

# Dearomative Addition-Hydrogen Auto-Transfer for Branch-Selective *N*-Heteroaryl C-H Functionalization via Ruthenium-Catalyzed C-C Couplings of Diene Pronucleophiles

Jonathan Z. Shezaf,<sup>†</sup> Seoyoung Lee,<sup>†§</sup> Yhin Sarah Teoh,<sup>†§</sup> Zachary H. Strong,<sup>†§</sup> Pei-Pei Xie,<sup>†§</sup> Jessica Wu,<sup>†</sup> Peng Liu,<sup>\*,†</sup> and Michael J. Krische<sup>\*,†</sup>

<sup>†</sup>Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States

<sup>‡</sup>Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

\*Email: pengliu@pitt.edu, mkrische@cm.utexas.edu

**ABSTRACT:** A novel mechanism for *N*-heteroaryl C-H functionalization via dearomative addition-hydrogen auto-transfer is described. Upon exposure to the catalyst derived from RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> and Xantphos, dienes **1a-1g** suffer hydroruthenation to form allylruthenium nucleophiles that engage in *N*-heteroaryl addition-β-hydride elimination to furnish branched products of C-C coupling **3a-3s** and **4a-4f**. Oxidative cleavage of isoprene adducts **3j**, **3k**, **3l** and **3n** followed by ruthenium-catalyzed dynamic kinetic asymmetric ketone reduction provides enantiomerically enriched *N*-heteroarylethyl alcohols **6a-6d** and, therefrom, *N*-heteroarylethyl amines **7a-7d**. DFT calculations correlate experimentally observed regioselectivities with the magnitude of the *N*-heteroaryl LUMO coefficients and corroborate rate-determining dearomative allylruthenium addition. In the presence of 2-propanol and trifluoroethanol, dearomatized adducts derived from pyrimidine **2a** and quinazoline **2n** were isolated and characterized.

## Introduction

Aromatic *N*-heterocycles are ubiquitous substructures among small molecule drugs.<sup>1</sup> Yet despite 30 years following Murai's initial report of aryl C-H alkylation via directed C-H oxidative-alkene insertion,<sup>2</sup> branch-selective variants that are applicable to diverse 5- and 6-membered *N*-heterocycles remain elusive.<sup>3,4</sup> In pioneering work by Nakao and Hiyama,<sup>5a-c</sup> Lewis acids were found to unlock Murai-type reactions of pyridines by simultaneously activating the C-H bond toward oxidative addition and masking the Lewis basic pyridine nitrogen atom, which otherwise can impede catalysis via coordinative saturation of the metal. However, these processes require pyrophoric trialkyl aluminum-based Lewis acids and expansion to heteroaryl partners beyond pyridine are scant.<sup>5</sup> An alternate strategy for C-H alkylation of *N*-heterocycles potentially involves dearomative addition to the azine C=N bond followed by rearomatization.<sup>6</sup> To our knowledge, intermolecular metal-catalyzed dearomative addition of π-unsaturated pronucleophiles to unmodified aromatic *N*-heterocycles are limited to copper-catalyzed processes,<sup>7</sup> for example, 1,4-additions to pyridines and pyridazines, which require rearomatization by treatment with air or H<sub>2</sub>O<sub>2</sub><sup>7a</sup> and additions to the C2-position of benzimidazoles.<sup>7b,c</sup> Here, using diene pronucleophiles, we report the first ruthenium-catalyzed *N*-heteroaryl C-H functionalizations via dearomative addition-hydrogen auto-transfer,<sup>8,9,10</sup> which are applicable to diverse electron-deficient aromatic *N*-heterocycles. Additionally, we report conversion of the reaction products to enantiomerically enriched *N*-heteroarylethyl alcohols and amines via dynamic kinetic asymmetric ketone reduction (Figure 1).<sup>11</sup>

## Results and Discussion

Given the surprisingly low resonance stabilization energy of pyrimidines (8 kcal/mol),<sup>12</sup> couplings to methyl pyrimidine-5-carboxylate **2a** were initially explored. As identification of

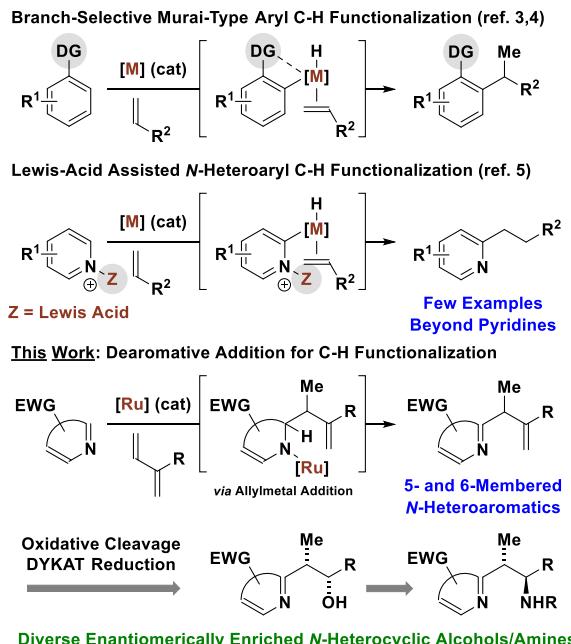



Figure 1. Branch-Selective Aryl C-H Functionalization.

