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ABSTRACT: A novel mechanism for N-heteroaryl C-H functionalization via dearomative addition-hydrogen auto-transfer is de-
scribed. Upon exposure to the catalyst derived from RuHCI(CO)(PPhs); and Xantphos, dienes 1a-1g suffer hydroruthenation to
form allylruthenium nucleophiles that engage in N-heteroaryl addition-fB-hydride elimination to furnish branched products of C-C
coupling 3a-3s and 4a-4f. Oxidative cleavage of isoprene adducts 3j, 3k, 31 and 3n followed by ruthenium-catalyzed dynamic ki-
netic asymmetric ketone reduction provides enantiomerically enriched N-heteroarylethyl alcohols 6a-6d and, therefrom, N-
heteroarylethyl amines 7a-7d. DFT calculations correlate experimentally observed regioselectivities with the magnitude of the N-
heteroaryl LUMO coefficients and corroborate rate-determining dearomative allylruthenium addition. In the presence of 2-propanol

and trifluoroethanol, dearomatized adducts derived from pyrimidine 2a and quinazoline 2n were isolated and characterized.

Introduction

Aromatic N-heterocycles are ubiquitous substructures
among small molecule drugs.! Yet despite 30 years following
Murai’s initial report of aryl C-H alkylation via directed C-H
oxidative-alkene insertion,> branch-selective variants that are
applicable to diverse 5- and 6-membered N-heterocycles re-
main elusive.>* In pioneering work by Nakao and Hiyama,>**
Lewis acids were found to unlock Murai-type reactions of
pyridines by simultaneously activating the C-H bond toward
oxidative addition and masking the Lewis basic pyridine ni-
trogen atom, which otherwise can impede catalysis via coordi-
native saturation of the metal. However, these processes re-
quire pyrophoric trialkyl aluminum-based Lewis acids and
expansion to heteroaryl partners beyond pyridine are scant.’
An alternate strategy for C-H alkylation of N-heterocycles
potentially involves dearomative addition to the azine C=N
bond followed by rearomatization.® To our knowledge, inter-
molecular metal-catalyzed dearomative addition of m-
unsaturated pronucleophiles to unmodified aromatic N-
heterocycles are limited to copper-catalyzed processes,” for
example, 1,4-additions to pyridines and pyridazines, which
require rearomatization by treatment with air or H»O,” and
additions to the C2-position of benzimidazoles.”* Here, using
diene pronucleophiles, we report the first ruthenium-catalyzed
N-heteroaryl C-H functionalizations via dearomative addition-
hydrogen auto-transfer,®*! which are applicable to diverse
electron-deficient aromatic N-heterocycles. Additionally, we
report conversion of the reaction products to enantiomerically
enriched N-heteroarylethyl alcohols and amines via dynamic
kinetic asymmetric ketone reduction (Figure 1).!!

Results and Discussion
Given the surprisingly low resonance stabilization energy

of pyrimidines (8 kcal/mol),'? couplings to methyl pyrimidine-
S-carboxylate 2a were initially explored. As identification of
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Figure 1. Branch-Selective Aryl C-H Functionalization.

optimal conditions required extensive variation of reaction
parameters, a concise summary of key experiments are high-
lighted by deviation from optimal conditions, which involved
exposure of methyl pyrimidine-5-carboxylate 2a (100 mol%)
and isoprene la (400 mol%) to the catalyst derived from
RuHCI(CO)(PPh3); (5 mol%) and xantphos' (5 mol%) in tol-
uene solvent (1 M) at 100 °C (Table 1).'* Under these condi-
tions, a 93% yield of adduct 3a was obtained (Table 1, entry
1). Reactions using alternate chelating phosphine ligands dis-
played diminish catalytic activity (Table 1, entries 2-3).
Precatalysts commonly used in Murai-type C-H functionaliza-
tions?? failed to animate the catalytic process (Table 1, entries



Table 1. Ruthenium-catalyzed hydroarylation of isoprene la
with pyrimidine 2a: Deviation from optimal conditions.?

