2024 |EEE 21st International Conference on Mobile Ad-Hoc and Smart Systems (MASS) | 979-8-3503-6399-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/MASS62177.2024.00018

2024 IEEE 21st International Conference on Mobile Ad-Hoc and Smart Systems (MASS)

On the Predictability of Fine-grained Cellular
Network Throughput using Machine Learning
Models

Omar Basit*T, Phuc Dinh*¥, Imran Khan*¥, Z. Jonny Kong*T, Y. Charlie Hu', Dimitrios Koutsonikolast
Myungjin Lee® Chaoyue Liu¥
tPurdue University, INortheastern University, §Cisco Research, ﬂUniversity of California San Diego

Abstract—Networking research has witnessed a renaissance
from exploring the seemingly unlimited predictive power of
machine learning (ML) models. One such promising direction
is throughput prediction — accurately predicting the network
bandwidth or achievable throughput of a client in real time using
ML models can enable a wide variety of network applications
to proactively adapt their behavior to the changing network
dynamics to potentially achieve significantly improved QoE.
Motivated by the key role of newer generations of cellular
networks in supporting the new generation of latency-critical
applications such as AR/MR, in this work, we focus on accurate
throughput prediction in cellular networks at fine time-scales,
e.g., in the order of 100 ms. Through a 4-day, 1000+ km
driving trip, we collect a dataset of fine-grained throughput
measurements under driving across all three major US operators.
Using the collected dataset, we conduct the first feasibility study
of predicting fine-grained application throughput in real-world
cellular networks with mixed LTE/5G technologies. Our analysis
shows that popular ML models previously claimed to predict
well for various wireless networks scenarios (e.g., WiFi or single-
technology network such as LTE only) do not predict well under
app-centric metrics such as ARE95 and PARE10. Further, we
uncover the root cause for the poor prediction accuracy of ML
models as the inherent conflicting sample sequences in the fine-
grained cellular network throughput data.

Index Terms—Machine learning, time series, cellular network,
throughput prediction, learnability

I. INTRODUCTION

In the past years, machine learning (ML) has been widely
applied in networking research to assist in optimizing the
design of all layers of the network stack [1], from PHY-layer
protocol design via predicting physical channel conditions [2]-
[6], to better congestion control design [7]-[11], all the way
to application-layer adaptation such as video streaming sys-
tems [12]-[14].

One central idea in the general approach of exploiting the
synergy between ML and networking is throughput predic-
tion, i.e., predicting the network bandwidth or achievable
throughput of a client in real time. Accurate prediction of
network throughput of a client device allows a wide variety of
network applications running on the device including latency-
sensitive applications such as video streaming [12], [14], [15],
video analytics systems [16], and latency-critical applications
such as AR/VR/MR [17]-[20], video conferencing [21], and

“Equal contribution.

CAVs [22] to proactively adapt their behavior to the changing
network dynamics to achieve improved QoE.

Motivated by the critical role of throughput prediction in
enabling the new-generation of adaptive network applications,
and the key role of newer generations of cellular networks
in supporting ubiquitous, high performance network access
to these applications, in this work, we focus on throughput
prediction in cellular networks at fine time-scales, e.g., in the
order of 100 ms. The class of latency-critical applications such
as AR/MR, CAV, and video conferencing, critically relies on
such fine-grained throughput prediction of mobile clients.

To collect real-world throughput achieved by mobile de-
vices, we designed a testbed consisting of several Android
phones, Accuver XCAL Solo devices [23], laptops, power
sources to power all of the devices, and cloud/edge servers,
and conducted throughput measurements in a cross-country
driving trip from Boston to Atlanta over all three major
mobile networks by collecting application throughput as well
a host of MAC and PHY-layer KPIs and signaling messages.
Our dataset constitutes the first fine-grained, bidirectional
(uplink and downlink) throughput measurement of today’s
cellular deployments, which consist of a mix of LTE and 5G
technologies, under high mobility (driving).