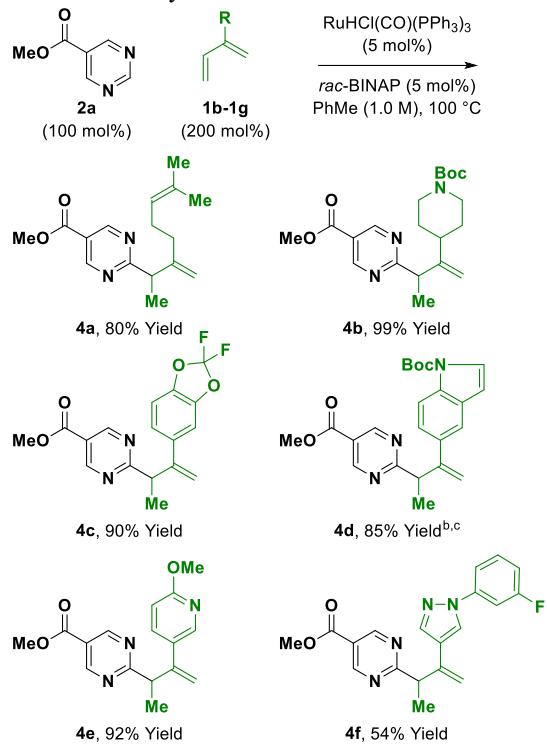
optimal conditions required extensive variation of reaction parameters, a concise summary of key experiments are highlighted by deviation from optimal conditions, which involved exposure of methyl pyrimidine-5-carboxylate **2a** (100 mol%) and isoprene **1a** (400 mol%) to the catalyst derived from RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> (5 mol%) and xantphos<sup>13</sup> (5 mol%) in toluene solvent (1 M) at 100 °C (Table 1).<sup>14</sup> Under these conditions, a 93% yield of adduct **3a** was obtained (Table 1, entry 1). Reactions using alternate chelating phosphine ligands displayed diminished catalytic activity (Table 1, entries 2-3). Precatalysts commonly used in Murai-type C-H functionalizations<sup>2,3</sup> failed to animate the catalytic process (Table 1, entries

**Table 1.** Ruthenium-catalyzed hydroarylation of isoprene **1a** with pyrimidine **2a**: Deviation from optimal conditions.<sup>a</sup>

| Entry | Deviation from Optimal Conditions                     | 3a Yield (%) | 3a:iso-3a |
|-------|-------------------------------------------------------|--------------|-----------|
| 1     | None                                                  | 93           | >20:1     |
| 2     | (S)-BINAP as Ligand                                   | 82 (47% ee)  | >20:1     |
| 3     | Dppf as Ligand                                        | 54           | >20:1     |
| 4     | Without Ligand                                        | 21           | >20:1     |
| 5     | Ru <sub>3</sub> (CO) <sub>12</sub>                    | <5           | ---       |
| 6     | [RuCl <sub>2</sub> (cymene)] <sub>2</sub>             | <5           | ---       |
| 7     | RuH <sub>2</sub> (CO)(PPh <sub>3</sub> ) <sub>3</sub> | 27           | 9:1       |
| 8     | 115 °C                                                | 95           | 7:1       |
| 9     | 36 hr                                                 | 98           | <1:20     |
| 10    | 1 mol% Catalyst<br>2.5 Gram Scale                     | 96           | >20:1     |

<sup>a</sup>Yields are of isomeric mixtures isolated by silica gel chromatography. See Supporting Information for further experimental details.

5-7). At higher temperatures partial isomerization of the initially formed adduct **3a** to the conjugated heteroaromatic *iso*-**3a** is observed (Table 1, entry 8) and, at longer reaction times, complete conversion to *iso*-**3a** is evident (Table 1, entry 9). Such isomerization also occurs upon reexposure of **3a** to the reaction conditions. The highly efficient nature of this catalytic process is underscored by the formation of **3a** on 2.5 gram scale at low catalyst loading (1 mol%) in 96% yield (Table 1, entry 10).


**Table 2.** Ruthenium-catalyzed dearomatic addition-hydrogen auto-transfer reactions of isoprene **1a** with *N*-heterocycles **2a-2s**.<sup>a</sup>

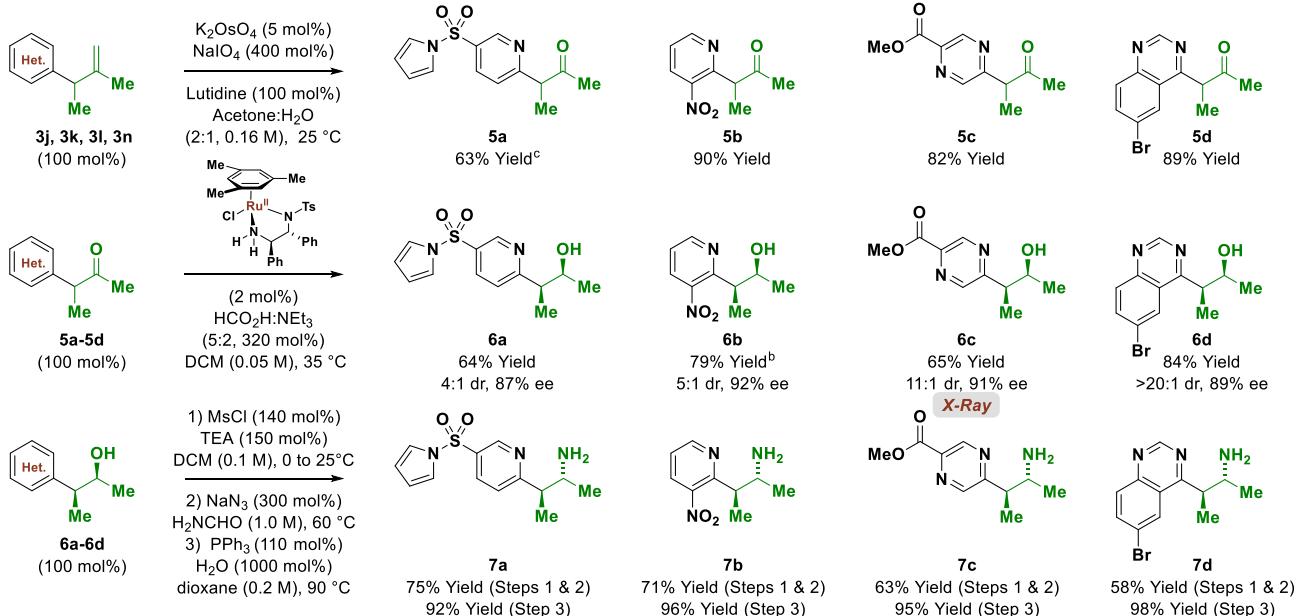
<sup>a</sup>Yields are of material isolated by silica gel chromatography. <sup>b</sup>115 °C. <sup>c</sup>130 °C. <sup>d</sup>48 hr. <sup>e</sup>PhMe (2.0 M). <sup>f</sup>RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> (10 mol%), Xantphos (10 mol%). See Supporting Information for further experimental details.

