
Advances in Data Analysis and Classification
https://doi.org/10.1007/s11634-024-00621-6

REGULAR ART ICLE

Enhancing symbolic regression with side information
for data analysis

Xiangwu Zuo1 · Anxiao Jiang1

Received: 3 January 2024 / Revised: 4 June 2024 / Accepted: 23 November 2024
© Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
This paper introduces the Side Information Boosted Symbolic Regression (SIBSR)
model, an enhanced approach in symbolic regression aimed at improving data analysis.
SIBSR integrates side information to increase the accuracy and efficiency of modeling
complex data relationships. In addition, we introduce the Side Information Generator,
a complementary tool designed to assist in generating a range of potential side infor-
mation options. This enables users to select the most effective side information for
specific tasks, thereby enhancing practical utility. Our experimental findings demon-
strate the efficacy of SIBSR in standard symbolic regression tasks and its practical
application in economic contexts, notably in formulating Nash Equilibrium expres-
sions in Game Theory. These results underscore SIBSR’s potential in advancing the
field of data analysis. The source codes are available at: https://github.com/dkflame/
SIBSR.

Keywords Symbolic regression · Data analysis · Genetic programming · Side
information · Game theory · Deep learning

Mathematics Subject Classification 68T07

1 Introduction

Symbolic regression, a field distinguished by its interpretability compared to black-box
neural network-based regression methods, focuses on recovering the mathemati-
cal symbolic expression to describe the relationship between the input variables

B Xiangwu Zuo
dkflame@tamu.edu

Anxiao Jiang
ajiang@cse.tamu.edu

1 Department of Computer Science and Engineering, Texas A&M University, College Station, TX,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-024-00621-6&domain=pdf
http://orcid.org/0000-0002-1149-3678
https://github.com/dkflame/SIBSR

X. Zuo, A. Jiang

X = (x1, x2, · · · , xn) and the target variable y. Consider a dataset (X, y) com-
posed of m samples, where X = {X1, X2, · · · , Xm} represents m samples of X, and
y = {y1, y2, · · · , ym} represents the m corresponding values of y = f (X), where f
is an unknown function. Given such a dataset, symbolic regression autonomously
discovers the symbolic form of the function that best models the data (such as
y = 1.2x1 + 5.3 log(x2) − 2.4 cos(x3) or y = 2.8 cos(x1) sin(3.7x2/x23) + 2.9x4).
Its ability to generate human-interpretable symbolic forms marks a distinct advantage
in applications requiring clear insights and explanations.

The space of mathematical expressions in symbolic regression is characterized by
a combination of discreteness in model structure and continuity in model parame-
ters. This aspect leads to an exponential growth in the complexity of the solution
space as the expression length increases, making symbolic regression a challenging
task in machine learning, and it is widely considered to be NP-hard (Lu et al. 2016).
Genetic Programming (GP), inspired by Darwinian evolutionary principles, addresses
this challenge by evolving populations of mathematical expressions represented as
binary trees (Ahn 2020; Al-Helali 2019; Schmidt and Lipson 2009; Fortin et al. 2012;
Whitley 1994), in which internal nodes serve as mathematical operators, while ter-
minal nodes act as either variables or constants. This structure allows for the concise
representation of complex mathematical expressions in a form amenable to evolution-
ary optimization. Recent advancements include applying deep reinforcement learning
methods (Landajuela et al. 2021; Zhang et al. 2021) to symbolic regression, exempli-
fied by approaches of Deep Symbolic Regression (DSR) (Petersen et al. 2021) that
utilize recurrent neural networks to sample expressions.

Despite notable advancements, current symbolic regressionmethods encounter dif-
ficulties when dealing with complex expressions and high-dimensional inputs. While
domain experts can intuitively identify patterns in data distributions, such as wave-like
forms suggesting the presence of sin or cos operators, there is potential that machines
can autonomously generate functional elements of the desired symbolic representa-
tions. These functions,whether derived fromexpert insights ormachine-generated, can
serve as valuable side information, potentially enhancing the effectiveness of symbolic
regression solutions. This leads us to explore this topic: how to incorporate such side
information to improve the efficiency and accuracy of symbolic regression methods?

To address this, we introduce Side Information Boosted Symbolic Regression
(SIBSR), a new approach that integrates auxiliary or “side” information into symbolic
regression. This method refines the search for accurate and interpretable mathematical
expressions within datasets. Traditional symbolic regression methods (Petersen et al.
2021; Mundhenk et al. 2021) present several limitations: (1) handling multiple input
variables: these methods often struggle to accurately recover ground truth expres-
sions when dealing with datasets that have multiple input variables. For instance, for
ground truth expressions such as x4 − x3 + 1

2 y
2 − y, the traditional symbolic regres-

sion methods often fail to recover them. More details can be seen in the Nguyen-12
(Table 2) and Livermore-5 problems (Tables 3 and 2) trigonometric operators: tradi-
tional methods also face challenges in accurately identifying symbolic expressions
that contain trigonometric operators. This is evident in benchmark problems like
Livermore-10 (Table 3), where the presence of trigonometric functions complicates

123

Enhancing symbolic regression with side information for data analysis

the symbolic regression process, leading to lower recovery rates; (3) scalability and
efficiency: the scalability of these methods is often limited, resulting in inefficien-
cies when applied to larger datasets or more complex problems. The computational
resources required to handle such scenarios can be prohibitively high, further lim-
iting their practical applicability. By leveraging side information, SIBSR improves
the recovery rate on various benchmark datasets (Refer to Fig. 1 for an illustrative
example).

While existing symbolic regression methods have achieved notable progress, there
still exist many datasets that pose serious challenges, such asmodeling the relationship
between Nash Equilibrium points and payoffs in Game Theory. To bridge this gap, we
introduce the Side InformationGenerator, a new tool tailored to automatically generate
relevant side information. This tool enhances the efficacy of our SIBSR framework,
enabling it to effectively tackle symbolic regression challenges in economic contexts,
particularly for Game Theory.

The contributions of this paper include: (1) We introduce SIBSR, a new symbolic
regression method that effectively integrates side information, which improves perfor-
mance compared to existingmethods. (2) SIBSR’s design allows for the customization
of expression similarity metrics and optimization objectives, giving users control over
the influence of side information. (3) We also present the Side Information Generator,
an auxiliary tool independent of the SIBSR framework, designed to automate the cre-
ation of side information expressions for use by SIBSR. (4) Besides applying SIBSR
model to standard benchmark data analysis, it is also applied to specific Game Theory
problems. This extension showcases the model’s capability in analyzing game-related
data and identifying Nash Equilibrium expressions within certain limitations. This
approach underlines the adaptability of SIBSR in economic scenarios, particularly in
the context of strategic game analysis.

2 Related work

Symbolic regression has evolved significantly since the introduction of Genetic Pro-
gramming (GP) Al-Helali 2019. In symbolic regression, handling high-dimensional
data and incomplete datasets poses challenges. High-dimensional data, characterized
by a large number of features, complicates learning and hinders model generalization,
while incomplete datasets contain missing values that can bias results. Chen et al.
(2016) introduced Genetic Programming with Feature Selection (GPWFS), a two-
stage method to enhance GP’s generalization in high-dimensional tasks by selecting
important features from the fittest individuals for regression. This method produces
compact, interpretable models with lower computational costs. Building on this, Chen
et al. (2017) proposed a permutation-based feature selection method, further improv-
ing GP’s performance and interpretability by focusing on truly relevant features. For
incomplete datasets, Al-Helali et al. (2019) developed a GP-based wrapper imputa-
tion method that considers the target variable when constructing imputation models,
enhancing symbolic regression performance. They further combined feature selec-
tion and imputation (Al-Helali et al. 2020), introducing a sensitivity-based feature
importance measure evaluated by noise injection, resulting in improved imputation

123

X. Zuo, A. Jiang

Fig. 1 Illustration of how side information can help symbolic regression in capturing data relationships and
recovering the mathematical expression

accuracy, regression performance, and reduced feature set sizes. However, GP’s scal-
ability issues in higher dimensions and the complexity of tuning its hyperparameters
remain challenging.

