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Addendum to the article “Global pluripotential theory
over a trivially valued field” (→)

Sébastien Boucksom (1) and Mattias Jonsson (2)

ABSTRACT. — This note is an addendum to the paper “Global pluripotential
theory over a trivially valued field” by the present authors, in which we prove two
results. Let X be an irreducible projective variety over an algebraically closed field
field k, and assume that k has characteristic zero, or that X has dimension at most
two. We first prove that when X is smooth, the envelope property holds for any
numerical class on X. Then we prove that for X possibly singular and for an ample
numerical class, the Monge–Ampère energy of a bounded function is equal to the
energy of its usc regularized plurisubharmonic envelope.

RÉSUMÉ. — Cette note est un appendice au papier « Global pluripotential theory
over a trivially valued field » par les présents auteurs, dans lequel nous prouvons
deux résultats. Soit X une variété projective irréductible sur un corps algébrique-
ment clos k, et supposons que k est de caractéristique nulle, ou que X est de di-
mension au plus deux. Nous prouvons d’abord que, lorsque X est lisse, la propriété
d’enveloppe est valable pour toute classe numérique sur X. Ensuite, nous prouvons
que, pour X possiblement singulier et pour toute classe numérique ample, l’éner-
gie de Monge–Ampère de toute fonction bornée est égale à celle de son enveloppe
plurisousharmonique régularisée.

Introduction

The purpose of this note is to strengthen two results in the article [3],
where we developed global pluripotential on the Berkovich analytification of
a projective over a trivially valued field. The results here are used in [5, 4].
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One should view the current note as an addendum to [3], rather than a
stand-alone paper.

Let k be an algebraically closed field, and X an irreducible projective va-
riety over k. To any numerical class ω → N1(X) we associate a class PSH(ω)
of ω-psh functions; these are upper semicontinuous functions ε : X

an ↑
R ↓ {↔↗} on the Berkovich analytification of X with respect to the triv-
ial absolute value on k. We say that ω has the envelope property if for any
bounded-above family (εω)ω in PSH(ω), the function supε

ω εω is ω-psh.
Theorem A. — Assume that X is smooth, and that char k = 0 or

dim X↭ 2. Then any numerical class ω → N1(X) has the envelope property.

In [3, Theorem 5.20], this was established for nef classes ω following [2],
and the proof here is not so di!erent.

For the second result we allow X to be singular, but work with an am-
ple class ϑ → N1(X). The ϑ-psh envelope Pϑ(ε) of a bounded function
ε : X

an ↑ R is defined as the supremum of all functions ϖ → PSH(ϑ) with
ϖ ↭ ε, and the envelope property for ϑ is equivalent to continuity of en-
velopes in the sense of Pϑ(ε) being continuous whenever ε is continuous. It
is also equivalent to the usc envelope Pε

ϑ(ε) being ϑ-psh for any bounded
function ε.

In [3] we also defined the Monge–Ampère energy Eϑ(ε) → R ↓ {↔↗}
of any bounded-above function ε : X

an ↑ R ↓ {↔↗}. We did this first for
ϑ-psh functions in terms of an energy pairing ultimately deriving from inter-
section numbers on compactified test configurations, see Section 1.4 below,
then for general bounded-above functions ε, setting

Eϑ(ε) := sup{Eϑ(ϖ) | ϖ → PSH(ϑ), ϖ ↭ ε}.

We say that (X, ϑ) satisfies the weak envelope property if there exists a
projective birational morphism ϱ : X̃ ↑ X and an ample class ϑ̃ → N1(X̃)
such that (X̃, ϑ̃) has the envelope property and ϑ̃ ↫ ϱ

ε
ϑ (by which we mean

ϑ̃ ↔ ϱ
ε
ϑ is nef). It follows from [3, Theorem 5.20] that the weak envelope

property holds when char k = 0 or dim X ↭ 2.
Theorem B. — Assume that ϑ → N1(X) is an ample class, and that

the weak envelope property holds for (X, ϑ). Then, for any bounded function
ε : X

an ↑ R, we have
Eϑ(ε) = Eϑ(Pϑ(ε)) = Eϑ(Pε

ϑ(ε)).