To assess reaction scope, optimal conditions developed for transformation of isoprene **1a** and methyl pyrimidine-5-carboxylate **2a** to adduct **3a** were applied to aromatic *N*-heterocycles **2b-2s** (Table 2). As illustrated by the formation of adducts **3a-3i**, diverse pyrimidines **2a-2i** participate in this process. When the pyrimidine nucleus is substituted at the 5-position, C-C coupling usually occurs at the C2 position. However, as demonstrated by the reaction of 5-bromopyrimidine **2h**, coupling at C4 also can occur, and for methyl pyrimidine-4-carboxylate **2i**, C-C coupling occurs at C6. High chemoselectivity is highlighted by the direct modification of voriconazole **2e**, which provides adduct **3e** in 90% yield, demonstrating the relevance of this method *vis-à-vis* late-stage functionalization of drug candidates.<sup>15</sup> Beyond pyrimidines **2a-2i**, pyridines **2j** and **2k**, pyrazines **2l** and **2m**, quinazoline **2n**, thiazoles **2o**, **2p**, and **2q**, oxazole **2r**, and pyrazole **2s**, all participate in efficient C-C coupling to isoprene. In all cases, single regioisomers were observed. As will be described (*vide infra*), regioselectivities correlate with the magnitude of the calculated LUMO coefficient.

In a further illustration of reaction scope, 2-substituted dienes **1b-1g** beyond isoprene **1a** were briefly investigated in couplings to methyl pyrimidine-5-carboxylate **2a** under standard reaction conditions but using *rac*-BINAP as ligand (Scheme 1). As demonstrated by the formation of adducts **4a** and **4b**, which are derived from myrcene **1b** and **1c** *N*-Boc 4-(1,3-butadienyl)piperidine, 2-substituted butadienes bearing olefin side chains and saturated *N*-heterocycles are competent partners for C-C coupling. Adducts **4c** and **4d** incorporate

**Scheme 1.** Ruthenium-catalyzed dearomatic addition-hydrogen auto-transfer reactions of dienes **1b-1g** with methyl pyrimidine-5-carboxylate **2a**.<sup>a</sup>

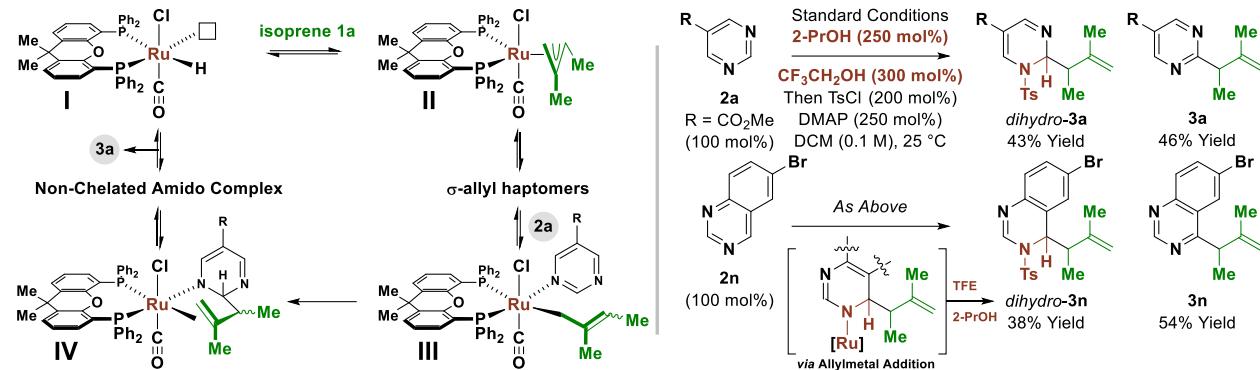



<sup>a</sup>Yields are of material isolated by silica gel chromatography.

<sup>b</sup>Xantphos (5 mol%). See Supporting Information for further experimental details.

5-(2,2-difluorobenzo)-1,3-dioxole and indole moieties, respectively. Finally, the formation of **4e** and **4f** highlight chemoselective modification of the C2 carbon of methyl pyrimidine-5-carboxylate **2a** in the presence of 5-(2-methoxypyridyl) and 4-(*N*-fluorophenyl)pyrazoyl groups. Under the present conditions, butadiene or 1,2-propadiene (allene) provide mixtures of non-conjugated and conjugated adducts, whereas 1-phenyl-1,3-butadiene did not participate in coupling.