The integration ofNeural Networks (NN) in symbolic regression signifies an impor-
tant shift, primarily due to NN’s capabilities in various machine learning tasks (Attali
and Pagès 1997; Lawrence et al. 1997), Lample (2020). Efforts to make NN applica-
ble to symbolic regression include Grammar Variational Autoencoders for Bayesian
optimization (Kusner et al. 2017) and the use of NN in dimensional analysis for
sub-problem fitting (Udrescu and Tegmark 2020). These approaches, though inno-
vative, often result in expressions that lack validity or interpretability. The Equation
Learner network (EQL) (Sahoo et al. 2018) attempts to address this by using sym-
bolic operators as activation functions, but this method faces challenges in performing
backpropagation and limitations in its practical implementation.

The emergence of Deep Symbolic Regression (DSR) (Petersen et al. 2021) marks
a departure from traditional methods, employing a recurrent neural network (RNN)
for expression generation and reinforcement learning for expression selection. The
RL-GEP system (Zhang et al. 2021) further explores this direction, combining rein-
forcement learning with GP. The DREGS method (Mundhenk et al. 2021) represents
a culmination of these efforts, combining DSR and GP to refine the expression gener-
ation process.

123

Enhancing symbolic regression with side information for data analysis

There is also a deep connection between symbolic regression and a field named
black box optimization. Black box optimization refers to optimization problemswhere
the internal workings of the objective function are unknown, and is widely used in
machine learning, industrial design and science (Hansen et al. 2016; Meunier et al.
2021). Symbolic Regression can be seen as a black box optimization problem because
the symbolic form of the function is unknown; and interestingly, that symbolic form
is also the item that it searches for. For black box optimization, the design of good
benchmarks is of critical importance because they help evaluate the general capabilities
of the optimization algorithms (Hansen et al. 2009; Liang et al. 2013). For symbolic
regression, good benchmarks should capture various aspects of the problem, including
the number of variables in the function, the structural complexity of the function, and
more. Existing benchmarks for symbolic regression (Petersen et al. 2021; Mundhenk
et al. 2021) and the new benchmark of this work gradually increase the difficulty level
of those aspects as the algorithms improve over time.

Game Theory presents a practical application for symbolic regression, particu-
larly in generating functions that relate game payoffs to Nash Equilibrium points.
Traditional algorithms such as support enumeration (Avis et al. 2010) calculate Nash
Equilibrium given specific payoffs, but the challenge lies in the generation of symbolic
functions (instead of numerical solutions) for these equilibria.

To address these challenges, we propose the Side Information Boosted Symbolic
Regression (SIBSR) method. SIBSR integrates side information into the symbolic
regression process, enhancing the accuracy and interpretability of generated expres-
sions. To assess the similarity between side information and generated expressions, we
employ sentence similarity metrics fromNatural Language Processing (NLP) (Leven-
shtein 1966). Furthermore, our Side Information Generator automates the generation
of side information expressions, streamlining the symbolic regression process. SIBSR
aims to bridge the gap in symbolic regression’s applicability to complex, real-world
problems, exemplified in the domain of Game Theory.

3 Preliminaries

In this section, we mainly discuss the foundational concepts employed in our models.
Additionally, we delve into the Deep Symbolic Regression (DSR) and DREGS meth-
ods, as well as introducing a baseline method we propose, termed SIBSR-base, which
represents an enhanced version of DREGS.

3.1 Notations

In this paper, we employ the following key notations:

• X = (x1, x2, · · · , xn) represents the set of input variables, with each xi signifying
an individual variable.

• y represents the output target variable.

123

X. Zuo, A. Jiang

• (X, y) denotes a dataset comprising m samples, where X = {X1, X2, · · · , Xm} and
y = {y1, y2, · · · , ym}. Each pair (X j , y j) constitutes a sample of the unknown
ground truth function y = f (X).

• Unless specified otherwise, T , H, and E in subsequent sections refer to the pre-
order traversal (Polish notation) of symbolic functions. For example, the pre-order
traversal of the symbolic function sin(x + 1) is represented as [sin,+, x, 1].

• Unless specified otherwise, N denotes the number of expressions sampled from the
Expression Generator,M denotes the number of expressions extracted from the GP
process, P denotes the number of expressions kept in the Priority Queue, and S
denotes the number of generations performed in GP.

3.2 Mathematical token tree and expressions

Mathematical expressions, fundamental in symbolic regression, are efficiently rep-
resented as binary token trees. These trees consist of terminal nodes (variables or
constants like x, y, 1, 2, 3) and internal nodes (mathematical operators such as
+,−,×,÷, sin, cos, log, exp), forming a versatile token library (Petersen et al. 2021;
Lample and Charton 2020). This structure facilitates a systematic organization where
mathematical relationships are hierarchically arranged.

The token tree is constructed by placing these tokens in a binary tree layout, with
the encapsulated expression extracted through a pre-order traversal. This traversal
translates the token sequence into a coherent mathematical expression, as depicted
in Fig. 2B. It demonstrates the conversion of a structured token arrangement into an
interpretable mathematical formula.

In the process of forming mathematical expressions through symbolic regression,
it is essential to apply certain constraints to ensure both mathematical validity and
computational efficiency. These constraints are designed to eliminate redundant or
non-contributory structures, thereby streamlining the search space for more meaning-
ful and efficient expressions. The constraints applied include: (1) Limiting expression
length within a pre-determined range, dictated by the token tree’s pre-order traversal
sequence. (2) Prohibiting trigonometric operators (e.g., sin, cos) from having similar
operators as descendants to avoid redundancy (e.g., sin(cos(x)) is prohibited). (3)
Disallowing unary operators (e.g., sin, cos, log, exp) from containing their inverse
operators as children to maintain mathematical integrity (e.g., exp(log(x)) is not
allowed).

3.3 Genetic programming

Genetic Programming (GP), a cornerstone in solving symbolic regression challenges,
models mathematical expressions as evolvable tree structures. Each node in these
trees is either an operator or operand, representing an element of the mathematical
expression. GP’s evolution operations-selection, mutation, and crossover-facilitate the
iterative refinement of expressions (Whitley 1994).

Selection Operation involves choosing superior expressions from the current gen-
eration to parent the next. Mutation Operation randomly alters an expression by

123

Enhancing symbolic regression with side information for data analysis

Fig. 2 A Illustration of the token library. B Example of converting a binary token tree into a mathematical
expression through pre-order traversal

modifying its tokens. Crossover Operation exchanges tokens between pairs of expres-
sions, thereby combining their features. This process, illustrated in Fig. 3, showcases
GP’s dynamic approach to evolving expressions, where different operations can simul-
taneously occur within the same generation.

3.4 Deep symbolic regression (DSR)

DSR (Petersen et al. 2021) is an important baseline model being compared to in
our experiments. A token library like Fig. 2A is prepared. Using an RNN con-
troller with parameters θ , DSR autoregressively samples tokens from the library
at each time step. The sampled tokens are combined to form a token tree, which
can be written as a pre-order traversal sequence and then converted into a math-
ematical expression. The likelihood of the generated expression T is p(T |θ) =
p(t1|θ)

∏n
i=2 p(ti |t1, . . . , ti−1, θ), where ti denotes the token generated at time step

i. In each training epoch, N expressions are sampled. The RNN controller is treated
as an agent that is trained using reinforcement learning. The reinforce policy reward
is a squashing function of the normalized root-mean-square error (NRMSE). Given
an expression T and a dataset (X, y) with m data samples, NRMSE can be defined as

123

X. Zuo, A. Jiang

Fig. 3 A Genetic Programming process example. The operations are performed based on fitness

NRMSE(T) = 1
σy

√
1
m

∑m
i=1(yi − ŷi)2, where ŷi is the predicted value of the expres-

sion T with input Xi , and σy is the standard deviation of the target value y. Finally,
the policy reward function is written as R(T) = 1/[1 + NRMSE(T)]. The structure
of DSR is illustrated in Fig. 4A.

3.5 DREGS: Amodel that combines deep symbolic regression and genetic
programming

This model is proposed inMundhenk et al. (2021), where it is called Symbolic Regres-
sion via Neural-Guided Genetic Programming Population Seeding. It combines the
ability of recurrent neural networks (RNNs) to generate expressions with the need
of genetic programming (GP) for an initial population of expressions. In DREGS,
expressions are sampled from the RNN controller and used as the initial population
for GP. The set of N expressions generated by the RNN is denoted by Trnn , while
the set of M expressions extracted by GP is denoted by Tgp. DREGS combines Trnn
with Tgp and then keeps the best P of them in a priority queue, based on their fitness
values. (Here P is a preset parameter. For example, P can be 100.) The expressions
are evaluated for their fitness, and those with the highest fitness values are selected
to be retained in the priority queue. This ensures that the most promising expres-
sions are prioritized for further optimization. The RNN controller is trained on the
combined expressions using policy-based reinforcement learning (e.g. VPG, RSPG,
PQT). The reward function R(T) for DREGS is the same as the R(T) for DSR and is
given by R(T) = 1/[1+NRMSE(T)]. In DREGS, the GP process is restarted at each

123

Enhancing symbolic regression with side information for data analysis

epoch, because the initial population changes as the RNN controller is updated during
training. The structure of DREGS is shown in Fig. 4B.