The first equality is definitional, see [3, (8.2)], and the second equality
follows from [3, Proposition 8.3] if ϑ has the envelope property. The main
content of Theorem B is thus the second equality when the envelope property
is unknown or even fails (for example, when X is not unibranch).
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1. Preliminaries

Throughout the paper, X is an irreducible projective variety over an
algebraically closed field k.

1.1. The ω-psh envelope

Fix any numerical class ω → N1(X). We refer to [3, §4] for the definition
of the class PSH(ω) of ω-psh functions. We have that PSH(ω) is nonempty
only if ω is psef, whereas PSH(ω) contains the constant functions i! ω is nef.

Definition 1.1. — The ω-psh envelope of a function ε : X
an ↑ R ↓

{±↗} is the function Pϖ(ε) : X
an ↑ R ↓ {±↗} defined as the pointwise

supremum
Pϖ(ε) := sup {ϖ → PSH(ω) | ϖ ↭ ε} .

Thus Pϖ(ε) ↘ ↔↗ i! there is no ϖ → PSH(ω) with ϖ ↭ ε. When ω =
c1(L) for a Q-line bundle L, we write PL := Pϖ. Despite the name, Pϖ(ε) is
not always ω-psh (and indeed not even usc in general). However, it is clear
that

• ε ≃↑ Pϖ(ε) is increasing;
• Pϖ(ε + c) = Pϖ(ε) + c for all c → R.

The envelope operator is also continuous along increasing nets of lsc func-
tions:

Lemma 1.2. — If ε : X
an ↑ R ↓ {+↗} is the pointwise limit of an

increasing net (εj) of bounded-below, lsc functions, then Pϖ(εj) ⇐ Pϖ(ε)
pointwise on X

an.
Proof. — We trivially have limj Pϖ(εj) = supj Pϖ(εj) ↭ Pϖ(ε). Pick

ς > 0 and ϖ → PSH(ω) such that ϖ ↭ ε, and hence ϖ < ε + ς. Since ϖ is usc
and the εj lsc, a simple variant of Dini’s lemma shows that ϖ < εj + ς for
all j large enough, and hence ϖ ↭ Pϖ(εj) + ς. Taking the supremum over ϖ

yields Pϖ(ε) ↭ supj Pϖ(εj), and we are done. ↬
As in [1, Lemma 7.30], the envelope property admits the following useful

reformulation.

Lemma 1.3. — If PSH(ω) ⇒= ⇑, then the following statements are equiv-
alent:

(i) ω has the envelope property;
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(ii) for any function ε : X
an ↑ R ↓ {±↗}, we have

Pϖ(ε) ↘ ↔↗, Pϖ(ε)ε ↘ +↗, or Pϖ(ε)ε → PSH(ω);
(iii) ε → PL(X) =⇓ Pϖ(ε) → PSH(ω).

Proof. — First assume (i). Pick any ε : X
an ↑ R ↓ {±↗}, and suppose

that the set F := {ϖ → PSH(ω) | ϖ ↭ ε} is nonempty, so that Pϖ(ε) ⇒↘ ↔↗.
If the functions in F are uniformly bounded above, then Pϖ(ε)ε → PSH(ω),
by (i). If not, choose ϑ → Amp(X) with ϑ ↫ ω, and hence F ⇔ PSH(ϑ). By
the definition of the Alexander–Taylor capacity, see [3, §4.6], we then have

Pϖ(ε)(v) = sup {ϖ(v) | ϖ → F} ↫ sup {sup ϖ | ϖ → F} ↔ Tϑ(v) = +↗
for all v → X

div, and hence Pϖ(ε)ε ↘ +↗, by density of X
div. This proves

(i) ⇓ (ii).

Next we prove (ii) ⇓ (iii), so pick ε → PL(X). Since ε is bounded and
PSH(ω) is nonempty and invariant under addition of constants, we have
Pϖ(ε) ⇒↘ ↔↗. Now Pϖ(ε) ↭ ε implies Pϖ(ε)ε ↭ ε since ε is usc. In particu-
lar, Pϖ(ε)ε ⇒↘ +↗, so Pϖ(ε)ε → PSH(ω) by (ii). Thus Pϖ(ε)ε is a competitor
in the definition of Pϖ(ε), so Pϖ(ε) = Pϖ(ε)ε is ω-psh.

