that are more likely to drive striatal

action selection. The strengths of these corticostriatal

synapses are updated via dopamine-dependent plasticity,

proportional to dopamine RPEs.14–17 However, reinforcement

learning algorithms update values proportional to the product

of the RPE and learning rate. It is currently unclear whether

dopamine conveys only the RPE, with other substrates

dictating the learning rate, or whether dopamine encodes

the RPE scaled by the learning rate. These scenarios are

indistinguishable if learning rates are static. Here, we lever-

aged the fact that reinforcement learning is dynamic in chang-

ing environments to characterize dopamine encoding of

learning rates in the nucleus accumbens core (NAcc) by

recording dopamine release in rats performing a task with

latent reward states.

RESULTS

Rats use a dynamic learning rate
We trained rats on a self-paced temporal wagering task with

semi-observable reward blocks18 (Figures 1A and 1B). Rats

were offered different volumes of water rewards (5, 10, 20, 40,

and 80 mL), cued by an auditory tone. On 75%–85% of trials, re-

wards were delivered after variable, unpredictable delays drawn

from an exponential distribution. On 15%–25% of trials, rewards

werewithheld. The rats could choose towait for thewater reward

or could opt out at any time to start a new trial. We introduced

uncued blocks of trials with differing reward statistics; low

blocks, which offered the three smallest rewards (5, 10, and

20 mL), and high blocks, which offered the three largest rewards

(20, 40, and 80 mL), interleaved with mixed blocks, which offered

all rewards (Figure 1B).

We measured the time between the rat’s final poke in the

reward or ‘‘opt-out’’ port and the start of the next trial (trial initi-

ation time). Trial initiation times were inversely proportional to

the value of the environment and provided a continuous behav-

ioral readout of rats’ estimates of state values.18 Rats were

slower to initiate trials in low blocks compared to high blocks

(Figures 1C and 1D). Furthermore, when we regressed initiation

times against previous reward offers, coefficients were larger

for more recent offers and gradually decreased for more distant

trials (Figure 1E). This pattern is consistent with canonical
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reinforcement learning algorithms, which estimate the value of

the environment as a recency-weighted average of previous re-

wards. We focused on trial initiation times because our previous

work found that initiation times reflected state value estimates

that were updated consistent with standard reinforcement

learning algorithms, whereas willingness to wait during the

reward delay reflected more complex state inference processes

that are distinct from these standard algorithms.18

In reinforcement learning, the decay time of previous trial

coefficients is directly proportional to the learning rate param-

eter, which is often assumed to be static. However, examina-

tion of trial initiation times aligned to transitions from low or

high blocks into mixed blocks revealed two phases of learning:

an initial phase of fast learning followed by slower dynamics

later in the block, suggestive of higher learning rates immedi-

ately following block transitions (Figures 2A and S1). Previous

work found that the overshoot in trial initiation times after

block transitions could not be explained by a static learning

rate18 and is robust across rats (Figure S2). Consistent with

this result, when we regressed trial initiation times against pre-

vious rewards separately for the first and last 10 trials of each

mixed block, rats integrated over fewer trials earlier in the

block (i.e., had higher learning rates) compared to later in

the block (Figures 2B, 2C, S3, and S4). Across rats, exponen-

tial functions fit to the regression coefficients had significantly

smaller time constants (higher learning rates) for early versus

late trials (Figure 2D).

We next separately fit a simple reinforcement learning model

with a static learning rate to early and late trials (Figure 2E).

The model estimated the value of the environment according

to the recursive equation Vt+1 = Vt +aðRt � VtÞ, where Rt �
Vt is the RPE, and a is a learning rate that dictates the dynamics

with which values are updated over trials. The trial initiation times

were modeled as inversely proportional to this value, which

captured the rat’s behavior on held-out test data18 (Figure 2F).

Models fit to early mixed-block trials had significantly higher

learning rates (Figure 2G) and fewer significant previous trial co-

efficients (Figure 2H) compared to models fit to late mixed-block

trials. Model comparison confirmed that learning rates fit to early

and late parts of the block provided better fits to held-out test

data in early and late block trials, respectively (Figure 2H). Over-

all, these data suggest that rats use a dynamic learning rate that

is higher following block transitions compared to later in the

block.