3.6 DREGS with side information (SIBSR-base)

For our target, side information is required to be implemented in the symbolic regres-
sion task. Our baseline method (SIBSR-base) is an improvement over the DREGS
method, which uses a recurrent neural network (RNN) to sample expressions before
the genetic programming process. In addition to the expressions generated by the
RNN, SIBSR-base also considers side information expressions as part of the initial
population for genetic programming. Instead of using only the expressions Trnn gen-
erated by the RNN, SIBSR-base’s initial population is given by Tini t_gp = Trnn ∪{H},
where H denotes the side information expression. To ensure that the RNN generates
expressions that are close to the side information expression, we design newmetrics to
compare the generated expressions with the side information expression and adjust the
optimization objective accordingly. The adjusted optimization objective is the same
for both SIBSR-base and our proposed SIBSR model, which is described in more
detail in the following section. The structure of the SIBSR-base method is illustrated
in Fig. 4C.

4 Side information boosted symbolic regression

The Side Information Boosted Symbolic Regression (SIBSR) method synergistically
integrates three core components to enhance symbolic regression: (1) An Expression
Generator, featuring an encoder-decoder mechanism adept at processing pre-order
traversal sequences from mathematical token trees, specifically those derived from
side information expressions. (2) A Genetic Programming (GP) module, utilizing
both the side information expression sequence and the expressions sampled by the
Expression Generator. (3) A Reinforcement Learning Reward Function, tailored to
incorporate the side information expression, enabling adjustable weighting based on
user preference. This section delves into the comprehensive architecture of SIBSR.

4.1 Side information

“Side Information” refers to any knowledge that is correlated with the ground-truth
function y = f (X). In fields of science and engineering, people often leverage
functions derived from prior knowledge or experience. For instance, exponential or
power-law functions might be employed to model the decaying tails of bell-shaped
distributions, and trigonometric functions to represent oscillating data.

Furthermore, an emerging dimension of side information arises from machine-
generated functions. These functions, produced through algorithms or AI-based
processes, can provide valuable insights or partial components of the target func-
tion f . For example, a machine-learning algorithm might autonomously identify and
generate polynomial functions that partially match the behavior of f in specific data

123

X. Zuo, A. Jiang

Fig. 4 A DSR. B DREGS. C Our baseline method structure (SIBSR-base)

ranges, or it could propose logarithmic or exponential functions that capture certain
trends or patterns within the dataset.

Generally, both human-generated and machine-generated functions, when aligned
with the data’s inherent characteristics, serve as valuable side information. In this
work, we particularly focus on side information with specific formats that enhance the
efficiency of searching within the extensive function space of symbolic regression.

4.2 Model pipeline

Symbolic regression, essentially an inverse problem-solving approach, starts with dat-
apoints and seeks a mathematical expression that aptly models the data. Conventional
methods like DSR, GEGL, and DREGS focus on exploring token combinations in a

123

Enhancing symbolic regression with side information for data analysis

predefined space (Petersen et al. 2021; Kim et al. 2021; Mundhenk et al. 2021; Zhang
et al. 2021; Ahn et al. 2020). However, increasing sequence length leads to expo-
nential growth in search space, posing challenges in timely identification of accurate
expressions.

Our approach acknowledges that simplified versions of mathematical expressions
can serve as side information in the symbolic regression process. These simplified
expressions often encapsulate key aspects of datasets with straightforward distribu-
tions. Incorporating such side information into symbolic regression can narrow down
the search space and enhancemodel efficiency. SIBSRembeds this concept, effectively
integrating machine-generated side information into the regression process. This not
only narrows down the search space but also adds an element of automated insight
into the symbolic representation of complex datasets. The methodology for automat-
ically generating this side information is detailed in Sect. 5. The pipeline of SIBSR is
illustrated in Fig. 5.

(1) Side Information encapsulates a probable mathematical function characterizing
the data. This function is translated into a pre-order traversal expressionH, which
is then input into the Expression Generator’s encoder. The encoder distillsH into
a context vector C. This step is illustrated by “1) Use as input expression” in
Fig. 5.

(2) We prepare a token library, as shown in Fig. 2A, comprising mathematical
operators (e.g., +,−,×,÷, sin, log) and variables/constants. The Expression
Generator’s decoder samples tokens from this library, blending them with C to
establish a categorical distribution over the tokens at each RNN timestep. The
decoder’s output forms a new pre-order traversal sequence T for the generated
token tree. This step is illustrated by “2) Decode” in Fig. 5.

(3) Each training epoch involves evaluating the sampled N expressions for their
policy rewards R(T), preparing for subsequent steps. This step is illustrated by
“3) Sample N Expressions T” in Fig. 5.

(4) The Side Information ExpressionH is replicatedK times, whereK is the dataset’s
variable count. These replications, combined with the N sampled expressions,
constitute the initial population for S GP generations. The top M expressions
from these generations E are selected based on their reward values. This step is
illustrated by “4) Extract M Expressions E” in Fig. 5.

(5) The M GP-derived expressions are merged with the N expressions from the
Expression Generator, culminating in a pool of M + N expressions. The best P
of these are chosen for the priority queue, which further trains the Expression
Generator via policy-based reinforcement learning, such as the PQT algorithm.
This step is illustrated by “5) Keep P Expressions” in Fig. 5.

(6) Post training, the optimal expression is selected based on the highest rein-
forcement policy reward R(T), or upon early stopping of the training process.
(In our experiment, the training meets the early stopping criterion when
NRMSE < 10−12.) This step is illustrated by “6) Calculate R(T) for each expres-
sion. Train Expression Generator with RL” in Fig. 5.

123

X. Zuo, A. Jiang

Fig. 5 Side Information Boosted Symbolic Regression pipeline structure

4.3 Expression generator

The Expression Generator, pivotal in SIBSR, employs RNN-based cells (like RNNs,
LSTMs, GRUs) for its encoder and decoder. The side information is denoted by H =
[h1, · · · , hs],where each hi represents a token in the expression sequence. The encoder
compressesH into a context vectorC, initiating the decoder’s RNN state. The decoder,
functioning as an autoregressive network, iteratively emits a categorical distribution
at each step, leading to the generation of an expression T . Mathematical operators
and input variables/constants are treated as tokens, each embedded using one-hot
encoding. TheExpressionGenerator’s parameters are symbolized as θ . The probability

123

Enhancing symbolic regression with side information for data analysis

of generating T = [t1, · · · , tv] given H and θ is defined as follows

p(T |H ; θ) = p(t1, · · · , tv|h1, · · · , hs; θ)

=
n∏

i=1

p(ti |t1, · · · , ti−1, h1, · · · , hs; θ)

=
n∏

i=1

p(ti |t1, · · · , ti−1,C; θ)

(1)

4.4 Initializing GPwith the side information

Each training batch commences by sampling the N highest-ranked expressions (T)
generated by the Expression Generator. These expressions, along with the side infor-
mation (H), form the initial GP population. GP’s evolutionary mechanics—selection,
crossover, and mutation—reshape this population across generations. The GP out-
put, E = {E1, · · · , EM }, emerges as the set of top-ranked M expressions Ei after
performing S generations. These are then combined with the initial N expressions
from the Expression Generator, with the top P retained for training via policy-based
reinforcement techniques like PQT.