Finally, we prove (iii) ⇓ (i), following [1, Lemma 7.29]. Let (εi) be
a bounded-above family in PSH(ω), and set ε := supε

i εi. Since ε is usc
and X

an is compact, we can find a decreasing net (ϖj) in C0(X) such that
ϖj ↑ ε. By density of PL(X) in C0(X) wrt uniform convergence (see [3, The-
orem 2.2]), we can in fact assume ϖj → PL(X), and hence Pϖ(ϖj) → PSH(ω),
by (iii). For all i, j, we have εi ↭ ϖj , and hence εi ↭ Pϖ(ϖj), which in
turn yields ε ↭ Pϖ(ϖj) ↭ ϖj . We have thus written ε as the limit of the
decreasing net of ω-psh functions Pϖ(ϖj), which shows that ε is ω-psh. ↬

Corollary 1.4. — Assume that ω has the envelope property, and con-
sider a usc function ε : X

an ↑ R ↓ {↔↗}. Then:

(i) Pϖ(ε) is ω-psh, or Pϖ(ε) ↘ ↔↗;
(ii) if ε is the limit of a decreasing net (εj) of bounded-above, usc func-

tions, then Pϖ(εj) ↖ Pϖ(ε).

Proof. — By Lemma 1.3, either ϖ := Pϖ(ε)ε is ω-psh, or Pϖ(ε) ↘ ↔↗
(the latter being automatic if PSH(ω) = ⇑). Since Pϖ(ε) ↭ ε and ε is usc,
we also have ϖ ↭ ε. If ϖ is ω-psh, then ϖ ↭ Pϖ(ε), which proves (i).

To see (ii), note that φ := limj Pϖ(εj) satisfies either φ → PSH(ω) or
φ ↘ ↔↗, by [3, Theorem 4.5]. Furthermore, Pϖ(εj) ↭ εj yields, in the limit,
φ ↭ ε, and hence φ ↭ Pϖ(ε) (by definition of Pϖ(ε) if φ → PSH(ω), and
trivially if φ ↘ ↔↗). Thus limj Pϖ(εj) = φ ↭ Pϖ(ε). On the other hand,
Pϖ(εj) ↫ Pϖ(ε) implies φ ↫ Pϖ(ε), which completes the proof of (ii). ↬
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1.2. The Fubini–Study envelope

Now consider a big Q-line bundle L. Recall [3, §2.4] that for any subgroup
! ⇔ R, Hgf

! (L) denotes the set of functions ε : X
an ↑ R↓{↔↗} of the form

ε = m
→1 max

j
{log |sj | + ↼j},

where m → Z>0 is such that mL is an honest line bundle, (sj)j is a finite set
of nonzero global sections of mL, and ↼j → !.

We define the Fubini–Study envelope of a bounded function ε : X
an ↑R as

QL(ε) := sup
{

ϖ → Hgf
R (L)

∣∣∣ ϖ ↭ ε

}
. (1.1)

By approximation, Hgf
R (L) can be replaced by Hgf

Q (L) = Hgf
Z (L) in this

definition, see [3, (2.10)]. Note also that QL(ε) : X
an ↑ R↓{↔↗} is bounded

above and lsc.

Recall that the augmented base locus of L can be described as

B+(L) :=
⋂

{sup E | E e!ective Q-Cartier divisor, L ↔ E ample},

a strict Zariski closed subset of X, see [6].

Lemma 1.5. — Suppose ε : X
an ↑ R is bounded, with lsc regularization

εε : X
an ↑ R. Then QL(ε) = QL(εε) ↭ PL(εε), and equality holds outside

B+(L).

In particular, QL(ε) = PL(εε) when L is ample. In this case, QL coin-
cides with the envelope Qc1(L) in [3, §5.3].

