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Abstract—Industrial control system (ICS) protocols face the
threat of adversaries launching cyber-physical attacks against
protocol endpoints. Vulnerability discovery approaches such as
fuzzing can be effective at reducing the risk of such threats.
In this paper, we present MCFICS, a coverage-guided greybox
fuzzing framework that uses (1) active automata learning for
stochastic reactive systems to infer the state machine of a
stateful ICS protocol server implementation, and (2) guided
fuzzing to explore the state space using this learned state ma-
chine. During fuzzing, new input sequences that increase code
coverage are used to improve the state space exploration of
the ICS protocol implementations. We implemented and tested
MCFICS with six example server implementations spanning
three widely used ICS protocol implementations. Experimental
results show that MCFICS achieves higher branch coverage
than the AFLNwe, AFLNet and StateAFL fuzzers by an
average (mean of means) of 15.82%, 1.99%, and 37.52%,
respectively, with an overall average of 18.44% increased
branch coverage. Furthermore, using MCFICS we discovered
a new bug in a protocol implementation that we have reported
to its upstream maintainer.

1. Introduction

Industrial control systems (ICS) are a broad category of
real-time embedded systems used in industrial processes to
control, monitor, and connect physical processes, including
those found in industrial facilities and critical infrastructure.
ICSs comprise hardware and software components linked
over a network to enable industrial automation and com-
munication using a wide variety of protocols. ICS protocols
differ from others in that they prioritize low latency and
safety over throughput and security. In recent years, the ICS
design space has undergone a sea change from being isolated
air-gapped operational technology (OT) systems to being
tightly-coupled and integrated with information technology
(IT). The growing overlap between IT and OT enables the
industrial Internet of Things (IIoT) [1]. This integration has
enhanced system operations but opened up the traditionally
closed ICS to cyber and physical exploits such as the attacks
on the Ukrainian power grid [2], and more.

Addressing zero-day exploits in critical infrastructure
ICS involves their proactive identification and remedia-
tion [3]. Traditional methods like manual testing, formal
verification, and static analysis struggle to achieve good
coverage and accuracy [4], [5]. Fuzz testing is an effective
dynamic analysis technique to discover vulnerabilities [4],
[6]. However, the inherently complex and stateful nature
of ICS protocols, combined with the stochastic behavior
of their operating environments, make thorough vulnera-
bility detection challenging. The challenges often lead to
the dilemma of state space explosion and make robust ICS
security an ongoing effort [7].

In this paper, we introduce Model-based Coverage-
guided Fuzzing for Industrial Control Systems (MCFICS) as
a novel approach for greybox fuzzing tailored to the unique
challenges of ICS protocol implementations. Our approach
is inspired by prior work that combines fuzzing with au-
tomata learning [8], [9]. The performance of these fuzzers is
based on the completeness of the generated state machine for
the system-under-test (SUT). We improve upon the state-of-
the-art by using active model learning of stochastic reactive
systems [10] to learn the state machine model for an ICS
protocol implementation without specific knowledge of the
protocol implementation. We use coverage-guided fuzzing
to dynamically discover new inputs and states with code
coverage to guide the fuzzer through the protocol imple-
mentation’s state space.

Our contributions are as follows.

e We introduce a coverage-guided greybox fuzzing
framework called MCFICS that leverages active model
learning of stochastic reactive systems.

o We evaluate a prototype of MCFICS on server imple-
mentations of three widely-used ICS protocols: IEC
60870-5-104 (IEC 104), Modbus, and EPICS PVAc-
cess. We compare the performance of MCFICS against
three state-of-the-art greybox fuzzer tools: AFLNwe,
AFLNet, and StateAFL. The experimental results show
that MCFICS outperforms these fuzzers in terms of
branch coverage by 18.44% on average.

« We submitted a bug report for a crash discovered by
MCFICS in the EPICS pvxs implementation. The
pvxs maintainer fixed the bug based on our report.
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Figure 1. MCFICS Architecture.

« We provide an open-source' prototype of MCFICS.

2. Related Work

The most closely related work are in stateful protocol
fuzzing. Fang et al. developed ICS3Fuzzer to detect ICS
supervisory software flaws by deriving state machines from
server execution logs and network interactions [11]. SG-
Fuzz tracks state variables but may struggle with unclear
state information [12]. In contrast to these approaches,
MCFICS runs without detailed SUT software information.
AFLNet relies on response codes for state identification.
It faces challenges with protocols that do not embed state
information, potentially leading to incorrect state machine
generation [13]. MCFICS, however, does not require state
information within response messages.