Rats’ dynamic learning rates reflect changing beliefs
about reward blocks
Previous work found that animals adjust their learning rates de-

pending on the volatility in the environment, since it is advanta-

geous to learn faster in dynamic environments.3,5,7 To determine

which features of the environment the rats were using to adjust

their learning rates, we tested several classes of dynamic

learning rate models (Figure 3A). Previous studies have pro-

posed that subjects might scale their learning rates based on

salient events or outcomes.19,20 We modeled salience as pro-

portional to the log-reward offer on each trial, so larger rewards

were assumed to be more salient than smaller rewards, which

we call the Mackintosh model.19

Alternatively, previous work suggests that it is advantageous

to modulate learning rates based on perceived volatility in the

environment.3,5,21 When volatility is high, previous outcomes

are less predictive of future states, so agents should use a higher

learning rate to disregard distal outcomes. We tested two clas-

ses of volatility-based dynamic learning rate models. First, the

model-free Pearce-Hall model adjusts the learning rate propor-

tional to the unsigned RPE of the previous trial.22 Intuitively, large

RPEs indicate that reward expectations are inaccurate, poten-

tially because the environment is changing. Second, we charac-

terized a ‘‘model-sensitive’’ model we developed previously,18

which we refer to as the D Belief model. This model uses Bayes’

rule to infer the probability of being in each block given the rat’s

current and past reward offers and scales the learning rate by the

trial-by-trial change in the belief about the block (i.e., change in

posterior probability; STAR Methods).

We used these models to generate qualitative predictions

about initiation time behavior. First, the models make distinct

predictions about how the variance of the initiation times should

change within mixed blocks. Higher learning rates imply higher

A

B C D E

Figure 1. Trial initiation times are sensitive

to previous rewards and blocks

(A) Task schematic. Rats initiate trials by poking in a

center port. Auditory tones convey reward offers of

different volumes, which are delivered with unpre-

dictable delays, and are withheld on a subset of

trials.

(B) Block structure.

(C and D) Average trial initiation times for a single

rat (p < 0.01, Wilcoxon rank-sum test) (C) and

all rats (p � 0.001, Wilcoxon signed-rank test,

N = 347) (D) are sensitive to block.

(E) Regression coefficients of previous rewards pre-

dicting trial initiation times across rats (*p < 0.05,

Wilcoxonsigned-rank test,N=347). All errorbarsare

mean ± SEM.
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variability in initiation times because the value estimate is up-

dated more on each trial. Because the mixed blocks include all

reward offers, the magnitude of RPEs is comparable both early

and late in the blocks. Therefore, the Pearce-Hall model, which

scales the learning rate by the previous unsigned RPE, predicts

similar learning rates early and late in mixed blocks and, thus,

similar initiation time variance (Figure 3C). Similarly, large re-

wards are equally likely early and late in mixed blocks, so the

Mackintosh model, which scales the learning rate with the log-

reward offer, predicts similar initiation time variance across

mixed blocks (Figure 3C). However, the D Belief model, which

scales the learning rate with the trial-by-trial change in the belief

about the inferred block, predicts higher variance in initiation

times early in the block, when beliefs are changing, compared

to late, when beliefs are stable (Figures 3B and 3C). We

measured the variance of the initiation times for the first and

last 10 trials of each mixed block and computed their log ratio

(negative values correspond to higher variance early in the

block). Consistent with the D Belief model, but not the other

models, the variance of rats’ initiation times was higher in the

early mixed block trials compared to later trials (Figure 3D).

Next, we explicitly tested a prediction from the D Belief model,

that rats’ trial-by-trial learning should depend on the change in

belief about the block, controlling for RPEs. We focused on early

A B C

D E F

G H I

Figure 2. Rats use a higher learning rate

early in mixed blocks

(A) Trial initiation times aligned to transitions into

mixed blocks from low (blue) and high (red) blocks,

smoothed with a causal filter of size 10 trials.

(B and C) Previous reward regression coefficients

for (B) early and (C) late mixed-block trials (Wil-

coxon signed-rank test, N = 347). Insets show

regression coefficients from an example rat (solid)

overlaid with exponential fits (dashed).

(D) Difference in time constant, tau, of exponential

decay fit to early and late mixed-block regression

coefficients across rats. An arrow indicates mean

(p < 0.001, paired Wilcoxon signed-rank test,

N = 347).

(E) Model schematic.

(F) Example model performance on held-out late-

trial test data.

(G) Recovered learning rate parameters for early

and late mixed-block training data across rats

(p < 0.001, Wilcoxon signed-rank test, N = 347).

(H) Average previous trial regression from model

fits to early (purple) or late (green) trials across rats

(N = 347).

(I) Comparing negative log likelihood of early and

late parameters on held-out test data. White circles

indicate mean (Wilcoxon signed-rank test,N= 347).

*p < 0.05. All error bars are mean ± SEM.

trials in the block, when there should be a

broader range of beliefs to increase statis-

tical power. We estimated RPEs using

model parameters fit to behavior from

the first 10 trials of each block. We

compared the trial-by-trial change in initia-

tion times for the same values of RPEs but

conditioned on whether the D Belief on that trial was high or low

(> or < 50th percentile). We found that rats changed their initia-

tion times more for both positive and negative RPEs on trials

with large changes in beliefs compared to trials with the same

binned RPEs but small changes in beliefs (Figure 3E), consistent

with the D Belief model (Figure 3F) but not the other dynamic

learning rate models (Figures 3G and 3H). In summary, rats use

knowledge about the underlying task structure to update their

learning rates.