4.5 Optimization objective

Given a dataset (X, y), for the expression T , we generate a set of datapoints (X, yT),
where each yT value is calculated based on the expression T applied to the dataset’s
X sample. Similarly, we create another set of datapoints (X, yH) using the expression
H. Here, each yH value is derived by applying the expressionH to the same X sample.
We evaluate the similarity between the expression T generated by our Expression
Generator and side informationH with two metrics. The first metric is the normalized
Euclidean distance of the sampled datapoints between T and H, which is defined as

d(T , H) = ∑m
i=1

√
(yH − yT)2/y2H . The second metric is the sentence similarity of

the two expressions. Since each expression can be treated as a sequence in our model,
we calculate the Levenshtein distance (Navarro 2001) between the two expressions.
The Levenshtein distance is a measure of the similarity between two strings, and is
defined as the minimum number of deletions, insertions, or substitutions required to
transform one string into the other. We define sentence similarity as the Levenshtein
distance divided by the sum of the lengths of the two expressions. This can be written
as ss(T , H) = Levenshtein_distance(T ,H)

length(H)+length(T)

The standardfitnessmetric for a symbolic regression task is typically the normalized
root-mean-square error (NRMSE).BothDSRandDREGSuseNRMSEas theirmetric,
and the reward function is given by R(T) = 1/[1 + N RMSE(T)]. In our case, we
combine NRMSE with our defined two metrics, d(T , H) and ss(T , H), to create our
optimization objective.

123

X. Zuo, A. Jiang

4.6 Reward function

As the DSRmethod uses a reward function of 1/[1+N RMSE(T)] and employs rein-
forcement learning to train the model, we apply a squashing function to our combined
metric. The reward function become

R(T) = w1/[1 + N RMSE(T)] + w2/[1 + d(T , H)] + w3/[1 + ss(T , H)], (2)

where w1, w2, w3 are the weights defined by user.
The reinforce policy gradient objective J (θ) is defined as the expectation of the

reward functionR(T): J (θ) = ET∼p(T |H ;θ)[R(T)]. Aswe sampleN expressions from
Expression Generator at each training epoch, the objective function can be maximized
via gradient ascent with the learning rate α

∇θ J (θ) = ∇θ ET∼p(T |H ;θ)[R(T)] = ET∼p(T |H ;θ)[R(T)∇θ log p(T |H ; θ)]

≈ 1

N

N∑

i=1

R(T (i))∇θ log p(T (i)|H ; θ)

θ ← θ + α∇θ J (θ)

(3)

4.7 SIBSR algorithm

The pseudocode of our SIBSR algorithm is provided in Algorithm 1. The definitions
for the mathematical symbols used in the algorithm are explained in previous sections.

123

Enhancing symbolic regression with side information for data analysis

Algorithm 1 Side Information Boosted Symbolic Regression

5 Side information generator

This section introduces the Side InformationGenerator, a key component of our SIBSR
method that autonomously provides side information for the symbolic regression pro-
cess.

To reduce the symbolic regression search space, we consider two strategies: (1)
Constraining the length of the target expression based on side information: We align
the length of our search expressions with that of the side information expressions. This
strategy is particularly practical when the side information closely approximates the
length of the true function, as often observed in applications like Game Theory, where
expressions generally utilize every payoff value. (2)Modifying the token library based
on side information: If the side information includes specific basis functions (e.g.,
1
x , sin(x)), these can be used to replace certain tokens in the library. This approach aids

in focusing the search and enhancing the noise resilience of the symbolic regression.
Ourmethodgenerates a suite of side information expressions adaptable for symbolic

regression, drawing inspiration from McConaghy (2011). It encompasses three main

123

X. Zuo, A. Jiang

stages: (1)Basis function generation, (2) Side information generation usingElasticNet,
and (3) Conversion of basis function combinations into tokens.

5.1 Basis function generator

Basis functions, containing simple operators, are the building blocks for target
functions. For instance, in a target function like sin(x) + log(y) + xy, the terms
sin(x), log(y), xy are the basis functions. We create a series of these functions using
the original variables combined with various operators. Algorithm 2 outlines this gen-
eration process.

Algorithm 2 Basis Function Generator

5.2 Generating side information with basis functions

In our analysis of Game Theory problems, we observe a predominant use of specific
expression formats. These recurring formats, primarily linear and fractional combina-
tions, effectively serve as implicit side information, guiding our focus. Consequently,
we prioritize linear and fractional basis function combinations in our approach, align-
ing our method with the inherent patterns observed in Game Theory scenarios.

123

Enhancing symbolic regression with side information for data analysis

5.2.1 Linear combination

In a linear combination of N basis functions B = {B1, B2, · · · , BN }, the expres-
sion is formulated as y = c0 + ∑N

i=1 ci Bi (X). ElasticNet is applied to determine the
coefficients C in this linear context, as shown in the following equation:

C = minimize||y − CB(X)|| + λ1||C || + λ2||C ||2 (4)

5.2.2 Fractional combination

For a fractional combination ofN basis functions B = {B1, B2, · · · , BN }, the denom-
inator has NBD number of basis functions sampled fromB and the numerator has NBN

number of basis functions from B. It is described as:

y = c0 + ∑NBN
j=1 c j B j (X)

1 + ∑NBD
i=1 ci Bi (X)

(5)

Performing the simple algebra to Eq. 5, we get:

y +
NBD∑

i=1

ci Bi (X)y = c0 +
NBN∑

j=1

c j B j (X) (6)

Then we get:

y = c0 +
NBN∑

j=1

c j B j (X) −
NBD∑

i=1

ci Bi (X)y (7)

Define Nall = NBN + NBD , then equation is identical to:

y = c0 +
Nall∑

i=NBD+1

ci Bi (X) −
NBD∑

i=1

ci Bi (X)y (8)

Equation 8 can be split into two different equations to calculate ypred :

y =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c0 −
NBD∑

i=1

ci Bi (X)y f or i ≤ NBD

c0 +
Nall∑

i=NBD+1

ci Bi (X) otherwise

(9)

123

X. Zuo, A. Jiang

By treating Bi (X)y as the basis functions for i ≤ NBD , we implement an elasticNet
to calculate all the coefficients ci . With these coefficients, we can fully derive the frac-
tional function of Eq. 5. In contrast to the definition inMcConaghy (2011), our method
guarantees that the denominator of the fractional function contains basis functions.

Algorithm 3 describes how the side information expression is generated with basis
functions.

Algorithm 3 Generating Side Information using Basis Functions

5.3 Token adaptation

Given the generated side information expressions closely align with our target sym-
bolic forms, we adapt our token library accordingly. The method for converting basis

123

Enhancing symbolic regression with side information for data analysis

functions into tokens, enhancing the Expression Generator’s efficiency, is outlined in
Algorithm 4.

Algorithm 4 Basis Functions to Tokens

6 Experiments on benchmark problems

This section demonstrates the efficacy of our SIBSR model on benchmark problems,
highlighting its capabilities in data analysis contexts, particularly in handling multi-
variable and complex expressions. We compare SIBSR’s performance against state-
of-the-art models in terms of accuracy and computational efficiency.

6.1 Settings of hyper-parameters

In this work, we build the SIBSR framework and the Side Information Generator using
Python and Tensorflow. One important package that it utilizes is the DSO (Deep Sym-
bolic Optimization) package, which realizes the Deep Symbolic Regression (DSR)
Algorithm of Petersen et al. (2021); Mundhenk et al. (2021). Note that our frame-
work SIBSR generalizes the DSR algorithm by incorporating side information. We
set the weights of the optimization objective in Eq. 2 to be w1 = 0.7, w2 = 0.1,
and w3 = 0.2. In our experiments, the weights w1, w2, w3 are set within the range
[0, 1] and constrained to sum to 1. We conduct trials with 22 different combinations,

123

X. Zuo, A. Jiang

allowing w1, w2, w3 to vary from 0 to 1 in steps of 0.1, while ensuring that w1 ≥ w2
and w1 ≥ w3. This configuration is chosen to explore a substantial but manageable
number of settings, as excessively numerous combinations could be impractical due to
the time required for evaluation. The selection criteria for these weights are primarily
based on achieving the most stable performance. Stability here is defined as the ratio
of recovery rate to the time consumption of the algorithm, and we select the combi-
nation of w1, w2, w3 that achieves the highest value. The total number of expression
samples for the Expression Generator is set to 50, 000, with a batch size of 500. GP
runs 10 generations in each epoch, and the number of GP-generated expressions is
set to 30. Both the GP crossover rate and mutation rate are set to 50%. The length of
the expressions is allowed to be between 5 and 50, and the length of the maintained
priority queue is set to 10. The threshold for the early stop is set to 10−12.