Previous work has used active learning for vulnerabil-
ity detection, but required human inspection of the result-
ing state machine [14], [15]. Furthermore, active automata
learning without an oracle may result in incomplete state
machines [8], [9]. StateFuzzer employs the L* and TTT
algorithms for learning and test case creation, but struggles
to learn non-deterministic SUTs [9]. MACE combines active
model learning and fuzzing, however its reliance on sym-
bolic execution and relearning the state machine increases
its complexity and time [16]. MCFICS uses Lg;;,, algo-
rithm [10] to manage non-determinism in state machine
learning and is the first to use active model learning and
fuzzing to identify vulnerabilities in ICS protocol imple-
mentations.

3. System Design and Implementation

In this section, we present the design and implementa-
tion of MCFICS, which integrates automata learning and
fuzzing as illustrated in Figure 1. MCFICS takes a packet
capture (PCAP) file from the SUT as input and produces
code coverage and crash reports as output. As shown,

MCFICS has five main components, which we describe in
more details below.

3.1. Input Corpus

MCFICS requires a behavior model of the SUT, i.e., the
ICS protocol implementation used for learning and testing.
To obtain the behavior model, we use the automata learning
algorithm of stochastic reactive systems LG, [10]. The

Sy algorithm takes as input a subset of the SUT input
alphabet, which is a collection of symbols that are mapped
from messages. Communications between the SUT and an
example client are collected and used to infer the alphabet
of the ICS protocol implementation. This collection uses a
network sniffer (t cpdump) to listen on the communication
port to collect live network data in a PCAP file. This file
records communications sent from the example client to a
server implementing the ICS protocol. The captured data is
then provided to the alphabet extractor to obtain the initial
alphabet for the SUT.

3.2. Alphabet Extractor

Cho et al. [16] pointed out that using all of the messages
in an input corpus to learn the abstract model is unrealistic.
Hence, MCFICS extracts the SUT’s alphabet from an input
PCAP file to reduce the problem space from messages
to alphabet symbols. In line with Fang et al. [11], we
utilize Netzob [17] for its superior performance in reverse
engineering, extracting symbols for unique message types
and formats, and facilitating message de-duplication and
grouping based on format [17], [18].

3.3. Automata Learning

MCFICS uses the extracted alphabet provided by the
Alphabet Extractor (Section 3.2) to generate sequences of
messages that aim to learn the abstract model (state ma-
chine) of the SUT. The Automata Learning component,

1. https://github.com/Embedded- Systems-Security-Lab/
automata-learning-fuzzer



depicted in Figure 1, comprises the Mapper and Learning
Algorithm.

3.3.1. Mapper. The mapper maps each symbol in the al-
phabet to a set of messages, out of which one message is
sent to the SUT. For any symbol with multiple messages,
we send each message to the SUT and store the response in
a dictionary to keep track of unique response per symbol.
If the SUT response is not already in the dictionary for
that symbol, the mapper assigns a unique symbol to it and
updates the alphabet accordingly. Any non-empty message
from the SUT is treated as a response.

This approach has two drawbacks: some messages may
change the state of the SUT without a response, and mes-
sages that require a specific sequence before triggering a
response will not be learned. We address these drawbacks
in the fuzzing phase as described in Section 3.5.1. If none
of the messages from a symbol receive a response from the
server, we choose the first message from the message set and
assign the symbol to that message arbitrarily. The symbols
with only one message are directly added to the alphabet of
the SUT.

3.3.2. Learning Algorithm. Conventional L* algorithms
require the SUT to be deterministic, which means that the
same sequence of input messages will always yield the same
output of messages. Non-deterministic behavior, e.g., as a
result of timeouts, delay or loss of packet, asynchronous
communication, or non-deterministic multiplex networks,
requires adaptation of the L* algorithm. MCFICS uses a
modified implementation of the AAlpy library [19] for
Lo The LGy, is a client that can connect to the
SUT to send tree and equivalence queries. In stochastic
learning, to reduce uncertainties that arise from the same
sequence given different responses, membership queries are
replaced with tree queries to gather more information about
sequences in the observation table. We use random sampling
to check the conjectures (equivalence queries).

3.4. System Manager

The system manager further consists of four compo-
nents: the instrumented SUT, the network manager, the
monitor manager, and the crash log.