However, it remains unclear why rats would use the D Belief

model. We found that the D Belief model approximates a norma-

tive algorithm known as Bayesian online changepoint detec-

tion.23 Bayesian online changepoint detection uses sequential

observations (e.g., reward offers) and a model of the environ-

ment to estimate the probability that the underlying distribution

generating those observations (e.g., the reward block) has

changed. These inferred transitions are called changepoints.

Specifically, on each trial, the model generates a distribution

over the number of trials since the last changepoint (run lengths)

and chooses the run length that maximizes the posterior proba-

bility (Figures 3I–3K). A run length of K means the model esti-

mates that a changepoint occurred K trials ago (Figures 3J and

3K). While Bayesian online changepoint detection can correctly

estimate changepoints around block transitions in our task
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(Figure 3L), this model is computationally expensive. On each

trial, the model iterates over all previous trials to find change-

points—the number of computations is a quadratic function of

number of trials (STAR Methods). Strikingly, we found that the

gain term from the D Belief model, which is less computationally

expensive, is highly correlated with the changepoint probability

(Figure 3M). Over many simulated sessions, the D Belief gain

was significantly higher on trials with inferred changepoints

compared to other trials. There was no systematic relationship

between the unsigned RPE (Pearce-Hall model) or log reward

offer (Mackintosh model) and inferred changepoints (Figures

3N and 3O). The D Belief model can therefore provide a simple

A B C D

E F G H

I J K L

M N O

Figure 3. Rats use changing beliefs to modulate learning rates

(A) Explanation of models.

(B) Block posterior probability from the D Belief model. Beliefs change the most at block transitions.

(C) Examples of learning rate gain from (A).

(D) Trial initiation time variance early vs. late for dynamic learning rate models and rat data (Wilcoxon rank-sum test, N = 347).

(E) Change in trial initiation time for negative and positive RPE bins (inset) for large (red) or small (blue) changes in mixed-block belief (> or < 50th percentile,

Wilcoxon signed-rank test, N = 347).

(F–H) Model predictions for the (F) D Belief, (G) Pearce-Hall, and (H) Mackintosh models.

(I) Bayesian online changepoint detection model run length posterior over trials around block transitions.

(J and K) Example changepoint posteriors for a trial (J) two trials from a changepoint or (K) 20 trials from a changepoint. Arrows indicate trials with maximum

posterior probability.

(L) Simulated changepoint posterior for the Bayesian online changepoint detection model. Top: colored rectangles indicate true blocks, and triangles show

inferred changepoints. Bottom: cumulative probability distribution for number of trials between block transitions and inferred changepoint (N = 200 simulated

transitions).

(M) Average number of trials to detect the changepoint from theDBelief model andBayesian online changepoint detectionmodel (N= 200 simulated transitions; p

< 0.001, Pearson correlation).

(N) D Belief model learning rate gain correlates with changepoint probability from the Bayesian online changepoint detection model.

(O) Learning rate gain for dynamic learning rate models on inferred changepoint trials. Asterisks indicate p < 0.05. All error bars are mean ± SEM.
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approximation of a normative changepoint detection model that

allows rats to detect changes in the environment and adjust

their learning accordingly, similar to previous work that found

behavioral evidence for simpler approximations of changepoint

detection.24

Dopamine release in the NAcc is not modulated by the
dynamic learning rate
We next sought to find neural correlates of the dynamic learning

rate in the NAcc, where dopamine is thought to mediate trial-by-

trial learning by instantiating a biological RPE.25–38 Mechanisti-

cally, dopaminergic RPEs are thought to mediate plasticity at

synapses onto medium spiny neurons, the principal cells of the

striatum, to increase (or decrease) the likelihood of taking actions

in a state that previously produced positive (or negative) RPEs.

This account of dopamine function implicitly assumes that dopa-

mine release represents the product of the learning rate and the

RPE and so should reflect dynamic learning rates in our task.

A B C

D E F G

H I J

K L M

Figure 4. Dopamine release in the NAcc en-

codes RPEs independent of learning rates

(A) Example NAcc histology and recording site

summary.

(B) NAcc dopamine aligned to offer cue by rewards

in mixed blocks for an example rat (left) and aver-

aged across rats (right, N = 14).

(C) Average NAcc dopamine response to offer cue

for 20 mL by block (N = 14).

(D) Average AUC from (B) (gray box, N = 14).

(E) Average AUC from (C) (gray box, N = 14).

(F) Reward history regression coefficients for NAcc

dopamine signal. The inset shows previous reward

coefficients (signed-rank test, N = 14).

(G) Offer cue AUC by binned late-model RPE

(N = 14).

(H) Reward history regression coefficients for NAcc

dopamine in early (purple) and late (green) trials.

Paired signed-rank test, N = 14. The inset shows

model prediction regression RPE vs. previous re-

wards for parameters fit to early vs. late trials.

(I) Example rat NAcc dopamine response by binned

RPE for early (left) and late (right) trials (solid) with

positive and negative RPE regressions (dashed).