6.2 Benchmarks

We use two existing benchmark problem sets, Nguyen (Uy et al. 2011) and Livermore
(Mundhenk et al. 2021), to compare the performance of our method (SIBSR) with
DSR, DREGS, and SIBSR-base methods. A symbolic regression benchmark problem
is defined by a ground truth expression, a set of data points, and a set of allowable
tokens. In this work, we also introduce a new benchmark problem set, called SIBC,
which is shown in Table 1. The SIBC benchmarks are specifically designed to test
the model’s proficiency in handling data analysis scenarios with multiple variables
and complex expressions, addressing the limitations in existing benchmarks (Uy et al.
2011; Mundhenk et al. 2021). As described in the Introduction, traditional symbolic
regressionmethods have limitations in handling symbolic formulas withmultiple vari-
ables or trigonometric operators. Consequently, the existing benchmarks often focus
on simpler scenarios involving single variables and without trigonometric operators.
In contrast, the SIBC benchmark includes many symbolic expressions with multi-
ple variables or complex trigonometric operators, thereby overcoming these noted
limitations and providing a more robust test of the model’s capabilities.

6.3 Comparison of recovery rates

Recovery is defined as the exact symbolic expression being discovered by the model.
Therefore, the recovery rate is defined as the number of times the real expression is
discovered divided by the total number of experiments. For each benchmark, we run
experiments on the SIBSR and SIBSR-base models and compare their performance
with that of the DREGS and DSR from Petersen et al. (2021); Mundhenk et al. (2021).
The comparison results of the recovery rate on the Nguyen and Livermore benchmarks
are shown in Tables 2 and 3. The given side information expressions are typically set
as the highest power of a variable in the real expression. From the tables, we observe
that the SIBSR method discovers the exact expressions for most benchmark problems
in this paper. The SIBSR method achieves higher recovery rates compared to state-
of-the-art models on those benchmarks.

123

Enhancing symbolic regression with side information for data analysis

Table 1 Specifications of SIBCbenchmarks. Input variables are denoted by x1, x2, · · · , xi ;U(r, s, t) denotes
t datapoints of each x are uniformly and randomly sampled from r to s

Benchmark Expression Dataset

SIBC-1 sin(x21) + x2 − sin(x3) U(1, 20, 20)

SIBC-2 sin(x1) + 2 sin(x2) − cos(x3) U (−10, 10, 20)

SIBC-3 sin(x1) + 2 sin(x2) + 3 sin(x3) U (−1, 1, 20)

SIBC-4 x1x2 + x3 U (−1, 1, 20)

SIBC-5 x1 + 2x2 + 3x3 U (−1, 1, 20)

SIBC-6 log(x1) + 2 log(x2) + 3 log(x3) U(1, 10, 20)

SIBC-7 log(x1 + 3) + log(x2 + 2) + log(x3 + 1) U(1, 10, 20)

SIBC-8 x1x2 + sin(x2) + log(x3) U(1, 10, 20)

SIBC-9 sin(x1) + log(x2) + exp(x3) + 2x4 x1 ∈ U (−5, 5, 20), x2 ∈
U (1, 10, 20), x3 ∈ U (−5, 5, 20), x4 ∈
U (−5, 5, 20)

SIBC-10 sin(x1) cos(x2) + log(x3) x1 ∈ U (−1, 1, 20), x2 ∈
U (−1, 1, 20), x3 ∈ U (1, 10, 20)

SIBC-11 sin(x1) + 2 sin(x2) + cos(x3) + 2 cos(x4) U (−5, 5, 20)

SIBC-12 log(x1) + 2 log(x2) + log(x3) − 2 log(x4) U(1, 20, 20)

SIBC-13 log(x1) + log(x2) + exp(x3) + exp(x4) U(1, 2, 20)

SIBC-14 sin(x1) + log(x2) + exp(x3) + cos(x4) U(1, 2, 20)

SIBC-15 sin(x1) log(x2) + exp(x3) cos(x4) U(1, 2, 20)

SIBC-16 sin(x21) + cos(x1) + x1 − x31
U(1, 2, 20)

SIBC-17 log(x21) + x32 − exp(x2)
x2

U(1, 2, 20)

SIBC-18 log(2x1) + x2 exp(x2) − x3 exp(x3) U(1, 2, 20)

SIBC-19 2x1 sin(x2) + sin(x3)
x3

− x4 cos(x4) U(1, 2, 20)

Most of the benchmarks in Nguyen and Livermore have no more than two input
variables. We are interested in examining the performance of the models when the
input dimension increases and the ground truth expression becomes more complex.
To this end, we run further experiments on our new benchmark SIBC (shown in Table
1), which has at least three input variables.

The recovery rate performances of SIBSR, SIBSR-base, DREGS, and DSR on
SIBC-1 to SIBC-10 are compared in Table 4. The results show that DSR can only
recover expressionswith simple linear combinations of the features (e.g. x1+2x2+33).
For expressions with more mathematical operators like sin or log, DSR does not
work. DREGS performs well on some short expressions with three variables, but its
results are not good when the expression has more different types of mathematical
operators. SIBSR-base performs slightly better than DREGS, but it cannot find the
correct expressions for somebenchmark problems (e.g. SIBC-7). SIBSR recoversmost

123

X. Zuo, A. Jiang

Ta
bl
e
2
R
ec
ov
er
y
ra
te
(%

)
fo
r
di
ff
er
en
tm

od
el
s
on

N
gu

ye
n
be
nc
hm

ar
k
w
ith

gi
ve
n
si
de

in
fo
rm

at
io
n
ex
pr
es
si
on

B
en
ch
m
ar
k

E
xp
re
ss
io
n

Si
de

In
fo
rm

at
io
n

SI
B
SR

SI
B
SR

-b
as
e

D
R
E
G
S

D
SR

N
gu

ye
n-
1

x3
+

x2
+

x
x3

10
0

10
0

10
0

10
0

N
gu

ye
n-
2

x4
+

x3
+

x2
+

x
x4

10
0

10
0

10
0

10
0

N
gu

ye
n-
3

x5
+

x4
+

x3
+

x2
+

x
x5

10
0

10
0

10
0

10
0

N
gu

ye
n-
4

x6
+

x5
+

x4
+

x3
+

x2
+

x
x6

10
0

10
0

10
0

10
0

N
gu

ye
n-
5

si
n(
x2

)
co
s(
x)

−
1

si
n(
x2

)
10

0
10

0
10

0
72

N
gu

ye
n-
6

si
n(
x)

+
si
n(
x

+
x2

)
si
n(
x2

)
10

0
10

0
10

0
10

0

N
gu

ye
n-
7

lo
g(
x

+
1)

+
lo
g(
x2

+
1)

lo
g(
x2

)
10

0
10

0
97

35

N
gu

ye
n-
8

√ x
x

10
0

10
0

10
0

96

N
gu

ye
n-
9

si
n(
x)

+
si
n(
y2

)
si
n(
x)

10
0

10
0

10
0

10
0

N
gu

ye
n-
10

2
si
n(
x)

co
s(
y)

si
n(
x)

10
0

10
0

10
0

91

N
gu

ye
n-
11

x
y

x
10

0
10

0
10

0
10

0

N
gu

ye
n-
12

x4
−

x3
+

1 2
y2

−
y

x4
+

1 2
y2

−
y

10
0

10
0

0
0

A
ve
ra
ge

-
-

10
0

10
0

91
.4
2

82
.8
3

123

Enhancing symbolic regression with side information for data analysis

Ta
bl
e
3
R
ec
ov
er
y
ra
te
(%

)
fo
r
di
ff
er
en
tm

od
el
s
on

L
iv
er
m
or
e
be
nc
hm

ar
k
w
ith

gi
ve
n
si
de

in
fo
rm

at
io
n
ex
pr
es
si
on

B
en
ch
m
ar
k

E
xp
re
ss
io
n

Si
de

In
fo
rm

at
io
n

SI
B
SR

SI
B
SR

-b
as
e

D
R
E
G
S

D
SR

L
iv
er
m
or
e-
1

1 3
+

x
+

si
n(
x2

)
si
n(
x2

)
10

0
10

0
10

0
3

L
iv
er
m
or
e-
2

si
n(
x2

)
co
s(
x)

−
2

si
n(
x2

)
10

0
10

0
10

0
87

L
iv
er
m
or
e-
3

si
n(
x3

)
co
s(
x2

)
−

1
si
n(
x3

)
10

0
10

0
10

0
66

L
iv
er
m
or
e-
4

lo
g(
x

+
1)

+
lo
g(
x2

+
1)

+
lo
g(
x)

lo
g(
x)