Proof. — Since any function ϖ → Hgf(L) is continuous (with values in
R ↓ {↔↗}), it satisfies ϖ ↭ ε i! ϖ ↭ εε. Thus QL(ε) = QL(εε), and we
may therefore assume wlog that ε is lsc. Since Hgf(L) ⇔ PSH(L), we trivially
have QL(ε) ↭ PL(ε). Conversely, pick ϖ → PSH(L) such that ϖ ↭ ε. Let
E be an e!ective Q-Cartier divisor such that A := L ↔ E is ample. By [3,
Theorem 4.15], we can write ϖ as the pointwise limit of a decreasing net (ϖj)
in Hgf(L + ςjA) with ςj ↑ 0. Pick ς > 0, so that ϖ < ε + ς. As in the proof
of Lemma 1.2, since ϖj is usc and ε is lsc, a simple variant of Dini’s lemma
shows that ϖj < ε + ς for all j large enough.

Set log |sE | := m
→1 log |smE |, where smE is the canonical global section

of OX(mE) for any m ↫ 1 such that mE is integral. Then log |sE | ↭ 0 lies
in Hgf(E), so it follows that ↽j := (1 + ςj)→1(ϖj + ςj log |sE |) lies in Hgf(L).
Further,

↽j ↭ (1 + ςj)→1(ε + ς) ↭ ε + ς + Cςj
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for some uniform C > 0, since ε is bounded, and hence

↽j ↭ QL(ε + ς + Cςj) = QL(ε) + ς + Cςj .

We have thus proved ϖj + ςj log |sE | ↭ (1 + ςj)(QL(ε) + ς + Cςj); at any
point of

(X ↔ E)an = {log |sE | > ↔↗},

this yields ϖ↭QL(ε), and hence PL(ε)↭QL(ε), which proves the result. ↬

1.3. Envelopes from test configurations

Let L be a big line bundle. Any test configuration (X , L) for (X, L) defines
a function εL → PL, see [3, §2.7], and we seek to compute the Fubini–Study
envelope QL(εL).

To this end, we introduce a slight generalization of the definitions in [3,
§2.1]. To any Gm-invariant ideal a ⇔ OX , we attach a function εa : X

an ↑
[↔↗, 0] by setting εa(v) := ↔⇀(v)(a), where ⇀ = ⇀X denotes Gauss ex-
tension (see [3, Remark 1.9]). In terms of the weight decomposition a =∑

ϱ↑Z↭0
aϱ⇁

→ϱ with aϱ ⇔ OX , we have εa = maxϱ{log |aϱ| + ↼}. If L is an
honest line bundle such that L ↙ a is globally generated, one easily checks
as in [3, Proposition 2.25] that εL + εa lies in Hgf

Q (L).

Lemma 1.6. — Let L be a big line bundle on X, and (X , L) an integrally
closed test configuration for (X, L). For each su!ciently divisible m → Z>0,
denote by am ⇔ OX the base ideal of mL, and set εm := εL + m

→1
εam .

Then εm → Hgf
Q (L) and (εm)m forms an increasing net of functions on X

an

converging pointwise to QL(εL).

Here we consider (εm)m as a net indexed by the set m0Z>0 for some
su"ciently divisible m0, and partially ordered by divisibility.

To prove the lemma, recall [3, §1.2] that if L (and hence L) is an honest
line bundle, then H0(X , L) lies as a k[⇁]-submodule of H0(X, L)k[ς±1]. The
next result provides a valuative characterization of this submodule in terms
of εL.

Lemma 1.7. — Assume L is an honest line bundle, pick s →
H0(X, L)k[ς→±1], and write s =

∑
ϱ↑Z sϱ⇁

→ϱ with sϱ → H0(X, L). Then
s → H0(X , L) i" maxϱ{log |sϱ| + ↼} ↭ εL on X

an.

Proof. — By Gm-invariance, s → H0(X , L) i! sϱ⇁
→ϱ → H0(X , L) for all

↼ → Z, and we may thus assume s = sϱ⇁
→ϱ for some ↼ → Z.
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Since X is integrally closed, we have φεOX ↑ =OX , and hence H0(X ↓
, φ

εL)=
H0(X , L), for any higher test configuration φ : X ↓ ↑ X (see the proof of [3,
Proposition 2.30]). After pulling back L to a higher test configuration, we
may thus assume that X dominates the trivial test configuration via µ : X ↑
Xtriv. Set D := L↔µ