R RuHCI(CO) PPh3 3
TR Ay e
N )\& )\%\
N Xantphos (5 mol%)
2a Isoprene 1a (400 mol%)
R = CO,Me PhMe (1.0 M) iso-3a
(100 mol%) 100 °C, 16 hr

Deviation from

Entry Optimal Conditions 3a Yield (%) 3a:iso-3a
=) 1 None 93 >20:1
2 (S)-BINAP as Ligand 82 (47% ee) >20:1
3 Dppf as Ligand 54 >20:1
4 Without Ligand 21 >20:1
5 Ru3(CO)q2 <5 -
6 [RuCly(cymene)], <5 -
7 RuH,(CO)(PPhgz)3 27 9:1
8 115 °C 95 71
9 36 hr 98 <1:20
=) 10 1 mol% Catalyst 96 >20:1

2.5 Gram Scale

aYields are of isomeric mixtures isolated by silica gel chromatography.
See Supporting Information for further experimental details.

5-7). At higher temperatures partial isomerization of the ini-
tially formed adduct 3a to the conjugated heteroaromatic iso-
3a is observed (Table 1, entry 8) and, at longer reaction times,
complete conversion to iso-3a is evident (Table 1, entry 9).
Such isomerization also occurs upon reexposure of 3a to the
reaction conditions. The highly efficient nature of this catalyt-
ic process is underscored by the formation of 3a on 2.5 gram
scale at low catalyst loading (1 mol%) in 96% yield (Table 1,
entry 10).

To assess reaction scope, optimal conditions developed for
transformation of isoprene la and methyl pyrimidine-5-
carboxylate 2a to adduct 3a were applied to aromatic N-
heterocycles 2b-2s (Table 2). As illustrated by the formation
of adducts 3a-3i, diverse pyrimidines 2a-2i participate in this
process. When the pyrimidine nucleus is substituted at the 5-
position, C-C coupling usually occurs at the C2 position.
However, as demonstrated by the reaction of 5-bromo-
pyridimine 2h, coupling at C4 also can occur, and for methyl
pyrimidine-4-carboxylate 2i, C-C coupling occurs at C6. High
chemoselectivity is highlighted by the direct modification of
voriconazole 2e, which provides adduct 3e in 90% yield,
demonstrating the relevance of this method vis-a-vis late-stage
functionalization of drug candidates.!> Beyond pyrimidines
2a-2i, pyridines 2j and 2Kk, pyrazines 2l and 2m, quinazoline
2n, thiazoles 20, 2p, and 2q, oxazole 2r, and pyrazole 2s, all
participate in efficient C-C coupling to isoprene. In all cases,
single regioisomers were observed. As will be described (vide
infra), regioselectivities correlate with the magnitude of the
calculated LUMO coefficient.

In a further illustration of reaction scope, 2-substituted
dienes 1b-1g beyond isoprene 1a were briefly investigated in
couplings to methyl pyrimidine-5-carboxylate 2a under stand-
ard reaction conditions but using rac-BINAP as ligand
(Scheme 1). As demonstrated by the formation of adducts 4a
and 4b, which are derived from myrcene 1b and 1¢ N-Boc 4-
(1,3-butadienyl)piperidine, 2-substituted butadienes bearing
olefin side chains and saturated N-heterocycles are competent
partners for C-C coupling. Adducts 4¢ and 4d incorporate

Table 2. Ruthenium-catalyzed dearomative addition-hydrogen auto-transfer reactions of isoprene 1a with N-heterocycles 2a-2s.?
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RuHCI(CO)(PPh3)3 (5 mol%)
Xantphos (5 mol%)

Isoprene 1a (400 mol%) MeO N Me
N-Heteroaromatic (100 mol%) ‘ )Y&
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See Supporting Information for further experimental details.



Scheme 1. Ruthenium-catalyzed dearomative addition-
hydrogen auto-transfer reactions of dienes 1b-1g with methyl
pyrimidine-5-carboxylate 2a.?
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%Yields are of material isolated by silica gel chromatography. ®115 °C.
“Xantphos (5 mol%). See Supporting Information for further experimental
details.