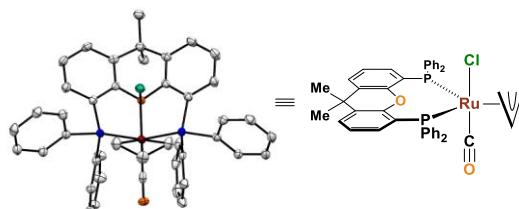
The utility of the present *N*-heteroaryl-containing isoprene adducts **3a-3s** is demonstrated by the conversion of representative adducts **3j**, **3k**, **3l** and **3n** to the corresponding enantiomerically enriched *N*-heteroarylethyl alcohols **6a-6d** and *N*-heteroarylethyl amines **7a-7d** (Scheme 2). Johnson-Lemieux oxidative cleavage<sup>16</sup> of isoprene adducts **3j**, **3k**, **3l** and **3n** provided *N*-heteroaryl ketones **5a-5d**, respectively. As ketones **5a-5d** are isoelectronic with  $\beta$ -dicarbonyl and susceptible to epimerization under mild conditions, their dynamic kinetic asymmetric reduction mediated by formic acid was attempted using a small set of Noyori-type  $\eta^6$ -arene complexes bearing *N*-arylsulfonyl ligands derived from 1,2-diphenyl ethylene diamine (DPEN).<sup>12,17</sup> The indicated catalyst derived from mesitylene and (*R,R*)-TsDPEN proved to be most selective, providing the *N*-heteroarylethyl alcohols **6a-6d** with good levels of *syn*-diastereo- and enantioselectivity. The relative and absolute stereochemical assignment of alcohols **6a-6d** were made in analogy to that determined for alcohol **6c**, which was established via single crystal X-ray diffraction. Mesylation of alcohols **6a-6d** followed by treatment with sodium azide in formamide solvent (which suppressed elimination)<sup>18</sup> provided the corresponding homobenzylic azides, which upon Staudinger reduction<sup>19</sup> delivered the hitherto unknown *N*-heteroarylethyl amines **7a-7d** in enantiomerically enriched form as single diastereomers.


**Scheme 2.** Oxidative cleavage of adducts **3j**, **3k**, **3l** and **3n** and conversion to enantiomerically enriched *N*-heteroarylethyl alcohols **6a-6d** and *N*-heteroarylethyl amines **7a-7d** via dynamic kinetic resolution.<sup>a</sup>



<sup>a</sup>Yields are of material isolated by silica gel chromatography. Diastereo- and enantioselectivities were determined by chiral stationary phase HPLC analysis.

<sup>b</sup>THF (0.05 M). <sup>c</sup>NaIO4 (300 mol%). Enantioselectivities correspond to the *syn*-diastereomers. See Supporting Information for further experimental details.

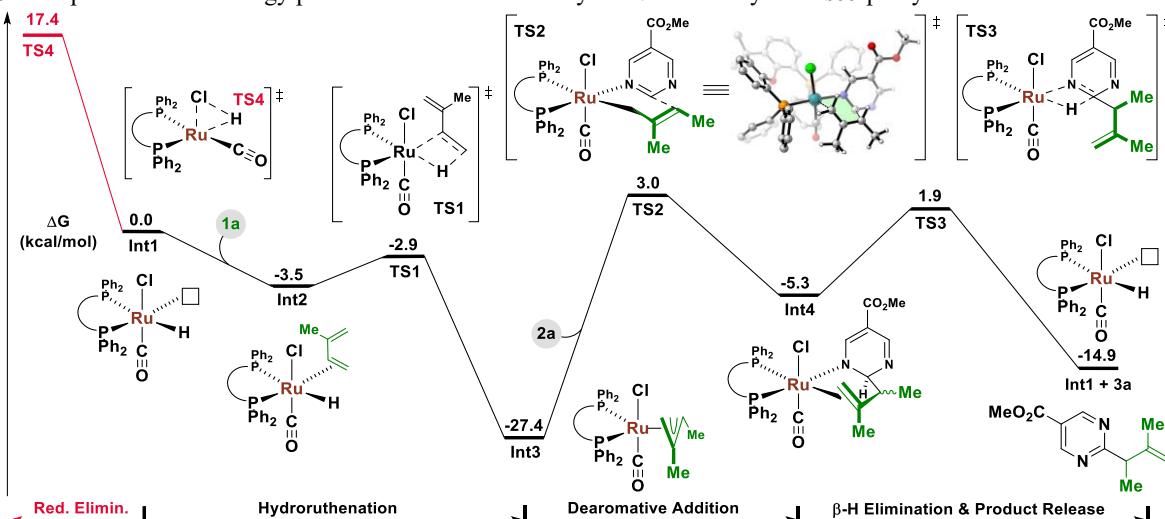

**Scheme 3.** Proposed catalytic cycle and capture of putative dearomatized adducts derived from pyrimidine **2a** and quinazoline **2n**.<sup>a</sup>



<sup>a</sup>Yields are of material isolated by silica gel chromatography. See Supporting Information for further experimental details.

A catalytic cycle for the ruthenium-catalyzed C-C coupling of *N*-heterocycles with isoprene has been proposed wherein diene hydroruthenation<sup>20</sup> delivers an allyl ruthenium nucleophile **II** that engages in C=N addition-β-hydride elimination (Scheme 3). To corroborate the indicated mechanism, an attempt was made to intercept the putative dearomatized intermediate **IV** derived from pyrimidine **2a** and quinazoline **2n** via protonolytic cleavage of the Ru-N bond of **IV** by conducting the reaction in the presence of 2-propanol and CF<sub>3</sub>CH<sub>2</sub>OH (TFE).<sup>21</sup> Although β-hydride elimination from the amidoruthenium intermediate **IV** might be anticipated to be rapid as it reestablishes aromaticity, chelation by the homoallylic olefin should retard the rate of β-hydride elimination via coordinative saturation of the metal center. Indeed, related ruthenium-catalyzed C-C couplings of butadiene or isoprene with carbonyl electrophiles form homoallylic alcohols and not β,γ-unsaturated ketones.<sup>22</sup> Thus, transfer hydrogenolysis or protonolysis of the Ru-N bond in **IV** by 2-propanol or TFE may occur at a rate comparable to β-hydride elimination. In the event, exposure of pyrimidine **2a** and quinazoline **2n** to isoprene in the presence of 2-propanol and TFE under standard reaction conditions followed by introduction of *p*-toluenesulfonyl chloride and DMAP enabled isolation of the dearomatized sulfonamides **dihydro-3a** and **dihydro-3n** in 43% and 38% yields, respectively. Notably, exposure of the