εLtriv, so that εL = εD. Viewed as a rational section of
L, s is regular outside X0. For any v → X

an with Gauss extension w = ⇀(v),
we further have

w(s) = v(sϱ) ↔ ↼ + w(D) = ↔ log |sϱ|(v) ↔ ↼ + εD(v).
If s is a regular section, then w(s) ↫ 0, and hence log |sϱ|(v) + ↼ ↭ εD(v)
for any v → X

an. Conversely, the latter condition implies b
→1
E ordE(s) =

↔ log |sϱ|(vE) ↔ ↼ + εD(vE) ↫ 0 for each irreducible component E of X0,
since ⇀(vE) = b

→1
E ordE ; this yields, as desired, s → H0(X , L) (compare [3,

Lemma 1.23]). ↬
Proof of Lemma 1.6. — Replacing L and L by su"ciently divisible mul-

tiples, we may assume that L and L are honest line bundles.

We have am · am↑ ⇔ am+m↑ for all m, m
↓ → N. This implies that the net

(εm)m is increasing.

By definition of am, mL ↙ am is globally generated. As noted above, this
implies εmL + εam → Hgf

Q (mL), and hence εm → Hgf
Q (L). Since εam ↭ 0, we

further have εm ↭ εL, and hence εm ↭ QL(εL), see (1.1).

Conversely, pick ϖ → Hgf
Q (L) such that ϖ ↭ εL, and write ϖ =

1
m maxi{log |si| + ↼i} for a finite set of nonzero sections si → H0(X, mL)
and ↼i → Z. For each i, we then have log |si| + ↼i ↭ mεL = εmL, and
hence si⇁

→ϱi → H0(X , mL), see Lemma 1.7. Since am is locally gener-
ated by H0(X , mL), this implies in turn log |si| + ↼i ↭ εmL + εam , and
hence ϖ ↭ εm. Taking the supremum over ϖ, we conclude, as desired,
QL(εL) ↭ supm εm. ↬

1.4. The energy pairing

Various incarnations of the energy pairing play a key role in [3]. First of
all, when ω0, . . . , ωn → N1(X) are arbitrary numerical classes and ε0, . . . , εn →
PL(X)R are (R-linear combinations of) PL functions, then

(ω0, ε0) · . . . · (ωn, εn) → R
is defined as an intersection number on a compactified test configuration for
X, see [3, §3.2]. The following result would naturally belong to [3, Proposi-
tion 3.14].
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Lemma 1.8. — Let ϱ : Y ↑ X be a projective birational morphism,
ω0, . . . , ωn → N1(X) numerical classes, and ε0, . . . , εn → PL(X) PL func-
tions. Then

(ω0, ε0) · . . . · (ωn, εn) = (ϱε
ω0, ϱ

ε
ε0) · . . . · (ϱε

ωn, ϱ
ε
εn).

Remark 1.9. — While we are assuming that X and Y are irreducible, the
result holds even without this assumption, as in [3, Proposition 3.14].

Proof. — There exists a test configuration X for X that dominates Xtriv =
X ∝ A1, and vertical Q-Cartier divisor Di → VCar(X )Q that determine the
functions εi, 0 ↭ i ↭ n. Then

(ω0, ε0) · . . . · (ωn, εn) = (ω0,X + D0) · . . . · (ωn,X + Dn),

where the intersection number is computed on the canonical compactifica-
tion X ↑ P1 and ωi,X → N1(X ) denotes the pullback of ωi. The canonical
birational map Ytriv = Y ∝A1 ⊜⊜≿ X being Gm-equivariant, we can choose a
test configuration Y for Y that dominates Ytriv such that ϱ : Y ↑ X extends
to a Gm-equivariant morphism ϱ : Y ↑ X . Then ϱ

ε
εDi = εφωDi for all i,

and we have

(ϱε
ω0, ϱ

ε
ε0) · . . . · (ϱε

ωn, ϱ
ε
εn) = (ϱε

ω0,X + ϱ
ε
D0) · . . . · (ϱε

ωn,X + ϱ
ε
Dn)

= (ω0,X + D0) · . . . · (ωn,X + Dn) = (ω0, ε0) · . . . · (ωn, εn),

where the second equality follows from the projection formula. ↬
In [3, §7], the energy pairing was extended in various ways. First, one can

define
(ϑ0, ε0) · . . . · (ϑn, εn) → R ↓ {↔↗}

for ϑi → Amp(X) and εi → PSH(ϑi) by approximation from above by func-
tions in PSH(ϑi) ′ PL(X). Given ϑ → Amp(X), a function ε → PSH(ϑ) has
finite energy if (ϑ, ε)n+1

> ↔↗, and the set of such functions is denoted by
E1(ϑ). If ε → PSH(ϑ), we set

Eϑ(ε) := (ϑ, ε)n+1

(n + 1)(ϑn) .