Numbers in parentheses indicate positive and

negative slopes, respectively.

(J) Difference between early and late regression

slopes forDA forpositive (orange) andnegativeRPEs

(blue) over individual sessions for all rats. Arrows

indicate mean (N = 994 sessions, p early,plate >0:9,

one-tailed Wilcoxon signed-rank test.

(K) NAcc dopamine aligned to the beginning of the

delay period for rewarded mixed-block trials by

reward delay (N = 14).

(L) NAcc dopamine aligned to the end of the delay

period for rewarded mixed-block trials as a func-

tion of reward delay (N = 14).

(M) Baseline-corrected average AUC from (L)

(N = 14). *p < 0:05. All error bars are mean ± SEM.

We focused our recordings on the

NAcc, which is thought to determine the

vigor of motivated behaviors.39 Recent

work from our lab has also found that dopamine RPEs in the

NAcc causally determine initiation times on subsequent trials.40

We recorded dopamine release in the NAcc (N = 14; Figure S4)

using fiber photometry and a fluorescent G-protein-coupled re-

ceptor-activation-based DA sensor (GRABDA).
41 We observed

robust phasic dopamine responses at the time of the offer cue

that were consistent with an RPE. First, an RPE should correlate

with reward offer. We found that NAcc dopamine release scaled

monotonically with offered reward volume in mixed blocks, with

dips for smaller rewards (Figures 4B and 4D). An RPE signal

should also scale inversely with expectations. Focusing on

20-mL trials, which appeared in all blocks, dopamine increased

on 20-mL trials in low blocks, when reward expectations were

low, and decreased on 20-mL trials in high blocks, when expec-

tations were high (Figures 4C and 4E). Third, when we regressed

NAcc dopamine release (area under the curve from 0 to 0.5 s;

AUC) against reward history, we found positive coefficients for

the current trial and negative coefficients for previous trials, a
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hallmark of RPE encoding29 (Figure 4F). Finally, NAcc dopamine

release correlated with RPEs estimated from the behavioral

model (Figures 4G and 4I). We related NAcc dopamine from

the first and last 10 trials of mixed blocks to RPEs estimated

from separate model fits to early and late block trials,

respectively.

Next, we compared NAcc dopamine release early vs. late in

the block when the rats used different learning rates. If dopamine

release is the product of the RPE and the learning rate, then

dopamine should be influenced by fewer trials in the past when

the learning rate is higher (Figure 4H inset). However, there

was no significant difference between previous trial regression

coefficients fit to NAcc dopamine release early or late in the

block (Figure 4H). This hypothesis also predicts that dopamine

release would be greater for the same RPE earlier in the block,

when the learning rate is higher, compared to later in the block,

when beliefs are stable and learning rates are lower. To account

for nonlinear encoding of RPEs, we fit separate regression lines

to dopamine encoding (AUC) of positive and negative model

RPEs for each session. There was no significant difference in

the slope parameters fit to early or late trials in each session

across rats, and this was true for both positive and negative

RPEs (Figures 4I, 4J, and S5). Therefore, despite strong behav-

ioral evidence for higher learning rates earlier in mixed blocks

when beliefs about hidden states are changing, we did not find

differential NAcc dopamine dynamics between early and late

block trials.

Previous work found that the activity of ventral tegmental area

dopamine neurons can reflect beliefs about hidden task states if

rewards are probabilistic and variable in their timing.42 We there-

fore examined NAcc dopamine during the delay period. Because

rewards were omitted on a subset of trials, as animals waited for

the reward, there is ambiguity about whether they are in a re-

warded or unrewarded trial. Sorting rewarded trials based on

delay duration revealed negative dopamine ramps during the

delay (Figure 4K), consistent with previous studies.42 These

negative ramps were also apparent as different baselines when

the data were aligned to the cue indicating that a reward was

available (Figure 4L). These ramps have been interpreted as

moment-by-moment negative RPEs as the animals wait without

receiving a reward.32 When a cue indicated that a reward was

available, there was a large phasic dopamine response in the

NAcc whose magnitude scaled with the delay (Figures 4K–4M).

This pattern cannot be captured by traditional model-free tem-

poral difference learning and requires additional knowledge

about the task structure42; the probability of being in an unre-

warded trial increases over time, so the reward cue is more un-

expected given beliefs about the trial. Therefore, NAcc dopa-

mine reflects beliefs about hidden states at the time of

probabilistic rewards but not about latent reward blocks at the

time of the offer cue.

