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valuation, which is not Q-PL (i.e. not a model function in the discretely valued case). Second, we produce
an example of a function whose Monge–Ampère measure is a finite atomic measure supported in a dual
complex, but which is not invariant under the retraction associated to any snc model. This answers a question
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Lesieutre, and arise via base change from Green’s functions over a trivially valued field; this theory allows us
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Résumé. Nous étudions l’équation de Monge–Ampère non-archimédienne sur une variété projective lisse
sur un corps de valuation discrète ou triviale. Tout d’abord, nous donnons un exemple de fonction de Green,
associée à une valuation divisorielle, qui n’est pasQ-PL (i.e. pas une fonction modèle, dans le cas de valuation
discrète). Ensuite, nous produisons un exemple de fonction dont la mesure de Monge–Ampère est à support
dans un complexe dual, mais qui n’est invariante par la rétraction associée à aucun modele snc. Ceci répond
négativement à une question de Burgos Gil et al. Nos exemples sont basés sur des constructions géométriques
de Cutkosky et Lesieutre, et sont produits par changement de base à partir de fonctions de Green sur un corps
trivialement valué ; cette théorie nous permet d’encoder de façon e!cace la décomposition de Zariski de
toute classe pseudo-e˝ective.

Funding. The second author was partially supported by NSF grants DMS-1900025 and DMS-2154380.

Manuscript received 31 March 2023, accepted 28 September 2023.

→Corresponding author

ISSN (electronic): 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.579
mailto:sebastien.boucksom@imj-prg.fr
mailto:mattiasj@umich.edu
https://comptes-rendus.academie-sciences.fr/mathematique/


6 Sébastien Boucksom and Mattias Jonsson

Introduction

In the seminal paper [43], Yau studied the Monge–Ampère equation

(ω+ddcε)n =µ (MA)

on a compact n-dimensional Kähler manifold (X ,ω), where µ is a smooth, strictly positive
measure on X of mass

∫
ωn , and ε a smooth function on X such that the (1,1)-form ω+ddcε

is positive. Yau proved that there exists a smooth solution ε, unique up to a constant. If ω is a
rational class, say ω= c1(L) for an ample line bundle L, then ε can be viewed as a positive metric
on L, and (ω+ddcε)n its the curvature measure.

As observed by Kontsevich, Soibelman, and Tschinkel [31, 32], when studying degenerating
1-parameter families of Kähler manifolds, it can be fruitful to use non-Archimedean geometry in
the sense of Berkovich over the field C((ϑ)) of complex Laurent series. In this context, a Monge–
Ampère operator was introduced by Chambert–Loir [19], and a version of (MA) was solved by
the authors and Favre [11]; see below. Uniqueness of solutions was proved earlier by Yuan and
Zhang [44].

Now, the method in [11] is variational in nature, inspired by [4] in the complex case. It has the
advantage of being able to deal with more general measures µ, but the drawback of providing less
regularity information on the solution. In fact, [11] only gives a continuous solution, and is thus
closer in spirit to the work of Ko!odziej [30] than to [43].

It is therefore interesting to ask whether we can say more about the regularity of ε in (MA), at
least for special measures µ. In the non-Archimedean setting, there are many possible regularity
notions; to describe the one we are focusing on, we first need to make the non-Archimedean
version of (MA) more precise, following [10, 11].

Let X be a smooth projective variety over K =C((ϑ)) of dimension n. Consider a simple normal
crossing (snc) model X of X , over the valuation ring K

↑ = C[[ϑ]]. The dual complex ωX embeds
in the Berkovich analytification X

an, and there is a continuous retraction pX : X
an ↓ωX .

A semipositive closed (1,1)-form on X
an in the sense of loc. cit. is represented by a nef relative

numerical class ω ↔ N1(X /SpecK
↑) for some snc model X . We assume that the image [ω] of ω

in N1(X ) is ample. In this case, there is a natural space CPSH(ω) = CPSH(X ,ω) of continuous ω-
plurisubharmonic (psh) functions, and a Monge–Ampère operator taking a functionε ↔ CPSH(ω)
to a positive Radon measureε↓ (ω+ddcε)n on X

an of mass [ω]n ; see also [20] for a local theory.
When [ω] is rational, so that [ω] = c1(L) for an ample (Q-)line bundle L on X , we can view any
ε ↔ CPSH(ω) as a semipositive continuous metric on L

an, with curvature measure (ω+ddcε)n .
As in [11], let us normalize the Monge–Ampère operator and write

MAω(ε) := 1
[ω]n (ω+ddcε)n .

The main result in [11] is that if µ is a Radon probability measure on X
an supported in some

dual complex, then there exists ε ↔ CPSH(ω), unique up to an additive real constant, such that
MAω(ε) = µ. More precisely, this was proved assuming that X is defined over an algebraic
curve, an assumption that was later removed in [18]. Here we want to study whether for special
measures µ, the solution is regular in some sense.

We first consider the class of piecewise linear (PL) functions. A function ε ↔ C0(X
an) is (Q-)PL

if it is associated to a vertical Q-divisor on some snc model, and PL functions are also known as
model functions. The set PL(X ) of PL functions is a dense Q-linear subspace of C0(X

an), and it is
closed under taking finite maxima and minima.

If ε ↔ PL(X )↗CPSH(ω), then the measure µ = MAω(ε) is a rational divisorial measure, i.e.
a rational convex combination of Dirac masses at divisorial valuations. For example, when
[ω] = c1(L) is rational, the space PL(X )↗CPSH(ω) can be identified with the space of semipositive
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model metrics on L
an, represented by a nef model L of L, and MAω(ε) can be computed in terms

of intersection numbers of L .
Assuming ω rational, one may ask whether, conversely, the solution to MAω(ε) = µ, with µ a

rational divisorial measure, is necessarily PL. Here we focus on the case when µ = ϖx is a Dirac
measure, where x ↔ X

div is a divisorial valuation. In this case, it was proved in [11] that the
solution εx ↔ CPSH(ω) to the Monge–Ampère equation

MAω(εx ) = ϖx , εx (x) = 0 (ε)

is the Green’s function of x, given by εx = sup{ϱ ↔ CPSH(ω) |ϱ(x) ↘ 0}.

Theorem A. Assume that ω is a rational semipositive closed (1,1)-form with [ω] ample, and that

x ↔ X
div

is a divisorial valuation. Let εx ↔ CPSH(ω) be the Green’s function satisfying (ε) above.

Then:

(i) in dimension 1, εx ↔ PL(X );

(ii) in dimension ≃ 2, it may happen that εx ⇐↔ PL(X ).

Writing [ω] = c1(L), Theorem A says that the metric on L
an corresponding to εx is a model

metric in dimension 1, but not necessarily in dimension 2 and higher. This answers a question
in [11], see Remark 8.8 in loc. cit.

Here (i) is well known, for example from the work of Thuillier [42]; see Section 8.5. As for (ii),
we present one example where X is an abelian surface, and another one where X = P3; see
Examples 99 and 100.

We will discuss the structure of these examples shortly, but mention here that they are both
R-PL, i.e. they belong to the smallest R-linear subspace RPL(X ) of C0(X

an) containing PL(X )
and stable under max and min. The question then arises whether also in higher dimension, the
solutionεx to (ε) is R-PL for any divisorial valuation x. While we don’t have a counterexample to
this exact question (withω rational, but see Example 67), we prove that the situation can be quite
complicated in dimensions three and higher.

Namely, let us say that a function ε ↔ C0(X
an) is invariant under retraction if ε = ε ↑ pX for

some (and hence any su!ciently high) snc model X . For example, a function on X
an is R-PL i˝ it

is invariant under retraction and its restriction to any dual complex ωX is R-PL in the sense that
it is a!ne on the cells of some subdivision of ωX into real simplices.

Ifε ↔ CPSH(ω) is invariant under retraction, sayε=ε↑pX , then the Monge–Ampère measure
MAω(ε) is supported inωX . However, if µ is supported inωX , then the solutionε to MAω(ε) =µ
may not satisfy ε=ε↑pX , see [25, Appendix A]. Still, one may ask whether ε is invariant under
retraction, that is, ε=ε↑pX ⇒ for any su!ciently high snc model X ⇒, see Question 2 in loc. cit.. A
version of this question (see Remark 77) in the context of Calabi–Yau varieties plays a key role in
the recent work of Yang Li [36], see also [1, 28, 37]. Our next result provides a negative answer in
general.

Theorem B. Let X = P3
K

, with K = C((ϑ)), and let ω be the closed (1,1)-form associated to the

numerical class of O (1) onP3
K ↑ . Then there existsε ↔ CPSH(ω) such that MAω(ε) has finite support

in some dual complex, but ε is not invariant under retraction. In particular, ε ⇐↔RPL(X ).

Let us now say more about the examples underlying Theorem B and Theorem A(ii). They all
arise in the isotrivial case, when the variety X over K is the base change of a smooth projective
variety Y over C, and the (1,1)-form ω is defined by the pullback of an ample numerical class
ς ↔ N1(Y ) to the trivial (snc) model YK ↑ of X = YK . In this case, we can draw on the global
pluripotential theory over a trivially valued field developed in [13], a theory which interacts
well with algebro-geometric notions such as diminished base loci and Zariski decompositions
of pseudoe˝ective classes.
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Specifically, given a smooth projective complex variety Y , and an ample numerical class
ς ↔ N1(Y ), we have a convex set CPSH(ς) = CPSH(Y ,ς) ⇑ C0(Y

an) of continuous ς-psh functions,
where Y

an now denotes the Berkovich analytification of Y with respect to the trivial absolute
value on C. A divisorial valuation on Y is of the form v = t ordE , where t ↔ Q≃0 and E ⇑ Y

⇒ is
a prime divisor on a smooth projective variety Y

⇒ with a proper birational morphism Y
⇒ ↓ Y .

When instead t ↔ R≃0, we say that v is a real divisorial valuation. If ϑ ⇑ Y
an is a finite set of real

divisorial valuations, then we consider the Green’s function of ϑ, defined as

εϑ := sup{ε ↔ CPSH(Y ,ς) |ε|ϑ ↘ 0}.

By [13], εϑ ↔ CPSH(Y ,ς), and the Monge–Ampère measure of εϑ is supported in ϑ.
The base change X = YC((ϑ)) ↓ Y induces a surjective map ϕ : X

an ↓ Y
an, and this map admits

a canonical section σ : Y
an ↓ X

an, called Gauss extension, and whose image consists of all C⇓-
invariant points in X

an. For any ε ↔ CPSH(Y ,ς) we have ϕεε ↔ CPSH(X ,ω), and

MAω(ϕεε) =σεMAς(ε).

In particular, if v ↔ Y
div, then ϕεε{v} is the Green’s function for x := σ(v) ↔ X

div. As both ϕε and
σε preserve the classes of Q-PL and R-PL functions, we see that in order to prove Theorem A(ii),
it su!ces to find a surface Y and v ↔ Y

div, such that εv :=ε{v} is notQ-PL.
Further, to prove Theorem B, it su!ces to find a finite set ϑ of real divisorial valuations on

Y = P3
C such that ϕεεϑ fails to be invariant under retraction. Indeed, the Gauss extension map

σ takes real divisorial valuations to Abhyankar valuations, and these are exactly the ones that
lie in a dual complex. We then use the following criterion. Define the center of any function
ε ↔ PSH(Y ,ς) by

ZY (ε) := cY {ε< supε},

where cY : Y
an ↓ Y is the center map, see Section 3. We show that if ϕεε is invariant under

retraction, then ZY (ε) ⇑ Y is a strict Zariski closed subset, see Corollary 97. It therefore su!ces
to find a Green’s function εϑ whose center is Zariski dense.

Our analysis of the Green’s functions εϑ is based on a relation between ς-psh functions and
families of b-divisors. Namely, we can pick a proper birational morphism ρ : Y

⇒ ↓ Y , with Y
⇒

smooth, prime divisors Ei ⇑ Y
⇒, and ci ↔ R>0, such that ϑ = {c

⇔1
i

ordEi
}. If we set D := ∑

i c
⇔1
i

Ei ,
then we can express εϑ in terms of the b-divisorial Zariski decomposition of the numerical
class ρες ⇔ λ[D], for λ ↔ (⇔↖,λpsef], where λpsef ↔ R is the largest λ such that this class is
pseudoe˝ective (psef), see Theorem 57. The analysis of the Zariski decomposition of a psef class
ς in terms of ς-psh functions is of independent interest.

Let us first consider the case of dimension two. The Zariski decomposition of ρες⇔λD is then
an R-PL function of λ, and this implies that the Green’s function εϑ is R-PL. On the other hand,
εϑ need not be Q-PL. In fact, we prove in Theorem 60 that εϑ is Q-PL i˝ the pseudoe˝ective
threshold λpsef is a rational number. To prove Theorem A(ii), it therefore su!ces to find a
divisorial valuation v on a surface Y such that λpsef is irrational, and such examples can be found
with Y an abelian surface, and v = ordE for a prime divisor E on Y .

Using a geometric construction by Cutkosky [21], we also give an example of a divisorial
valuation v on Y =P3 such thatεv isR-PL but notQ-PL for ς = c1(O (1)), see Example 65. BeingR-
PL, this example is invariant under retraction. As explained above, in order to prove Theorem B,
it su!ces to find ϑ such that the center cY (εϑ) is a Zariski dense subset of Y . Using the notation
above, we show that the center contains the image on Y of the diminished base locus of the
pseudoe˝ective class ρες⇔λpsef[D] on Y

⇒. We can then use a construction of Lesieutre [35], who
showed that if Y =P3, ς = c1(O (1)), and ρ : Y

⇒ ↓ Y is the blowup at nine very general points, then
there exists an e˝ective R-divisor D on Y

⇒ supported on the exceptional locus on ρ, such that the
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diminished base locus of ρες⇔D is Zariski dense. If we write D = ∑9
i=1 ci Ei , then we can take

ϑ= {c
⇔1
i

ordEi
}.

Structure of the paper

The article is organized as follows. In Section 1 we recall some facts from birational geometry
and pluripotential theory over a trivially valued field. This is used in Section 2 to relate ς-psh
functions and suitable families of b-divisors, after which we study the center of a ς-psh function
in Section 3. In Section 4 we define the extremal function Vς ↔ PSH(ς) associated to a psef class:
by evaluating this function at divisorial valuations we recover the minimal vanishing order of
ς along a valuation. The extremal function is also closely related to various notions of Zariski
decomposition of a psef class, as explored in Section 5. After all this, we are finally ready to study
Green’s functions in Section 6 and Section 7. Finally, in Section 8 and Section 9 we turn to the
discretely valued case and prove Theorems A and B.

Notation and conventions

A variety over a field F is a geometrically integral F -scheme of finite type. We use the abbrevia-
tions usc for “upper semicontinuous”, lsc for “lower semicontinuous”, and iff for “if and only if”.

Acknowledgement

The authors would like to thank José Burgos Gil, Antoine Ducros, Gerard Freixas, Walter Gubler,
John Lesieutre and Milan Perera for useful exchanges related to this work. This article is dedicated
to the memory of Jean-Pierre Demailly, whose extraordinary contributions to complex analytic
and algebraic geometry have had a tremendous influence on our own research.

1. Preliminaries

Throughout the paper (except in Section 8) X denotes a smooth projective variety over an
algebraically closed field k of characteristic 0.

1.1. Positivity of numerical classes and base loci

We denote by N1(X ) the (finite dimensional) vector space of numerical equivalence classes
ς = [D] of R-divisors D on X . It contains the following convex cones, corresponding to various
positivity notions for numerical classes:

• the pseudoeffective cone Psef(X ), defined as the closed cone generated by all classes of
e˝ective divisors;

• the big cone Big(X ), the interior of Psef(X );
• the nef cone Nef(X ), equal to the closed convex cone generated by all classes of basepoint

free line bundles;
• the ample cone Amp(X ), the interior of Nef(X );
• the movable cone Mov(X ), the closed convex cone generated by all classes of line bundles

with base locus of codimension at least 2.