5-(2,2-difluorobenzo)-1,3-dioxole and indole moieties, respec-
tively. Finally, the formation of 4e and 4f highlight chemose-
lective modification of the C2 carbon of methyl pyrimidine-5-
carboxylate 2a in the presence of 5-(2-methoxypyridyl) and 4-
(N-fluorophenyl)pyrazoyl groups. Under the present condi-
tions, butadiene or 1,2-propadiene (allene) provide mixtures of
non-conjugated and conjugated adducts, whereas 1-phenyl-
1,3-butadiene did not participate in coupling.

The utility of the present N-heteroaryl-containing isoprene
adducts 3a-3s is demonstrated by the conversion of representa-
tive adducts 3j, 3k, 31 and 3n to the corresponding enantio-
merically enriched N-heteroarylethyl alcohols 6a-6d and N-
heteroarylethyl amines 7a-7d (Scheme 2). Johnson-Lemieux
oxidative cleavage'® of isoprene adducts 3j, 3k, 31 and 3n pro-
vided N-heteroaryl ketones 5a-5d, respectively. As ketones
5a-5d are isoelectronic with B-dicarbonyl and susceptible to
epimerization under mild conditions, their dynamic kinetic
asymmetric reduction mediated by formic acid was attempted
using a small set of Noyori-type n®-arene complexes bearing
N-arylsulfonyl ligands derived from 1,2-diphenyl ethylene
diamine (DPEN).'>!'7 The indicated catalyst derived from me-
sitylene and (R,R)-TsDPEN proved to be most selective,
providing the N-heteroarylethyl alcohols 6a-6d with good
levels of syn-diastereo- and enantioselectivity. The relative
and absolute stereochemical assignment of alcohols 6a-6d
were made in analogy to that determined for alcohol 6¢, which
was established via single crystal X-ray diffraction. Mesyla-
tion of alcohols 6a-6d followed by treatment with sodium
azide in formamide solvent (which suppressed elimination)'s
provided the corresponding homobenzylic azides, which upon
Staudinger reduction' delivered the hitherto unknown N-
heteroarylethyl amines 7a-7d in enantiomerically enriched
form as single diastereomers.

Scheme 2. Oxidative cleavage of adducts 3j, 3Kk, 31 and 3n and conversion to enantiomerically enriched N-heteroarylethyl alcohols 6a-6d

and N-heteroarylethyl amines 7a-7d via dynamic kinetic resolution.?
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Scheme 3. Proposed catalytic cycle and capture of putative dearomatized adducts derived from pyrimidine 2a and quinazoline 2n.?
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A catalytic cycle for the ruthenium-catalyzed C-C coupling
of N-heterocycles with isoprene has been proposed wherein
diene hydroruthenation?® delivers an allylruthenium nucleo-
phile II that engages in C=N addition-p-hydride elimination
(Scheme 3). To corroborate the indicated mechanism, an at-
tempt was made to intercept the putative dearomatized inter-
mediate IV derived from pyrimidine 2a and quinazoline 2n
via protonolytic cleavage of the Ru-N bond of IV by conduct-
ing the reaction in the presence of 2-propanol and CF;CH,OH
(TFE).2! Although B-hydride elimination from the amidoru-
thenium intermediate IV might be anticipated to be rapid as it
reestablishes aromaticity, chelation by the homoallylic olefin
should retard the rate of B-hydride elimination via coordinative
saturation of the metal center. Indeed, related ruthenium-
catalyzed C-C couplings of butadiene or isoprene with car-
bonyl electrophiles form homoallylic alcohols and not f,y-
unsaturated ketones.?> Thus, transfer hydrogenolysis or proto-
nolysis of the Ru-N bond in IV by 2-propanol or TFE may
occur at a rate comparable to B-hydride elimination. In the
event, exposure of pyrimidine 2a and quinazoline 2n to iso-
prene in the presence of 2-propanol and TFE under standard
reaction conditions followed by introduction of p-
toluenesulfonyl chloride and DMAP enabled isolation of the
dearomatized sulfonamides dihydro-3a and dihydro-3n in 43%
and 38% yields, respectively. Notably, exposure of the

Figure 2. Structure of RuCl(CO)[n3-C;3Hs][Xantphos] deter-
mined by single crystal X-ray diffraction.?

2See Supporting Information for crystallographic data.

aromatic products 3a and 3n to 2-propanol and TFE under
standard conditions did not result in the formation of dikydro-
3a and dihydro-3n, suggesting dihydro-3a and dihydro-3n do
not arise via reduction of 3a and 3n, but are generated via
interception of the amidoruthenium intermediate IV.