We started our fine-grained cellular network throughput
prediction study with ML models widely used in previous
studies, including MLP, MVTS, and GDBT, and their typical
architectures, e.g., small models with fewer layers, which were
claimed to be sufficient to achieve high accuracy. Our analysis,
however, shows that, although these models can achieve low
RMSE values, e.g., 7.57 and 7.48 Mbps for GDBT and
MVTS for Verizon uplink, their accuracy remains fairly low
in terms of application-centric accuracy metrics, e.g., ARE95
and PAREI10.

To understand the potential and limit of ML models in
predicting fine-grained cellular network throughput, we utilize
recent ML theories developed based on over-parameterized
ML models, where the number of model parameters suffi-
ciently exceeds the number of training samples, which suggest
that over-parameterized ML models are guaranteed to achieve
close-to-zero training loss given enough training time [24],
while not suffering from the classical overfitting issue (i.e.,
the test loss is as low as the model can achieve) [25], [26].
These theories suggest that over-parameterized models can be

2155-6814/24/$31.00 ©2024 IEEE 47
DOI 10.1109/MASS62177.2024.00018
Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

an effective tool to test the learnability of the cellular network
throughput at fine time-scales by ML models.

Our experiments with over-parameterized MLPs on predict-
ing fine-grained cellular network throughput show that they
suffer from (1) very slow convergence of training loss, and (2)
high validation/test loss/error, both of which indicate cellular
network throughput is not learnable or predictable at fine time-
scales.

Training over over-parameterized MLPs is theoretically
guaranteed to converge at a rate of O(exp(—t/xk)) with &
being the so-called condition number. The slow convergence
suggests a large condition number x, which is often caused
by conflicting data in the dataset, i.e., similar sequence of
samples (inputs to the ML model) are followed by signif-
icantly different ground-truth labels. Hence, we hypothesize
that learnability challenges of fine-grained cellular network
throughput prediction originates from conflicting samples in
the dataset. Our careful analysis of the dataset confirms that
the throughput dataset indeed contains many occurrences of
such conflicting sequences of samples.

We summarize our contributions as follows. (1) We conduct
the first study of the feasibility of fine-grained cellular network
throughput prediction, e.g., at the 100 ms granularity. (2) We
found popularly used ML models previously claimed to predict
well for various wireless networks scenarios (e.g., WiFi or
single-technology cellular network such as LTE or mmWave
only) do not predict well under app-oriented metrics such as
ARE95 and PAREI10. (3) We further uncover the root cause
for the poor prediction accuracy of ML models as the inherent
conflicting sample sequences in the fine-grained cellular net-
work throughput data. Our dataset is publicly available [27].

II. RELATED WORK

Fine-grained cellular throughput prediction. With the grow-
ing demand for real-time and latency-sensitive applications
such as video conferencing and edge-assisted augmented re-
ality (AR), various works have explored cellular throughput
prediction at fine granularities, typically every few hundred
ms or less. While these works often focus on predicting
throughput under challenging driving conditions, they have
several limitations. For example, [28] employs a transformer-
based ML model to predict the transport block size (TBS) of
the next 100 ms for both 5G and LTE. However, it remains
unclear whether accurate TBS prediction translates to accurate
app throughput prediction. PERCEIVE [29] demonstrates that
LSTMs can accurately predict the next 100 ms throughput,
but focuses only on LTE, which is known to have different
performance characteristics from 5G [30], [31], in particular,
a smaller throughput range and lower variability. Additionally,
it only addresses the uplink direction and thus does not
benefit applications with heavy downlink traffic such as video
conferencing.

Throughput prediction under driving. Several other works
on LTE and/or 5G throughput prediction also involve driving
scenarios but focus on coarse-grained predictions. These works

48

employ various models including linear regression [32], ran-
dom forests [33], [34], support vector machines (SVM) [35],
LSTMs and GDBTs [36], and transformers [37]. These works
are tasked to predict the averaged throughput over a window of
several seconds, where the short-term fluctuations are averaged
out. Consequently, their use cases are limited to non-real-time
applications such as video streaming.