These cones satisfy
Nef(X ) ⇑ Mov(X ) ⇑ Psef(X ),

where the first (resp. second) inclusion is an equality when dim X ↘ 2 (resp. dim X ↘ 1), but is in
general strict for dim X > 2 (resp. dim X > 1). We will make use of the following simple property:
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Lemma 1. If ς ↔ N1(X ) is movable, then ς|E ↔ N1(E) is pseudoeffective for any prime divisor E ⇑ X .

The asymptotic base locus B(D) ⇑ X of aQ-divisor D is defined as the base locus of OX (mD) for
any m ↔ Z>0 su!ciently divisible. The diminished (or restricted) base locus and the augmented

base locus of an R-divisor D are respectively defined as

B⇔(D) :=
⋃

A

B(D + A) and B+(D) :=
⋂

A

B(D ⇔ A),

where A ranges over all ample R-divisors such that D ⇔ A (resp. D + A) is a Q-divisor. Since
ampleness is a numerical property, these loci only depend on the numerical class ς = [D] ↔ N1(X ),
and will be denoted by B⇔(ς) ⇑B+(ς).

The augmented base locus B+(ς) is Zariski closed, and satisfies

ς ↔ Big(X ) ↙∝B+(ς) ⇐= X and ς ↔ Amp(X ) ↙∝B+(ς) =′.

The diminished base locus satisfies

B⇔(ς) =
⋃

ε↔Q>0

B+(ς+εω) (1)

for any ω ↔ Amp(X ). It is thus an at most countable union of subvarieties, which is not Zariski
closed in general, and can even be Zariski dense (see [35]). We further have

ς ↔ Psef(X ) ↙∝B⇔(ς) ⇐= X ;

ς ↔ Nef(X ) ↙∝B⇔(ς) =′;

ς ↔ Mov(X ) ↙∝ codimB⇔(ς) ≃ 2.

1.2. The Berkovich space

We use [13, §1] as a reference. The Berkovich space X
an is defined as the Berkovich analytification

of X with respect to the trivial absolute value on k [3]. We view it as a compact (Hausdor˝)
topological space, whose points are semivaluations, i.e. valuations v : k(Y )⇓ ↓ R for some
subvariety Y ⇑ X . We denote by vY ,triv ↔ X

an the trivial valuation on k(Y ), and set vtriv := vX ,triv.
These trivial semivaluations are precisely the fixed points of the scaling action R>0 ⇓ X

an ↓ X
an

given by (t , v) ∞↓ t v .
We denote X

div ⇑ X
an the (dense) subset of divisorial valuations, of the form v = t ordE with

t ↔ Q≃0 and E a prime divisor on a birational model ϕ : Y ↓ X (the case t = 0 corresponding
to v = vtriv, by convention). In the present work, where R-divisors arise naturally, it will be
convenient to allow t to be real, in which case we will say that v = t ordE is a real divisorial

valuation. We denote by
X

div
R =R>0X

div

the set of real divisorial valuations. It is contained in the space X
lin ⇑ X

an of valuations of linear

growth (see [17] and [13, §1.5]).

1.3. Rational and real piecewise linear functions

In [13], various classes of Q-PL functions on X
an were introduced, and the purpose of what

follows is to discuss their R-PL counterparts.
First, any ideal b⇑OX defines a homogeneous function

log |b| : X
an ⇔↓ [⇔↖,0]

such that log |b|(v) :=⇔v(b) for v ↔ X
an.
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Second, any flag ideal a, i.e. a coherent fractional ideal sheaf on X ⇓A1 invariant under the
Gm-action onA1 and trivial on X ⇓Gm , defines a continuous function

εa : X
an ⇔↓R

given by εa(v) =⇔σ(v)(a), where σ : X
an ↓ (X ⇓A1)an is the Gauss extension, defined as follows.

If v is a valuation on k(Y ) for some subvariety Y ⇑ X , then σ(v) is the unique valuation on
k(Y ⇓A1) = k(Y )(ϑ) with the following property: if f = ∑

j f jϑ
j ↔ k(Y )[ϑ], then σ(v)( f ) =

min j {v( f j )+ j }.
Concretely, any flag ideal can be written a = ∑

λ↔Zaλϑ
⇔λ for a decreasing sequence of ideals

aλ ⇑OX such that aλ =OX for λ∈ 0 and aλ = 0 for λ∋ 0, and then εa = maxλ(log |aλ|+λ).
We denote by:

• PL+
hom(X ) the set ofQ+-linear combinations of functions of the form log |b| with b⇑OX a

nonzero ideal;
• PL+(X ) the set of functions ε ↔ C0(X

an) of the form ε = maxi {ϱi +λi } for a finite family
ϱi ↔ PL+

hom(X ) and λi ↔Q; equivalently, functions of the form ε = 1
m
εa for a flag ideal a

and m ↔Z>0;
• PL(X ) the set of di˝erences of functions in PL+(X ), called rational piecewise linear

functions (Q-PL functions for short).

The sets PL+
hom(X ) are stable under addition and max, while PL(X ) is a Q-vector space, stable

under max, and is dense in C0(X
an).

As in [13, §3.1], we denote by PL(X )R the R-vector space generated by PL(X ). It is not stable
under max anymore; to remedy this, we further introduce:

• the set PL+(X )R of R+-linear combinations of functions in PL+(X );
• the set RPL+(X ) of finite maxima of functions in PL+(X )R;
• the set RPL(X ) of di˝erences of functions in RPL+(X ); we call its elements real piecewise

linear functions (R-PL functions for short).

As one immediately sees, the sets PL+(X )R andRPL+(X ) are convex cones in C0(X
an), andRPL(X )

is thus an R-vector space. Further, RPL+(X ), and hence RPL(X ), are clearly stable under max.
Thus RPL(X ) is the smallest R-linear subspace of C0(X

an) that is stable under max and contains
PL(X ).

Finally, introduce the convex cone PL+
hom(X )R of R+-linear combinations of functions in

PL+
hom(X ) (this is again not stable under max anymore). We then have:

Lemma 2. A function ε ↔ C0(X
an) lies in RPL+(X ) iff ε = maxi {ϱi + λi } for a finite family

ϱi ↔ PL+
hom(X )R and λi ↔R.

Proof. Since any function in RPL+(X ) is a finite max of functions ε ↔ PL+(X )R, it su!ces to
show that ε is of the desired form. Write ε = ∑

r

i=1 tiεi with ti ↔ R>0 and εi ↔ PL+(X ), i.e.
εi = max j {ϱi j +λi j } with ϱi j ↔ PL+

hom(X ) and λi j ↔Q. Then

ε= max
j1,..., jr

r∑

i=1
ti

(
ϱi ji

+λi ji

)
.

Since each
∑

i tiϱi ji
lies in PL+

hom(X )R, this shows that ε is of the desired form.
Conversely, assume ε= maxi {ϱi +λi } for a finite family ϱi ↔ PL+

hom(X )R and λi ↔ R. For each
i , write ϱi =

∑
j ti jϱi j with ϱi j ↔ PL+

hom(X ) ↘ 0. Pick v ↔ X
an and i such that ε(v) =ϱi (v)+λi .

Since ε is bounded, we can find c ↔Q such that ϱi j (v) ≃ c for all j . This shows that ε= maxi εi

with εi := ∑
j ti j max{ϱi j ,c}+λi . For all i , j , max{ϱi j ,c} lies in PL+(X ), thus εi ↔ PL+(X )R, and

hence ε ↔RPL+(X ). ↭
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1.4. Homogeneous functions vs. b-divisors

We use [7, §1] and [13, §6.4] as references for what follows. Recall that

• a (real) b-divisor over X is a collection B = (BY ) of R-divisors on all (smooth) birational
models Y ↓ X , compatible under push-forward as cycles, i.e. an element of the R-vector
space

Z1
b(X )R := lim△⇔⇔

Y

Z1(Y )R;

• a b-divisor B = (BY ) is effective if BY is e˝ective for all Y ; if B ,B
⇒ are b-divisors, then we

write B ↘ B
⇒ i˝ B

⇒ ⇔B is e˝ective;
• a b-divisor B ↔ Z1

b(X )R is said to be R-Cartier if there exists a model Y , called a determi-

nation of B , such that BY ⇒ is the pullback of BY for all higher birational models Y
⇒; thus

the space of R-Cartier b-divisors is given by

Carb(X )R := lim⇔⇔↓
Y

Z1(Y )R.

Example 3. Any R-divisor D on a model Y ↓ X determines an R-Cartier b-divisor D ↔ Carb(X )R,
obtained by pulling back D to all higher models, and any R-Cartier b-divisor is of this form.

For any B ↔ Z1
b(X )R and v ↔ X

div, we define v(B) ↔ R as follows: pick a prime divisor E on a
birational model Y ↓ X and t ↔Q≃0 such that v = t ordE , and set

v(B) := t ordE (BY ).

This is independent of the choices made, and the function ϱB : X
div ↓R defined by

ϱB (v) := v(B)

is homogeneous (with respect to the scaling action ofQ>0).

Definition 4. We say that a homogeneous functionϱ : X
div ↓R is of divisorial type if ϱ(ordE ) = 0

for all but finitely many prime divisors E ⇑ X .

The next result is straightforward:

Lemma 5. The map B ∞↓ϱB sets up a vector space isomorphism between Z1
b(X )R and the space of

homogeneous functions of divisorial type on X
div

. Moreover, B ↔ Z1
b(X )R is effective iffϱB ≃ 0.

We endow Z1
b(X )R with the topology of pointwise convergence on X

div. If ϖ is a topological
space, then a map f : ϖ↓ Z1

b(X )R is thus continuous i˝ v ↑ f : ϖ↓R is continuous for all v ↔ X
div.

We will also say that f : ϖ↓ Z1
b(X )R is lsc (resp. usc) i˝ v↑ f : ϖ↓R is lsc (resp. usc) for all v ↔ X

div.
If ϖ is a convex subset of a real vector space, then we say that f : ϖ↓ Z1

b(X )R is convex if v ↑ f

is convex for all v ↔ X
div. This amounts to f ((1⇔ t )x0 + t x1) ↘ (1⇔ t ) f (x0)+ t f (x1) for x0, x1 ↔ϖ,

0 ↘ t ↘ 1. We say that f is concave if ⇔ f is convex.
Finally, if ϖ ⇑ R is an interval, then f : ϖ↓ Z1

b(X )R is increasing (resp. decreasing) if v ↑ f is
increasing (resp. decreasing) for each v ↔ X

div.
Next we will generalize [13, Theorem 6.32] to real coe!cients.

Definition 6. We denote by Car+b (X )R the convex cone of divisors B ↔ Carb(X )R that are antieffec-

tive and relatively semiample over X . We also set Car+b (X )Q := Carb(X )Q↗Car+b (X )R.

Proposition 7. The map B ∞↓ ϱB induces an isomorphism between Carb(X )R and the R-vector

space generated by (the restrictions to X
div

of) all functions log |b| with b ⇑ OX a nonzero ideal.

This isomorphism restricts to a bijection

Car+b (X )R
▽⇔↓ PL+

hom(X )R.
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Proof. The first point is a consequence of [13, Theorem 6.32], which also yields

Car+b (X )Q
▽⇔↓ PL+

hom(X ).

Since the right-hand side generates the convex cone PL+
hom(X )R, it su!ces to show that the

convex cone of antie˝ective and relatively semiample divisors in Carb(X )R is generated by
antie˝ective and semiample divisors in Carb(X )Q. By definition of a relatively semiample R-
Cartier b-divisor, we have B = ∑

i ti Bi with ti > 0 and Bi ↔ Carb(X )Q relatively semiample. By
the Negativity Lemma (see [7, Proposition 2.12]), B

⇒
i

:= Bi ⇔Bi ,X is antie˝ective, and still relatively
semiample. Denoting by BX = ⇔∑

α cαEα the irreducible decomposition of the antie˝ective R-
divisor BX , we infer

B =
∑

i

ti B
⇒
i
+

∑
α

cα(⇔Eα)

where ⇔Eα ↔ Carb(X )Q is antie˝ective and relatively semiample. The result follows. ↭

1.5. Numerical b-divisor classes

The space of numerical b-divisor classes is defined as

N1
b(X ) := lim△⇔⇔

Y

N1(Y ),

equipped with the inverse limit topology (each finite dimensional R-vector space N1(Y ) being
endowed with its canonical topology).

Any b-divisor defines a numerical b-divisor class. This yields a natural quotient map

Z1
b(X )R ⇔↓ N1

b(X ) B ∞⇔↓ [B ].

One should be wary of the fact this map is not continuous with respect to the topology of
pointwise convergence of Z1

b(X )R. However, we observe:

Lemma 8. For any finite set E of prime divisors on X , the quotient map B ∞↓ [B ] is continuous on

the subspace Z1
b(X )R,E of b-divisors B such that BX is supported by E .

Proof. For any model Y ↓ X , each BY with B ↔ Z1
b(X )R,E lives in the finite dimensional vector

space generated by the strict transforms of the elements of E and the ϕ-exceptional prime
divisors. Thus B ∞↓ [BY ] ↔ N1(Y ) is continuous on Z1

b(X )R,E , and the result follows. ↭
The set of numerical classes of R-Cartier b-divisors can be identified with the direct limit

lim⇔⇔↓
Y

N1(Y ) ⇑ N1
b(X ).

In particular, any numerical class ς ↔ N1(X ) defines a numerical b-divisor class ς = (ςY )Y ↔
N1

b(X ), where ςY is the pullback of ς to Y .

Definition 9. The cone of nef b-divisor classes

Nefb(X ) ⇑ N1
b(X )

is defined as the closed convex cone generated by all classes of nef R-Cartier b-divisors.

Here an R-Cartier b-divisor B is said to be nef if BY is nef for some (hence any) determination
Y of B .

The following characterization is essentially formal (see [7, Lemma 2.10]).

Lemma 10. A b-divisor B ↔ Z1
b(X )R is nef iff BY is movable for all birational models Y ↓ X . In

other words, Nefb(X ) = lim△⇔⇔Y
Mov(Y ).

We finally record the following version of the Negativity Lemma (see [7, Proposition 2.12]).

Lemma 11. If B ↔ Z1
b(X )R is nef, then B ↘ BY for any birational model Y ↓ X .
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1.6. Plurisubharmonic functions

We use [13, §4] as a reference. Given aQ-line bundle L ↔ Pic(X )Q and a numerical class ς ↔ N1(X ),
we denote by

• H gf(L) = H
gf
Q

(L) the set of generically finite Fubini–Study functions for L, i.e. functions
ε : X

an ↓R̸ {⇔↖} of the form

ε= m
⇔1 max

i

{log |si |+λi },

where m ↔Z>0 is su!ciently divisible, (si ) is a (nonempty) finite set of nonzero sections
of mL, and λi ↔Q;

• Hhom(L) ⇑ H gf(L) the set of homogeneous Fubini–Study functions, for which the λi can
be chosen to be 0;

• PSH(ς) the set of ς-psh functions ε : X
an ↓ R̸ {⇔↖}, ε ⇐≡ ⇔↖, obtained as limits of

decreasing nets (εi ) of generically finite Fubini–Study functions εi for Q-line bundles
Li such that c1(Li ) ↓ ς in N1(X ). We also write PSH(L) := PSH(c1(L));

• CPSH(ς) ⇑ PSH(ς) the subset of continuous ς-psh functions;
• PSHhom(ς) ⇑ PSH(ς) the subset of homogeneous ς-psh functions, that is, functions
ε ↔ PSH(ς) such that ε(t v) = tε(v) for v ↔ X

an and t ↔R>0.

All functions in PSH(ς) are finite valued on the set X
div ⇑ X

an of divisorial valuations, and we
endow PSH(ς) with the topology of pointwise convergence on X

div. For all ε,ϱ ↔ PSH(ς), we
further have

ε↘ϱ on X
div ↙∝ε↘ϱ on X

an.