3.4.1. Instrumented SUT. In this work, the SUT is a
standalone, reactive server for an ICS protocol, instrumented
using AFL++ buildchain [20] to measure code coverage
throughout automata learning and fuzzing. The setup re-
quires an SUT reset after each membership query for LG5,
learning. AFL++’s compiler plugin assigns a unique iden-
tifier to each code block in shared memory while keeping
track of number of times the branch is toggled. Similarly,
MCFICS and the SUT use a common 64 KiB memory
region optimized for L1 cache, assuring AFL compatibility
and allowing for incremental updates of coverage data. The
branch coverage, calculated by the number of non-zero
bytes in this memory, is used to evaluate code coverage
performance.

3.4.2. Managers and Log. As shown in Figure 1, MCFICS
has two managers. The network manager sends requests
from the fuzzer and learning algorithm to the SUT and
receives responses back. The monitor manager examines the
SUT to see whether it has become defective. A defective
state occurs when the SUT terminates or enters an unex-
pected zombie state after the network manager sends a test
case to the SUT. This determination is reinforced by cross-
verifying the operating system’s return code associated with
the SUT process. The monitor manager records defective
states and the test cases that caused the SUT to fail for
further investigation by storing them in the crash log.

3.5. Stateful Fuzzer

The Stateful Fuzzer in our system, shown in Figure 1,
uses learnt model and coverage data to effectively navigate
the SUT’s state space. To generate different test cases, it uses
a structured method that includes per-state queues, a sched-
uler, and a mutation engine. The fuzzer uses the learned
Mealy machine (see in Section 3.3) to explore states in
depth and improve code coverage. However, the SUT’s non-
deterministic nature presents complications, since identical
inputs might produce different results. In the following we
describe how MCFICS handles these complications in state
space exploration.

3.5.1. Per-state Queues. The L%,,,, algorithm has an
observation table that stores all the transitions to every state
from the initial state. The transfer sequence for the initial
state is an empty sequence. To get to any state, MCFICS
obtains the shortest sequence from the initial state to the
target state from the observation table. The state queues
are seeded with the unique messages from the PCAP file,
because the same message sent from different states can
generate different transitions. These state queues are used
by the scheduler and mutation engine.

3.5.2. Scheduler. The scheduler allocates time to fuzz each
state and selects queues to use that may increase code
coverage or discover new paths. MCFICS uses a round-robin
scheduling algorithm with a fixed time quantum that treats
each queue as a FIFO.

3.5.3. Mutation Engine. The mutation engine selects and
mutates messages from the state queue to create test cases,
similar to AFL++’s [20] havoc and splice strategy. The mes-
sage sequence is sent to the SUT as the shortest sequence
from the initial state to reach the test case. If the branch
coverage increases, then the test case is added to the state’s
queue. If the SUT does not crash, the test case is further
put in a global queue that is used during the state space
exploration.

We discovered that for specific states, the sequence of
messages leading to the test case—the prefix sequence—can
cause the SUT to time out, crash, or disconnect from the
fuzzer. As a result the test case is not transmitted to the
SUT and fuzzing time is wasted. To eliminate such prefix



sequences from consideration by the scheduler, MCFICS
tracks the number of times a test case is run for each state
and removes it from the state queues and mutation engine if
the rate of failures in the prefix sequence exceeds a thresh-
old. We manually tuned and discovered that a threshold of
0.001 worked well; determining the best threshold is beyond
the scope of this paper.

3.5.4. State Space Exploration. The first abstract model
learned depends on the initial alphabet of the input corpus,
i.e., messages in the PCAP file. This model might not
fully capture the behavior of the SUT. Hence, MCFICS
incorporates a state space exploration strategy to discover
new states. The premise of this strategy is that any input that
increases code coverage during fuzzing either discovered a
new transition or a new state. The full message sequence
of that input is used to seed a new state whose queue is
initialized with the input corpus. In addition, that input is
added to the queue of each state and to the input corpus.

4. Evaluation

We conducted experiments to evaluate the effective-
ness of MCFICS in exploring the code space of stateful
ICS protocol implementations and discovering bugs. The
study specifically aimed to assess MCFICS’s code coverage
capabilities, its ability to identify unique crashes, and its
overall fuzzing throughput. In Section 4.1, we detail the
experimental setup and design, and then we present the
experimental results in Section 4.2.