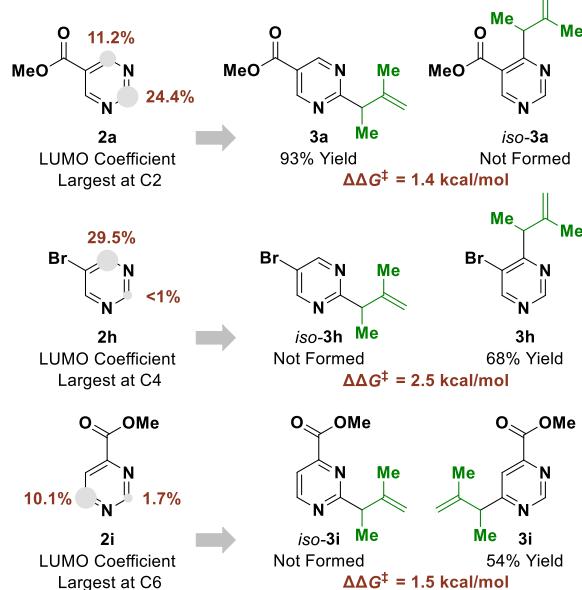
**Figure 2.** Structure of RuCl(CO)[η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>][Xantphos] determined by single crystal X-ray diffraction.<sup>a</sup>




<sup>a</sup>See Supporting Information for crystallographic data.

aromatic products **3a** and **3n** to 2-propanol and TFE under standard conditions did not result in the formation of **dihydro-3a** and **dihydro-3n**, suggesting **dihydro-3a** and **dihydro-3n** do not arise via reduction of **3a** and **3n**, but are generated via interception of the amidoruthenium intermediate **IV**.

At this stage, density functional theory (DFT) calculations informed by X-ray crystallographic data for RuCl(CO)[η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>][XantPhos] (Figure 2) were undertaken to assess the feasibility of the dearomatic addition pathway (Figure 3). The 16-electron Ru hydride **Int1** binds to isoprene **1a** to form coordinatively saturated **Int2**. The isoprene hydrometallation<sup>20</sup> occurs with a very low barrier of only 0.6 kcal/mol *via* **TS1** to


**Figure 3.** Computed reaction energy profiles for ruthenium-catalyzed *N*-heteroaryl C-H sec-prenylation via dearomatic addition.<sup>a</sup>



<sup>a</sup>DFT calculations were performed at the M06/SDD-6-311+G(d,p)/SMD(PhMe)//B3LYP-D3(BJ)/LANL2DZ-6-31G(d) level of theory. See Supporting Information for further details.

form  $\pi$ -allyl complex **Int3**, which is in equilibrium with its  $\sigma$ -allyl haptomers (not shown).<sup>23</sup> Coordination of methyl pyrimidine-5-carboxylate **2a** triggers dearomatic addition through a Zimmerman-Traxler-type transition state (**TS2**) giving rise to the chelated amidoruthenium species **Int4**. Subsequent  $\beta$ -hydride elimination (**TS3**) releases the C-H *sec*-prenylation product **3a** and regenerates ruthenium hydride **Int1**. The transition state for dearomatic addition (**TS2**) was found to be rate-determining (30.4 kcal/mol with respect to the  $\pi$ -allyl complex **Int3**). As Murai-type reactions proceed via C-H bond oxidative addition by zero-valent ruthenium complexes,<sup>3</sup> the transition state for reductive elimination of HCl (**TS4**) from **Int1** to afford a zero-valent ruthenium species was computed and found to be much less favorable than the hydronation-dearomatic addition pathway. Finally, if the proposed reaction mechanism is indeed operative and dearomatic addition represents the rate- and selectivity determining step, the regioselectivity of C-C coupling should track with the magnitude of the heteroarene LUMO coefficient. Hence, LUMO coefficients for pyrimidines **2a**, **2h**, and **2i**, which display divergent regioselectivity at C2, C4, and C6, respectively, were calculated and compared to the observed regioselectivities (Figure 4). In each case, the observed regioselectivities correlated with the positions at which the LUMO coefficients were largest. The small difference between the calculated energies and experimental selectivities is common and falls within the error of DFT calculations.

**Figure 4.** Correlation of observed regioselectivity with magnitude of the calculated LUMO coefficients and DFT-computed selectivity ( $\Delta\Delta G^\ddagger$ ) in dearomatic addition.<sup>a</sup>



<sup>a</sup>See Supporting Information for further details.

In summary, we report the first ruthenium-catalyzed *N*-heteroaryl C-H functionalizations via dearomatic addition-hydrogen auto-transfer of diene pronucleophiles. Reaction scope is broad, encompassing both 5- and 6-membered aromatic *N*-heterocycles **2a-2s**, as well as dienes **1a-1g**. The collective experimental and computational data corroborate a catalytic cycle in which diene hydrometalation delivers an allylruthenium nucleophile, which engages in rate-determining *N*-heteroaryl addition at the carbon atom possessing the largest LUMO coefficient. Subsequent  $\beta$ -hydride elimination provides branched adducts and closes the catalytic cycle. As demon-

strated by the formation of compounds **6a-6d** and **7a-7d**, this method unlocks entry to diverse enantiomerically enriched *N*-heteroarylethyl alcohols and *N*-heteroarylethyl amines, respectively. Future studies are aimed at the development of related aryl C-H functionalizations that operate via dearomatic addition, including enantioselective ( $\alpha$ -aryl)allylations mediated by arylpropyne pronucleophiles.<sup>21</sup>

**Supporting Information.** Experimental procedures and spectroscopic data for all new compounds (<sup>1</sup>H NMR, <sup>13</sup>C NMR, IR, HRMS), including images of NMR spectra. Single-crystal X-ray diffraction data for compounds **3d**, **3n**, **6c**-OBz and RuCl(CO)[ $\eta^3$ -C<sub>3</sub>H<sub>5</sub>][Xantphos].