In particular, the topology of PSH(ς) is Hausdor˝. The set of ς-psh functions is preserved by the
action of R>0 given by (t ,ε) ∞↓ t ·ε, where (t ·ε)(v) := tε(t

⇔1
v).

Lemma 12. For any ς ↔ N1(X ) we have:

(i) PSH(ς) ⇐=′∝ ς ↔ Psef(X );

(ii) 0 ↔ PSH(ς) ∀ ς ↔ Nef(X );

(iii) ς ↔ Big(X ) ∝ PSH(ς) ⇐=′.

As we shall see in Proposition 27, (i) is in fact an equivalence, rendering (iii) redundant.

Proof. For (i) and (ii) see [13, (4.1), (4.3)]. If ς is big, we find a big Q-line bundle L such that
ς⇔ c1(L) is nef. Then PSH(ς) ∃ PSH(L) ∃H gf(L) ⇐=′, which proves (iii). ↭

Example 13. For any e˝ective R-divisor D , ϱD := ϱ
D

(see Lemma 5) satisfies ⇔ϱD ↔
PSHhom([D]).

Our assumption that X is smooth and k is of characteristic zero implies that the envelope

property holds for any class ς ↔ N1(X ), see [16, Theorem A]. This means that if (εα)α is any family
in PSH(ς) that is uniformly bounded above, and ε := supαεα, then the usc regularization εε,
given by εε(x) = limsup

y↓x
ε(y), is ς-psh.

The envelope property has many favorable consequences, as discussed in [13, §5]. For
example, for any birational model ϕ : Y ↓ X and any ς ↔ N1(X ) we have

PSH(ϕες) =ϕεPSH(ς), (2)

see [13, Lemma 5.13].
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1.7. The homogeneous decomposition of a psh function

We refer to [13, §6.3] for details on what follows. Fix ς ↔ N1(X ). For any ε ↔ PSH(ς) and λ↘ supε,
setting

ε̂λ := inf
t>0

{t ·ε⇔ tλ} (3)

defines a homogeneous ς-psh function ε̂λ ↔ PSHhom(ς). The family (ε̂λ)λ↘supε is further
concave, decreasing, and continuous for the topology of PSHhom(ς) (i.e. pointwise convergence
on X

div), and it gives rise to the homogeneous decomposition

ε= sup
λ↘supε

{ε̂λ+λ}. (4)

For λ = supε = ε(vtriv), the function ε̂max := ε̂supε computes the directional derivatives of ε at
vtriv, i.e.

ε̂max(v) = lim
t↓0+

ε(t v)⇔ε(vtriv)
t

(5)

for v ↔ X
an. The limit exists as the function t ∞↓ε(t v) on (0,↖) is convex and decreasing, see [13,

Proposition 4.12].

Example 14. Assume ε = εa for a flag ideal a = ∑
λ↔Zaλϑ

⇔λ on X ⇓A1. Then ε̂max = log |aλmax |
where λmax := max{λ ↔Z | aλ ⇐= 0} (see [13, Example 6.28]).

2. Psh functions and families of b-divisors

We work with a fixed numerical class ς ↔ N1(X ).

2.1. Homogeneous psh functions and b-divisors

Recall that a function ϱ ↔ PSHhom(ς) is uniquely determined by its values on X
div. We say that

ϱ is of divisorial type if its restriction to X
div is of divisorial type, that is, ϱ(ordE ) = 0 for all but

finitely many prime divisors E ⇑ X .
Slightly generalizing [13, Theorem 6.40], we show:

Proposition 15. The map B ∞↓ϱB in Section 1.4 sets up a 1–1 correspondence between:

(i) the set of b-divisors B ↔ Z1
b(X )R such that B ↘ 0 and ς+ [B ] ↔ N1

b(X ) is nef;

(ii) the set of ς-psh homogeneous functions ϱ ↔ PSHhom(ς) of divisorial type.

Proof. Pick B as in (i). On the one hand, ϱ
BX

↔ PSHhom(⇔BX ), see Example 13. On the other

hand, since ς + [B ] = (ς+ [BX ]) + ([B ] ⇔ [BX ]) is nef, it follows from [13, Theorem 6.40] that
ϱ

B⇔BX
=ϱB ⇔ϱ

BX
lies in PSHhom(ς+BX ). Thus

ϱB ↔ PSH(ς+BX )+PSH(⇔BX ) ⇑ PSH(ς).

Conversely, pick ϱ as in (ii), so that ϱ =ϱB with 0 ≃ B ↔ Z1
b(X )R. By [13, Corollary 6.17], we can

write ϱ as the pointwise limit of a decreasing net (ϱi ) such that ϱi ↔Hhom(Li ) with Li ↔ Pic(X )Q
and limi c1(Li ) = ς. Then ϱi = ϱBi

for a unique Cartier b-divisor 0 ≃ Bi ↔ Carb(X )Q such that
Li + Bi is semiample (see [13, Lemma 6.34]), and hence c1(Li ) + [Bi ] ↔ N1

b(X ) is nef. Further,
Bi ¬ B in Z1

b(X )R, and hence [Bi ] ↓ [B ] in N1
b(X ) (see Lemma 8). Since c1(Li )+ [Bi ] is nef for all i ,

we conclude, as desired, that ς+ [B ] is nef. ↭
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2.2. Rees valuations

In order to formulate a version of Proposition 15 for general ς-psh functions, the following notion
will be useful.

Definition 16. Given any effective R-divisor D on X with irreducible decomposition D =∑
α cαEα

on X , we denote by ϱD ⇑ X
div
R the set of Rees valuations of D, defined as the real divisorial

valuations vα := c
⇔1
α ordEα .

Note that vα(D) = 1 for all α. We can now state a variant of [13, Theorem 6.21]:

Proposition 17. Pick ϱ ↔ PSHhom(ς), and an effective R-divisor D on X . Then

max
ϱD

ϱ↘⇔1 ↙∝ϱ+ϱD ↔ PSHhom(ς⇔D).

Recall that 0 ≃⇔ϱD ↔ PSHhom([D]).

Proof. If ϱ+ϱD ↔ PSHhom(ς⇔D), then ϱ ↘ ⇔ϱD , and hence maxϱϱ ↘ ⇔1, since ϱD ≡ 1 on ϱD .
Conversely, assume maxϱD

ϱ ↘ ⇔1. Consider first the case where ς = c1(L) for a Q-line bundle
and ϱ ↔Hhom(L). For any m su!ciently divisible we thus have ϱ= 1

m
maxi log |si | for a finite set

of nonzero section si ↔ H0(X ,mL). Using the notation of Definition 16, we get for all i and all α

c
⇔1
α ordEα (si ) =⇔ log |si |(vα) ≃ m,

and hence ordEα (si ) ≃ ;mcαℜ. This implies si = s
⇒
i
sDm

for some s
⇒
i
↔ H0(X ,m(L⇔Dm)), where

Dm := m
⇔1;mDℜ=

∑
α

m
⇔1;mcαℜEα

and sDm
↔ H0(X ,Dm) is the canonical section. Since ϱDm

=⇔ log |sDm
|, we infer

ϱ+ϱDm
= 1

m
max

i

log |s⇒
i
| ↔Hhom(L⇔Dm) ⇑ PSHhom(L⇔Dm).

When m ↓ ↖, ϱDm
decreases to ϱD , and [Dm] ↓ [D] in N1(X ), and we infer ϱ +ϱD ↔

PSHhom(L⇔D).
In the general case, ϱ can be written as the pointwise limit of a decreasing net ϱi ↔Hhom(Li ),

where Li ↔ Pic(X )Q satisfies that c1(Li )⇔ς is nef and tends to 0 (see [13, Corollary 6.17]). Pick
t ↔ (0,1). For all i large enough and all α, we then have c

⇔1
α ϱi (ordEα ) ↘⇔t , and hence

ϱi + tϱD ↔Hhom(Li ⇔ tD) ⇑ PSHhom(Li ⇔ tD)

by the previous step of the proof. Since ϱi + tϱD decreases to ϱ+ tϱD and Li ⇔ tD ↓ ς⇔ tD

in N1(X ), we infer ϱ+ tϱD ↔ PSHhom(ς ⇔ tD) (see [13, Theorem 4.5]). Pick any ω ↔ Amp(X ).
Thenϱ+ tϱD ↔ PSHhom(ς⇔D+ω) for all t ↔ (0,1) close to 1, so by the envelope property (see [13,
Theorem 5.11]), we getϱ+ϱD ↔ PSHhom(ς⇔D+ω). As this is true for allω ↔ Amp(X ), we conclude
ϱ+ϱD ↔ PSHhom(ς⇔D) (again see [13, Theorem 4.5]). ↭

2.3. Psh functions and families of b-divisors

We now extend Proposition 15 to general ς-psh functions. We say that ε ↔ PSH(ς) is of divisorial
type if the homogeneous psh function ε̂max ↔ PSHhom(ς) is of divisorial type, see Section 1.7.
By (5), this is equivalent to ε(ordE ) = supε for all but finitely many prime divisors E ⇑ X .

Theorem 18. There is a 1–1 correspondence between:

(i) the set of ς-psh functions ε ↔ PSH(ς) of divisorial type;

(ii) the set of continuous, concave, decreasing families (Bλ)λ↘λmax of b-divisors, for some

λmax ↔R, such that Bλ ↘ 0 and ς+ [Bλ] ↔ N1
b(X ) is nef for all λ↘λmax.
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The correspondence is given by

ε= sup
λ↘λmax

{ϱBλ
+λ}, ϱBλ

= ε̂λ. (6)

In particular, we have λmax = supε and ε̂max =ϱBλmax
.

Proof. Pick a family (Bλ)λ↘λmax as in (ii). By Proposition 15, setting ϱλ :=ϱBλ
defines a contin-

uous, concave and decreasing family (ϱλ)λ↘λmax in PSHhom(ς). Since ς has the envelope prop-
erty, the usc upper envelope ε := supε

λ↘λmax
(ϱλ +λ) lies in PSH(ς). On X

div, ε coincides with
supλ↘λmax

(ϱλ +λ) (see [13, Theorem 5.6]). By Legendre duality, we further have ϱλ = ε̂λ for
λ < λmax (see [13, Theorem 6.24]), and hence also for λ = λmax, by continuity of both sides on
(⇔↖,λmax].

Conversely, pick ε as in (i), so that ε̂max ↔ PSHhom(ς) is of divisorial type. For each λ ↘ supε
we then have 0 ≃ ε̂λ ≃ ε̂max, which shows that ε̂λ ↔ PSHhom(ς) is also of divisorial type. By
Proposition 15, we thus have ε̂λ = ϱBλ

for a b-divisor Bλ ↘ 0 such that ς+ [Bλ] is nef, and the
family (Bλ)λ↘supε is concave, decreasing and continuous, since so is (ε̂λ)λ↘supε. ↭
Remark 19. Not every ς-psh function is of divisorial type. For example, assume dim X = 1,
and pick a sequence (p j ) j↔N of closed points on X , with corresponding ideals m j ⇑ OX , and
a sequence ε j in R>0 such that

∑
j ε j ↘ degς. Then ε := ∑

j ε j log |m j | ↔ PSH(ς), and ⇔ε j =
ε(ordp j

) < supε= 0 for all j (see [13, Example 4.13]).

3. The center of a ς-psh function

In this section we introduce the notion of the center of a ς-psh function. This is a subset of X

defined in terms of the locus on X
an where ε is smaller than its maximum.

3.1. The center map

For any v ↔ X
an, we denote by cX (v) ↔ X its center, and by

ZX (v) := {cX (v)} ⇑ X

the corresponding subvariety. The center map cX : X
an ↓ X is surjective and anticontinuous,

i.e. the preimage of a closed subset is open. In particular, any subvariety Z ⇑ X is of the form
Z = ZX (v) for some v ; we can simply take v = ordZ .

More generally, for any subset S ⇑ X
an we set

ZX (S) :=
⋃

v↔S

ZX (v). (7)

This is smallest subset of X that contains cX (S) and is closed under specialization.

3.2. The center of a ς-psh function

We can now introduce

Definition 20. We define the center on X of any ς-psh function ε ↔ PSH(ς) as

ZX (ε) := ZX ({ε< supε}) ⇑ X .

Example 21. For any nonzero ideal b ⇑ OX , the function ϱ = log |b| is ς-psh if ς is su!ciently
ample, and then ZX (ε) = V (b). More generally, if ε = ∑

i ti log |bi | with ti ↔ R>0 and bi ⇑ OX a
nonzero ideal, then ZX (ε) =⋃

i V (bi ).
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Recall that to any ς-psh function ε ↔ PSH(ς) we can associate a homogeneous ς-psh function
ε̂max ↔ PSHhom(ς), see Section 1.7.

Lemma 22. For any ε ↔ PSH(ς) we have {ε < supε} = {ε̂max < 0}. As a consequence, ZX (ε) =
ZX (ε̂max). Moreover, the following conditions are equivalent:

(i) ε is of divisorial type;

(ii) ε̂max
is of divisorial type;

(iii) ZX (ε) = ZX (ε̂max) contains at most finitely many prime divisors E ⇑ X .

Proof. Pick any v ↔ X
an. By (5) and the fact that t ∞↓ ε(t v) is decreasing and convex, it follows

that ε(v) < supε i˝ ε̂max(v) < 0. Thus ZX (ε) = ZX (ε̂max) since supε̂max = 0.
Now the equivalence (i) ∀ (ii) is definitional, and (ii) ∀ (iii) is clear since a prime divisor E ⇑ X

belongs to ZX (ε̂max) i˝ ε̂max(ordE ) < 0. ↭
Together with Example 14, Lemma 22 implies

Corollary 23. If ε=εa for a flag ideal a=∑
λ↔Zaλϑ

⇔λ
on X ⇓A1

, then ZX (εa) =V (aλmax ), where

λmax := max{λ ↔Z | aλ ⇐= 0}.

Theorem 24. For anyε ↔ PSH(ς), the center ZX (ε) is a strict subset of X , and an at most countable

union of (strict) subvarieties. Moreover, we have c
⇔1
X

(ZX (ε)) = {ε< supε}.

Proof. Note that ZX (ε) does not contain the generic point of X , so ZX (ε) ⇐= X . Also note that by
Lemma 22 we may assume that ε is homogeneous.

If ε ↔ Hhom(L) for a Q-line bundle L, so that ε = 1
m

maxi log |si | for a finite set of nonzero
sections si ↔ H0(X ,mL), then ZX (ε) = ⋂

i (si = 0), which is Zariski closed. In general, ε can
be written as the limit of a decreasing sequence εm ↔ Hhom(Lm) with Lm ↔ Pic(X )Q such that
c1(Lm) ↓ ς (see [13, Remark 6.18]). For any v ↔ X

div we then have

cX (v) ↔ ZX (ε) ↙∝ε(v) < 0 ↙∝εm(v) < 0 for some m,

i.e. ZX (ε) =⋃
m ZX (εm), an at most countable union of strict subvarieties.

Next pick v ↔ X
an, and set Z = ZX (v). By [13, Proposition 4.12], ε(t v) = tε(v) converges to

ε(vZ ,triv) = sup
Z an ε as t ↓ +↖, and hence ε(v) < 0 ∀ ε ≡ ⇔↖ on Z

an. By definition of the
center, if cX (v) lies in ZX (ε), then we can find w ↔ X

an such that ε(w) < 0 and cX (v) ↔ ZX (w),
i.e. Z ⇑ ZX (w). Then ε ≡ ⇔↖ on ZX (w)an ∃ Z

an, which yields ε(v) < 0. Conversely, assume
ε(v) < 0, and hence ε ≡ ⇔↖ on Z

an. We can find w ↔ X
div such that Z = ZX (w). Since ε ≡ ⇔↖

on Z
an = ZX (w)an, we get ε(w) < 0, and hence cX (v) ↔ ZX (w) ⇑ ZX (ε). ↭

For later use we record

Lemma 25. If εi ↔ PSH(ςi ), i = 1,2, then ZX (ε1 +ε2) = ZX (ε1)̸ZX (ε2).