10
0

10
0

10
0

76

L
iv
er
m
or
e-
5

x4
−

x3
+

x2
−

y
x4

−
y

59
12

4
0

L
iv
er
m
or
e-
6

4x
4

+
3x

3
+

2x
2

+
x

x4
10

0
95

88
97

L
iv
er
m
or
e-
7

si
nh

(x
)

ex
p(
x)

2
19

0
0

0

L
iv
er
m
or
e-
8

co
sh

(x
)

ex
p(
x)

2
15

0
0

0

L
iv
er
m
or
e-
9

x9
+

x8
+

x7
+

x6
+

x5
+

x4
+

x3
+

x2
+

x
x9

37
25

24
0

L
iv
er
m
or
e-
10

6
si
n(
x)

co
s(
y)

si
n(
x)

10
0

24
24

0

L
iv
er
m
or
e-
11

x2
y2

x+
y

x2
y2

10
0

10
0

10
0

17

L
iv
er
m
or
e-
12

x5 y3

x y
10

0
10

0
10

0
61

L
iv
er
m
or
e-
13

x
1 3

x
10

0
10

0
10

0
55

L
iv
er
m
or
e-
14

x3
+

x2
+

x
+

si
n(
x)

+
si
n(
x2

)
si
n(
x2

)
10

0
10

0
10

0
0

L
iv
er
m
or
e-
15

x
1 5

x
10

0
10

0
10

0
0

123

X. Zuo, A. Jiang

Ta
bl
e
3
(c
on

tin
ue
d)

B
en
ch
m
ar
k

E
xp
re
ss
io
n

Si
de

In
fo
rm

at
io
n

SI
B
SR

SI
B
SR

-b
as
e

D
R
E
G
S

D
SR

L
iv
er
m
or
e-
16

x
2 3

x
10

0
10

0
92

4

L
iv
er
m
or
e-
17

4
si
n(
x)

co
s(
y)

si
n(
x)

10
0

69
68

0

L
iv
er
m
or
e-
18

si
n(
x2

)
co
s(
x)

−
5

si
n(
x2

)
10

0
89

56
0

L
iv
er
m
or
e-
19

x5
+

x4
+

x2
+

x
x5

10
0

10
0

10
0

10
0

L
iv
er
m
or
e-
20

ex
p(

−x
2
)

ex
p(
x)

10
0

10
0

10
0

98

L
iv
er
m
or
e-
21

x8
+

x7
+

x6
+

x5
+

x4
+

x3
+

x2
+

x
x8

39
24

24
2

L
iv
er
m
or
e-
22

ex
p(

−0
.5
x2

)
ex
p(
x)

10
0

93
84

3

A
ve
ra
ge

-
-

84
.9
5

74
.1
3

71
.0
9

30
.4
1

123

Enhancing symbolic regression with side information for data analysis

Table 4 Recovery rate (%) for different models on SIBC-1 to SIBC-10 benchmarks with given side infor-
mation expression

Benchmark Expression Side
Information

SIBSR SIBSR-base DREGS DSR

SIBC-1 sin(x21) + x2 − sin(x3) sin(x21) 100 87 67 0

SIBC-2 sin(x1) + 2 sin(x2) −
cos(x3)

cos(x3) 83 80 78 0

SIBC-3 sin(x1) + 2 sin(x2) +
3 sin(x3)

sin(x1) 100 96 91 0

SIBC-4 x1x2 + x3 x1 100 100 100 100

SIBC-5 x1 + 2x2 + 3x3 x1 100 100 100 100

SIBC-6 log(x1) + 2 log(x2) +
3 log(x3)

log(x1) 100 100 100 0

SIBC-7 log(x1 + 3) + log(x2 +
2) + log(x3 + 1)

log(x1 + 3) 28 0 0 0

SIBC-8 x1x2+sin(x2)+log(x3) log(x3) 100 100 95 0

SIBC-9 sin(x1) + log(x2) +
exp(x3) + 2x4

sin(x1) 38 29 27 0

SIBC-10 sin(x1) cos(x2) +
log(x3)

log(x3) 77 51 43 0

Average - - 82.6 74.3 70.1 20

three-variable expressions even with a basic side information given (e.g. sin(x1)), and
it achieves a recovery rate of 28% on SIBC-7, which none of the other models can
recover. Overall, the recovery rates are SIBSR > SIBSR-base > DREGS > DSR.

6.4 Runtime comparison on fully recovered expressions

SIBSR, SIBSR-base, and DREGSmodels all implement GP in their search for expres-
sions, so their runtime is comparable on benchmark problems where all three models
have a 100% recovery rate. We record the time these models take when running exper-
iments on the Nguyen benchmarks with the given side information in Table 2. The
comparison results are shown in Table 5. The DREGS model runtime is less than the
model in Mundhenk et al. (2021) because the hyper-parameter settings and machines
are different. Our experiments are conducted onmachinewith twoGeForceGTX1080
Ti GPUs. From these results, we observe that on average, SIBSR and SIBSR-base find
the correct expression faster than DREGS. For the benchmark problems that DREGS
solves quickly (less than 60 s), all three models tend to take similar amounts of time.
For the benchmark problems that DREGS takes more than 100 s to solve, SIBSR
and SIBSR-base save more time. In terms of average runtime performance, SIBSR
performs the best.

123

X. Zuo, A. Jiang

Table 5 Single-core runtimes comparison on the Nguyen benchmark

Benchmark SIBSR (sec) SIBSR-base (sec) DREGS (sec)

Nguyen-1 19.72 15.35 13.05

Nguyen-2 22.32 21.06 18.07

Nguyen-3 68.97 60.13 61.41

Nguyen-4 65.00 86.29 128.27

Nguyen-5 67.09 70.66 297.31

Nguyen-6 18.08 26.89 12.77

Nguyen-8 84.15 104.18 113.13

Nguyen-9 14.16 14.34 15.88

Nguyen-10 60.90 85.81 50.92

Nguyen-11 13.01 12.83 12.85

Average 39.4 45.24 65.79

6.5 Impact of side information

We observe that for the SIBC-7 and SIBC-9 benchmarks in Table 4, SIBSR has a
recovery rate of less than 50% in finding the ground truth expression with the given
side information.We notice that the SIBC-7 and SIBC-9 benchmarks have either more
input variables or longer expressions than the others. However, the side information
expressions given to these benchmarks are much different to the ground truth expres-
sion (The sentence similarity values are high for the side information and ground truth
expression). We are interested in whether the given side information affects the per-
formance of SIBSR in terms of recovery rate. Therefore, we conduct another series
of experiments on SIBC-11 to SIBC-15, which have more variables and more com-
plicated ground truth expressions. For each of these benchmark problems, different
side information expressions are given with a sentence similarity value ss(Ttrue, H)

ranging from 0 to 1, where Ttrue denotes the ground truth expression of the benchmark.
If the given side information H is exactly the same as Ttrue, based on the definition
of sentence similarity, the ss(Ttrue, H) value is 0. If the given side information H is
totally different from Ttrue, then the ss(Ttrue, H) value is 1 according to the definition.
Note that our SIBSR-base method uses the same optimization objective function as
SIBSR, which is w1/[1+ N RMSE(T)] + w2/[1+ d(T , H)] + w3/[1+ ss(T , H)].
Therefore, we run these experiments on both the SIBSR-base method and SIBSR to
compare the results.

The recovery rate curves for SIBSR and SIBSR-base are shown in Fig. 6. In this
figure, we observe that the blue curve (SIBSR) and red curve (SIBSR-base) only over-
lap when ss(Ttrue, H) is 0 or 1. This is because 0means the ground truth is provided as
side information, and 1 means that both models are downgraded to DREGS. Besides
these two overlapped points, the blue curve always stays above the red curve, indi-
cating that for any given side information expression, SIBSR performs better than the
SIBSR-base method in terms of recovery rate.

123

Enhancing symbolic regression with side information for data analysis

Fig. 6 SIBSR (blue) vs SIBSR-base method (red) in recovery rate for different side information expressions
being provided to SIBC-11 to SIBC-15 benchmarks. Sentence similarity (ss) value from 0 to 1 denotes the
similarity between the side information expression and the ground truth expression from high to low (color
figure online)

The runtime curves of SIBSR and SIBSR-base are illustrated in Fig. 7. In this
figure, the blue curve (SIBSR) initially takes the same amount of time as the red curve
(SIBSR-base) when ss(Ttrue, H) is equal to 0. As the ss value increases, the blue
curve starts to increase more quickly than the red curve, indicating that SIBSR takes a
longer runtime. Then, these two curves cross when the ss value is approximately 0.15,
after which the red curve increases faster than the blue curve. Once the ss value is
close to 1, these two curves become close to each other again, indicating that SIBSR
and SIBSR-base take similar amounts of time if the Side Information Expression is
significantly different from the ground truth expression.