Cellular network throughput explainability. Several studies
have examined the predictability and explainability of cellular
network throughput. For example, [38], [39] use Gramian
Angular Field (GAF), an imaging technique, to separate the
prediction errors due to model design versus inherent dataset
unpredicability. However, they analyze the throughput logged
at a coarse granularity of every 3 minutes, where the through-
put dynamics are affected by different factors than at 100 ms.
Fine-grained cellular throughput datasets. While there
have been several studies that collected cellular throughput
datasets [29], [31], [35], [36], [40]-[42], most of these datasets
include throughput samples at coarse granularities, e.g., once
every several hundred of ms to several seconds. The only work
that collected fine-grained throughput data [29] was limited to
LTE and did not make the dataset public. We hope that our
collected dataset, which logs throughput samples every 100
ms and records various lower-level network KPIs, will make
a valuable addition to the public cellular network datasets
available to the research community.

III. METHODOLOGY

Drive Tests. We drove from Boston to Atlanta covering a
distance of 1000+ km over a 4-day period in 2023 (August
5 to 8). Our measurements were performed while driving on
highways, through sub-urban areas, or inside cities.

Testbed and Data Logging. We built a testbed to collect
the application layer throughput and various mobile network
KPIs. The testbed consists of several Android phones, Accuver
XCAL Solo devices [23], laptops, power sources to power all
of the devices, and cloud/edge servers. The Android smart-
phones are 3 Samsung Galaxy S21/SM-G998U (unrooted),
5G capable phones, with each device having an unlimited data
plan from the 3 major U.S. network carriers: AT&T, T-Mobile,
and Verizon. The XCAL Solo is a handheld commercial tool
that connects to an Android smartphone via USB-C port to
the Android debugging interface to collect MAC and PHY-
layer KPIs and signaling messages. To enable throughput
measurements, we deployed one AWS Cloud server located
in Northern Virginia for all three operators. Additionally, for
measurements in city areas with Verizon, we deployed AWS
Wavelength servers in all the major cities along the route:
Boston, New York, Charlotte, and Atlanta. Wavelength servers
are located inside Verizon’s network in select cities and are
specially designed for edge computing.

To measure the application layer throughput, we used the
popular tool nuttcp [43] because of its fine-grained through-
put reporting between consecutive samples. We used a pre-
compiled version of nuttcp to run on Android smartphones
(serving as the nuttcp-client) and the standard nuttcp, available

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Number of 2-minute tests per operator & direction.

Operator | Uplink / Downlink
Verizon 241/ 249

T-Mobile 128 / 121
AT&T 251/ 249

TABLE II: List of 4G & 5G network KPIs logged through
XCAL with their logging granularity.

Network KPI Logging Interval (ms)

4G / 5G

MAC Throughput 1000 / 100
MCS 20/0.010

TBS 10/ 0.010

RB 20/0.010

BLER 20/ 100
RSRP 10/ 160
RSRQ 10 / 160

through Linux packages on cloud/edge servers (serving as the
nuttcp-server). We configured nuttcp for TCP traffic with a
receive socket buffer size (receive window) of 32 MB and a
buffer read/write size of 640 bytes (set low due to the short
reporting interval). Each throughput test ran for 2 minutes,
with the logging interval set to 10 ms. On a single smartphone,
we alternated between a 2-minute uplink (UL) test and a 2-
minute downlink (DL) test. Note that two consecutive DL (or
UL) tests may not be contiguous, resulting in variable gaps
between subsequent DL (or UL) tests. Table I summarizes the
2-minute tests we collected. Figures la, 1b show the appli-
cation throughput CDF in the uplink and downlink direction,
respectively, for each of the three operators. We observe that
the coexistence of 5G and LTE technologies combined with
large channel fluctuations while driving at different speeds
results in very large throughput ranges — from a few Mbps
up to 500 Mbps in the uplink direction and up to 3 Gbps in
the downlink direction.