At this stage, density functional theory (DFT) calculations
informed by X-ray crystallographic data for RuCl(CO)[n?-
C;Hs][XantPhos] (Figure 2) were undertaken to assess the
feasibility of the dearomative addition pathway (Figure 3).
The 16-electron Ru hydride Intl binds to isoprene 1a to form
coordinatively saturated Int2. The isoprene hydrometallation®
occurs with a very low barrier of only 0.6 kcal/mol via TS1 to

Figure 3. Computed reaction energy profiles for ruthenium-catalyzed N-hetereoaryl C-H sec-prenylation via dearomative addition.?
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form m-allyl complex Int3, which is in equilibrium with its c-
allyl haptomers (not shown).?? Coordination of methyl pyrimi-
dine-5-carboxylate 2a triggers dearomative addition through a
Zimmerman—Traxler-type transition state (TS2) giving rise to
the chelated amidoruthenium species Int4. Subsequent -
hydride elimination (TS3) releases the C-H sec-prenylation
product 3a and regenerates ruthenium hydride Intl. The tran-
sition state for dearomative addition (TS2) was found to be
rate-determining (30.4 kcal/mol with respect to the m-allyl
complex Int3). As Murai-type reactions proceed via C-H bond
oxidative addition by zero-valent ruthenium complexes,’ the
transition state for reductive elimination of HCl (TS4) from
Intl to afford a zero-valent ruthenium species was computed
and found to be much less favorable than the hydroruthena-
tion—dearomative addition pathway. Finally, if the proposed
reaction mechanism is indeed operative and dearomative addi-
tion represents the rate- and selectivity determining step, the
regioselectivity of C-C coupling should track with the magni-
tude of the heteroarene LUMO coefficient. Hence, LUMO
coefficients for pyrimidines 2a, 2h, and 2i, which display di-
vergent regioselectivity at C2, C4, and C6, respectively, were
calculated and compared to the observed regioselectivities
(Figure 4). In each case, the observed regioselectivities corre-
lated with the positions at which the LUMO coefficients were
largest. The small difference between the calculated energies
and experimental selectivities is common and falls within the
error of DFT calculations.

Figure 4. Correlation of observed regioselectivity with magni-
tude of the calculated LUMO coefficients and DFT-computed
selectivity (AAG?) in dearomative addition.?
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aSee Supporting Information for further details.

In summary, we report the first ruthenium-catalyzed N-
heteroaryl C-H functionalizations via dearomative addition-
hydrogen auto-transfer of diene pronucleophiles. Reaction
scope is broad, encompassing both 5- and 6-membered aro-
matic N-heterocycles 2a-2s, as well as dienes 1a-1g. The col-
lective experimental and computational data corroborate a
catalytic cycle in which diene hydrometalation delivers an
allylruthenium nucleophile, which engages in rate-determining
N-heteroaryl addition at the carbon atom possessing the largest
LUMO coefficient. Subsequent B-hydride elimination provides
branched adducts and closes the catalytic cycle. As demon-

strated by the formation of compounds 6a-6d and 7a-7d, this
method unlocks entry to diverse enantiomerically enriched N-
heteroarylethyl alcohols and N-heteroarylethyl amines, respec-
tively. Future studies are aimed at the development of related
aryl C-H functionalizations that operate via dearomative addi-
tion, including enantioselective (a-aryl)allylations mediated by
arylpropyne pronucleophiles.?!

Supporting Information. Experimental procedures and spectro-
scopic data for all new compounds ('"H NMR, 3C NMR, IR,
HRMS), including images of NMR spectra. Single-crystal X-ray
diffraction data for compounds 3d, 3n, 6¢-OBz and RuCl(CO)[n?-
CsHs][Xantphos].

Accession Codes. CCDC 2366333 (3d), 2367430 (3n), 2380419
{RuCl(CO)[n3-C3Hs][Xantphos]} and 2380418 (6¢-OBz) contain
the supplementary crystallographic data for this paper. These data
can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif, or by emailing da-
ta_request@ccdc.cam.ac.uk, or by contacting The Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
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