3.3. Centers of PL functions

The following result will play a crucial role in what follows.

Lemma 26. If ε ↔ PSH(ς) lies in RPL+(X ) (resp. RPL(X )), then ZX (ε) is Zariski closed (resp. not

Zariski dense) in X .

Proof. Assume firstε ↔RPL+(X ), and write ε= maxi {ϱi +λi } for a finite setϱi ↔ PL+
hom(X )R and

λi ↔ R. As in Example 14, we then have maxi λi = supε, and ε̂max = maxλi=supεϱi . This shows
that

ZX (ε) = ZX (ε̂max) =
⋂

λi=supε
ZX (ϱi )
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is Zariski closed (see Example 21). Assume next ε ↔ RPL(X ) and write ε = ε1 ⇔ε2 with ε1,ε2 ↔
RPL+(X ). After replacing ς with a su!ciently ample class, we may assume that ε1,ε2 are ς-psh.
By (5) we have ε̂max = ε̂max

1 ⇔ ε̂max
2 , and hence

ZX (ε) = ZX (ε̂max) ⇑ ZX (ε̂max
1 )̸ZX (ε̂max

2 ) = ZX (ε1)̸ZX (ε2),

which cannot be Zariski dense, since ZX (ε1) and ZX (ε2) are both Zariski closed strict subsets by
the first part of the proof. ↭

4. Extremal functions and minimal vanishing orders

Next we define a trivially valued analogue of an important construction in the complex analytic
case.

4.1. Extremal functions

For any ς ↔ N1(X ), we define the extremal function Vς : X
an ↓ [⇔↖,0] as the pointwise envelope

Vς := sup
{
ε ↔ PSH(ς) |ε↘ 0

}
. (8)

Proposition 27. For any ς ↔ N1(X ) we have

ς ↔ Psef(X ) =∝Vς ↔ PSHhom(ς);

ς ℑ Psef(X ) =∝Vς ≡⇔↖;

ς ↔ Nef(X ) ↙∝Vς ≡ 0.

In particular, PSH(ς) is nonempty iff ς is pseudoeffective. For any ω ↔ Amp(X ), we further have

Vς+εω¬Vς as ε¬ 0. (9)

Proof. Since the action (t ,ε) ∞↓ t ·ε of R>0 preserves the set of candidate functions ε in (8), Vς

is necessarily fixed by the action, and hence homogeneous. If ς is not psef, then PSH(ς) is empty
(see Lemma 12), and hence Vς ≡⇔↖. By Lemma 12, we also have Vς ≡ 0 i˝ ς is nef.

Next, assume ς ↔ Big(X ). Then PSH(ς) is non-empty (see Lemma 12), and the envelope
property implies that V

ε
ς

is ς-psh and nonpositive. It is thus a candidate in (8), and hence
V
ε
ς
↘Vς , which shows that V

ε
ς
=Vς is ς-psh.

Assume now ς ↔ Psef(X ), and pick ω ↔ Amp(X ). For each ε > 0, the previous step yields
Vε :=Vς+εω ↔ PSHhom(ς+εω). For 0 < ε< ϖ we further have PSH(ς) ⇑ PSH(ς+εω) ⇑ PSH(ς+ϖω),
and hence Vϖ ≃ Vε ≃ Vς . Set V := limεVε. For any ϖ > 0 fixed, we have Vε ↔ PSHhom(ς+ϖω) for
ε ↘ ϖ, and Vε ¬ V as ε↓ 0. Thus V ↔ PSHhom(ς+ϖω) for all ϖ > 0, and hence V ↔ PSHhom(ς).
Since V is a candidate in (8), we get V ↘ Vς , and hence Vς = V = limεVε. This proves that Vς is
ς-psh, as well as (9). ↭

4.2. Minimal vanishing orders

For ς ↔ Psef(X ), the function Vς ↔ PSHhom(ς) is uniquely determined by its restriction to X
div,

where it is furthermore finite valued. For any v ↔ X
div we set

v(ς) :=⇔Vς(v) = inf{⇔ε(v) |ε ↔ PSH(ς),ε↘ 0} ↔R≃0. (10)

Note that
v(ς) = sup

ε>0
v(ς+εω) (11)

for any ω ↔ Amp(X ), by (9). As we next show, these invariants coincide with the mini-
mal/asymptotic vanishing orders studied in [6, 22, 40].
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Proposition 28. Pick v ↔ X
div

. Then:

(i) the function ς ∞↓ v(ς) is homogeneous, convex and lsc on Psef(X ); in particular, it is

continuous on Big(X );

(ii) for any ς ↔ Psef(X ) we have

v(ς) ↘ inf
{

v(D) | D ≡ ς effective R-divisor
}

, (12)

and equality holds when ς is big.

Note that equality in (12) fails in general for ς is not big, as there might not even exist any
e˝ective R-divisor D in the class of ς.

Proof. Using PSH(ς)+PSH(ς⇒) ⇑ PSH(ς+ς⇒) and PSH(tς) = t PSH(ς) for ς,ς⇒ ↔ Psef(X ) and t > 0,
it is straightforward to see that ς ∞↓ v(ς) is convex and homogeneous on Psef(X ). Being also finite
valued, it is automatically continuous on the interior Big(X ). For any ω ↔ Amp(X ) and ε > 0,
ς ∞↓ v(ς+ εω) is thus continuous on Psef(X ), and (11) thus shows that ς ∞↓ v(ς) is lsc, which
proves (i).

Next pick ς ↔ Psef(X ). For each e˝ective R-divisor D ≡ ς, the function ⇔ϱD ↔ PSHhom(ς),
see Example 13, is a competitor in (8). Thus ⇔v(D) = ϱD (v) ↘ Vς(v) = ⇔v(ς), which proves the
first half of (ii). Now assume ς is big, and denote by v

⇒(ς) the right-hand side of (12). Both v(ς)
and v

⇒(ς) are (finite valued) convex function of ς ↔ Big(X ). They are therefore continuous, and
it is thus enough to prove the equality v(ς) = v

⇒(ς) when ς = c1(L) with L ↔ Pic(X )Q big. To this
end, pick an ample Q-line bundle A, and set ω := c1(A). By [13, Theorem 4.15], for any ε > 0
we can find ε ↔ H gf(L + A) such that ε ≃ Vς and ε(vtriv) = supε ↘ ε. By definition, we have
ε = m

⇔1 maxi {log |si | +λi } with m su!ciently divisible and a finite family of nonzero sections
si ↔ H0(X ,m(L + A)) and constants λi ↔Q. Then maxi λi = m supε ↘ mε, and m

⇔1
v(si ) = v(Di )

with Di := m
⇔1div(si ) ≡ ς+ω, and hence m

⇔1
v(si ) ≃ v

⇒(ς+ω). Thus

⇔v(ς) =Vς(v) ↘ε(v) = m
⇔1 max

i

{v(si )+λi } ↘⇔v
⇒(ς+ω)+ε.

This shows v
⇒(ς) ≃ v(ς) ≃ v

⇒(ς +ω), and hence v
⇒(ς) = v(ς), since limω↓0 v

⇒(ς +ω) = v
⇒(ς) by

continuity on the big cone. ↭
Remark 29. If L ↔ Pic(X ) is big, then [22, Corollary 2.7] (or, alternatively, a small variant of the
above argument) shows that v(c1(L)) is also equal to the asymptotic vanishing order

v(⊤L⊤) := lim
m↓↖

1
m

min
{

v(s) | s ↔ H0(X ,mL) \ {0}
}

= inf
{

v(D) | D ▽Q L e˝ectiveQ-divisor
}

.

Remark 30. Continuity of minimal vanishing orders beyond the big cone is a subtle issue. For
any v ↔ X

div, the function ς ∞↓ v(ς), being convex and lsc on Psef(X ), is automatically continuous
on any polyhedral subcone (cf. [27]). When dim X = 2, it is in fact continuous on the whole
of Psef(X ), but this fails in general when dim X ≃ 3 (see respectively Proposition III.1.19 and
Example IV.2.8 in [40]).

4.3. The center of an extremal function

The following fact plays a key role in what follows.

Theorem 31. For any ς ↔ Psef(X ), the function Vς ↔ PSHhom(ς) is of divisorial type (see Defini-

tion 4). Further, its center ZX (Vς) coincides with the diminished base locus B⇔(ς) (see Section 1.1).

The proof relies on the next result, which corresponds to [40, Corollary III.1.11] (see also [6,
Theorem 3.12] in the analytic context).
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Lemma 32. Pick ς ↔ Psef(X ), and assume E1, . . . ,Er ⇑ X are distinct prime divisors such that

ordEi
(ς) > 0 for all i . Then [E1], . . . , [Er ] are linearly independent in N1(X ). In particular, r ↘

ρ(X ) = dimN1(X ).

Proof. We reproduce the simple argument of [8, Theorem 3.5(v)] for the convenience of the
reader. By (11), after adding to ς a small enough ample class we assume that ς is big. Suppose∑

i ci [Ei ] = 0 with ci ↔R, so that G :=∑
i ci Ei is numerically equivalent to 0, and choose 0 < ε∈ 1

such that ordEi
(ς)+εci > 0 for all i . Pick any e˝ective R-divisor D ≡ ς and set D

⇒ := D +εG . Then
D

⇒ is e˝ective, since
ordEi

(D
⇒) = ordEi

(D)+εci ≃ ordEi
(ς)+εci > 0

for all i . Since G ≡ 0, we also have D
⇒ ≡ ς, and (12) thus yields for each i

ordEi
(ς) ↘ ordEi

(D
⇒) = ordEi

(D)+εci .

Taking the infimum over D we get ordEi
(ς) ↘ ordEi

(ς)+εci (see Proposition 28(ii)), i.e. ci ≃ 0 for
all i . Thus G ≃ 0, and hence G = 0, since G ≡ 0. This proves ci = 0 for all i which shows, as desired,
that the [Ei ] are linearly independent. ↭

Proof of Theorem 31. By (10), the first assertion means that there are only finitely many prime
divisors E ⇑ X such that ordE (ς) > 0, and is thus a direct consequence of Lemma 32. Pick v ↔ X

div.
The second point is equivalent to v(ς) > 0 ∀ cX (v) ↔ B⇔(ς). When ς is big, this is the content
of [22, Theorem B]. In the general case, pick ω ↔ Amp(X ). Then v(ς) > 0 i˝ v(ς+ εω) > 0 for
0 < ε ∈ 1, by (11), while cX (v) ↔ B⇔(ς) i˝ cX (v) ↔ B⇔(ς+ εω) for 0 < ε ∈ 1, by (1). The result
follows. ↭

For later use, we also note:

Lemma 33. For any polyhedral subcone C ⇑ Psef(X ), we have:

(i) ς ∞↓ v(ς) is continuous on C for all v ↔ X
div

;

(ii) the set of prime divisors E ⇑ X such that ordE (ς) > 0 for some ς ↔C is finite.

Proof. As mentioned in Remark 30, any convex, lsc function on a polyhedral cone is continuous
(see [27]), and (i) follows. To see (ii), pick a finite set of generators (ςi ) of C . Each ς ↔ C can be
written as ς = ∑

i tiςi with ti ≃ 0. By convexity and homogeneity of minimal vanishing orders,
this implies ordE (ς) ↘ ∑

i ti ordE (ςi ), so that ordE (ς) > 0 implies ordE (ςi ) > 0 for some i . The
result now follows from Lemma 32. ↭

5. Zariski decompositions

Next we study the close relationship between the extremal function in Section 4, and the various
versions of the Zariski decomposition of a psef numerical class.

5.1. The b-divisorial Zariski decomposition

Pick ς ↔ N1(X ) a psef class. By Theorem 31, the function X
div ⊥ v ∞↓ v(ς) =⇔Vς(v) is of divisorial

type. We denote by
N(ς) ↔ Z1

b(X )R
the corresponding e˝ective b-divisor, which thus satisfies

ϱN(ς)(v) = v(N(ς)) = v(ς) =⇔Vς(v)

for all v ↔ X
div.
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Theorem 34. For any ς ↔ Psef(X ), the b-divisor class

P(ς) := ς⇔ [N(ς)] ↔ N1
b(X )

is nef, and N(ς) is the smallest effective b-divisor with this property. Moreover,

N(ς) ≃ N(ς)Y (13)

for all birational models Y ↓ X .

We call ς = P(ς)+ [N(ς)] the b-divisorial Zariski decomposition of ς. At least when ς is big, this
construction is basically equivalent to [33, Theorem D], and to the case p = 1 of [9, §2.2].

Note that the b-divisorial Zariski decomposition is birationally invariant:

Lemma 35. For any ς ↔ Psef(X ) and any birational model ϕ : Y ↓ X , we have

N(ϕες) = N(ς) and P(ϕες) = P(ς)

in Z1
b(X )R = Z1

b(Y )R and N1
b(X )R = N1

b(Y )R, respectively.

Proof. Since PSH(ϕες) =ϕεPSH(ς), see (2), we have Vϕες =ϕεVς , and the result follows. ↭
Proof of Theorem 34. Since ϱ⇔N(ς) = Vς is ς-psh, Proposition 15 shows that ς ⇔ [N(ς)] is nef,
which yields the last point, by the Negativity Lemma (see Lemma 11). Conversely, if E ↔ Z1

b(X )R
is e˝ective with ς⇔ [E ] nef, then ⇔ϱE ↔ PSHhom(ς), again by Proposition 15. Thus ⇔ϱE ↘ Vς =
⇔ϱN(ς), and hence E ≃ N(ς). ↭

As a consequence of Proposition 28, we get

Corollary 36. The map Psef(X ) ⊥ ς ∞↓ N(ς) ↔ Z1
b(X ) is homogeneous, lsc, and convex.

5.2. The divisorial Zariski decomposition

For any ς ↔ Psef(X ), we denote by NX (ς) := N(ς)X the incarnation of N(ς) ↔ Z1
b(X )R on X , which

thus satisfies
NX (ς) =

∑

E⇑X

ordE (ς)E (14)

with E ranging over all prime divisors of X , and ordE (ς) = 0 for all but finitely many E .
For any e˝ective R-divisor D on X with numerical class [D] ↔ Psef(X ), (12) yields

NX (D) := NX ([D]) ↘ D. (15)

More generally, the following variational characterization holds.

Theorem 37. For any ς ↔ Psef(X ), the class

PX (ς) := ς⇔ [NX (ς)] ↔ N1(X )

is movable, and NX (ς) is the smallest effective R-divisor on X with this property.

Following [6], we call the decomposition

ς = PX (ς)+ [NX (ς)]

the divisorial Zariski decomposition of ς. It coincides with the σ-decomposition of [40].

Proof of Theorem 37. By definition, PX (ς) is the incarnation on X of ς⇔ [N(ς)]. By Theorem 34,
the latter class is nef, and PX (ς) is thus movable, by Lemma 10.

To prove the converse, assume first that ς is movable. We then need to show NX (ς) = 0, i.e.
ordE (ς) = 0 for each E ⇑ X prime (see (14)). By (12), this is clear if ς = c1(L) for a big line bundle
L with base locus of codimension at least 2. Since the movable cone Mov(X ) is generated by the
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classes of such line bundles, the continuity of ς ∞↓ ordE (ς) on the big cone yields the result when
ς is further big, and the case of an arbitrary movable class follows by (11).

Finally, consider any ς ↔ Psef(X ) and any e˝ective R-divisor D on X such that ς ⇔ [D] is
movable. For any E ⇑ X prime we then have ordE (ς ⇔ [D]) = 0 by the previous step, and
ordE ([D]) ↘ ordE (D) by (15)). Thus

ordE (ς) ↘ ordE (ς⇔ [D])+ordE (D) = ordE (D).