To collect lower-level network KPIs, we used the XCAL

Solo devices connected to each of the three smartphones.
Logging for all KPIs was set to the finest supported logging
interval for each KPI. This led to each KPI being logged at
different intervals, from 10 ms for 5G TBS to 100 ms for 5G
MAC throughput. Logging intervals may also vary between
5G and 4G and can go as high as 1s (4G MAC throughput).
Table II lists the network KPIs that XCAL logged during
the nuttcp throughput tests and their logging intervals for 4G
and 5G. Finally, to deal with the mismatch of application
throughput logging intervals (10ms) and variable network KPI
loggings, we use forward-filling, i.e., we pick the lowest
logging interval feature (application throughput) and forward-
fill the other features w.r.t to it.
Throughput prediction models. Recent work has shown that
ML models are suitable for network throughput prediction
at 1 s [37] and even 100 ms time-scale [29]. Therefore, we
experimented with all three ML models that have been used
in recent work, and additionally two statistical approaches,
as a control, to predict application throughput at the 100 ms
granularity:

e MLP3: The Multilayer Perceptron (MLP) is a classic neural
network that we configure with 3 hidden layers with each

49

—— Verizon
AT&T
—— T-Mobile

—— Verizon
AT&T
—— T-Mobile

CDF

0.1 1.0 10.0 100.0 1000.0 0.1 1.0 10.0
Mbps Mbps

100.0 1000.0

(a) Uplink throughput. (b) Downlink throughput.

Fig. 1: CDFs of application throughput at 100 ms logging
interval for all three cellular operators.

layer having 12 neurons. By default, each hidden layer also
contains batch normalization and dropout, the activation
function used is ReLU, and the optimizer is Adam. We use
MLPs because they have been found effective in throughput
prediction, e.g., in [44].

o GDBT: Gradient Boosting Decision Trees (GDBT) is from
the Gradient Boosting class of ML algorithms. It has been
shown to predict 5G throughput accurately at a granularity
of 1 second in [36].

e MVTS: Multivariate Time Series (MVTS) [45] is a
transformer-based encoder model for multivariate time se-
ries predictions. It was used in [28] to predict uplink
throughput in 5G/4G dual connectivity scenarios indirectly
by first predicting 4G and 5G TBS.

o« EWMA: Exponentially Weighted Moving Average (EWMA)
is a well-known prediction technique for time series. We
include EWMA as a simple statistical approach with an o =
0.5 for comparison with sophisticated ML models.

e LV: Last-Value (LV) is a very basic prediction approach that
simply uses the ground truth observed at sample 7 — 1 as
the prediction for sample ¢. LV will perform well if the time
series have constant values or change slowly and smoothly.
We also use this approach as a control to compare with the
sophisticated ML models.

Data Preparation. The dataset is divided into three parts;
training, validation, and test in a ratio of 7:1.5:1.5. The split
is done for each 2-minute test, i.e., the first 70% of the 2
minutes is taken as the training set, the next 15% as the
validation set and the rest as the test set. Splitting the dataset
this way provides more locality among training and testing
sets compared to splitting at the 2-minute test granularity. For
each feature selected as an input, we use a history window
of N (default to 8) samples as input as in [44] to the ML
model, i.e., for throughput prediction at time sample i, we
give samples ¢ — 8 to ¢ — 1 of all the input features to the
model. Thus, when giving a history of 8 samples, the starting
7 samples will be dropped for each 2-minute dataset.

For ML models, e.g., MLP3 and MVTS, all throughput
values, which range between 0 to 3000 Mbps, are applied with
log scaling, i.e., 2’ = In(z + 1) before fed as input to the ML
models. Log scaling was applied because the raw throughput
values are clustered around low values, i.e., closer to 0, and
with log scaling the scaled values become more uniformly
spread (in the scaled range [0, 7]) and this allows the ML

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

models to be trained more effectively.