**Accession Codes.** CCDC 2366333 (**3d**), 2367430 (**3n**), 2380419 {RuCl(CO)[ $\eta^3$ -C<sub>3</sub>H<sub>5</sub>][Xantphos]} and 2380418 (**6c**-OBz) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via [www.ccdc.cam.ac.uk/data\\_request/cif](http://www.ccdc.cam.ac.uk/data_request/cif), or by emailing [data\\_request@ccdc.cam.ac.uk](mailto:data_request@ccdc.cam.ac.uk), or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

**Corresponding Author**  
mkrische@mail.utexas.edu

#### Author Contributions

<sup>§</sup>S.L., Y.S.T., Z.H.S. and P.-P.X contributed equally to this work.

#### ORCID

Jonathan Z. Shezaf: 0000-0003-4865-5973  
Seoyoung Lee: 0009-0002-8871-5256  
Yhin Sarah Teoh: 0009-0004-6687-2466  
Zachary H. Strong: 0000-0003-3367-2906  
Pei-Pei Xie: 0000-0002-7801-5232  
Jessica Wu: 0000-0002-1355-8957  
Peng Liu: 0000-0002-8188-632X  
Michael J. Krische: 0000-0001-8418-9709

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENT

The Robert A. Welch Foundation (F-0038, M.J.K.), the NSF (CHE-2246428, M.J.K) and the NIH-NIGMS (P.L., R35 GM128779) are acknowledged for partial support of this research. DFT calculations were carried out at the University of Pittsburgh Center for Research Computing and the Advanced Cyberinfrastructure Co-ordination Ecosystem: Services & Support (ACCESS) program, supported by NSF award numbers OAC-2117681, OAC-1928147, and OAC-1928224. We thank Serhii Vasylevskyi for the acquisition and interpretation of single crystal X-ray diffraction data.

#### REFERENCES

- (1) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. *J. Med. Chem.* **2014**, *57*, 10257–10274.
- (2) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Efficient Catalytic Addition of Aromatic Carbon-Hydrogen Bonds to Olefins. *Nature* **1993**, *366*, 529–531.
- (3) For general reviews on Murai-type C-H functionalization, see: (a) Kakiuchi, F.; Murai, S. Activation of C-H Bonds: Catalytic Reactions, *Top. Organomet. Chem.* **1999**, *3*, 47–79. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-Catalyzed C-C Bond Formation Involving C-H Activation and Addition on Unsaturated Substrates: Reactions and Mechanistic Aspects. *Chem. Rev.* **2002**, *102*, 1731–1769. (c) Andreatta, J. R.; McKeown, B. A.; Gunnoc, T. B. Transition Metal Catalyzed Hydroarylation of Olefins using Unactivated Substrates:

Recent Developments and Challenges. *J. Organomet. Chem.* **2011**, *696*, 305–315. (d) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Ruthenium(II)-Catalyzed C–H Bond Activation and Functionalization. *Chem. Rev.* **2012**, *112*, 5879–5918. (e) Rej, S.; Ano, Y.; Chatani, N. Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C Bonds. *Chem. Rev.* **2020**, *120*, 1788–1887. (f) Ketcham, H. E.; Bennett, M. T.; Reid, C. W.; Gunnoe, T. B. Advances in Arene Alkylation and Alkenylation Catalyzed by Transition Metal Complexes Based on Ruthenium, Nickel, Palladium, Platinum, Rhodium and Iridium. *Adv. Organomet. Chem.* **2023**, *80*, 93–176.

(4) For reviews on branch-selective Murai-type C–H functionalization, see: (a) Crisenza, G. E. M.; Bower, J. F. Branch Selective Murai-type Alkene Hydroarylation Reactions. *Chem. Lett.* **2016**, *45*, 2–9. (b) Aldhous, T. P.; Chung, R. W. M.; Dalling, A. G.; Bower, J. F. Enantioselective Intermolecular Murai-Type Alkene Hydroarylation Reactions. *Synthesis* **2021**, *53*, 2961–2975.

(5) For selected examples, see: (a) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. A Strategy for C–H Activation of Pyridines: Direct C–2 Selective Alkenylation of Pyridines by Nickel/Lewis Acid Catalysis. *J. Am. Chem. Soc.* **2008**, *130*, 2448–2449. (b) Nakao, Y.; Idei, H.; Kanyiva, K.; Hiyama, T. *J. Am. Chem. Soc.* **2009**, *131*, 15996–15997. (c) Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. Selective C–4 Alkylation of Pyridine by Nickel/Lewis Acid Catalysis. *J. Am. Chem. Soc.* **2010**, *132*, 13666–13668. (d) Hara, N.; Saito, T.; Semba, K.; Kuriakose, N.; Zheng, H.; Sakaki, S.; Nakao, Y. *J. Am. Chem. Soc.* **2018**, *140*, 7070–7073. (e) Li, J.-F.; Pan, D.; Wang, H.-R.; Zhang, T.; Li, Y.; Huang, G.; Ye, M. *J. Am. Chem. Soc.* **2022**, *144*, 18810–18816. (f) Hara, N.; Aso, K.; Li, Q.-Z.; Sakaki, S.; Nakao, Y. C2-Selective Alkylation of Pyridines by Rhodium-Aluminum Complexes. *Tetrahedron* **2021**, *95*, 132339. (g) Jiang, B.; Liu, J.-M.; Shi, S.-L. Bifunctional NHC-Promoted C2-Alkylation of Pyridine via Ni–Al Bimetallic-Catalyzed Hydroarylation of Unactivated Alkenes. *ACS Catal.* **2023**, *13*, 6068–6075. (h) Zhang, Z.-J.; Simon, M. M.; Yu, S.; Li, S.-W.; Chen, X.; Cattani, S.; Hong, X.; Ackermann, L. Nickel-Catalyzed Atroposelective C–H Alkylation Enabled by Bimetallic Catalysis with Air-Stable Heteroatom-Substituted Secondary Phosphine Oxide Pre-ligands. *J. Am. Chem. Soc.* **2024**, *146*, 9172–9180.