This shows NX (ς) ↘ D , which concludes the proof. ↭
Remark 38. Theorem 37 implies the following converse of Lemma 10: a class ς ↔ N1(X ) is
movable i˝ ς =αX for a nef b-divisor class α ↔ Nefb(X ).

Corollary 39. Pick ς ↔ Psef(X ) and a prime divisor E ⇑ X . Then (ς ⇔ ordE (ς)E)|E ↔ N1(E) is

pseudoeffective.

Proof. We have ς⇔ordE (ς)[E ] = PX (ς)+∑
F ⇐=E ordF (ς)[F ], where F ranges over all prime divisors

of X distinct from E . Since PX (ς) is movable, PX (ς)|E is psef. On the other hand, [F ]|E is psef for
any F ⇐= E , and the result follows. ↭
Lemma 40. For any ς ↔ Psef(X ) and any birational model ϕ : Y ↓ X , the incarnation of N(ς) on

Y coincides with NY (ϕες). Further, the following are equivalent:

(i) the b-divisor N(ς) is R-Cartier, and determined on Y ;

(ii) PY (ϕες) is nef.

Proof. The first point follows from Lemma 35. If (i) holds then the nef b-divisor class ς⇔N(ς) is
R-Cartier and determined on Y . Thus (ς⇔N(ς))Y = ϕες⇔NY (ϕες) = PY (ϕες) is nef, and hence
(i) ∝ (ii).

Conversely, assume (ii). Then N(ς)Y = NY (ϕες) is an e˝ective b-divisor, and the b-divisor
class ς⇔ [N(ς)Y ] = PY (ϕες) is nef. By Theorem 34 this implies N(ς) ↘ N(ς)Y , while N(ς) ≃ N(ς)Y

always holds (see (13)). This proves (ii) ∝ (i). ↭

Since any movable class on a surface is nef, we get:

Corollary 41. If dim X = 2 then N(ς) = NX (ς) for all ς ↔ Psef(X ).

In contrast, see [40, Theorem IV.2.10] for an example of a big line bundle L on a 4-fold X such
that the b-divisor N(L) is not R-Cartier, i.e. PY (ϕεL) is not nef for any model ϕ : Y ↓ X .

5.3. Zariski exceptional divisors and faces

This section revisits [6, §3.3].

Definition 42. We say that:

(i) an effective R-divisor D on X is Zariski exceptional if NX (D) = D, or equivalently,

PX ([D]) = 0;

(ii) a finite family (Ei ) of prime divisors Ei ⇑ X is Zariski exceptional if every effectiveR-divisor

supported in the Ei ’s is Zariski exceptional.

We also define a Zariski exceptional face F of Psef(X ) as an extremal subcone such that PX |F ≡ 0.

Here a closed subcone C ⇑ Psef(X ) is extremal i˝ α,β ↔ Psef(X ), α+β ↔C implies α,β ↔C .
We first note:

Lemma 43. An effective R-divisor D on X is Zariski exceptional iff N(D) = D.
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Proof. Assume NX (D) = D . Then N(D) ↘ D , by Theorem 34, and N(D) ≃ NX (D) = D (see (13)).
The result follows. ↭

The above notions are related as follows:

Theorem 44. The following properties hold:

(i) if E ⇑ X is a prime divisor, then E is either movable (in which case E |E is psef), or it is

Zariski exceptional;

(ii) the set of Zariski exceptional families of prime divisors on X is at most countable;

(iii) for any ς ↔ Psef(X ), the irreducible components of NX (ς) form a Zariski exceptional

family; in particular, NX (ς) is Zariski exceptional;

(iv) each Zariski exceptional family (Ei ) is linearly independent in N1(X ), and generates a

Zariski exceptional face F :=∑
i R≃0[Ei ] of Psef(X );

(v) conversely, each Zariski exceptional face F of Psef(X ) arises as in (iv).

Proof. Assume E ⇑ X is a prime divisor. Then NX (E) ↘ E (see (15)), and hence NX (E) = cE with
c ↔ [0,1]. If c = 1, then E is Zariski exceptional. Otherwise,

E = (1⇔ c)⇔1(E ⇔NX (E)) ≡ (1⇔ c)⇔1 PX (E)

is movable (and c = 0). This proves (i).
To see (ii), note that a Zariski exceptional prime divisor satisfies E = NX (E), and hence is

uniquely determined by its numerical class [E ] ↔ N1(X )Q. As a consequence, the set of Zariski
exceptional primes is at most countable, and hence so is the set of Zariski exceptional families.

Pick ς ↔ Psef(X ). We first claim that D := NX (ς) is Zariski exceptional. Since PX (ς) = ς⇔ [D]
and PX (D) = [D ⇔NX (D)] are both movable, ς⇔ [NX (D)] is movable as well. Theorem 37 thus
yields NX (D) ≃ NX (ς) = D , which proves the claim in view of (15). Denote by D = ∑

r

i=1 ci Ei

the irreducible decomposition of D , and set fi (x) := ordEi
(
∑

j x j E j ) for 1 ↘ i ↘ r . This defines a
convex function fi : Rr

≃0 ↓ R≃0 which satisfies fi (x) ↘ xi for all x, by (15). Since equality holds at
the interior point x = c ↔Rr

>0, we necessarily have fi (x) = xi for all x ↔Rr

≃0, which proves (iii).
Next pick a Zariski exceptional family (Ei ). By Lemma 32, the [Ei ] are linearly independent

in N1(X ). By definition, we have PX ≡ 0 on F := ∑
i R≃0[Ei ]. To see that F is an extremal face of

Psef(X ), pick D := ∑
i ci Ei with ci ≃ 0, and assume [D] = α+β with α,β ↔ Psef(X ). We need to

show that bothα and β lie in F . By Definition 42 we have D = NX (D) ↘ NX (α)+NX (β), and hence

[NX (α)]+ [NX (β)] ↘ PX (α)+PX (β)+ [NX (α)]+ [NX (β)] =α+β= [D] ↘ [NX (α)]+NX (β)], (16)

with respect to the psef order on N1(X ). Since Psef(X ) is strict, we infer PX (α) = PX (β) = 0 and
[D] = [NX (α)]+ [NX (β)]. Since NX (α)+NX (β)⇔D is e˝ective, it follows that NX (α)+NX (β) = D .
This implies that NX (α) and NX (β) are supported in the Ei ’s, which proves, as desired, that
α= [NX (α)] and β= [NX (β)] both lie in F . Thus (iv) holds.

Conversely, assume that F ⇑ Psef(X ) is a Zariski exceptional face, and pick a class ς in its
relative interior F̊ . By (iii), the components (Ei ) of NX (ς) form a Zariski exceptional family, which
thus generates a Zariski exceptional face F

⇒ :=∑
i R≃0[Ei ]. Since F and F

⇒ are both extremal faces
containing ς in their relative interior, we conclude F = F

⇒, which proves (v). ↭

As a result, Zariski exceptional families are in 1–1 correspondence with Zariski exceptional
faces, which are rational simplicial cones generated by Zariski exceptional primes.

For surfaces, the notions above admit the following interpretation: see e.g. Theorems 5.4
and 4.8 in [6]:
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Theorem 45. Assume dim X = 2. Then:

(i) a finite family (Ei ) of prime divisors on X is Zariski exceptional iff the intersection matrix

(Ei ·E j ) is negative definite;

(ii) for any ς ↔ Psef(X ), ς = PX (ς)+[NX (ς)] coincides with the classical Zariski decomposition,

i.e. PX (ς) is nef, NX (ς) is Zariski exceptional, and PX (ς) ·NX (ς) = 0.

5.4. Piecewise linear Zariski decompositions

We introduce the following terminology:

Definition 46. Given any convex subcone C ⇑ Psef(X ), we say that the Zariski decomposition
is piecewise linear (PL for short) on C if the map N: C ↓ Z1

b(X )R extends to a PL map N1(X ) ↓
Z1

b(X )R, i.e. a map that is linear on each cone of some finite fan decomposition of N1(X ). If the

fan and the linear maps on its cones can further be chosen rational, then we say that the Zariski
decomposition isQ-PL on C .

Lemma 47. Let C ⇑ Psef(X ) be a convex cone, and assume that C is written as the union of finitely

many convex subcones Ci . Then the Zariski decomposition is PL (resp. Q-PL) on C iff it is PL

(resp.Q-PL) on each Ci .

Proof. The “only if” part is clear. Conversely, assume the Zariski decomposition is PL (resp. Q-
PL) on each Ci . After further subdividing each Ci according to a fan decomposition of N1(X ),
we may assume that there exists a linear (resp. rational linear) map Li : N1(X ) ↓ Z1

b(X )R that
coincides with N on Ci . If Ci has nonempty interior in C , then Li |VectC is uniquely determined
as the derivative of N at any interior point of Ci , and we have N ≃ Li on C by convexity of N, see
Corollary 36. Set F := maxi Li , where the maximum is over all Ci with nonempty interior in C .
Then F : N1(X ) ↓ Z1

b(X )R is PL (resp. Q-PL), N ≃ F on C , and equality holds outside the union A

of all Ci with empty interior in C . Since A has zero measure, its complement is dense in C . Since
N⇔F is lsc, see Corollary 36, we infer N ↘ F on C , which proves the “if” part. ↭

As a consequence of [22, Theorem 4.1] and its proof (especially Proposition 4.7) we have:

Example 48. If X is a Mori dream space (e.g. of log Fano type), then:

• for each ς ↔ Psef(X ), the b-divisor N(ς) is R-Cartier;
• Psef(X ) is a rational polyhedral cone;
• the Zariski decomposition isQ-PL on Psef(X ).

The next result is closely related to the theory of Zariski chambers studied in [2].

Proposition 49. If dim X = 2, then the Zariski decomposition is Q-PL on any convex cone C ⇑
Psef(X ) with the property that the set of prime divisors E ⇑ X with ordE (ς) > 0 for some ς ↔ C is

finite.

By Lemma 33(ii), the finiteness condition on C is satisfied as soon as C is polyhedral.

Proof. For each Zariski exceptional face F of Psef(X ) with relative interior F̊ , set ZF := N⇔1
X

(F̊ ).
Thus ς ↔ Psef(X ) lies in ZF i˝ the irreducible decomposition of NX (α) are precisely the generators
of F . By Theorem 45(ii), ZF is a convex subcone of Psef(X ) (whose intersection with Big(X ) is a
Zariski chamber in the sense of [2]); further, NX |ZF

: ZF ↓ F̊ is the restriction of the orthogonal
projection onto VectF , which is a rational linear map. By Corollary 41, the Zariski decomposition
is thusQ-PL on ZF . Finally, the finiteness assumption guarantees that C meets only finitely many
ZF ’s, and the result is thus a consequence of Lemma 47. ↭
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We conclude this section with a higher-dimensional situation in which Zariski decompositions
can be analyzed. Assuming again that dim X is arbitrary, consider next a 2-dimensional cone
C ⇑ N1(X ) generated by two classes ς,α ↔ N1(X ) such that ς ↔ Nef(X ) and α ℑ Psef(X ). Set

Cnef :=C ↗Nef(X ) ⇑Cpsef :=C ↗Psef(X ) ⇑C ,

and introduce the thresholds

λnef := sup{λ≃ 0 | ς+λα ↔ Nef(X )}, λpsef := sup{λ≃ 0 | ς+λα ↔ Psef(X )},

so that Cnef (resp. Cpsef) is generated by ς and ςnef := ς+λnefα (resp. ςpsef := ς+λpsefα).
The next result is basically contained in [41, §6.5].

Proposition 50. With the above notation, suppose that C contains the class of a prime divisor

S ⇑ X such that Nef(S) = Psef(S) and S|S is not nef. Then:

(i) ςpsef = t [S] with t > 0;

(ii) λnef =λS

nef := sup{λ≃ 0 | (ς+λα)|S ↔ Nef(S)};

(iii) the Zariski decomposition is PL on Cpsef, with

N ≡ 0 on Cnef, N(aςnef +b[S]) = bS for all a,b ≃ 0.

Proof. The assumptions imply that S|S is not psef. By Theorem 44(i), S is thus Zariski excep-
tional, and [S] generates an extremal ray of Psef(X ). This ray is also extremal in Cpsef, which
proves (i).

Next, note that λnef ↘λS

nef ↘λpsef, by (i). Pick a curve γ⇑ X . We need to show (ς+λS

nefα)·γ≃ 0.
This is clear if γ⇑ S (since (ς+λS

nefα)|S is nef), or ifα·γ≃ 0 (since ς·γ≃ 0 andλS

nef ≃ 0). Otherwise,
we have S ·γ≃ 0 and α ·γ↘ 0, and we get again (ς+λS

nefα) ·γ≃ 0 since

ς+λS

nefα≡ ςpsef + (λS

nef ⇔λpsef)α= t [S]+ (λS

nef ⇔λpsef)α

with λS

nef ⇔λpsef ↘ 0. This proves (ii).
For (iii), note that N ≡ 0 on Nef(X ) ∃Cnef (see Theorem 34). Further, N([S]) = S (see Lemma 43),

and hence N(aςnef +b[S]) ↘ bS for a,b ≃ 0. In particular, c := ordS (aςnef +b[S]) ↘ b. On the other
hand, (13) yields

N(aςnef +b[S]) ≃ N(aςnef +b[S]) ≃ cS,

and it thus remains to see c = b. By Corollary 39, ((aςnef +b[S])⇔ c[S]) |S lies in Psef(S) = Nef(S).
By (ii), we infer aςnef+ (b⇔c)[S] ↔Cnef, and hence b⇔c = 0, since Cnef =R≃0ς+R≃0ςnef intersects
R≃0ςnef +R≃0[S] only along R≃0ςnef. ↭

6. Green’s functions and Zariski decompositions

In this section we fix an ample class ω ↔ Amp(X ).

6.1. Green’s functions and equilibrium measures

A subset ϑ ⇑ X
an is pluripolar if ϑ ⇑ {ε = ⇔↖} for some ε ↔ PSH(ω). By [13, Theorem 4.5], ϑ is

nonpluripolar i˝
T(ϑ) := sup

ε↔PSH(ω)
(supε⇔ sup

ϑ
ε) ↔ [0,+↖]

is finite. The invariant T(ϑ), which plays an important role in [5, 14], is modeled on the Alexander–
Taylor capacity (which corresponds to e

⇔T(ϑ)) in complex analysis.

Definition 51. For any subset ϑ⇑ X
an

we set

εϑ =εω,ϑ := sup{ε ↔ PSH(ω) |ε|ϑ ↘ 0}. (17)
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Note that εϑ(vtriv) = supεϑ = T(ϑ), and hence

εϑ ↔ PL(X ) =∝ T(ϑ) ↔Q. (18)

Theorem 52. For any compact subset ϑ⇑ X
an

, the following holds:

(i) εϑ = sup{ε ↔ CPSH(ω) |ε|ϑ ↘ 0}; in particular, εϑ is lsc;

(ii) if ϑ is pluripolar then εεϑ ≡+↖;

(iii) if ϑ is nonpluripolar, then εεϑ is ω-psh and nonnegative; further, µϑ := MA(εεϑ) is sup-

ported in ϑ,
∫
εεϑ µϑ = 0, and µϑ is characterized as the unique minimizer of the energy

⊤µ⊤ over all Radon probability measures µ with support in ϑ.

Since the energy of a Radon probability measure µ only appears in this statement, we simply
recall here that it is defined as

⊤µ⊤= sup
ε↔E 1(ω)

(
E(ε)⇔

∫
εµ

)
↔ [0,+↖], (19)

and refer to [13, §9.1] for more details.

Definition 53. Assuming ϑ is nonpluripolar, we call µϑ its equilibrium measure, and εεϑ its

Green’s function.

The latter is characterized as the normalized potential of µϑ (in the terminology of [15, §1.6]),
i.e. the unique ε ↔ E 1(ω) such that MA(ε) =µϑ and

∫
εµϑ = 0.