Since we are predicting app throughput at 100 ms gran-
ularity, the input values for every feature are converted to
100 ms granularity, using either simple averaging (e.g., for
throughput which are logged at 10 ms granularity), or using
the last reported value for the specified interval (e.g., 5G RSRP
values logged at 10 ms granularity, but it would not make sense
to use averaging for RSRP values, which are in dBm).

Finally, we observed “black-out” periods in our throughput
dataset, where the throughput sequence consists of back-to-
back zero values, and the first non-zero throughout samples
afterwards almost always differ from each other. Since these
zero throughput are special samples and no learning schemes
are expected to be able to predict, we removed such zero
throughput samples so that any window of samples (e.g., 8)
contains no more than 7 zero samples.

Accuracy Metrics. We evaluate the performance of the pre-
diction models based on three commonly used metrics:

e RMSE: Root Mean Square Error between the predicted
throughput value and the ground truth throughput value. The
lower the RMSE value the more accurate the predictor.

e« ARE95: Absolute Relative Error at 95th Percentile. We
would like to achieve a low ARE9S value.

e PAREIO: Percentage of Absolute Relative Errors below
10%. We would like to achieve a high PARE10 value.

IV. PREDICTION RESULTS

For the statistical models, EWMA and LV, the input can
only be the application throughput. For the ML models,
we experimented with 3 types of inputs: (1) application
throughput, (2) network KPIs, and (3) both app throughput
and network KPIs. To choose which network KPIs to select,
we first calculated the Pearson correlation coefficient of each
4G/5G KPI with the app throughput and chose the KPI with
the highest correlation coefficient. A similar approach was
taken in [28]. Table III shows that the KPI with the highest
correlation with app throughput is MAC throughput, and thus
we selected 5G/4G MAC throughput as input network feature.

Next, we show prediction results using the three types of
inputs separately.

A. Application throughput as input (Verizon)

We first look at using app throughput as the only input
feature with the goal of examining if there is enough pattern in
just the history of app throughput to predict the app throughput
for the next time sample. The overall prediction results for
both uplink and downlink for Verizon are shown in Table IV
(second column), and the CDF of prediction errors are shown
in Figures 2(a)(d). We make the following observations. (1)
For uplink, GDBT and MVTS achieve the highest prediction
accuracy, with RMSE values of 7.57 and 7.48, respectively. (2)
Somewhat surprisingly, both EWMA and Last-value, which
are simple statistical models, achieve similar (only slightly
lower) prediction accuracy compared to the ML models, with
RMSE values of 8.97 and 9.16, respectively. (3) However, even
a low RMSE value in the order of 10 Mbps can have a very

50

high relative error when the ground-truth value is low. Indeed,
Table IV shows that the accuracy of ML models is fairly low
in terms of ARE95 and PAREI10. In particular, GDBT and
MVTS only achieve ARE95 values of 81.8% and 81.3% and
PAREI10 of 40.1% and 40.7%, respectively, i.e., about 60% of
the predictions have relative error larger than 10%. (4) Finally,
the prediction accuracy in terms of ARE95 and PAREI10 for
downlink throughput across the models is similar to uplink
throughput. The larger RMSE for the downlink results is
expected as the range of throughput for downlink is an order
of magnitude larger than for uplink (see Figures la, 1b).

B. MAC throughput as input (Verizon)

Next, we look at using MAC throughput as an input feature
to see if using network KPIs as features can be beneficial
in app throughput prediction. As stated previously, we chose
MAC throughput because offline analysis shows it has the
highest correlation with app throughput. The results in Ta-
ble IV (third column) and Figures 2(b), 2(e) show that the
prediction accuracy of various models is very similar to that
when using app throughput as input. Hence, network features
do not appear to provide more useful information than app
throughput when used as input to prediction models.