The functional Eϑ is increasing and satisfies Eϑ(ε + c) = Eϑ(ε) + c for any
ε → PSH(ϑ) and c → R. We have (ϑ0, ε0) · . . . · (ϑn, εn) > ↔↗ for any
ϑi → Amp(X) and εi → E1(ϑi).

For a general bounded-above function ε : X
an ↑ R ↓ {↔↗} we set

Eϑ(ε) := sup{Eϑ(ϖ) | ϖ → PSH(ϑ), ϖ ↭ ε}.

Then Eϑ(ε) = Eϑ(Pϑ(ε)) for any bounded-above function ε.
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A function ε : X
lin ↑ R is said to be of finite energy if it is of the

form ε = ε
+ ↔ ε

→, where ε
± → E1(ϑ) for some ϑ → Amp(X). The energy

pairing then extends as a (finite) multilinear pairing (ω0, ε0) · . . . · (ωn, εn)
for arbitrary numerical classes ωi → N1(X) and functions εi of finite energy.

2. Theorem A

We now prove Theorem A and derive some consequences.

2.1. Proof of Theorem A

The result is trivial if ω is not pseudoe!ective, as PSH(ω) is then empty.
Otherwise, we can write ω = limi c1(Li) for a sequence of big Q-line bundles
Li with c1(Li) ↫ ω; by [3, Lemma 5.9], we may thus assume that ω = c1(L)
for a big Q-line bundle L. Pick ε → PL(X). By Lemma 1.3, we need to
show that PL(ε) is L-psh. By [3, Theorem 2.31], we have ε = εL for some
integrally closed test configuration (X , L) for (X, L). After replacing L with
a multiple, we may further assume that L and L are honest line bundles.

Since we assume that char k = 0 or dim X ↭ 2 (and hence dim X ↭ 3),
we can rely on resolution of singularities and assume that X is smooth and
X0 has simple normal crossings support. Assume first that char k = 0, and
let bm be the multiplier ideal of the graded sequence am

• , see Lemma 1.6.
The inclusion am ⇔ bm is elementary, and we have bml ⇔ bl

m for all m, l by
the subadditivity property of multiplier ideals. This implies that

(ml)→1
εaml ↭ (ml)→1

εbml ↭ m
→1

εbm

for all m and l. Letting l ↑ ↗ shows that
QL(εL) ↭ ϖm := εL + m

→1
εbm (2.1)

for all m, by Lemma 1.6. By the uniform global generation property of
multiplier ideals, we can find a Gm-equivariant ample line bundle A on X
such that OX (mL+A)↙bm is globally generated for all m. As noted before
Lemma 1.6, this implies εmL+A + εbm → Hgf(mL + A), with A → Pic(X)
the restriction of A, and hence

ϖ
↓
m := ϖm + 1

m εA → Hgf
Q (L + 1

m A).
After adding to A a multiple of X0, we may further assume εA ↫ 0, which,
together with subadditivity, guarantees that the net (ϖ↓

m) is decreasing with
respect to the divisibility order, and hence that ϖ := infm ϖ

↓
m is either L-psh

or identically ↔↗ (see [3, Theorem 4.5]). By (2.1), we have
QL(εL) ↭ ϖ

↓
m ↭ εL + 1

m εA,
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and hence QL(εL) ↭ ϖ ↭ εL. In particular, ϖ ⇒↘ ↔↗, so ϖ → PSH(L),
and hence ϖ ↭ PL(εL). Finally, pick ↽ → PSH(L) such that ↽ ↭ εL. By
Lemma 1.5, we have ↽ ↭ PL(εL) = QL(εL) ↭ ϖ on a Zariski open subset
of X

an, and hence on X
div. Since ↽ and ϖ are L-psh, it follows from [3,

Theorem 4.22] that ↽ ↭ ϖ on X
an. Taking the sup over ↽ yields PL(εL) ↭ ϖ,

and we conclude, as desired, that PL(εL) = ϖ is L-psh.