Proof of Theorem 52. Denote byε⇒
ϑ the right-hand side in (i), which obviously satisfiesε⇒

ϑ ↘εϑ.
Pick ε ↔ PSH(ω) with ε|ϑ ↘ 0, and write ε as the limit of a decreasing net (εi ) in CPSH(ω). For
any ε> 0, a Dini type argument shows that εi < ε on ϑ for i large enough. Thus εi ↘ε⇒

ϑ+ε, and
hence ε↘ε⇒

ϑ+ε. This shows εϑ ↘ε⇒
ϑ, which proves (i).

Next, (ii) and the first half of (iii) follow from [13, Lemma 13.15]. Since the negligible set
{εϑ <εεϑ} is pluripolar (see [13, Theorem 13.17]), it has zero measure for any measure µ of finite
energy [13, Lemma 9.2]. If µ has support in ϑ, this yields

∫
εεϑ µ =

∫
εϑµ = 0. By (19) we infer

⊤µ⊤ ≃ E(εεϑ) = ⊤µϑ⊤. This proves that µϑ minimizes the energy, while uniqueness follows from
the strict convexity of the energy [13, Proposition 10.10]. ↭

Further mimicking classical terminology in the complex analytic setting, we introduce:

Definition 54. We say that a compact subset ϑ⇑ X
an

is regular if εϑ ↔ CPSH(ω).

In particular, ϑ is then nonpluripolar (see Theorem 52).

Lemma 55. For any compact subset ϑ⇑ X
an

, the following hold:

(i) ϑ is regular iff εεϑ ↘ 0 on ϑ;

(ii) the regularity of ϑ is independent of ω ↔ Amp(X );

(iii) if ϑ⇑ X
lin

then ϑ is regular.

Proof. If ϑ is regular, then εεϑ = εϑ vanishes on ϑ. Conversely, assume εεϑ ↘ 0 on ϑ. By (ii) and
(iii) of Theorem 52, ϑ is necessarily nonpluripolar, andεεϑ isω-psh. It is thus a competitor in (17),
which implies that εϑ =εεϑ is ω-psh, and also continuous by Theorem 52(i).

Assume ϑ is regular for ω, and pick ω⇒ ↔ Amp(X ). Then tω⇔ω⇒ is nef for t ∋ 1, and hence
PSH(ω⇒) ⇑ t PSH(ω). This implies εω⇒,ϑ ↘ tεω,ϑ, and hence εε

ω⇒,ϑ ↘ tεω,ϑ. In particular, εε
ω⇒,ϑ|ϑ ↘

0, which proves that ϑ is regular for ω⇒, by (i).
Finally, assume ϑ ⇑ X

lin. Since {εϑ < εεϑ} is pluripolar (see [13, Theorem 13.17]), it is disjoint
from X

lin. As a result,εεϑ ↔ PSH(ω) vanishes onϑ, and it again follows from (i) thatϑ is regular. ↭
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6.2. The Green’s function of a real divisorial set

In what follows, we consider a real divisorial set, by which we mean a finite set ϑ ⇑ X
div
R of real

divisorial valuations. By Lemma 55(iii), ϑ⇑ X
lin is regular, i.e. εϑ ↔ CPSH(ω). When ϑ= {v} for a

single v ↔ X
div
R , we simply write εv :=εϑ.

Example 56. Assume ω = c1(L) with L ↔ Pic(X )Q ample and v ↔ X
div. Then v is dreamy (with

respect to L) in the sense of K.Fujita i˝ εv ↔H (L); see [14, §1.7, Appendix A].

If vtriv ↔ ϑ, then εϑ ≡ 0, and we henceforth assume vtriv ℑ ϑ. Pick a smooth birational model
ϕ : Y ↓ X which extracts each v ↔ ϑ, i.e. v = tv ordEv

for a prime divisor Ev ⇑ Y and tv ↔ R>0. We
then introduce the e˝ective R-divisor on Y

D :=
∑
α

t
⇔1
α Eα,

whose set of Rees valuations ϱD coincides with ϑ (see Definition 16).

Theorem 57. With the above notation, the following holds:

(i) supεϑ = T(ϑ) coincides with the pseudoeffective threshold

λpsef := max
{
λ≃ 0 |ϕεω⇔λD ↔ Psef(Y )

}
;

(ii) εϑ ↔ CPSH(ω) is of divisorial type, and the associated family of b-divisors (Bλ)λ↘λpsef (see

Theorem 18) is given by

⇔Bλ =


N(ϕεω⇔λD)+λD for λ ↔ [0,λpsef]

0 for λ↘ 0.

Proof. Pick λ ↔R. For any ϱ ↔ PSH(ω), we have ϱ+λ↘εϑ∀ϱ|ϑ ↘⇔λ, and hence

ε̂λϑ = sup{ϱ ↔ PSHhom(ω) |ϱ|ϑ ↘⇔λ}.

When λ ↘ 0 this yields ε̂λϑ = 0. Now assume λ > 0. Using Proposition 17 and PSHhom(ϕεω) =
ϕεPSHhom(ω), we get

ϕεε̂λϑ = sup{τ ↔ PSHhom(ϕεω⇔λD)}⇔λϱD =Vϕεω⇔λD ⇔λϱD . (20)

Now the left-hand side is not identically ⇔↖ i˝ λ↘ supε, while for the right-hand side this holds
i˝ λ↘λpsef, by Proposition 27. This proves (i), and also (ii), by Theorem 31. ↭

Corollary 58. The center of εϑ satisfies

ZX (εϑ) =ϕ
(
B⇔(ϕεω⇔λpsefD)

)
̸ZX (ϑ).

In particular, ZX (εϑ) is Zariski dense in X iff B⇔(ϕεω⇔λpsefD) is Zariski dense in Y .

Proof. By Lemma 22, we have

ZX (εϑ) = ZX (ε̂max
ϑ ) =ϕ(ZY (ϕ→ε̂max

ϑ )).

It follows from Theorem 57 and its proof that

ϕεε̂max
ϑ =Vϕεω⇔λpsefD

⇔λpsefϱD .

Now ZY (Vϕεω⇔λpsefD
) = B⇔(ϕεω⇔λpsefD) by Theorem 31, whereas we see from Example 21 that

ZY (⇔λpsefϱD ) = ZY (ϑ), so we conclude using Lemma 25. ↭
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6.3. Dimension one and two

In this section we consider the case dim X ↘ 2.

Proposition 59. If dim X = 1, then for any real divisorial set ϑ⇑ X
div
R , we have εϑ ↔RPL+(X ). If ω

is rational and ϑ⇑ X
div

, then we further have εϑ ↔ PL+(X ).

Proof. We may assume vtriv ⇐↔ ϑ, or else εϑ ≡ 0. Thus assume ϑ = {vi }i↔I , where vi = ti ordpi
,

ti ↔ R>0, and pi ↔ X is a closed point. We may assume pi ⇐= p j for i ⇐= j , or else εϑ = εϑ⇒ for
ϑ⇒ = {vi }i↔I ⇒ , where I

⇒ ⇑ I is defined by i ↔ I
⇒ i˝ for all j ⇐= i , either p j ⇐= pi or t j > ti . Under these

assumptions,

εϑ = A max


1+
∑

i

t
⇔1
i

log |mpi
|,0


,

where A > 0 satisfies A
∑

i t
⇔1
i

= degω, see [13, Example 3.19]. Thus εϑ ↔ RPL+(X ). Further, if
ϑ⇑ X

div, then ti ↔Q>0 for all i , so if ω is rational, then A ↔Q>0, and hence εϑ ↔ PL+(X ). ↭
Theorem 60. If dim X = 2, then for any real divisorial set ϑ⇑ X

div
R , we have εϑ ↔RPL+(X ). If ω is

rational and ϑ⇑ X
div

, then we further have

εϑ ↔ PL(X ) ↙∝εϑ ↔ PL+(X ) ↙∝ T(ϑ) ↔Q. (21)

We will see in Example 63 that T(ϑ) can be irrational.

Lemma 61. Assume dim X ↘ 2, and pick B ↔ Carb(X )R. Then B is relatively nef iff it is relatively

semiample.

Proof. Assume B is relative nef, and pick a determination ϕ : Y ↓ X of B . The relatively nef cone
of N1(Y /X ) is dual to the cone generated by the (finite) set of ϕ-exceptional prime divisors, and
is thus a rational polyhedral cone. As a consequence, we can write BY = ∑

i ti Di with ti > 0 and
Di ↔ Div(Y )Q relatively nef. By [38, Theorem 12.1(ii)], each Di is relatively semiample, and the
result follows. ↭
Proof of Theorem 60. Use the notation of Theorem 57. By Proposition 49, the Zariski decompo-
sition isQ-PL on the cone

C = (R+ϕ
εω+R+[⇔D])↗Psef(Y ) =R+ϕ

εω+R+(ϕεω⇔λpsef[D]).

We can thus find 0 =λ1 <λ2 < ·· · <λN =λpsef such that

λ ∞⇔↓ Bλ =⇔(N(ϕεω⇔λ[D])+λD)

is a!ne linear on [λi ,λi+1] for 1 ↘ i < N . Setting Bi := Bλi
, it follows that

εϑ = sup
λ↔[0,λpsef]

{ϱBλ
+λ} = max

1↘i↘N

{ϱBi
+λi }.

Since ω+ [Bi ] is nef, the antie˝ective divisor Bi is relatively nef, and hence relatively semiample
(see Lemma 61). By Proposition 7, we infer ϱBi

↔ PL+
hom(X )R, and hence εϑ ↔RPL+(X ).

Now assumeω and T(ϑ) =λpsef are both rational, and that ϑ⇑ X
div. Then D is rational as well,

and C is thus a rational polyhedral cone. Since the Zariski decomposition on C is the restriction
of a Q-PL map on N1(Y ), this implies that the λi above can be chosen rational. Using again that
the Zariski decomposition is Q-PL on C , we infer that Bi is a Q-divisor, hence ϱBi

↔ PL+
hom(X ),

which shows εϑ ↔ PL+(X ). The rest follows from (18). ↭

7. Examples of Green’s functions

We now exhibit examples of Green’s functions with various types of behavior. These examples
serve as the underpinnings of Theorems A and B of the introduction.
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7.1. Divisors on abelian varieties

As a direct application of Theorem 57, we show:

Proposition 62. Assume Nef(X ) = Psef(X ). Consider a real divisorial set ϑ = {vα} ⇑ X
div
R with

vα = tαordEα for Eα ⇑ X prime and tα > 0, and set D :=∑
α t

⇔1
α Eα. Then

T(ϑ) =λpsef = sup{λ≃ 0 |ω⇔λD ↔ Psef(X )}

and

εϑ = T(ϑ)max
{
0,1⇔ϱD

}
.

In particular, εϑ ↔RPL+(X ). If we further assume ϑ⇑ X
div

, then

εϑ ↔ PL(X ) ↙∝εϑ ↔ PL+(X ) ↙∝ T(ϑ) ↔Q. (22)

Proof. Using the notation of Theorem 57, we have N(ω⇔λD) = 0 for λ ↘ λpsef = T(ϑ). Thus
ε̂λϑ =⇔λϱD , and hence

εϑ = sup
0↘λ↘λpsef

{λ⇔λϱD } =λpsef max
{
0,1⇔ϱD

}
.

Since ⇔ϱD =∑
α t

⇔1
α log |OX (⇔Eα)| lies in PL+(X )R, it follows that εϑ ↔ RPL+(X ). If ϑ⇑ X

div, then
D is a Q-divisor, and hence ⇔ϱD ↔ PL+

hom(X ). If we further assume T(ϑ) ↔Q, we get εϑ ↔ PL+(X ),
and the remaining implication follows from (18). ↭
Example 63. Suppose X is an abelian surface, ω = c1(L) with L ↔ Pic(X )Q ample, and v = ordE

with E ⇑ X a prime divisor. Then Nef(X ) = Psef(X ), and T(v) = λpsef is the smallest root of the
quadratic equation (L ⇔ λE)2 = 0, see [34, Remark 1.5.6]. If X has Picard number ρ(X ) ≃ 2,
then λpsef is irrational for a typical choice of L and E , and hence εv ℑ PL(X ). (Compare [34,
Example 2.3.8]). In particular, v is not dreamy (with respect to L) in the sense of Fujita, see
Example 56.

7.2. The Cutkosky example

Building on a construction of Cutkosky [21] and Proposition 50 (itself based on [41, §6.5]), we
provide an example of a divisorial valuation on P3 for which (21) fails. This relies on the following
general result.

Proposition 64. Consider a flag of smooth subvarieties Z ⇑ S ⇑ X with codimS = 1, codim Z = 2
and ideals bS ⇑ bZ ⇑OX , and assume that

(i) S ≡ω;

(ii) Nef(S) = Psef(S);

(iii) ω|S ⇔Z is not nef on S, i.e. λS

nef := sup{λ≃ 0 |ω|S ⇔λ[Z ] ↔ Nef(S)} < 1.

The Green’s function of v := ordZ ↔ X
div

is then given by

εv = max
{
0,λS

nef(log |bZ |+1), log |bS |+1
}

.

In particular, T(v) = 1, εv ↔RPL+(X ), and

εv ↔ PL(X ) ↙∝εv ↔ PL+(X ) ↙∝λS

nef ↔Q.

Proof. Let ϕ : Y ↓ X be the blowup along Z , with exceptional divisor E , and denote by S
⇒ =

ϕεS ⇔E the strict transform of S. Since Z has codimension 1 on S, ϕ maps S
⇒ isomorphically

onto S, and takes S
⇒|S⇒ = ϕεS|S⇒ ⇔ E |S⇒ to S|S ⇔ Z ≡ ω|S ⇔ [Z ]. By (ii) and (iii), we thus have

Nef(S
⇒) = Psef(S

⇒), and S
⇒|S⇒ is not nef.
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Consider the cone C ⇑ N1(Y ) generated by ς :=ϕεω ↔ Nef(Y ) and α :=⇔[E ] ℑ Psef(Y ). Since C

contains the class of S
⇒, it follows from Proposition 50 that

1 =λpsef := sup{λ≃ 0 |ϕεω⇔λ[E ] ↔ Psef(Y )}

andλ ∞↓ N(ϕεω⇔λE) vanishes on [0,λS

nef], and is a!ne linear on [λS

nef,1], with value S
⇒ atλ= 1. By

Theorem 57, the concave family (Bλ)λ↘1 of b-divisors associated to εv is a!ne linear on (⇔↖,0],
[0,λS

nef] and [λS

nef,1], with value

Bλ = 0, λS

nefE and S⇒+E = S

at λ = 0, λS

nef and 1, respectively. By (6), the result follows, since ⇔ϱ
E
= log |bZ | and ⇔ϱ

S
=

log |bS |. ↭
Example 65. Assume k = C, and set (X ,L) = (P3,O (4)). By [21], there exists a smooth quartic
surface S ⇑ X without (⇔2)-curves, and hence such that Nef(S) = Psef(S), containing a smooth
curve Z such that λS

nef is irrational and less than 1. By Proposition 64, we infer T(v) = 1 and
εv ↔RPL+(X ) \ PL(X ) (in contrast with (21)).

7.3. The Lesieutre example

Based on an example by Lesieutre [35], we now exhibit a Green’s function that is not R-PL. This
forms the basis for Theorem B in the introduction.

Proposition 66. Suppose that X admits a class ς ↔ Psef(X ) whose diminished base locus B⇔(ς) is

Zariski dense. Then there exist ω ↔ Amp(X ) and v ↔ X
div

such that ZX (εω,v ) is Zariski dense in X .

In particular, εω,v ℑRPL(X ).