DISCUSSION

Our results offer a nuanced, ‘‘model-sensitive’’ view of dopa-

mine activity in which different aspects of state inference differ-

entially modulate dopamine release in the NAcc. On one hand,

NAcc dopamine at offer cues encodes RPEs independent of

inference about the latent reward block despite beliefs about

the blocks strongly influencing reinforcement learning and

behavior (Figures 4H–4J). This is consistent with traditional

model-free interpretations of dopamine activity. However, at

the end of the delay period, we found delay-dependent pat-

terns of NAcc dopamine release that cannot be explained by

model-free temporal difference learning, consistent with previ-

ous work42 (Figures 4K–4M). These results add to a body of

work expanding dopamine beyond traditional, model-free

learning algorithms.35,43

It remains unclear why some aspects of state inferencemodu-

late NAcc dopamine while others do not. In a conditioning para-

digm with probabilistic rewards, during the delay period, there is

ambiguity about the state the animal is in: whether it is in the

delay period or whether it has transitioned to the inter-trial inter-

val on an unrewarded trial. In other words, there is uncertainty

about the current state. However, this type of uncertainty is qual-

itatively different from the uncertainty about the latent reward

blocks in our task. Uncertainty in the timing of probabilistic re-

wards reflects expected, or irreducible, uncertainty.21 Even

with a perfect model of the world, there is inherent uncertainty

in the outcome of stochastic events—one can know the proba-

bilities of a coin toss but cannot predict the outcome of the

next flip. This contrasts with unexpected uncertainty, which is

related to the volatility of the environment—a perfect model of

the world now may not be perfect if the world changes.21,44 In

other words, unexpected uncertainty about the reward blocks

can be reduced with additional observations, while expected un-

certainty about probabilistic reward timing is irreducible. We find

that dopamine release in the NAcc reflects expected but not un-

expected uncertainty. Together, these results suggest that

different types of uncertainty may map onto neurobiologically

distinct mechanisms with potentially dissociable consequences

for learning.8,21,34,44–46

Previous work has suggested that dopamine release in the

NAcc directly encodes the learning rate,47 implicating dopamine

in a broader class of policy-learning algorithms beyond tradi-

tional value learning. However, our work examines distinct

phases of learning from Coddington et al.47 We exclusively re-

corded from expert, as opposed to naive, animals. Presumably,

our expert rats have already learned their final behavioral policy

and must only learn about the current state of the environment.

By contrast, task-naive animals are simultaneously learning the

associative structure of the environment and how to optimally

behave in that environment. Such distinct learning goals likely

engage NAcc dopamine differently and could explain the differ-

ences in our findings.

One key future question is what could be driving the dynamic

learning rate at the level of synaptic plasticity. Previous work has

shown that plasticity at corticostriatal synapses depends on the

coordinated activity of dopamine14–17 with other neuromodula-

tors, like acetylcholine48 and serotonin.49–51 Serotonin neurons,

which project to the NAcc from the dorsal raphe nucleus,52

have been shown to encode unexpected uncertainty7 and can

causally influence learning rates in mice.53 Other neuromodula-

tors that have been hypothesized to encode unexpected uncer-

tainty, like norepinephrine,44 do not strongly project to the

NAcc54–56 but could influence learning in other neural circuits.
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Future studies clarifying task-related dynamics of other neuro-

modulators may elucidate the circuit mechanisms that combine

dopaminergic RPEs with trial-by-trial changes in beliefs to

modulate the rate of learning at behavioral and synaptic levels.

Limitations of the study
Our current study focused on recording dopamine release in the

NAcc. However, given recent findings that show considerable

heterogeneity in dopamine activity across the striatum,57–68

additional studies are required to understand how dopamine ac-

tivity across striatal subregions is modulated by hidden-state

inference. More specific recording techniques, such as optoge-

netically tagged recordings or cell-type-specific fluorescent im-

aging, may help elucidate the dynamics of different classes of

dopamine neurons and their implications for behavior.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A total of 347 Long-evans rats (Rattus norvegicus; 215 males, 132 females) between the ages of 6 and 24 months old. We previously

found no differences between male and female rats.18 We found no effect of age on the main behavioral findings (Figure S6). This

cohort included 24 TH-Cre rats, 8 ADORA2A-Cre, and 3 DRD1-Cre rats. We also did not find any effect of genotype on the main

behavioral findings (Figure S7) Animal procedures were approved by the New York University Animal Welfare Committee (UAWC

#2021-1120) and carried out in accordance with National Institute of Health standards.

Rats were typically pair-housed. To motivate behavioral performance, rats were water restricted from Monday to Friday, during

which time they received water during behavioral training sessions, typically 90 min, followed by 20 min of ad libitum water. Rats

were given ad libitum water following training on Friday though mid-day Sunday. Rats were weighed daily.

METHOD DETAILS

Behavioral training
We have previously published a detailed description of the behavioral shaping procedure for this task.18 Rats performed a self-paced

temporal wagering task. Rats initiated trials by maintaining a nose poke in the center port for a variable period drawn from a uniform

distribution over [0.8, 1.2] seconds. As the rat maintained the nose poke, the reward offer on that trial was conveyed by an auditory

tone [1, 2, 4, 8, 16 kHz], which mapped onto one of five rewards ([5, 10, 20, 40, 80mL] for males, [4, 8, 16, 32, 64mL] for females).