C. App throughput and MAC throughout as input (Verizon)

Finally, we look into whether using both app throughput
and MAC throughput helps the models learn and predict better
than using either input feature alone. The results, also shown
in Table IV (last column) and Figures 2(c), 2(f) are again
very similar to the previous two scenarios, suggesting that
combining app throughput with network KPIs does not appear
to help, and thus using just app throughput as input to the
prediction models appears sufficient.

D. Throughput prediction across operators

The above findings about poor throughput prediction accu-
racy for the Verizon dataset largely hold true for the other
operators, as shown in Tables V, VI and Figures 3, 4 although
the specific numbers differ. Focusing on using app throughput
as input, we make the following observations. First, the uplink
throughput prediction RMSEs for GDBT and MVTS are lower
for AT&T, at 5.17 and 5.12 Mbps but higher for T-Mobile,
at 12.3 and 12.2, respectively. The same trend can be seen
for downlink throughput predictions. This can be explained
by Figures la, 1b, which show that the range and average
throughput values for the three operators are different; in
particular, the average throughput is lower for AT&T uplink,
at 14.7 Mbps, and higher for T-Mobile uplink, at 35.5 Mbps.

Second, the ARE95 values for the two models are lower for
AT&T (71.9% and 70.8%) and similar for T-Mobile (82.0%
and 81.4%) compared to Verizon (81.8% and 81.3%).

Finally, the PARE10 values for the two predictors are lower
(less accurate) for AT&T (37.6% and 37.8%) but higher
(more accurate) for T-Mobile (44.5% and 46.%), compared
to Verizon (40.1% and 40.7%).

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Pearson Correlations Coefficients of network KPIs with app throughput.

MAC TBS MCS RB BLER RSRQ RSRP
4G / 5G 4G / 5G 4G / 5G 4G / 5G 4G / 5G 4G / 5G 4G / 5G
Uplink
Verizon 0.566 / 0.466 | 0.493 / 0.403 0.403 /0.377 | 0.419/70.252 | -0.059 / -0.057 | 0.209 / 0.121 | 0.404 / 0.295
AT&T 0.567 /0.531 | 0.502/0.419 | 0.399/0.497 | 0.332/0.195 | -0.039/-0.130 | 0.162/0.227 | 0.347 / 0.423
T-Mobile | 0.480/0.617 | 0.410/0.582 | 0.373/0.513 | 0.327/0.355 | -0.166 /-0.230 | 0.185/0.207 | 0.422/ 0.496
Downlink

Verizon 0.182/70.739 | 0.096 /0.185 | 0.0006 / 0.283 | 0.043 /0.509 | -0.062 /-0.080 | 0.065/0.179 | 0.220/ 0.127
AT&T 0.363/0.558 | 0.229/0.496 | 0.191/0.285 | 0.196 / 0.444 | -0.011/-0.084 | 0.045/0.237 | 0.194 / 0.133
T-Mobile | 0.195/0.626 | 0.173 / 0.521 0.165/70.249 | 0.159/0.471 0.010 /7 0.030 0.036 / 0.149 | 0.252/0.252

TABLE IV: App throughput prediction at 100-ms results using different input features, Verizon.

Using App Throughput

Using MAC Throughput

Using MAC & App Throughput

Model | RMSE ARE95 PARE10 RMSE AREY95 PARE10 RMSE ARE95 PARE10

(Mbps) (%) (%) (Mbps) (%) (%) | Mbps) (%) (%)
Uplink
MLP3 11.62 211 25.6 12.93 106.5 17.7 11.5 89.2 25.1
GDBT 7.57 81.8 40.1 7.85 88.7 38.4 7.48 84.1 40.6
MVTS 7.48 81.3 40.7 7.77 81.2 41.1 7.40 84.1 40.8
EWMA 8.97 97.9 29.9 8.97 97.9 29.9 8.97 97.9 29.9
LV 9.16 93.7 37.7 9.16 93.7 37.7 9.16 93.7 37.7
Downlink