6.6 SIBSR’s advantages in data analysis for benchmarks

Through these experiments, we demonstrate SIBSR’s adaptability and efficiency in
complex data analysis scenarios, particularly in cases involving multiple variables and
intricate mathematical expressions. This aligns with the growing need for advanced
data analysis tools in various fields, emphasizing SIBSR’s potential as a valuable asset
in modern data science.

7 Experiments on game theory

In this section, we construct various Game Theory problems and apply our SIBSR and
Side Information Generator to find the corresponding symbolic expressions.

123

X. Zuo, A. Jiang

Fig. 7 SIBSR (blue) vs SIBSR-basemethod (red) in runtime for different side information expressions being
provided to SIBC-11 to SIBC-15 benchmarks. The maximal time is set to 300 s regardless if it successfully
found the expression or not. Sentence similarity (ss) value from 0 to 1 denotes the similarity between the
side information expression and the ground truth expression from high to low (color figure online)

In Game Theory, Nash Equilibrium describes a state of a game involving two or
more players in which no player can improve their payoff by deviating from the
equilibrium strategy (Nash 1951; Avis et al. 2010). In other words, each player’s
strategy is the best response to the strategies of the other players at a Nash Equilibrium
point.

Consider a game with N players, each possessing a strategy set Si for i =
1, 2, · · · , N . A player i’s strategy is denoted by si , and s−i represents the strategies of
the other N −1 players. The expected payoff for player i is ui (si , s−i), considering all
players adopt strategies s = {si , s−i }. Nash Equilibrium s∗ is achieved when no player
can unilaterally improve their payoff, i.e., ui (s∗

i , s∗−i) ≥ ui (si , s∗−i) for all si ∈ Si .

7.1 Bi-matrix game definition

Our study focuses on the two-player non-cooperative game (or bi-matrix game) (Avis
et al. 2010; Abbott and Kane 2004). We define a bi-matrix game G = (A, B), where

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

, ai j ∈ R

123

Enhancing symbolic regression with side information for data analysis

Fig. 8 Bi-matrix game payoff matrix

and

B =

⎛

⎜
⎜
⎜
⎝

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn

⎞

⎟
⎟
⎟
⎠

, bi j ∈ R

are the payoffmatrices for playersA andB, respectively. Eachmatrix is an n×nmatrix,
indicating n strategies for each player. The Nash Equilibrium strategy vectors x =
(x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) define the players’ strategy probabilities,
with each component xi , yi ∈ [0, 1]. The expected payoffs for players A and B are
xT Ay and xT By, respectively.

For a bi-matrix game as in Fig. 8 that merges matrices A and B together, the Nash
Equilibrium, denoted by {x∗, y∗}, satisfies:

x∗T Ay∗ ≥ xT Ay∗, ∀x ∈ X ,

x∗T By∗ ≥ x∗T By, ∀y ∈ Y,
(10)

where X and Y are the sets of all possible strategies for players A and B, respectively.
The best response conditions for x∗ and y∗ are given by:

xi > 0 ⇒ (Ay)i = max
k∈N {(Ay)k},∀i ∈ {1, . . . , n}, (11)

y j > 0 ⇒ (BT x) j = max
k∈N {(BT x)k},∀ j ∈ {1, . . . , n}. (12)

7.2 Settings on input data and side information

In our experiments, the datasets for bi-matrix games of sizes 2×2 (denoted byD2) and
3×3 (denoted byD3) are generated using the NashpyWhitley (1994) Python package,
each comprising 10, 000 samples. In this context, a “sample” refers to a unique instance
of a game scenario, including specific payoff configurations for each player in the bi-
matrix game. Each sample represents a different combination of strategies and their
corresponding payoffs, providing a comprehensive dataset that captures a wide range
of possible game outcomes. The complexity of these datasets is captured by the number

123

X. Zuo, A. Jiang

of payoff variables: 8 in D2 and 18 in D3, represented in their respective matrices A
and B. Consequently, the Nash Equilibrium strategy vectors x and y in D2 encompass
4 values, while inD3, they include 6 values. The task for SIBSR is to map these payoff
variables to strategy values through 4 symbolic expressions for D2 and 6 for D3. The
elements of matrices A and B are sampled from the interval (0, 10] .

To accommodate the symmetric properties of the strategy targets in these games,
the Side Information expression H and the token library TL are specifically designed
to prioritize fractional-style symbolic expressions, as suggested by initial experiments.

7.3 2× 2 Bi-Matrix Game.

Consider a 2× 2 bi-matrix game as defined in Fig. 9. Our objective is to elucidate the
functional relationship between the Nash Equilibrium strategies {x, y} and the payoff
matrix elements {ai j , bi j } for this game configuration.

Applying the SIBSR methodology to this 2× 2 game scenario yielded expressions
correlating Nash Equilibrium strategies to the payoff variables. These expressions,
representing the strategy probabilities for the players, are formulated as:

x1 = b22 − b21
b11 − b12 − b21 + b22

(13)

x2 = b11 − b12
b11 − b12 − b21 + b22

(14)

y1 = a22 − a12
a11 − a12 − a21 + a22

(15)

y2 = a11 − a21
a11 − a12 − a21 + a22

(16)

The symbolic expressions derived via the SIBSR approach above are identical to the
ground truth results from conventional analytical methods (Avis et al. 2010). Since
2× 2 bi-matrix games are among the most basic forms in game theory, the success of
symbolic regression here lays a foundation for its application to more complex games.

Fig. 9 2 × 2 game payoff matrix

123

Enhancing symbolic regression with side information for data analysis

7.4 3× 3 Bi-Matrix Game

The complexity of a 3 × 3 bi-matrix game, as detailed in Fig. 10, escalates with
the increase in the number of variables, from 8 in 2 × 2 games to 18. Despite this
complexity, our SIBSR methodology effectively derived symbolic expressions for the
strategy probabilities.

Specifically, for Player A’s first strategy x1, the SIBSR process produced various
expressions, each reflecting different facets of the integrated side information. These
expressions include:

x1 = 0.118

(0.0014b31 + 0.0014b12 + 0.0014b32)(0.0012b33 + 0.001b11 + 0.0008b21) + 0.303
(17)

x1 = 0.6153

2.5307 − 0.0031b23 − 0.0031b32 − 0.0022b31 − 0.0021b22 − 0.0020b21 − 0.0018b13
(18)

x1 = 0.6146

2.3772 − 0.0034b32 − 0.0031b23 − 0.0023b22 − 0.0018b13 − 0.0011b33 − 0.0003b11
(19)

x1 = 0.7095

2.6313 − 0.0033b32 − 0.0032b23 − 0.0023b22 − 0.0017b13 − 0.0013b33 − 0.0004b11
(20)

Our analysis indicates that the strategy probability xi for Player A is primarily influ-
enced by Player B’s payoffs bi j , and similarly, Player B’s strategy probability y j is
influenced by Player A’s payoffs ai j . This relationship underscores a symmetric inter-
dependence in the game’s structure. By generating expressions for x1, we can infer the
probabilities for the remaining strategies. This symmetry in the strategic interactions
is a key feature harnessed by our SIBSR approach, demonstrating its capability to
unravel and model the complexities inherent in 3 × 3 bi-matrix games.

7.5 Advantages of SIBSR in game theory

The application of SIBSR in 2 × 2 and 3 × 3 bi-matrix games has demonstrated
its notable effectiveness in deriving accurate symbolic expressions that correlate with
Nash Equilibrium points and payoff variables. In 2×2 games, the expressions obtained
through SIBSR align closely with those derived from traditional game theory meth-
ods, validating its accuracy. In the more complex 3 × 3 game scenarios, despite the
heightened complexity, SIBSR has proven its robustness and adaptability, effectively
modeling strategy probabilities. These applications underscore the potential of SIBSR

Fig. 10 3 × 3 game payoff matrix

123

X. Zuo, A. Jiang

to transform the analysis of strategic decision-making inGameTheory, offering a faster
and more focused approach to understanding and predicting game outcomes.

