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Abstract—This paper presents the MAE model that uses
a Masked AutoEncoder (MAE) to enhance the observations
from commercial passive Radio-Frequency Identification (RFID)
devices. It is crucial to address the common issue of RFID readers
failing to collect observations from all their hop channels and
antennas due to environmental effects and device limitations.
The proposed method examines the inner rationale among
observations from various channels and antennas to reconstruct
the missing observations, which can significantly improve the
performance of downstream applications. The experiment results
show that when we collect more than 70% observation in all
antennas at all channels, our MAE model can restore 90% of the
missing phase with an error of less than 0.1 radians, which is even
less than the error caused by thermal noise in an RFID system.
Our MAE model’s accuracy in restoring missing data provides
a promising future to improve the performance of various RFID
applications like localization and motion tracking by providing
more complete observations.

Index Terms—Radio-frequency identification (RFID), Ultra-
high frequency (UHF), Masked AutoEncoder (MAE), Observa-
tion restoration.

I. INTRODUCTION

Over the past few years, the Radio-frequency identification
(RFID) technique, especially the Ultra-high Frequency (UHF)
RFID, has been studied and deployed as RFID sensing from
various applications [1]–[4], such as ambient environmental
sensing, real-time tag localization, and even vital sign moni-
toring. Unlike the promising results in a lab setting, we saw
an obvious performance decrease when they were deployed in
real environments. One key reason for this decrease is the
loss of RF observations: a UHF RFID reader works with
multiple antennas and hops on multiple channels (i.e., 50
hopping channels are mandatory in the USA). However, the
dynamic environments and hardware limitations make a reader
fail to collect observations from all its antennas at all hopping
channels, a common phenomenon of observation sparsity in
RFID systems. We must address this problem effectively and
efficiently to materialize the promising future of various RFID
sensing applications. Several existing works [5], [6] leverage
tensor completion for channel information recovery to mitigate
the effect of RFID observation sparsity; however, they fail to
harness the latent relations among different antennas.

This paper proposes a method to systematically explore the
latent relations of hopping channels and antennas in RFID

Fig. 1. The architecture of the proposed MAE-based RFID observation
enhancement. It illustrates the encoder-decoder structure, where the input is a
matrix of RFID phase observations from different antennas and hopping chan-
nels. Missing observations, shown as grey blocks, are caused by environmental
noise, channel hopping, etc. It facilitates learning the latent relationships
among antennas and channels in a self-supervised manner. The model then
restores missing values by leveraging these learned relationships and outputs
a completed observation matrix to advance the downstream applications.

observations. Then, an MAE [7] will be developed to capture
these relations and utilize them to recover the missing observa-
tions at each channel and antenna. First, we will collect RFID
observations and then randomly mask out values at channels
and antennas; then, we use MAE to train our model in an
unsupervised manner to reconstruct masked-out items, which
allows the model to learn the aforementioned latent relations.
Later, the well-trained model can be deployed to recover all
missing items in an RFID observation to complete it (e.g.,
the phase value for all 50 channels at all connected antennas).
We also evaluate our method by integrating it with an RF
Hologram RFID localization, which is introduced in work [8].
Extensive experiment results demonstrate the superior perfor-
mance of the proposed method in RFID observation restoration
and advance the performance of downstream models.

II. PROPOSED APPROACH

A. overview of the system

Fig 1 depicts the architecture of the proposed MAE-based
RFID observation enhancement. A well-trained MAE model
will retain the latent relations among different channels and
antennas. Then, it utilizes these relations and the original
observation from a commercial RFID reader to recover the
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missing items that improve the performance of downstream ap-
plications, such as tracking, localization, and other RF sensing.
In the following sections, we focus on phase observation, but
the proposed method is compatible with other observations,
such as the Received Signal Strength Indicator (RSSI).

B. Data processing & MAE model

1) Data Preparation: A typical RFID system comprises
A ≥ 1 antennas to interrogate tags in N hop channels. Our
work is considering an RFID reader with A = 8 antennas
and works on N = 50 channels, which is regulated by
the FCC standard in the USA. To capture the relationship
between the antennas and channels, we represent the phase
observations using a matrix, Θ, which captures the phase shift
of RFID signals as they are transmitted and reflected back to
the antennas. In this work, Θ would be a 50×8 matrix, where
each row corresponds to the readings across all antennas for
a given channel, and each column corresponds to readings
across all channels for a given antenna. This matrix structure
allows us to explore how observations are related not only
within a single channel or antenna but also across different
channels and antennas, revealing hidden patterns in the data.
With this understanding, we now represent the completed
phase observations as:

Θ =

θ1,1 θ1,2 · · · θ1,A
...

...
. . .

...
θN,1 θN,2 · · · θN,A

 (1)

Here, θi,j ∈ [−π, π] denotes the phase observation from
channel i and antenna j. Due to the experimental effect and the
channel hopping mechanism(i.e., according to FCC standards,
a reader can take up to 20 seconds to go through all channels),
we usually can not collect all these observations at a short
interval, especially for motion-tracking applications.