4.1. Experimental Setup

We implemented and evaluated MCFICS using Python
3.8.10 on a machine with a 64-bit Intel Core 17-9700K
@ 3.60 GHz CPU (16 core) and 32 GB RAM. The host
operating system is Ubuntu 20.04.6 LTS. We compare
MCFICS with three state-of-the-art fuzzers: AFLNwe [13],
AFLNet [13], and StateAFL [21], using the recommenda-
tions for fuzzer assessment by Kless et al. [22]. In the fol-
lowing we describe in more details the fuzzers, fuzzer targets
(SUTs), and the performance metrics for the experiments.

4.1.1. Fuzzers. AFLNwe [23] extends AFL’s functionality
to fuzz network connections by utilizing TCP/IP sockets
instead of file-based inputs, but retaining its basic mutation
and coverage tracking methods. AFLNet [13] enhances AFL
with message-level input structuring, mutations, and state
machine models from response codes, but requires manual
parser creation for each protocol. StateAFL [21] enhances
AFLNet by including state-aware instrumentation, enabling
direct state tracking without relying on response codes. It
uses locality-sensitive hashing to identify program states
during protocol fuzzing. AFLNwe is a stateless fuzzer, while
AFLNet and StateAFL are stateful. AFLNwe and MCFICS
are protocol-agnostic, hence they eliminate the need for
protocol-specific parsers and simplify fuzzing across pro-
tocols. In contrast, AFLNet lacks ICS protocol support.

Table 1. ICS PROTOCOL IMPLEMENTATIONS ANALYZED.

Protocol Subject LOC SUT

IEC 60870-5-104 (IEC104) lib60870 32K CS104-server_no_threads,
¢s104_redundancy_server
unit_test_server,
random_test_server
EPICS PVAccess pvxs 40K rpc_server, mailbox

MODBUS libmodbus 57K

4.1.2. Fuzzing Targets. Table 1 provides a comprehensive
overview of the ICS protocol implementations analyzed
including the specific protocol name, the library source of
its implementation, the size of the protocol implementation
in lines of code (LOC), and the example servers used as
the SUT interface for fuzzing. The protocols chosen are
widely used in real-world industrial control systems and
span a wide range of operational settings. Our study is thus
representative of the common scenarios seen in industrial
settings [22].

4.1.3. Performance Metrics. To evaluate MCFICS’s
fuzzing effectiveness, we measure branch coverage by
counting non-zero bytes in AFL++’s shared memory region,
using a 64 KiB space for all fuzzers as specified in Sec-
tion 3.4.1.

To improve bug-finding efficiency, we count unique
crashes based on distinct stack traces compared to pre-
viously reported crashes, as explained in Section 3.4.2.
Crashes with identical termination functions and backtraces
are treated as duplicates and are thus removed. We use
AddressSanitizer (ASan) [24], UndefinedBehaviorSanitizer
(UBSan) [25], and gdb to look for vulnerabilities in these
crashes. Each crash is replayed using gdb to detail faults
and retrieve stack traces, allowing for manual analysis of
reported vulnerabilities or crashes.

4.2. Experimental Results

We conducted a fuzzing experiment with each of the four
fuzzers (MCFICS, AFLNwe, AFLNet, StateAFL) targeting
each of the 6 SUTs. Each fuzzer was seeded with the same
PCAP file containing the network traffic that we captured
between example clients and servers provided by the tar-
geted protocol libraries. We ran each fuzzer against each
SUT 16 times in parallel with distinct random seeds. Each
of these 16 instances was run for 24 hours. Performance
metrics were then averaged over the 16 instances to yield de-
scriptive statistical performance measurements (mean, vari-
ance, median) for each fuzzer and SUT combination. In the
following we report the results of these measurements.

4.2.1. Code Coverage. Figure 2 demonstrates the branch
coverage achieved by AFLNwe, AFLNet, StateAFL, and
MCFICS during the fuzzing experiment. Figure 2 depicts
the mean coverage over the 16 runs of each fuzzer and SUT
with a 95% confidence interval.

A key observation is that MCFICS achieves consistently
better branch coverage across two of the three tested pro-
tocols implementations; the only exception is the pvxs
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Figure 2. Branch coverage over 24-hour fuzzing experiment with 95% confidence interval, targeting example server implementations. Missing data is

explained in Section 4.2.1.

Table 2. COMPARISON OF BRANCH COVERAGE STATISTICS OVER 24-HOUR OF FUZZING. MISSING DATA IS EXPLAINED IN SECTION 4.2.1.