Proof. Note first that ς cannot be big. Otherwise, there would exist an e˝ective R-divisor D ≡ ς,
and hence B⇔(ς) would be contained in suppD . Pick an ample prime divisor E on X , choose
c ↔ Q>0 large enough such that ω := ς + c[E ] is ample, and set v := c

⇔1 ordE ↔ X
div. Since ω

is ample and ω⇔ c[E ] = ς lies on the boundary of Psef(X ), the threshold λpsef = sup{λ ≃ 0 |
ω⇔λ[E ] ↔ Psef(X )} is equal to c. Thus B⇔(ω⇔λpsef[E ]) is Zariski dense, and hence so is ZX (εω,v ),
by Corollary 58. The last point follows from Lemma 26. ↭
Example 67. By [35, Theorem 1.1], the assumptions in Proposition 66 are satisfied when k = C
and X is the blowup of P3 at nine su!ciently general points.

If ς in Proposition 66 is rational, then the proof shows that ω can be taken rational as well, i.e.
ω = c1(L) for an ample Q-line bundle. While no such rational example appears to be known at
present, we can nevertheless exploit the structure of Lesieutre’s example to get:

Proposition 68. Set (X ,L) := (P3,O (1)). Then there exists a finite set ϑ ⇑ X
div
R such that ZX (εL,ϑ)

is Zariski dense in X , and hence εL,ϑ ℑRPL(X ).

Proof. Let ϕ : Y ↓ X be the blowup at nine su!ciently general points, and denote by
∑9

i=1 Ei the
exceptional divisor. By [35, Remark 4.5, Lemma 5.2], we can pick D = ∑

i ci Ei with ci ↔ R>0 such
that the diminished base locus of ϕεL ⇔D is Zariski dense. As above, this implies that this class
lies on the boundary of the psef cone (it even generates an extremal ray, see [35, Lemma 5.1]), and
the psef threshold

λpsef = sup{λ≃ 0 |ϕεL⇔λD ↔ Psef(Y )}
is thus equal to 1. The result now follows from Corollary 58, with ϑ= {c

⇔1
i

ordEi
}1↘i↘9. ↭

It is natural to ask:

Question 69. Can an example as in Proposition 68 be found with ϑ⇑ X
div

?
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8. The non-trivially valued case

In this section, we work over the non-Archimedean field K = k((ϑ)) of formal Laurent series, with
valuation ring K

↑ := k[[ϑ]]. We use [10] as our main reference.
Thus X now denotes a smooth projective variety of dimension n over K . (In Section 9, it will be

obtained as the base change of a smooth projective k-variety). Working “additively”, we view the
elements of the analytification X

an as valuations x : K (Y )⇓ ↓R for subvarieties Y ⇑ X , restricting
to the given valuation on K .

8.1. Models

We define a model of X to be a normal, flat, projective K
↑-scheme X together with the data of an

isomorphism XK ℵ X . The special fiber of X is the projective k-scheme X0 := X ⇓SpecK Speck.
Each x ↔ X

an can be viewed as a semivaluation on X , whose center is denoted by redX (x) ↔X0.
This defines a reduction map redX : X

an ↓ X0, which is surjective and anticontinuous (i.e. the
preimage of an open set is closed). For each x ↔ X

an we also set

ZX (x) := {redX (x)} ⇑X0.

The preimage under redX of the set of generic points of X0 is finite. We denote it by ϱX ⇑ X
an,

and call its elements the Shilov points of X . As X is normal, each irreducible component E of
X0 defines a divisorial valuation xE ↔ X

an
K

given by

xE := b
⇔1
E

ordE , bE := ordE (ϑ);

it is the unique preimage under redX of the generic point of E , and the Shilov points of X are
exactly these valuations xE .

One says that another model X ⇒
dominates X if the canonical birational map X ⇒ ↫↫↬ X ex-

tends to a morphism (necessarily unique, by separatedness). In that case, redX is the composi-
tion of redX ⇒ with the induced projective morphism X ⇒

0 ↓X0. The set of models forms a filtered
poset with respect to domination. The set

X
div =

⋃

X

ϱX

of all divisorial valuations is a dense subset of X
an.

8.2. Piecewise linear functions

A Q-Cartier Q-divisor D on a model X of X is vertical if it is supported in X0; it then defines a
continuous function on X

an called a model function. TheQ-vector space PL(X ) of such functions
is stable under max, and dense in C0(X

an).

Definition 70. We define the space RPL(X ) of real piecewise linear functions on X
an

(R-PL
functions for short) as the smallest R-linear subspace of C0(X

an) that is stable under max (and

hence also min) and contains PL(X ).

Fix a model X . An ideal a⇑OX is vertical if its zero locus V (a) is contained in X0. This defines
a nonpositive function log |a| ↔ PL(X ), determined by minus the exceptional divisor of the blowup
of X along a, and such that

log |a|(x) < 0 ↙∝ ZX (x) ⇑V (a). (23)

Functions of the form log |a| for a vertical ideal a ⇑ OX span the Q-vector space PL(X ) (see [10,
Proposition 2.2]). As in Section 1.3, it follows that any function in RPL(X ) can be written as a
di˝erence of finite maxima of R+-linear combinations of functions of the form log |a|.
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8.3. Dual complexes and retractions

We use [10, 39] as references.
An snc model is a regular model X such that the Cartier divisor X0 has simple normal crossing

support. Denote by X0 =
∑

i↔I bi Ei its irreducible decomposition. A stratum of X0 is defined as a
non-empty irreducible component of E J :=⋂

j↔J E j for some J ⇑ I . By resolution of singularities,
the set of snc models is cofinal in the poset of all models.

The dual complex ωX of an snc model X is defined as the dual intersection complex of X0.
Its faces are in 1–1 correspondence with the strata of X0, and further come with a natural integral
a!ne structure. In particular, the vertices of ωX are in 1–1 correspondence with the Ei ’s, and
admit a natural realization in X

an as the set ϱX of Shilov points xEi
.

This extends to a canonical embedding ωX ς↓ X
an onto the set of monomial points with

respect to
∑

i Ei . The reduction redX (x) ↔ X0 of a point x ↔ωX ⇑ X
an is the generic point of the

stratum of X0 associated with the unique simplex of ωX containing x in its relative interior. In
particular, ZX (x) is a stratum of X0. This embedding is further compatible with the PL structures,
in the sense that the Q-vector space PL(ωX ) of piecewise rational a!ne functions on ωX is
precisely the image of PL(X ) under restriction.

If another snc model X ⇒ dominates X , then ωX is contained in ωX ⇒ , and PL(ωX ⇒ ) restricts to
PL(ωX ). Furthermore, the set

X
qm :=

⋃

X

ωX ⇑ X
an

of quasimonomial valuations coincides with the set of Abhyankar points of X , see [10, Re-
mark 3.8] and [29, Proposition 3.7], while the subset of rational points

⋃
X ωX (Q) coincides with

the set X
div of divisorial valuations. For later use, we also note:

Lemma 71. If X is an snc model, then the image redX ⇒ (ωX ) ⇑X ⇒
0 of the dual complex of X under

the reduction map of any other model X ⇒
is finite.

Proof. Pick an snc model X ⇒⇒ that dominates both X and X ⇒. ThenωX is contained inωX ⇒⇒ , and
redX ⇒ (ωX ) is thus contained in the image of redX ⇒⇒ (ωX ⇒⇒ ) under the induced morphism X ⇒⇒

0 ↓X0.
After replacing both X and X ⇒ with X ⇒⇒, we may thus assume without loss that X =X ⇒. For any
x ↔ ωX , redX (x) is then the generic point of some stratum of X0, and redX (ωX ) is thus a finite
set. ↭

Dually, each snc model X comes with a canonical retraction pX : X
an ↓ωX that takes x ↔ X

an

to the unique monomial valuation y = pX (x) such that

• ZX (y) is the minimal stratum containing ZX (x);
• x and y take the same values on the Ei ’s.

This induces a homeomorphism X
an ▽↓ lim△⇔⇔X

ωX , which is compatible with the PL structures
in the sense that

PL(X ) =
⋃

X

p
ε
X PL(ωX ). (24)

This implies

RPL(X ) =
⋃

X

p
ε
X RPL(ωX ), (25)

where RPL(ωX ) is the space R-PL functions on ωX , i.e. functions that are real a!ne linear on a
su!ciently fine decomposition of each face into real simplices.
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8.4. Psh functions and Monge–Ampère measures

We use [10, 11, 26] as references.
A closed (1,1)-form ς ↔Z 1,1(X ) in the sense of [10, §4.2] is represented by a relative numerical

equivalence class on some model X , called a determination of ς. It induces a numerical class
[ς] ↔ N1(X ). We say that ς is semipositive, written ς ≃ 0, if ς is determined by a nef numerical
class on some model. In that case, [ς] is nef as well.

To each tuple ς1, . . . ,ςn in Z 1,1(X ) is associated a signed Radon measure ς1∧ · · ·∧ςn on X
an of

total mass [ς1] · . . . · [ςn], with finite support in X
div. More precisely, if all ςi are determined by a

normal model X , then ς1 ∧ · · ·∧ςn has support in ϱX (see [11, §2.7]).
Each ε ↔ PL(X ) is determined by a vertical Q-Cartier divisor D on some model X , whose

numerical class defines a closed (1,1)-form ddcε ↔ Z 1,1(X ). We say that ε is ς-psh for a given
ς ↔Z 1,1(X ) if ς+ddcε≃ 0.

From now on, we fix a semipositive form ω ↔ Z 1,1(X ) such that [ω] is ample. A function
ε : X

an ↓ R̸ {⇔↖} is ω-plurisubharmonic (ω-psh for short) if ε ⇐≡ ⇔↖ and ε can be written as
the pointwise limit of a decreasing net of ω-psh PL functions. The space PSH(ω) is closed under
max and under decreasing limits.

By Dini’s lemma, the space CPSH(ω) of continuousω-psh functions coincides with the closure
in C0(X ) (with respect to uniform convergence) of the space of ω-psh PL functions.

Each ε ↔ PSH(ω) satisfies the “maximum principle”

sup
X

ε= max
ϱX

ε (26)

for any model X determining ω (see [26, Proposition 4.22]). For snc models, [10, §7.1] more
precisely yields:

Lemma 72. Pick ε ↔ PSH(ω) and an snc model X on which ω is determined. Then:

(i) the restriction of ε to any face of ωX is continuous and convex;

(ii) the net (ε↑pX )X is decreasing and converges pointwise to ε.

Remark 73. The definition of PSH(ω) given here di˝ers from the one in [10], but Theorem 8.7
in loc. cit. implies that the two definitions are equivalent.

To each continuousω-psh function ε (or, more generally, any ω-psh function of finite energy)
is associated its Monge–Ampère measure MA(ε) = MAω(ε), a Radon probability measure on X

uniquely determined by the following properties:

• if ε is PL, then MA(ε) =V
⇔1(ω+ddcε)n with V := [ω]n ;

• ε ∞↓ MA(ε) is continuous along decreasing nets.

By the main result of [11], any Radon probability measure µwith support in the dual complexωX

of some snc model can be written as µ= MA(ε) for some ε ↔ CPSH(ω), unique up to an additive
constant.

8.5. Green’s functions

As in the trivially valued case, we can consider the Green’s function associated to a nonpluripolar
set ϑ⇑ X

an. Here we will only consider the following case. Suppose x ↔ X
div is a divisorial point,

and define
εx :=εω,x := sup{ε ↔ PSH(ω) |ε(x) ↘ 0}.

It follows from [11, §8.4] that εx ↔ CPSH(ω) satisfies MA(εx ) = ϖx and εx (x) = 0.

Proposition 74. If dim X = 1 and [ω] is a rational class, then εx ↔ PL(X ).
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Proof. This follows from Proposition 3.3.7 in [42], and can also be deduced from properties of
the intersection form on X0 for any snc model X , as in [23, Theorem 7.17]. ↭

This proves part (i) of Theorem A in the introduction. We will prove (ii) in Section 9.5.

8.6. Invariance under retraction

It will be convenient to introduce the following terminology:

Definition 75. We say that a function ε on X
an

is invariant under retraction if ε = ε ↑ pX for

some (and hence any sufficiently high) snc model X of X .

Example 76. By (24) and (25), a functionε ↔ C0(X
an) lies in PL(X ) (resp.RPL(X )) i˝ε is invariant

under retraction and restricts to a Q-PL (resp. R-PL) function on the dual complex associated to
any (equivalently, any su!ciently high) snc model.

Remark 77. The condition ε = ε ↑ pX in Definition 75 is stronger than the “comparison
property” of [36, Definition 3.11], which merely requires ε = ε ↑ pX to hold on the preimage
under pX of the n-dimensional open faces of some dual complex ωX , i.e. the preimage of the
0-dimensional strata of X0 under the reduction map.

Proposition 78. If ε ↔ PSH(ω) is invariant under retraction, then ε ↔ CPSH(ω), and MA(ε) is

supported in some dual complex.

The first point is a direct consequence of Lemma 72, while the second one is a special case of
the following more precise result. Recall first that the ω-psh envelope of f ↔ C0(X

an) is defined as

P( f ) = Pω( f ) := sup{ε ↔ PSH(ω) |ε↘ f }.

By [10], it lies in CPSH(ω).

Theorem 79. For anyε ↔ CPSH(ω) and any snc model X on whichω is determined, the following

properties are equivalent:

(i) MA(ε) is supported in ωX ;

(ii) ε= P(ε↑pX ).

Proof. For any ϱ ↔ PSH(ω), we have ϱ↘ϱ↑pX (see Lemma 72(ii)), and hence

P(ε↑pX ) = sup
{
ϱ ↔ PSH(ω) |ϱ↘ε on ωX

}
. (27)

Assume (i). By the domination principle (see [11, Lemma 8.4]), any ϱ ↔ PSH(ω) such that ϱ ↘ ε
on suppMA(ε) ⇑ωX satisfiesϱ↘ε on X

an. In view of (27) this yields (ii). Conversely, assume (ii).
For any finite set of rational points ϑ⇑ωX (Q) ⇑ X

div, consider the envelope

εϑ := sup{ϱ ↔ PSH(ω) |ϱ↘ε on ϑ}.

Then εϑ lies in CPSH(ω), and MA(εϑ) is supported in ϑ (see [11, Lemma 8.5]). The net (εϑ),
indexed by the filtered poset of finite subsets ϑ ⇑ ωX (Q), is clearly decreasing, and bounded
below byε. Its limitϱ := limϑεϑ is thusω-psh, and we claim that it coincides withε. Indeed, we
haveϱ↘ε on

⋃
ϑϑ=ωX (Q), and hence onωX , where bothϱ andε are continuous. By (27), this

yieldsϱ↘ P(ε↑pX ) =ε. By continuity of the Monge–Ampère operator along decreasing nets, we
infer MA(εϑ) ↓ MA(ε) weakly on X , which yields (i) since each MA(εϑ) is supported in ωX . ↭

In view of Proposition 78 and Example 76, it is natural to conversely ask:

Question 80. If the Monge–Ampère measure MAω(ε) of ε ↔ CPSH(ω) is supported in some dual

complex, is ε invariant under retraction?
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This question appears as [25, Question 2], and is equivalent to asking whether ε↑pX is ω-psh
for some high enough model X , by Theorem 79. In Example 99 below (see also Theorem A) we
show that the answer is negative. In this example, the support of MAω(ε) is even a finite set. One
can nevertheless ask:

Question 81. Assume that ε ↔ CPSH(ω) is such that the support of the Monge–Ampère measure

MAω(ε) is a finite set contained in some dual complex.

(i) is ε R-PL on each dual complex?

(ii) if ω is rational, is εQ-PL on each dual complex?

Example 99 below provides a negative answer to (ii). Indeed the function ε in this example
is R-PL but not Q-PL, and by (24), (25), this implies that ε fails to be Q-PL on some dual
complex ωX . The answer to (i) is also likely negative in general, as suggested by Nakayama’s
counterexample to the existence of Zariski decompositions on certain toric bundles over an
abelian suface [40, p. IV.2.10].

Question 82. Suppose X is a toric variety, and letε ↔ CPSH(ω) be a torus invariantω-psh function

such that MAω(ε) is supported on a compact subset of NR ⇑ X
an

. Is ε invariant under retraction?

Question 83. If ε ↔ CPSH(ω) is invariant under retraction, is the same true for ε|Z an , if Z ⇑ X is

a smooth subvariety?