8 Conclusion

In this study, the Side Information Boosted Symbolic Regression (SIBSR) model
has demonstrated enhanced recovery rates and search speeds across various sym-
bolic regression tasks, indicating its effectiveness in uncovering complex relationships
within benchmark datasets, and in analyzing Nash Equilibrium strategies and payoffs
in bi-matrix game scenarios. Furthermore, we present the Side Information Genera-
tor, a tool developed to autonomously generate relevant side information expressions
tailored to specific datasets. This addition enhances the precision and utility of the
SIBSR model in economic data analysis challenges.

However, themethod here also exhibits certain limitations.While it reduces the time
complexity compared to previous methods, the SIBSR model may still struggle with
lengthy and complex ground truth expressions, such as sin(x1)+ log(x2)+ exp(x3)+
2x4 (SIBC-9 in Table 4). For future work, we plan to enhance the method to handle
longer and more complex expressions. One promising approach under consideration
is leveraging the Kolmogorov-Arnold Network (KAN) (Liu et al. 2024) to focus on the
most promising subspaces of symbolic expressions, followed by applying our method
to accurately identify the exact expressions.

Overall, the SIBSR model contributes to the field of data-driven symbolic regres-
sion. It offers an approach for analyzing and modeling complex data relationships
across various domains. The application of SIBSR in game theory, as explored in this
study, highlights its potential to advance economic data analysis methodologies.

Acknowledgements This work was supported in part by NSF Project CCF-2416361. We would like to
thank the reviewers and the editor-in-chief for their valuable comments and suggestions that have improved
the quality of this paper.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

Abbott TG, Kane D (2004) On algorithms for nash equilibria
Ahn S, Kim J, Lee H, Shin J (2020) Guiding deep molecular optimization with genetic exploration. In:

Proceedings of the 34th International Conference on Neural Information Processing Systems
Al-Helali BM, Chen Q, Xue B, ZhangM (2019) A genetic programming-based wrapper imputation method

for symbolic regression with incomplete data. 2019 IEEE Symposium Series on Computational Intel-
ligence (SSCI)

Al-Helali B, Chen Q, Xue B, Zhang M (2020) Genetic programming with noise sensitivity for imputa-
tion predictor selection in symbolic regression with incomplete data. In: 2020 IEEE Congress on
Evolutionary Computation (CEC)

Attali J-G, Pagès G (1997) Approximation of functions by a multilayer perceptron: a new approach. Neural
Netw 10:1069

123

Enhancing symbolic regression with side information for data analysis

Avis D, Rosenberg GD, Savani R, Stengel BV (2010) Enumeration of nash equilibria for two-player games.
Econ Theor 42:9

Chen Q, Zhang M, Xue B (2017) Feature selection to improve generalization of genetic programming for
high-dimensional symbolic regression. IEEE Trans Evolut Comput 21:792

Chen Q, Xue B, Niu B, Zhang M (2016) Improving generalisation of genetic programming for high-
dimensional symbolic regression with feature selection. In: 2016 IEEE Congress on Evolutionary
Computation (CEC)

Evolutionary Computation 1: (2000) Basic Algorithms and Operators. Institute of Physics Publishing,
Bristol

Fortin F-A, De Rainville F-M, Gardner M-AG, ParizeauM, Gagné C (2012) Deap: Evolutionary algorithms
made easy. J Mach Learn Res 13:2171

Genetic Programming:(1992) On the Programming of Computers by Means of Natural Selection. MIT
Press

Hansen N, Auger A, Mersmann O, Tusar T, Brockhoff D (2016) COCO: A platform for comparing contin-
uous optimizers in a black-box setting. Optim Method Softw 36(1):114–144

Hansen N, Finck S, Ros R, Auger A (2009) Real-parameter black-box optimization benchmarking 2009:
Noisy functions definitions

Kim S, Lu PY, Mukherjee S, Gilbert M, Jing L, Ceperic V, Soljacic M (2021) Integration of neural network-
based symbolic regression in deep learning for scientific discovery. IEEE Transactions on Neural
Networks and Learning Systems

Knight V, katiemcgoldrick Panayides M, Wang Y, Gaba AS, Konovalov O, Rivière P, Baldevia R, Jr, IF,
newaijj, volume-on-max: drvinceknight/Nashpy: V0.0.34

Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoencoder. In: Proceedings of
the 34th International Conference on Machine Learning

Lample G, Charton F (2020) Deep learning for symbolic mathematics. In: International Conference on
Learning Representations

Landajuela M, Petersen BK, Kim S, Santiago CP, Glatt R, Mundhenk N, Pettit JF, Faissol D (2021) Discov-
ering symbolic policies with deep reinforcement learning. In: Proceedings of the 38th International
Conference on Machine Learning

Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network
approach. IEEE Trans Neural Netw 8:98

Levenshtein V (1966) Binary Codes Capable of Correcting Deletions. Insertions and Reversals, Soviet
Physics Doklady

Liang J, Qu B, Suganthan P, Hernández-Díaz A (2013) Problem definitions and evaluation criteria for the
cec 2013 special session on real-parameter optimization. Technical Report 201212, Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou China

LiuZ,WangY,VaidyaS,Ruehle F,Halverson J, SoljacicM,HouTY,TegmarkM(2024)KAN:Kolmogorov-
Arnold Networks

Lu Q, Ren J, Wang Z (2016) Using genetic programming with prior formula knowledge to solve symbolic
regression problem. Intell Neuroscience 2016:1021378

McConaghy T (2011) FFX: Fast. Scalable, Deterministic Symbolic Regression Technology
Meunier L,RakotoarisonH,WongPK,RoziereB,Rapin J, TeytaudO,MoreauA,DoerrC (2021)Black-Box

Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking
Mundhenk TN, Landajuela M, Glatt R, Santiago CP, Faissol DM, Petersen BK (2021) Symbolic regression

via neural-guided genetic programming population seeding. CoRR abs/2111.00053
Nash JF (1951) Non-cooperative games. Annals of Mathematics (2)
Navarro G (2001) A guided tour to approximate string matching. ACM Comput, Surv
Petersen BK, Larma ML, Mundhenk TN, Santiago CP, Kim SK, Kim JT (2021) Deep symbolic regression:

Recovering mathematical expressions from data via risk-seeking policy gradients. In: International
Conference on Learning Representations

Recurrent Neural Networks: Design and Applications. CRC Press (1999)
Sahoo SS, Lampert CH, Martius G (2018) Learning equations for extrapolation and control. CoRR

abs/1806.07259
Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324:81
Udrescu S-M, TegmarkM (2020) AI Feynman: a physics-inspired method for symbolic regression. Sci Adv

6:eaay2631

123

X. Zuo, A. Jiang

Uy NQ, Hoai NX, O’Neill M, Mckay RI, Galván-López E (2011) Semantically-based crossover in genetic
programming: application to real-valued symbolic regression. Genet Program Evol Mach 12:91

Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65
Zhang H, Zhou A (2021) Rl-gep: Symbolic regression via gene expression programming and reinforcement

learning. In: 2021 International Joint Conference on Neural Networks (IJCNN)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Enhancing symbolic regression with side information for data analysis
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Notations
	3.2 Mathematical token tree and expressions
	3.3 Genetic programming
	3.4 Deep symbolic regression (DSR)
	3.5 DREGS: A model that combines deep symbolic regression and genetic programming
	3.6 DREGS with side information (SIBSR-base)

	4 Side information boosted symbolic regression
	4.1 Side information
	4.2 Model pipeline
	4.3 Expression generator
	4.4 Initializing GP with the side information
	4.5 Optimization objective
	4.6 Reward function
	4.7 SIBSR algorithm

	5 Side information generator
	5.1 Basis function generator
	5.2 Generating side information with basis functions
	5.2.1 Linear combination
	5.2.2 Fractional combination

	5.3 Token adaptation

	6 Experiments on benchmark problems
	6.1 Settings of hyper-parameters
	6.2 Benchmarks
	6.3 Comparison of recovery rates
	6.4 Runtime comparison on fully recovered expressions
	6.5 Impact of side information
	6.6 SIBSR’s advantages in data analysis for benchmarks

	7 Experiments on game theory
	7.1 Bi-matrix game definition
	7.2 Settings on input data and side information
	7.3 2 times2 Bi-Matrix Game.
	7.4 3 times3 Bi-Matrix Game
	7.5 Advantages of SIBSR in game theory

	8 Conclusion
	Acknowledgements
	References