Following the reward tone presentation, rats could either wait a random delay drawn from an exponential distribution with mean

of 2.5 s to receive their reward, or could opt-out at any time to immediately start a new trial. On 15–25% of trials (catch trials), reward

was withheld to force the rats to exercise the opt-out option.

Training for male and female rats
We collected data frombothmale and female rats (215males, 134 females). Male and female rats were trainedwith the same shaping

procedure. Early cohorts of female rats experienced the same reward set as the males. However, because female rats are smaller,

they consumed less water and performed substantially fewer trials than the males. Therefore, to obtain sufficient behavioral trials

from both, females reward offers were slightly reduced while maintaining the logarithmic spacing: [4, 8, 16, 32, 64mL]. For behavioral

analysis, reward volumes were treated as equivalent to the corresponding volume for the male rats (e.g., 16mL trials for female rats

were treated the same as 20mL trials for male rats). The auditory tones were identical to those used for male rats. We did not observe

any significant differences between the male and female rats, in terms of contextual effects, or behavioral dynamics at block tran-

sitions.18 Photometry data in this study was collected from females.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

GFP Polyclonal Antibody Thermo Fisher Scientific Cat# A11122; RRID: AB_221569

Goat anti-Rabbit IgG (H + L) Cross-Adsorbed

Secondary Antibody, Alexa FluorTM 488

Thermo Fisher Scientific Cat# A11008; RRID: AB_143165

Bacterial and virus strains

pAAV-hsyn-GRAB_DA2h Sun et al.41 Addgene AAV9; 140554-AAV9

pENN.AAV.CB7.CI.mCherry.WPRE.RBG (AAV9) James M. Wilson Addgene AAV9; 105544-AAV9

Deposited data

Raw and analyzed behavioral data This paper https://doi.org/10.5281/zenodo.13748709

Raw and analyzed photometry data Golden et al. 40 https://doi.org/10.5281/zenodo.13891951

Experimental models: Organisms/strains

Long-Evans Rats Hilltop Lab Animals Hla�(LE)CVF�
Long-Evans Rat Charles River 006

Software and algorithms

MATLAB MathWorks R2023a, R2024a

Custom analysis for behavioral and photometry data This paper https://doi.org/10.5281/zenodo.13819804
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Criteria for including behavioral data
To determine whether rats sufficiently understood themapping between auditory cues andwater reward volumes, we evaluated their

wait times on catch trials as a function of offered rewards. For each session, we first removed wait times that were greater than two

standard deviations from the mean, which likely reflected lapses in attention/task disengagement. Next, we regressed wait time

against offered reward. We included sessions with significant positive slopes that preceded at least one other session with a positive

slope. We excluded trials with trial initiation times above the 99th percentile of the rat’s cumulative trial initiation time distribution

pooled over sessions.

Behavioral modeling
To model trial initiation times, we developed computational models based on,18,69 which describe the optimal trial initiation time, TI,

given the value of the environment, V, as

TI =
D

V

where D is a scale parameter. We developed multiple computational models that instantiated different algorithms for estimating the

value of the environment. We estimate the value of the environment on trial t, Vt, by the recursive formula

Vt+1 = Vt +atðRt � VtÞ
where at = gt$a0 is the learning rate, g is the learning rate gain, and Rt is the log2ðrewardÞ on the current trial. For the static learning

rate model, g = 1 for all trials.

Dynamic learning rate models
We tested several models of dynamic learning rates.

(1) Mackintosh surprise model In this model, the gain on the learning rate is proportional to the salience of that trial,19 which we

assumed to be directly proportional to the reward offer volume on that trials so,

gt = log2ðRtÞ
where a0 is the base learning rate.

(2) Pearce-Hall model In this model, the learning rate gain is directly proportional to the inferred volatility of the environment.

Volatility in this model is ‘‘model-free’’ as estimated as the unsigned RPE on the previous trial,22 so

gt = jRPEt� 1j
where RPE t� 1 is the reward prediction error on the previous trial.

(3) D Belief model In this model, as in (2), the learning rate is directly proportional to the inferred volatility of the environment. In

this model, volatility is calculated using the trial-by-trial change in the belief of being in a mixed block, using Bayes rule and

knowledge of the underlying block structure,18 so

gt =
1

1 � jBt� 1 � Btj
where Bt = PðBlock = Mixedj RtÞ. We used the mixed block probability as a summary statistic for the full posterior distri-

bution over blocks, as there is always some ambiguity about whether the animal is in amixed block, and the block probabilities

all need to sum to one. Therefore, changes in the probability of being in a mixed block reflect changes in the full posterior dis-

tribution on each trial.18

Fitting and evaluating models
We fit the models by minimizing the negative-log-likelihood of the the model using MATLAB’s constrained minimization function,

fmincon, assuming log-normal noise with constant variance (variance = 1.7, selected from cross-validated grid search on a subset

of rats). We used 100 random seeds and selected the fit with the lowest negative-log-likelihood. We have previously validated our

fitting procedure by fitting the models to generative datasets with known parameters.18 We used 5-fold cross-validation to fit five

sets of parameters to each rat (one for each fold), and selected the parameters with the lowest negative log likelihood per trial on

that fold’s test set. Finally, we evaluated the performance of the model fits on a final held-out validation set of trials.