When char k > 0, the very same argument applies with test ideals in
place of multiplier ideals, see [7] for details.

2.2. Consequences

We now list some consequences of Theorem A. First, we can characterize
psef classes, similarly to the complex analytic case.

Corollary 2.1. — Assume that X satisfies the assumptions in Theo-
rem A. Then, for any ω → N1(X), we have PSH(ω) ⇒= ⇑ i" ω is psef. Moreover,
in this case, the function

Vϖ := Pϖ(0)
is ω-psh.

Proof. — It follows from [3, Definition 4.1] that PSH(ω) ⇒= ⇑ only if ω is
psef. First suppose ω is big. By Theorem A, Vϖ := Pϖ(0) is ω-psh. Note that
Vϖ(vtriv) = sup Vϖ = 0, where vtriv is the trivial valuation on X.

Now suppose ω is merely psef, and pick a sequence (ωm)↔
1 of big classes

converging to ω, such that ω ↭ ωm+1 ↭ ωm for all m. As PSH(ωm+1) ⇔
PSH(ωm) for all m, the sequence (Vϖm)m is pointwise decreasing on X

an.
Let ε be its limit. We have sup ε = ε(vtriv) = 0, and ε → PSH(ωm) for every
m. It now follows from [3, Theorem 4.5] that ε → PSH(ω). Finally, it is easy
to see that ε = Pϖ(0). Indeed, ε ↭ 0, and if ϖ → PSH(ω) satisfies ϖ ↭ 0,
then ϖ → PSH(ωm) for all m, so ϖ ↭ Vϖm , and hence ϖ ↭ ε. ↬

By [3, Theorem 5.11], Theorem A now implies the following compactness
result.

Corollary 2.2. — Under the assumptions on X of Theorem A, the set
PSHsup(ω) := {ε → PSH(ω) | sup ε = 0}

is compact for any psef class ω → N1(X).

Finally, as an immediate consequence of Theorem A and [3,Theorem 6.31],
we have the following version of Siu’s decomposition theorem.
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Corollary 2.3. — Suppose that X satisfies the assumptions of Theo-
rem A. Pick ω → N1(X) and an e"ective Q-Cartier divisor E. Then, for any
ε → PSH(ω), we have:

ε ↭ log |sE | + O(1) ∞⇓ ε ↔ log |sE | → PSH(ω ↔ E).

As before, log |sE | = m
→1 log |smE |, where smE is the canonical global

section of OX(mE) for any m ↫ 1 such that mE is integral.

3. Proof of Theorem B

We start by proving:

Lemma 3.1. — Let ϱ : X̃ ↑ X be a projective birational morphism, and
pick a bounded ϑ-psh function ϖ. Then (ϑ, ϖ)n+1 = (ϱε

ϑ, ϱ
ε
ϖ)n+1.

Here ϱ
ε
ϑ may not be ample, but the right hand side is well-defined, as

ϱ
ε
ϖ is a function of finite energy. In fact ϱ

ε
ϖ → E1(ϑ̃) for any ample class

ϑ̃ ↫ ϱ
ε
ϑ.

Proof. — The case when ϖ → PL(X) follows from Lemma 1.8. In the
general case, write ϖ as the pointwise limit of a decreasing net (ϖj) in
PL ′ PSH(ϑ), and pick ϑ̃ → Amp(X̃) such that ϑ̃ ↫ ϱ

ε
ϑ. Then ϱ

ε
ϖj

decreases to ϱ
ε
ϖ pointwise on X̃

an. Moreover, ϱ
ε
ϖj and ϱ

ε
ϖ are ϑ̃-psh,

and hence lie in E1(ϑ̃) as they are bounded. By [3, Theorem 7.14(iii)] we
have (ϑ, ϖj)n+1 ↑ (ϑ, ϖ)n+1 and (ϱε