Fig. 2. The proposed MAE model and its training process.

2) MAE Model: The proposed MAE model deploys an
encoder-decoder architecture, which is illustrated as the green
block in Fig. 2. It comprises an encoder and a decoder
with similar but mirroring layers. Due to our small data
dimension N × A (e.g., 50 × 8), the encoder and decoder
can be implemented with a relatively shallow architecture, like
N < 10 layers. The encoder captures the phase relation among
different channels and antennas, creating a compressed and
efficient latent representation. All RFID phases constitute the
structured matrix Θ, in which the relative position of phases

offers meaningful relation according to channels and antenna
displacement. Thus, the encoder should be able to retain these
positional features. To this end, the encoder employs Convolu-
tional Neural Network (CNN) layers that have been proven to
be fundamental in efficiently capturing both spatial hierarchies
and dependencies [9]. Then, the decoder will reconstruct the
observation matrix Θ̂ based on the latent representation from
the encoder. The decoder also employs CNN layers that are
similar but mirror of the structure of the encoder.

C. Model training
Our encoder-decoder architecture facilitates a self-

supervised training process: We mask out parts of the original
observation Θ and allow the MAE model to reconstruct the
completed observation Θ̂. To minimize the error between the
Θ and Θ̂, we can empower the MAE model to learn the
latent relations in RFID observation without manual labeling.
We illustrate such a training process in Fig. 2.

1) Training Dataset: Our training dataset is collected for a
testbed where we placed an RFID tag in P number of positions
to collect as many phase values as possible at each position
with 2-minute intervals. Due to the environments, reader, and
tag characteristics, we will miss some phase values for some
antennas at several channels. We mark those phase values
as undetected value ϕ in a given observation Θ, which is
highlighted as grey blocks of observations in Fig. 2. During
the training process, a masked observation Θm will be created
from Θ by randomly masking out a set of θi,j and mark
them as ϕ, which is highlighted as black blocks of masked
observation in Fig. 2. Then, we will input Θm to reconstruct
the Θ̂ by minimizing the error between the Θ̂ and Θ to enable
the MAE model to learn the relations among the channels and
antennas.

2) Custom Loss Function: To enable our MAE model to
recover the missing phase ϕ in the original observation Θ, we
design a custom loss function to handle masked and unmasked
phases separately. We first define the contributed error,∇θi,j ,
at position i, j between original Θ and reconstructed obser-
vation Θ̂ to rule out the effect of original missing phases ϕ
as:

∇θi,j =

{
0, if θi,j = ϕ

|θi,j − θ̂i,j |, otherwise
(2)

here, | · | denotes the absolute operation, and θ̂i,j is the
reconstructed phase at position (i, j) of Θ̂. We define the
masked loss function Lm as:

Lm =
∑
i,j

θm
i,j ̸=ϕ

∇θi,j (3)

Here, θmi,j is the phase at position i, j of the masked obser-
vation Θm. Thus Lm sums up all the contributed errors at
all positions that are masked out. Then, the unmasked loss
function Lu is defined as :

Lu =
∑
i,j

θm
i,j=ϕ

∇θi,j (4)
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Finally, the final loss function is calculated as a weighted
average of the masked and unmasked losses :

L = αLm + (1− α)Lu (5)

This allows the loss function L to effectively combine the in-
formation from both masked and unmasked regions, balancing
their contributions to the overall loss based on the parameter
0 < α < 1.

TABLE I
HYPERPARAMETERS

Hyperparameter Value
Batch Size 128
Initial Learning Rate 0.001
Learning Rate Drop Factor 0.1
Learning Rate Drop Patience 50
Number of Epochs 100
Early Stopping Patience 100
Early Stopping Monitor Validation Loss
Early Stopping Mode min
Optimizer Adam

III. EXPERIMENTAL STUDY

A. Experiment Setup

a) Testbed and data collection: In this work, we set up a
testbed at our Lab to collect a training dataset and evaluate our
system’s performance. We deployed a Zebra FX9600 RFID
reader and 8 Zebra AN720 S9025PR antennas; an AD-387
U9 UHF RFID tag will be placed in an area of 1.5m× 1.5m.
During the data collection for training, the area was divided
into grids with side lengths of 10cm. Then, we acquired
continuously for 2 minutes at each position to ensure the reader
operated at all 50 channels, with multiple repetitions conducted
to ensure consistency and reliability of the data. Note that
even with 2 minutes of interrogation, a non-trivial portion of
samples missed several channels for different antennas. This
resulted in a dense dataset Dd with 110 k samples. These
samples were collected from 110 distinct positions that were
randomly selected in the aforementioned grids. The majority
of these samples consisted of more than 90% of phases for all
the 8 antennas at 50 channels. While at the evaluation phase,
we randomly placed the tag within the area and interrogated
it with a randomly t < 2s interval. This usually ended with
sparse observations that missed many phases for each antenna,
many of them with 60% or more of 8 × 50 phases. These
observations formed our sparse dataset Ds.

b) MAE configuration: We implemented the proposed
MAE model using the PyTorch Lightning package and Python
3.8.0. TABLE I summarizes the hyperparameters for our MAE
model. The model was trained, and inference was performed
on a Dell workstation with an Nvidia RTX 3090 (24GB) and
128GB of RAM. The system takes approximately 7 ms to
restore a completed observation Θ̂.