We fit the static learning rate model to the rats’ trial initiation times in early and late trials separately. From previous work,

sequential learning effects were primarily driven by post-violation trials,18 so we fit the model to only post-violation trials. Further-

more, the distribution of trial initiation times was generally heavy-tailed, and seemed to reflect multiple processes on different in-

teracting timescales (e.g., reward sensitivity on short timescales, attention, motivation, and satiety on longer timescales). To cap-

ture only task-engaged trials, we removed trial initiation times above the 90th percentile of trial initiation times pooled over

sessions for each rat.
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Bayesian Online Changepoint Detection model
We compared the dynamic learning rate models to a normative Bayesian online changepoint detection model.23 This model

identifies abrupt changes, or changepoints, in the underlying generative distribution of sequentially observed data, which in

our case corresponds to block transitions. The time between changepoints is called the run-length. On trial t, the model looks

at the last N trials (N ranges from 0 to t) and estimates the probability that these N observations come from a different distri-

bution than the trials before them. If that probability is high, then the model returns a run-length of N, meaning a changepoint

occurred N trials ago.

Let xt denote the observation on trial t and xt1 :t2 be the sequence of observations from t1 to t2, inclusive, i.e., fxt1 ;xt1+1;.;xt2 � 1;xt2g.
On trial t, the run-length, rt can range from 0 to t. Finally, given a run-length, rt, let x

ðrtÞ
t be the observations since the last changepoint,

that is, xt� rt :t. We calculate the probability of each potential run-length, known as the run-length posterior, with

Pðrt j x1:tÞ = Pðrt; x1:tÞ =Pðx1:tÞ
We can simplify the above by marginalizing over the previous run-lengths, rt� 1, applying the chain rule, and the assumptions that

our data are independently generated, giving us

Pðrt; x1:tÞ =
X
rt� 1

Pðrt j rt� 1ÞP
�
xt

��� rt� 1; x
ðrt� 1Þ
t

�
Pðrt� 1; x1:t� 1Þ

The first term,Pðrt j rt� 1Þ is called the changepoint prior and captures how often changepoints occur, which depends on the hazard

rate. Given a previous run-length, rt� 1, the next run-length can only be rt� 1 + 1 (a changepoint did not occur) or 0 (a changepoint did

occur). As described in,18 for simplicity, we assume that the hazard rate is constant with a value of 1=40, so we have

Pðrt j rt� 1Þ =

8>>>>><
>>>>>:

1

40
; if rt = 0

1 � 1

40
; if rt = rt� 1 + 1

0; else

The second term, Pðxt
��� rt� 1;x

ðrt� 1Þ
t Þ, is called the predictive probability. This term calculates the high level intuition given above:

given some hypothetical run-length, are the data since that run-length consistently from one distribution. To calculate this, we as-

sume that the rats have knowledge of the underlying block structure. We can calculate the predictive probability by marginalizing

over the blocks, B, giving us

P
�
xt

��� rt� 1; x
ðrt� 1Þ
t

�
=

X
B

Pðxt j BÞP
�
B
��� rt� 1; x

ðrt� 1Þ
t

�

The first term is simply the likelihood of xt given a block. We can use Bayes rule to calculate the second term, giving us

P
�
B
��� rt� 1; x

ðrt� 1Þ
t

�
fP

�
xðrt� 1Þ
t

��� B
�
PðBÞ

=
Yt

l = t� rt� 1

Pðxl j BÞPðBÞ

which calculates the likelihood that each datapoint since the hypothetical changepoint belongs to each of the three blocks, and

weights by the prior for that block. For simplicity, we assume that the block prior is constant and flat, meaning PðBÞ = 1=3 for all

blocks.

The final term, Pðrt� 1; x1:t� 1Þ is simply the posterior from the previous trial, so we can recursively update the posterior using the

estimate from the previous trial, multiplied by the changepoint prior and the predictive probability, appropriately normalized. The

probability of a changepoint was defined as the probability density at rt = 1, that is, the probability that a changepoint just occurred.

On each trial, the number of computations grows linearly for each trial, so the model has time complexity OðN2Þ, meaning that

doubling the number of trials roughly quadruples the number of computations, which can become costly for long sessions. For

this paper, following,23 we implement a modified version that only calculates run-lengths < 75 trials. This modification allows us

to run the model with constant time complexity, Oð0Þ, and returns essentially equivalent results as the full model since changepoints

occur every 40 trials and thus we do not expect potential run lengths > 75. It is worth noting, however, that this truncated implemen-

tation still requires 75 computations per trial and requires remembering the previous 75 rewards in order, so is still unlikely to be

feasible for rats to be performing.