(6) For reviews on the stoichiometric addition of organometallic nucleophiles to heteroaromatic compounds, see: (a) Bennasar, M. L.; Lavilla, R.; Alvarez, M.; Bosch, J. Addition of Stabilized Carbon Nucleophiles to N-Alkylpyridinium Salts. Applications to Alkaloid Synthesis. *Heterocycles* **1988**, *27*, 789–824. (b) Ahamed, M.; Todd, M. H. Catalytic Asymmetric Additions of Carbon-Centered Nucleophiles to Nitrogen-Containing Aromatic Heterocycles. *Eur. J. Org. Chem.* **2010**, 5935–5942. (c) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Synthesis of Pyridine and Dihydropyridine Derivatives by Regio- and Stereoselective Addition to N-Activated Pyridines. *Chem. Rev.* **2012**, *112*, 2642–2713.

(7) For copper-catalyzed addition of  $\pi$ -unsaturated pronucleophiles to aromatic N-heterocycles, see: (a) Gribble, M. W. Jr.; Guo, S.; Buchwald, S. L. Asymmetric Cu-Catalyzed 1,4-Dearomatization of Pyridines and Pyridazines without Preactivation of the Heterocycle or Nucleophile. *J. Am. Chem. Soc.* **2018**, *140*, 5057–5060. (b) He, Y.-T.; Mao, Y.-J.; Hao, H.-Y.; Xu, Z.-Y.; Lou, S.-J.; Xu, D.-Q. Cu-Catalyzed Regioselective C–H Alkylation of Benzimidazoles with Aromatic Alkenes. *Org. Lett.* **2020**, *22*, 8250–8255. (c) Dong, Y.; Breit, B. Cu-Catalyzed C–H Allylation of Benzimidazoles with Alkenes. *Org. Lett.* **2021**, *23*, 6765–6769.

(8) For selected reviews on hydrogen auto-transfer for C=X addition, see: (a) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V. J.; Krische, M. J. Metal-Catalyzed Reductive Coupling of Olefin-Derived Nucleophiles: Reinventing Carbonyl Addition. *Science* **2016**, *354*, aah5133. (b) Santana, C. G.; Krische, M. J. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present and Future. *ACS Catal.* **2021**, *11*, 5572–5585.

(9) For selected reviews on mechanistically related “borrowing hydrogen” processes for hydroxyl substitution, see: (a) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Borrowing Hydrogen in The Activation of Alcohols. *Adv. Synth. Catal.* **2007**, *349*, 1555–1575. (b) Quintard, A.; Rodriguez, J. Catalytic Enantioselective OFF  $\leftrightarrow$  ON Activation Processes Initiated by Hydrogen Transfer: Concepts and Challenges. *Chem. Commun.* **2016**, *52*, 10456–10473. (c) Kwok, T.; Hoff, O.; Armstrong, R. J.; Donohoe, T. J. Control of Absolute Stereochemistry in Transition-Metal-Catalysed Hydrogen-Borrowing Reactions. *Chem. Eur. J.* **2020**, *26*, 12912–12926.

(10) For selected reviews on the use of dienes as allylmetal pronucleophiles in C=X addition, see: (a) Holmes, M.; Schwartz, L. A.; Krische, M. J. Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes and Enynes with Carbonyl Compounds and Imines. *Chem. Rev.* **2018**, *118*, 6026–6052. (b) Xiang, M.; Pfaffinger, D. E.; Krische, M. J. Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and State-of-The-Art Survey. *Chem. Eur. J.* **2021**, *27*, 13107–13116.

(11) For selected reviews on the ruthenium-catalyzed dynamic kinetic asymmetric reduction of ketones, see: (a) Echeverria, P.-G.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V. Recent Developments in Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution. *Synthesis* **2016**, *48*, 2523–2539. (b) Seo, C. S. G.; Morris, R. H. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities. *Organometallics* **2019**, *38*, 47–65. (c) Betancourt, R. M.; Echeverria, P.-G.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V. Recent Progress and Applications of Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution. *Synthesis* **2021**, *53*, 30–50.

(12) Katritzky, A. R.; Jug, K.; Oniciu, D. C. Quantitative Measures of Aromaticity for Mono-, Bi-, and Tricyclic Penta- and Hexaatomic Heteroaromatic Ring Systems and their Interrelationships. *Chem. Rev.* **2001**, *101*, 1421–1449.

(13) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K. G.; Fraanje, J. New Diphosphine Ligands Based on Heterocyclic Aromatics Inducing Very High Regioselectivity in Rhodium-Catalyzed Hydroformylation: Effect of the Bite Angle. *Organometallics* **1995**, *14*, 3081–3089.

(14) The precatalyst RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> was selected due to its efficacy in the seminal diene-mediated carbonyl allylations via reductive coupling or hydrogen auto-transfer: Shibahara, F.; Bower, J. F.; Krische, M. J. Ruthenium-Catalyzed C–C Bond Forming Transfer Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to Preformed Allyl Metal Reagents. *J. Am. Chem. Soc.* **2008**, *130*, 6338–6339.