B. Experiment Results and Analysis

1) Performance of phase restoration at a single position:
In this benchmark experiment, we evaluated the performance

Fig. 3. Our testbed for experiments. The top is the layout of the RFID
antennas, and the high adjustable tripod in the middle holds the RFID tag.
The bottom is the zoom-out of the RFID tag used in experiments.

of our proposed MAE model by comparing it with an existing
method, tensor completion, which is introduced in [10]. Tensor
completion was originally designed to restore missing data
for temperature measurements and only consider a statistical
scenario at a single point. To ensure the fairness of compari-
son, we first trained our MAE model with the data collected
at the same position. Then, we evaluated the reconstructed
error at observations with 90%, 70%, and 50% phase values
for the 8 antennas at 50 channels. We tested each scenario
with 200 distinctive samples. Then, we compared them with
Tensor completion in terms of their average and maximum
error, which is shown in TABLE II. These results show that our
MAE model can provide a slightly better average restoration
errors at 90% and 70% scenarios with the same level at
50% scenarios. Considering that the thermal or other noise
in the RFID system can cause a 0.1 rad error, our average
errors in all scenarios can accurately restore the missing phase
values. Compared to tensor completion, our most significant
improvement lies in the max error, especially for 90% and
70% scenarios, even if the maximum error is less than the
thermal error. This demonstrated the superior robustness of the
proposed MEA model in stationary RFID sensing applications,
such as ambient temperature monitoring, where the tags and
reader are both stationary but need to probe with short intervals
to ensure the monitoring sensitivity and real-time performance.

2) Performance of phase restoration in an open space:
Our MAE model is designed to restore the missing RFID
observation for tags that are placed at any position of the
reader’s reading range. In this experiment, we evaluated its
accuracy in phase restoration in the entire testbed, a space
with 1.5m× 1.5m. To this end, we divided the dense dataset
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TABLE II
COMPARISON OF RESTORATION ERRORS AT SINGLE POSITION

Tensor Completion Proposed MAE Model
Average error Max error Average error Max error

90% 0.016 rad 5.109 rad 0.003 rad 0.005 rad
70% 0.018 rad 5.055 rad 0.011 rad 0.016 rad
50% 0.022 rad 6.135 rad 0.025 rad 0.405 rad

Dd into three subsets: Dt , Dv , and De. Here, Dt was the
training dataset with 70% of samples in Dd to train our
MAE model, and selected Dv 10% of samples to validate
the training process for tuning hyperparameters, detecting
overfitting, and guiding improvements to the MAE model. De

was the evaluation dataset, which with 20% of samples in
Dd . We select the samples in De that were totally different
from those in Dt to ensure the trained MAE model was not
seen as an observation in De. We deleted the phase values in
every sample of De to make them only remain 90%, 80%,
70%, and 60% of observations. These scenarios were selected
based on the fact that most RFID observations consisted of
more than 60% values for many RFID sensing applications,
such as slow motion capture. Then, we inputted all the above
observations into our well-trained MAE model and compared
the recovered phase values with the phases in original De.
Fig. 4 presents the cumulative distribution function (CDF) of
restoration errors between the true phases in original De and
the recovered phases.

Fig. 4. CDF of phase errors between the truth and recovered phases provided
by the proposed MAE model.

In Fig. 4, for scenarios with 70%, 80%, and 90% available
data, more than 60% of restored error is less than 0.05 rad.
In all of these scenarios, 90% of the restoration errors are
less than 0.1 radians, which is the same thermal noise level.
Moreover, in the scenario with 60% of the data, 90% of
the restoration errors are less than 0.17 radians, only slightly
higher than the thermal noise level. Considering many down-
stream RFID applications [8], [11] designed to handle thermal
level noises, our MAE model can smoothly be integrated with
them to offer restored observations and significantly improve
their performance by completing observations.

IV. CONCLUSIONS

In this study, we presented a self-supervised MAE model
to capture the latent relations among channels and antennas
in RFID observations. The proposed method efficiently learns
these relations without any manual labeling or manipulation
of the data by providing raw samples from an RFID system.
Subsequently, a trained model can restore missing values to
form a completed observation from all antennas at all channels.
Our proposed MAE model is a task-agnostic method, which
only depends on the RFID systems and does not require any
information on the downstream applications. Such character-
istic enables it to be smoothly integrated with many existing
or emerging RFID applications to improve their performance
through comprehensive observations. Extensive experiments
demonstrate that our method could restore missing phases up
to 40%(that is our 60% data in Fig. 4) and offer an error within
the thermal noise, demonstrating its effectiveness and superior
accuracy. Our future work plans to integrate it with down-
stream applications, such as localization, motion tracking, and
environmental monitoring. We will explore the captured latent
RFID relations with downstream task-dependent data to further
advance the performance of these applications.
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