Sterotaxic surgeries
We performed all surgeries using a Neurostar Robot Stererotaxic system on rats after 4 months of age. All rats were induced with

3% isofluorane in oxygen at a flow rate of 2.5 L/min, which was reduced to 2% isofluorane in oxygen at a flow rat of 1.75 L/min
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for maintenance for the duration of the procedure. NAcc injections and implants were targeted to AP 1.3; ML 1.65; DV -6.9 with an

8 � 10 + angle from the midline for bilateral implants.

Photometry
We measured dopamine release using fiber photometry and GRAB DA sensors (AddGene #140554). We injected AAV9-hsyn-

GRAB_DA2h to drive expression of the GRAB sensor, as well as AAV1-CB7-CI-mCherry-WPRE-RBG (AddGene #105544)

to drive the expression of mCherry to correct for motion artificats. Rats received 60 nL, both delivered over a range of DV

values. We implanted 400mm, 0.5 NA chronically implantable optic fibers (Thorlabs) over the injection site (DV -6.7 to �6.9).

We simultaneously recorded GRAB DA and mCherry fluorescence with Doric Lenses hardware and software (Doric Neurosci-

ence Studio).

We preprocessed the data and corrected for motion using Two-channel Motion Artifict Correction (TMAC).70 First, slow changes in

the DC signal due to photobleaching over time were removed by subtracting an exponential decay fit to the session. Next, TMAC

removed motion artifacts from the GRAB channel using the control fluorescent channel (either mCherry of isosbestic recordings

of GFP). Briefly, TMAC subtracts motion artifacts inferred from the control channel, while accounting for statistically independent

sources of noise in both channels. For a subset of rats, we corrected for motion artifacts using both the mCherry signal as well as

isosbestic recordings of GFP. We found similar results for both methods. Finally, individual sessions are z-scored using the entire

sessions mean and standard deviation (Figure S8).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sensitivity to reward blocks
To assess sensitivity to blocks across the population, we z-scored each rat’s trial initiation time using the cumulative mean and stan-

dard deviation pooled across sessions, and averaged z-scored trial initiation times over blocks. For the example rat, we compared

the median trial initiation time pairwise for each possible pair of blocks using a Wilcoxon sign-rank test. Across the population, we

compared average trial initiation time for each pair of blocks using a paired Wilcoxon sign-rank test.

Block transition dynamics
To examine how behaviors changed around block transitions, for each rat, we z-scored their trial initiation times. We removed satiety

effects by regressing trial initiation times against trial number and subtracted the fit. We then averaged the z-scored trial initiation

times based on their distance from a block transition, including violation trials (e.g., averaged all trials five trials before a block tran-

sition). Finally, for each transition type, we smoothed the average transition curve using a causal filter (in order to not introduce pre-

transition artifacts) of 10 trials individually for each rat. Finally, we averaged transition curves across rats for each transition type.

Previous reward regression
To capture the trial history effects, we regressed trial initiation time against previous rewards. We focused on mixed blocks only. We

linearized the rewards by taking the binary logarithm of each reward, log2 (reward), and set the reward for unrewarded trials (e.g.,

violation or catch trials) to 0, since rats do not receive a reward on those trials. We regressed the previous nine log2 (reward) offers,

not including the current trial, with a constant offset using MATLAB’s builtin regress function. We set the first non-significant coef-

ficient (coefficient whose 95% confidence interval overlapped with 0) and all subsequent coefficients to 0. To quantify the timescale

of the coefficients, we fit a negative exponential decay curve of the form coefficient coefficientt = D exp ð� x =tÞ to each rat’s previ-

ous trial coefficients, and reported the time constant (t) for each rat. If rats had one or fewer significant previous trial coefficients, tau

was reported as NaN. For early and late block regressions, we used an identical procedure, but only on the first or last 10 trials of a

mixed block. To assess the number of significant previous coefficients, for each regression coefficient, we compared the population

median coefficient to 0 using a Wilcoxon signed-rank test. To compare t early and late t fit to the regression coefficients, we used a

paired Wilcoxon Sign-rank test across the population.

Photometry
For all photometry analyses, to quantify dopamine release, wemeasured the AUC of the dopamine response by integrating the dopa-

mine fluorescence from 0 to 0.5 s from the event alignment. DA signals were not baseline corrected with the exception of Figure 4M.

In that case, for each trial, baseline was defined as the average response from 0.5 to 0 s before delay end, which was subtracted out

from that trial. Except where noted, all dopamine analyses were restricted tomixed blocks. To assess reward history effects on NAcc

dopamine fluorescence, we used similar methods as above, with the inclusion of an additional coefficient for the current trial offer. To

compare dopamine AUC to model estimates of reward prediction error for early and late trials (first or last 10 trials), we used the RPE

estimates fit to the respective trial type and the dopamine responses only on those trials. Then for each individual session, we re-

gressed the NAcc dopamine response against RPEs separately for positive and negative RPEs, given the rectification of negative

RPE encoding, using MATLAB’s builtin robustfit function.
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