(15) For selected reviews on late-stage functionalization of small molecule drug candidates, see: (a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krksa, S. W. The Medicinal Chemist's Toolbox for Late Stage Functionalization of Drug-Like Molecules. *Chem. Soc. Rev.* **2016**, *45*, 546–576. (b) Shugrue, C. R.; Miller, S. J. Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. *Chem. Rev.* **2017**, *117*, 11894–11951. (c) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Organic Synthesis Provides Opportunities to Transform Drug Discovery. *Nat. Chem.* **2018**, *10*, 383–394. (d) Dominguez-Huerta, A.; Dai, X.-J.; Zhou, F.; Querard, P.; Qiu, Z.; Ung, S.; Liu, W.; Li, J.; Li, C.-J. Exploration of New Reaction Tools for Late-Stage Functionalization of Complex Chemicals. *Can. J. Chem.* **2019**, *97*, 67–85.

(16) (a) Pappo, R.; Allen, D.; Lemieux, R.; Johnson, W. Osmium Tetraoxide-Catalyzed Periodate Oxidation of Olefinic Bonds. *J. Org. Chem.* **1956**, *21*, 478–479. (b) Watanabe, M.; Kasai, M.; Tomizawa, H.; Aoki, M.; Eiho, K.; Isobe, Y.; Asano, S. Dihydropyrrolo[2,3-d]Pyrimidines: Selective Toll-Like Receptor 9 Antagonists from Scaffold Morphing Efforts. *ACS Med. Chem. Lett.* **2014**, *5*, 1235–1239.

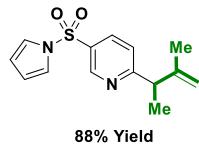
(17) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes. *J. Am. Chem. Soc.* **1995**, *117*, 7562–7563. (b) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using a Formic Acid-Triethylamine Mixture. *J. Am. Chem. Soc.* **1996**, *118*, 2521–2522.

(18) For sequential mesylation-azidation using formamide solvent, see: Chen, T.-Y.; Chen, J.; Tang, Y.; Zhou, J.; Guo, Y.; Chang, W.-c. Pathway from N-Alkylglycine to Alkylisonitrile Catalyzed by Iron(II) and 2-Oxoglutarate-Dependent Oxygenases. *Angew. Chem. Int. Ed.* **2020**, *59*, 7367–7371.

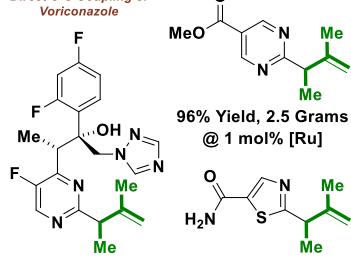
(19) For a review on the Staudinger reaction, see: Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Sixty Years of Staudinger Reaction. *Tetrahedron* **1981**, *37*, 437–472.

(20) For stoichiometric reactions of HXRu(CO)(PR<sub>3</sub>)<sub>3</sub> (X = Cl, Br) with alenes or dienes to form isolable  $\pi$ -allylruthenium complexes, see: (a) Hiraki, K.; Ochi, N.; Sasada, Y.; Hayashida, H.; Fuchita, Y.; Yamamoto, S. Organoruthenium(II) Complexes Formed by Insertion Reactions of Some Vinyl Compounds and Conjugated Dienes into a Hydro-Ruthenium Bond. *J. Chem. Soc., Dalton Trans.* **1985**, 873–877. (b) Hill, A. F.; Ho, C. T.; Wilton-Ely, J. D. E. T. The Coupling of Methylene and Vinyl Ligands at a Ruthenium(II) Centre. *Chem.*

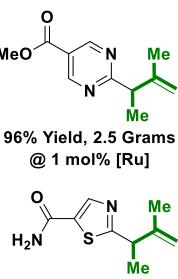
*Commun.* **1997**, 2207–2208. (c) Xue, P.; Bi, S.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Isomerism of  $[\text{Ru}(\eta^3\text{-allyl})\text{Cl}(\text{CO})(\text{PPh}_3)_2]$ . *Organometallics* **2004**, 23, 4735–4743.


(21) Ortiz, E.; Shezaf, J. Z.; Chang, Y.-H.; Gon alves, T. P.; Huang, K.-W.; Krische, M. J. Understanding Halide Counterion Effects in Enantioselective Ruthenium-Catalyzed Carbonyl ( $\alpha$ -Aryl)allylation: Alkynes as Latent Allenes and Trifluoroethanol-Enhanced Turnover in The Conversion of Ethanol to Higher Alcohols *via* Hydrogen Auto-Transfer. *J. Am. Chem. Soc.* **2021**, 143, 16709–16717.

(22) (a) Shibahara, F.; Bower, J. F.; Krische, M. J. Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to Preformed Allyl Metal Reagents. *J. Am. Chem. Soc.* **2008**, 130, 6338–6339. (b) Ortiz, E.; Spinello, B. J.; Cho, Y.; Wu, J.; Krische, M. J. Stereo- and Site-Selective Crotylation of Alcohol Proelectrophiles via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by Methylallene and Butadiene. *Angew. Chem. Int. Ed.* **2022**, 61, e202212814. (c) Shezaf, J. Z.; Santana, C. G.; Saludares, C.; Briceno, E. S.; Sakata, K.; Krische, M. J. Chiral-at-Ruthenium-SEGPHOS Catalysts Display Diastereomer-Dependent Regioselectivity: Enantioselective Isoprene-Mediated Carbonyl *tert*-Prenylation *via* Halide Counterion Effects. *J. Am. Chem. Soc.* **2023**, 145, 18676–18683.


(23) As described in reference 20c, the stereochemistry of the  $\pi$ -allylruthenium complex **Int3** is consistent with that observed for the corresponding triphenylphosphine-ligated  $\pi$ -allylruthenium complex, as determined by single crystal X-ray diffraction.

## TABLE OF CONTENTS GRAPHIC


**STANDARD CONDITIONS**  
**RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> (5 mol%)**  
**Xantphos (5 mol%)**  
**Isoprene (400 mol%)**  
**N-Heteroaromatic (100 mol%)**  
**PhMe (1.0 M), 100 °C**



88% Yield



96% Yield, 2.5 Grams  
@ 1 mol% [Ru]



85% Yield