AFLNwe AFLNet StateAFL MCFICS

Example Server = - — - - = - — - -

T T o max min [T T o max min T T 0o max min |x T o max min
cs104_server_no_threads[2608 2606 4 2614 2601[2596 2610 70 2715 2477 [2562 2609 67 2626 2483|2813 2810 32 2884 2739
cs104_redundancy_server 1777 1569 352 2517 1441]- - - - - 1592 1599 31 1648 1520(2928 2913 53 3113 2913
unit_test_server 1231 1218 30 1275 1194|1275 1275 1 1276 1274 [998 998 0 998 998 |[1312 1310 4 1322 1310
random_test_server 1035 1035 0O 1041 10411041 1041 O 1041 1041 [850 847 6 861 847 [1062 1062 1 1062 1060
rpc_server 13873 17006 4227 17387 860215755 15724 910 16975 14206 |- - - - - 15910 16111 434 16385 15182
mailbox 16775 17379 2156 17498 8744[17246 17231 111 17474 17091]- - - - - 16515 16494 119 16718 16282

Table 3. PERCENT CHANGE IN MEAN BRANCH COVERAGE AND
STATISTICAL SIGNIFICANCE (MANN-WHITNEY U TEST) OF
STATE-OF-THE-ART FUZZERS WITH RESPECT TO MCFICS. MISSING
DATA IS EXPLAINED IN SECTION 4.2.1.

Examole Server AFLNwe AFLNet StateAFL

P Change in  p-value [Change in Z p-value [Change in = p-value
cslO4_server | ;499 <0001| 837% <0001| 9.83% < 0.001
_no_threads
csl04_redun | o4 780, < 0.001 ; ; 83.93% < 0.001
dancy_server
unit_test_ 6.58% <0001| 286% <0001 3143% <0001
server
random_test 260% <0001| 200% <0.001| 24.88% < 0.001
_server
rpc_server 14.68% 0.78 0.98% 0.37 - -
mailbox T154%  1.00 | -4.24% 1.00 B B
Average =~ Mean| 50,0 1.99% 3752%
Branch Coverage

protocol, which includes mailbox and rpc_server.
Quantitatively, MCFICS outperforms AFLNwe, AFLNet
and StateAFL by an average (mean of means) of 15.82%,
1.99%, and 37.52%, respectively, with an overall average of
18.44% increased branch coverage. These results show that
MCEFICS is efficient at exploring the code space of these
protocol implementations.

We also encountered problems that led to missing data
for some fuzzers. AFLNet failed to identify any state in
cs104_redundancy_server (Figure 2(b)) with the in-
put corpus, thus AFLNet is not present in the figure. For
the pvxs protocol, both mailbox and rpc_server
(Figure 2(h) and (i)) were not able to compile with
afl-clang—-fast for StateAFL. As a result, StateAFL
was not able to fuzz these targets.

Table 2 shows the mean (Z), median (Z), standard devia-
tion (o), min, and max of branch coverage over each fuzzing
experiment (corresponding with the results in Figures 2).
This data shows that MCFICS outperforms the other fuzzers
in all respects except on the pvxs protocol implementa-
tions. For individual comparison, Table 3 shows a pair-wise
comparison between MCFICS and each of the other fuzzers.
It shows the percent change of the mean coverage attained
over all fuzzing experiments, and the significance of the
difference in the mean based on the Mann-Whitney U test.”
The test confirms that MCFICS significantly outperforms (p
< 0.001) AFLNwe, AFLNet, and StateAFL across 4 SUTs.

2. Mann-Whitney (or Wilcoxon rank-sum) is a nonparametric alternative
to the two-sample t-test useful when data are not normally distributed.



Overall, MCFICS has on average between ~2%-38% more
branch coverage than the other fuzzers.

4.2.2. Bug Discovery. MCFICS (and AFLNet) found one
new, previously unknown bug in pvxs that we have sub-
mitted to the pvxs maintainer who has fixed it [26].
This bug is caused by a Segmentation fault at
pvxs::impl::from_wire ().

5. Conclusion

In this paper, we introduce MCFICS as a novel greybox
fuzzing approach for stateful ICS protocol implementations.
MCFICS uses automata learning to discover the underlying
state machine of an ICS protocol implementation, and ex-
plores that state machine during fuzzing by expanding from
inputs that increase code coverage. We evaluated MCFICS
in comparison with three state-of-the-art fuzzers (AFLNwe,
AFLNet, StateAFL) targeting six server implementations of
three ICS protocols. MCFICS achieves on average 18.44%
(mean) better performance in terms of branch coverage and
discovered new bugs in pvxs. Future work can evaluate the
runtime performance of MCFICS and triage crashes for bug
and vulnerability discovery.
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