ϑ, ϱ
ε
ϖj)n+1 ↑ (ϱε

ϑ, ϱ
ε
ϖ)n+1. Now

(ϱε
ϑ, ϱ

ε
ϖj)n+1 = (ϑ, ϖj)n+1 for all j by the PL case, and the result fol-

lows. ↬
As stated in the introduction, we introduce:

Definition 3.2. — Let X be an irreducible projective variety, and ϑ →
N1(X) an ample class. We say that (X, ϑ) has the weak envelope property
if there exists a projective birational morphism ϱ : X̃ ↑ X, and an ample
class ϑ̃ → N1(X̃), such that ϑ̃ ↫ ϱ

ε
ϑ and (X̃, ϑ̃) has the envelope property.

Lemma 3.3. — If char k = 0 or dim X ↭ 2, then any ample class ϑ →
N1(X) has the weak envelope property.

Proof. — In both cases, we can pick ϱ : X̃ ↑ X as a resolution of singu-
larities, and then pick any ample class ϑ̃ ↫ ϱ

ε
ϑ. By [3, Theorem 5.20] (or

Theorem A), the envelope property holds for (X̃, ϑ̃), and we are done. ↬
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Proof of Theorem B. — Set ↽ := Pϑ(ε). For any ϖ → PSH(ϑ), we
have ϖ ↭ ε ∞⇓ ϖ ↭ ↽ , and hence Eϑ(ε) = Eϑ(↽) ↭ Eϑ(↽ε). Since ↽ is
the pointwise supremum of the family F = {ϖ → PSH(ϑ) | ϖ ↭ ε}, and
since F is stable under finite max, we can find an increasing net (ϖi) of
ϑ-psh functions such that supi ϖi = ↽ pointwise on X

an. Replacing ϖi with
max{ϖi, inf ε}, we can further assume that ϖi is bounded.

By assumption, we can find a projective birational morphism ϱ : X̃ ↑ X,
and an ample class ϑ̃ → N1(X̃) such that ϑ̃ ↫ ϱ

ε
ϑ and (X̃, ϑ̃) has the

envelope property. Now ↽̃ := ϱ
ε
↽ = supi ϱ

ε
ϖi with ϱ

ε
ϖi → PSH(ϑ̃), and it

follows that ↽̃
ε is ϑ̃-psh, and coincides with ↽̃ = supi ϱ

ε
ϖi = limi sup ϱ

ε
ϖi

on X̃
div. By [3, Theorem 7.38], we get (ϱε

ϑ, ϱ
ε
ϖi)n+1 ↑ (ϱε

ϑ, ↽̃
ε)n+1. On

the other hand, Lemma 3.1 yields
(ϱε

ϑ, ϱ
ε
ϖi)n+1 = (ϑ, ϖi)n+1 = (n + 1) vol(ϑ) Eϑ(ϖi) ↭ (n + 1) vol(ϑ) Eϑ(↽),

and we infer
(ϱε

ϑ, ↽̃
ε)n+1 ↭ (n + 1) vol(ϑ) Eϑ(↽). (3.1)

By [3, Theorem 5.6] we also have ↽
ε = ↽ on X

div. Each ϖ → PSH(ϑ) such
that ϖ ↭ ↽

ε on X
an therefore satisfies ϖ ↭ ↽ on X

div (see [3, Theorem 5.6]);
hence ϱ

ε
ϖ ↭ ↽̃ ↭ ↽̃

ε on X̃
div, which implies ϱ

ε
ϖ ↭ ↽̃

ε on X̃
an (see [3,

Theorem 4.22]). Assuming ϖ bounded, we get
(ϑ, ϖ)n+1 = (ϱε

ϑ, ϱ
ε
ϖ)n+1 ↭ (ϱε

ϑ, ↽̃
ε)n+1

,

where the equality follows from Lemma 3.1, and the inequality from the
monotonicity of the energy pairing, see [3, Lemma 7.15]. Taking the supre-
mum over ϖ now yields

(n + 1) vol(ϑ) Eϑ(↽ε) ↭ (ϱε
ϑ, ↽̃

ε)n+1
.

Combined with (3.1), this implies Eϑ(↽ε)↭Eϑ(↽), and the result follows. ↬
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