8.7. The center of a plurisubharmonic function

We end this section by a version of Theorem 24 in our present context. In analogy with (7), for
any subset S ⇑ X

an and any model X we set

ZX (S) :=
⋃

x↔S

ZX (x).

This is thus the smallest subset of X0 that is invariant under specialization and contains the
image redX (S) of S under the reduction map redX : X

an ↓ X0. For any higher model X ⇒, the
induced proper morphism X ⇒

0 ↓X0 maps ZX ⇒ (S) onto ZX (S).
We say that S ⇑ X

an is invariant under retraction if p
⇔1
X (S) = S for some (and hence any

su!ciently high) snc model X .

Lemma 84. If S ⇑ X
an

is invariant under retraction, then ZX (S) is Zariski closed for any model X .

Proof. Pick an snc model X ⇒ dominating X such that S = p
⇔1
X ⇒ (S). Since ZX (S) is the image of

ZX ⇒ (S) under the proper morphism X ⇒
0 ↓ X0, we may replace X with X ⇒ and assume without

loss that X = X ⇒. The set ZX (S) obviously contains ZX (S ↗ωX ), which is Zariski closed since
ZX (y) is a stratum of X0 for any y ↔ ωX . Conversely, pick x ↔ S, and set y := pX (x) ↔ ωX . Then
y ↔ p

⇔1
X (S) = S, and ZX (x) ⇑ ZX (y) since it follows from the definition of pX that redX (x) is a

specialization of redX (y). This shows, as desired, that ZX (S) = ZX (S ↗ωX ) is Zariski closed. ↭
Definition 85. Given ε ↔ PSH(ω) and a model X , we define the center of ε on X as

ZX (ε) := ZX ({ε< supε}) =
⋃

{ZX (x) | x ↔ X ,ε(x) < supε}.

Example 86. If ε= log |a| for a vertical ideal a⇑OX , then ZX (ε) =V (a).

Theorem 87. For any ε ↔ PSH(ω) and any model X , the following holds:

(i) ZX (ε) is an at most countable union of subvarieties of X0;

(ii) if ε is invariant under retraction, then ZX (ε) is Zariski closed;

(iii) ZX (ε) = redX ({ε< supε});

(iv) ZX (ε) is a strict subset of X0 as soon as X determines ω.
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Question 88. Is it true that {ε< supε} = red⇔1
X (ZX (ε)) as in Theorem 24?

Proof. By [11, Proposition 4.7], ε can be written as the pointwise limit of a decreasing sequence
(εm)m↔N of ω-psh PL functions. Since each εm is in particular invariant under retraction (see
Example 76), Lemma 84 implies that ZX {(εm < supε}) is Zariski closed for each m. On the
other hand, since εm ¬ ε pointwise on X , we have {ε < supε} = ⋃

m{εm < supε}, and hence
ZX (ε) =⋃

m ZX ({εm < supε}). This proves (i), while (ii) is a direct consequence of Lemma 84.
Pick x ↔ X

an such that ε(x) < supε. To prove (iii), we need to show that any ξ ↔ ZX (x) lies in
redX ({ε< supε}). By Lemma 72, we can find a high enough snc model X ⇒ such that x

⇒ := pX ⇒ (x)
satisfies ε(x

⇒) < supε. By properness of X ⇒
0 ↓ X0, ZX (x) is the image of ZX ⇒ (x), which is itself

contained in ZX ⇒ (x
⇒). After replacing X with X ⇒ and x with x

⇒, we may thus assume without
loss that X is snc and x lies in ωX . Pick y ↔ X

an with redX (y) = ξ (which exists by surjectivity
of the reduction map, see [24, Lemma 4.12]). Set z := pX (y), and denote by σ the unique face
of ωX that contains z in its relative interior, the corresponding stratum of X0 being the smallest
one containing ξ. Since the latter point lies on the stratum ZX (x), it follows that σ contains x

(possibly on its boundary). Since ε is convex and continuous on σ (see Lemma 72), it can only
achieve its supremum at the interior point z if it is constant on σ. As x ↔σ satisfies ε(x) < supε,
it follows that ε(z) < supε as well. Since z = pX (y), this implies ε(y) ↘ ε(z) < supε (again by
Lemma 72). Thus ξ= redX (y) ↔ redX ({ε< supε}), which proves (iii).

Finally, assume that X determines ω. By (26), we can find an irreducible component E of X0

whose corresponding Shilov point xE ↔ ϱX satisfies ε(xE ) = supε. Since xE is the only point of
X

an whose reduction on X0 is the generic point of E , it follows that the latter does not belong to
ZX (ε), which is thus a strict subset of X0. ↭

9. The isotrivial case

We now consider the isotrivial case, in which the variety over K = k((ϑ)) is the base change XK of
a smooth projective variety X over the (trivially valued) field k.

9.1. Ground field extension

We have a natural projection
ϕ : X

an
K

⇔↓ X
an,

while Gauss extension provides a continuous section

σ : X
an ς↓ X

an
K

onto the set of k
⇓-invariant points (see [12, Proposition 1.6]). By [12, Corollary 1.5], we further

have:

Lemma 89. If v ↔ X
an

is divisorial (resp real divisorial) then σ(v) ↔ X
an
K

is divisorial (resp.

quasimonomial).

The base change of X to the valuation ring K
↑ := k[[ϑ]] defines the trivial model

Xtriv := XK ↑

of XK , whose special fiber Xtriv,0 will be identified with X . More generally, each test configuration

X ↓ A1 = Speck[ϑ] for X induces via base change under k[ϑ] ↓ k[[ϑ]] = K
↑ a k

⇓-invariant
model of XK , that shares the same vertical ideals and vertical divisors as X , and will simply be
denoted by X , for simplicity.
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9.2. Psh functions

For any ς ↔ N1(X ), we denote by ϕες ↔ Z 1,1(XK ) the induced closed (1,1)-form, determined
by the relative numerical class induced by ς on the trivial model. If ω ↔ Amp(X ), then [ϕεω] ↔
N1(XK ) coincides with the base change of ω, and hence is ample.

Theorem 90. Pick ω ↔ Amp(X ) and ε ↔ PSH(ω). Then:

(i) ϕεε ↔ PSH(ϕεω);

(ii) if ε further lies in CPSH(ω), then MAϕεω(ϕεε) =σεMAω(ε).

Lemma 91. For any ε ↔ PL(X ) and ς ↔ N1(X ), the following holds:

(i) ϕεε ↔ PL(XK );

(ii) (ϕες+ddcϕεε)n =σε(ς+ddcε)n
;

(iii) ε is ς-psh iff ϕεε is ϕες-psh.

Proof. The function ε is determined by a vertical Q-Cartier divisor D on a test configuration X ,
that may be taken to dominate the trivial one (see [13, Theorem 2.7]). The induced vertical divisor
on the induced model of XK then determinesϕεε. This proves (i), and also (ii), by comparing [11,
(2.2)] and [13, (3.6)]. Finally, denote by ςX the pullback of ς to N1(X /A1). Then ε is ς-psh i˝
(ςX + [D])|X0 is nef, which is also equivalent to ϕεε being ϕες-psh. This proves (iii). ↭
Proof of Theorem 90. Write ε as the limit on X

an of a decreasing net of ω-psh PL functions εi .
By Lemma 91, ϕεεi is PL and ϕεω-psh. Since it decreases pointwise on X

an
K

to ϕεε, the latter is
ϕεω-psh, which proves (i). For each i , Lemma 91(ii) further implies MAϕεω(ϕεεi ) =σεMAω(εi ).
Ifε is continuous, then MAω(ε) and MAϕεω(ϕεε) are both defined, and are the limits of MAω(εi )
and MAϕεω(ϕεεi ), respectively. This proves (ii). ↭

9.3. PL structures

As a direct consequence of Lemma 91, the projection ϕ : X
an
K

↓ X
an is compatible with the PL

structures:

Corollary 92. We have ϕεPL(X ) ⇑ PL(XK ) and ϕεRPL(X ) ⇑RPL(XK ).

As we next show, this is also the case for Gauss extension.

Theorem 93. We have σεPL(XK ) = PL(X ) and σεRPL(XK ) =RPL(X ).

Any vertical ideal a on Xtriv, being trivial outside the central fiber, can be viewed as a vertical
ideal on X ⇓A1, and a :=Gm ·a is then the smallest flag ideal containing a.

Lemma 94. With the above notation we have σε log |a| =εa.

Proof. Pick an ample line bundle L on X , and denote by Ltriv the trivial model of LK , i.e. the
pullback of L to the trivial model Xtriv = XK ↑ . After replacing L with a large enough multiple,
we may assume Ltriv ⊗ a is generated by finitely many sections si ↔ H0(Xtriv,Ltriv). Then
log |a| = maxi log |si |, where |si | denotes the pointwise length of si in the model metric induced
by Ltriv. For each i write si =

∑
λ↔Z si ,λϑ

λ where si ,λ ↔ H0(X ,L), and denote by bλ ⇑ OX the ideal
locally generated by (si ,λ)i . Then a = ∑

λ↔Zbλϑ
λ. By definition of Gauss extension, we have for

any v ↔ X
an

log |si |(σ(v)) = max
λ↔Z

{log |si ,λ|+λ}.

Thus σε log |a| = maxλ↔Z{ϱλ ⇔ λ} with ϱλ := maxi log |si ,λ| = log |bλ|, and hence σε log |a| =
maxλ{log |bλ|⇔λ} =εa. ↭
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Proof of Theorem 93. By Corollary 92 we have ϕεPL(X ) ⇑ PL(XK ). Since PL(XK ) is generated by
functions of the form log |a| for a vertical ideal a ⇑ OXtriv , Lemma 94 yields σεPL(XK ) ⇑ PL(X ),
and hence also σεRPL(XK ) ⇑RPL(X ). This completes the proof, since σεϕε = id. ↭

9.4. Centers

Next we study the relationships between the two center maps ZX : X
an ↓ X and ZXtriv : X

an
K

↓
Xtriv,0 = X .

Lemma 95. For all x ↔ X
an
K

and v ↔ X
an

we have

ZXtriv (x) ⇑ ZX (ϕ(x)), ZX (v) = ZXtriv (σ(v)).

Proof. Denote by b⇑OX the ideal of the subvariety ZX (ϕ(x)). Then a := b+ (ϑ) is a vertical ideal
on Xtriv such that V (a) =V (b) = ZX (ϕ(x)) under the identification Xtriv,0 = X . Further,

log |a|(x) = max{log |b|(ϕ(x)),⇔1} < 0,

and hence ZXtriv (x) ⇑V (a) = ZX (ϕ(x)), see (23).
Applying this to x = σ(v) yields ZXtriv (σ(v)) ⇑ ZX (v). To prove the converse inclusion, denote

by a⇑OXtriv the ideal of ZXtriv (σ(v)). Since σ(v) is k
⇓-invariant, a=∑

λ↔Zaλϑ
⇔λ is (induced by) a

flag ideal. Further, εa(v) = log |a|(σ(v)) < 0, and hence ZX (v) ⇑ ZX (εa). By Example 14 we have
ZX (εa) =V (a0). The latter is also equal to the zero locus of a0+(ϑ) on Xtriv, which is contained in
V (a) = ZXtriv (σ(v)) since a⇑ a0 + (ϑ). Thus ZX (v) ⇑ ZXtriv (σ(v)), which concludes the proof. ↭

As a consequence we get:

Proposition 96. If ω ↔ Amp(X ) and ε ↔ PSH(ω), then ZXtriv (ϕεε) = ZX (ε).

Proof. Pick v ↔ X
an such thatε(v) < supε, and set x :=σ(v). Then ϕεε(x) =ε(v) and supϕεε=

supε, so x lies in {ϕεε < supϕεε}, and hence ZX (v) = ZXtriv (x) ⇑ ZXtriv (ϕεε) by Lemma 95.
This implies ZX (ε) ⇑ ZXtriv (ϕεε). Conversely, assume x ↔ X

an
K

satisfies ϕεε(x) < supϕεε. Then
v := ϕ(x) lies in {ε < supε}, and hence ZX (v) ⇑ ZX (ε). In view of Lemma 95, this implies
ZXtriv (x) ⇑ ZX (ε), and hence ZXtriv (ϕεε) ⇑ ZX (ε). ↭

Combining Proposition 96 and Theorem 87, we obtain

Corollary 97. Letε ↔ PSH(ω), whereω ↔ Amp(X ), and suppose that ϕεε ↔ PSH(ϕεω) is invariant

under retraction. Then ZX (ε) ⇑ X is a Zariski closed proper subset of X .

9.5. Examples

We are now ready to prove Theorems A and B in the introduction, and also provide additional
examples. As in the previous section, X denotes a smooth projective variety over k. Pick a
class ω ↔ Amp(X ), a k

⇓-invariant divisorial point x ↔ X
div
K

, and denote as in Section 8.5 by
εx ↔ CPSH(ϕεω) the Green’s function associated to x; this is the unique solution to the Monge–
Ampère equation

MAϕεω(εx ) = ϖx and εx (x) = 0.

By Lemma 89, we have x = σ(v) with v := ϕ(x) ↔ X
div. If εv ↔ CPSH(ω) denotes the Green’s

function of {v}, see Section 6.1, then we have

εx =ϕεεv .

Indeed, ϕεεv (x) =εv (v) = 0, and by Theorem 90, we have MAϕεω(ϕεεv ) =σεϖv = ϖx .
Our goal is to investigate the regularity of εx .
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Corollary 98. If dim X = 1, then εx ↔ PL(XK ). If dim X = 2, then εx ↔RPL(XK ).

Proof. The first statement follows from Proposition 74. Now suppose dim X = 2. By Theorem 60,
εv ↔RPL(X ), so that εx ↔RPL(XK ), see Corollary 92. ↭

However, even when ω is rational, εx is in general notQ-PL:

Example 99. Example 63 gives an example of an abelian surface X , a rational class ω ↔ Amp(X ),
and a divisorial valuation v ↔ X

div such that εv ↔ RPL(X ) \ PL(X ). If x = σ(v), then εx = ϕεεv ↔
RPL(XK ) \ PL(XK ), by Theorem 93.

Example 100. Similarly, Example 65 gives an example of a divisorial valuation v ↔ P3,div such
that if we set ω = c1(O (4)), then εv := εω,v ↔ RPL(X ) \ PL(X ). If x = σ(v), then εx = ϕεεv ↔
RPL(XK ) \ PL(XK ), by Theorem 93.

Examples 99 and 100 establish Theorem A(ii). They also provide a negative answer to Ques-
tion 81(ii). Indeed, a function ε ↔ C0(X

an
K

) lies in RPL(XK ) (resp. PL(XK )) i˝ ε is invariant under
retraction and restricts to an R-PL (resp.Q-PL) function on each dual complex, see Example 76.

As the next example shows, if dim X = 3, then εx need not be R-PL. In fact, it may not even be
invariant under retraction.

Example 101. Example 67 shows that we may have dim X = 3 and ZX (εv ) Zariski dense in X ,
and it follows from Corollary 97 that εx cannot be invariant under retraction.

It could, however, a priori be the case that the restriction εx to any dual complex is R-PL, see
Question 81(i).

In Example 101, based on Lesieutre’s work, the class ω is irrational. We do not know of an
example for which the class ω is rational. However, the following example provides a proof of
Theorem B in the introduction.

Example 102. Set X =P3
k

andω := c1(O (1)) ↔ N1(X ). By Proposition 68, there existsϱ ↔ CPSH(ω)
such that MAω(ϱ) is supported in a finite subset ϑ ⇑ X

div
R , and ZX (ϱ) is Zariski dense in X .

Theorem 90 then shows that ε := ϕεϱ lies in CPSH(ϕεω), MAϕεω(ε) = σεMAω(ϱ) has finite
support in some dual complex (see Lemma 89), while Corollary 97 shows that ε cannot be
invariant under retraction.
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