MLP3 116.4 153.6 15.2 134.3 98.6 4.8 1155 99.2 8.2
GDBT 62.34 123.1 259 68.3 94.9 16.9 63.81 115.2 26.4
MVTS 69.8 129.3 29.2 63.9 107.6 28.2 65.1 107.0 26.7
EWMA 73.91 174.5 19.01 73.91 174.5 19.01 73.91 174.5 19.01
LV 73.3 144.9 28.1 73.3 144.9 28.1 73.3 144.9 28.1

TABLE V: App throughput prediction at 100-ms results using different input features, AT&T.

Using App Throughput

Using MAC Throughput

Using MAC & App Throughput

Model | RMSE ARE95 PARE10 RMSE ARE95 PARE10 RMSE ARE95 PARE10

(Mbps) (%) (%) (Mbps) (%) (%) (Mbps) (%) (%)
Uplink
MLP3 9.38 145.1 26.2 10.1 68.1 13.0 11.25 79.1 21.2
GDBT 5.17 71.9 37.6 4.85 64.8 36.3 5.0 70.7 38.6
MVTS 5.12 70.8 37.8 5.37 66.3 38.3 4.89 68.9 39.5
EWMA 6.19 85.0 34.2 6.19 85.0 342 6.19 85.0 34.2
LV 6.16 93.1 29.3 6.16 93.1 29.3 6.16 93.1 29.3
Downlink

MLP3 44.1 110.3 19.4 54.73 101.2 89.5 43.7 114.3 20.0
GDBT 332 101.2 28.1 338 91.4 19.5 339 99.4 28.5
MVTS 32.7 106.0 29.1 34.2 99.3 28.3 339 99.1 28.5
EWMA 404 144.3 20.7 404 144.3 20.7 404 144.3 20.7
LV 39.1 139.3 27.2 39.1 139.3 27.2 39.1 139.3 27.2

V. WHY CAN’T ML MODELS PREDICT CELLULAR
NETWORK THROUGHPUT ACCURATELY?

Our results suggest that the ML models widely used in
previous throughput prediction studies [29], [32]-[34], [36],
[37] cannot predict the app throughput well at fine granularity.
To verify this fundamental limitation for the predictability of
cellular network throughput, we utilize over-parameterized ML
models (e.g., sufficiently wide MLPs) and recent ML theories
developed based on them [24]-[26].

Over-parameterized ML models, where the number of
model parameters largely exceeds the number of training
samples, are recently found to be guaranteed to achieve close-
to-zero training loss given enough training time [24], while
not suffering from the classical overfitting issue (i.e., the test
loss as low as the model can achieve) [25], [26]. Hence,
over-parameterized model can be an effective tool to test the
learnability of the cellular network throughput by ML models.

In this section, we first show that the over-parameterized
MLPs suffer from the following training issues: very slow
convergence of training loss and high validation/test loss/error,

51

both of which indicate cellular network throughput is not
learnable or predictable at fine granularity (e.g., 100 ms). We
further show that both limitations originate from the same
structure of the cellular network throughput data. For clarity,
we focus on predicting Verizon uplink throughput only (at 100
ms granularity as before).

A. Experimental setting

Model architecture: We use a 5-layer ReLU-activated MLP,
with 1000 neurons in each hidden layer. This MLP has more
than 4 million trainable parameters, which largely exceeds
the training data size of approximately 270K, hence over-
parameterized. All the model parameters are randomly i.i.d.
initialized following normal distribution. The loss function
used is MSE loss, the same as in the prior MLP3 model. The
model is trained with mini-batch variant of stochastic gradient
descent (SGD) with a batch size 32, 784. The learning rate is
tuned using grid search, and is selected to be the largest under
which the training does not diverge. We do not implement any
explicit regularizer (for example, dropout, weight decay, etc),
as it has been found that over-parameterized ML models enjoy

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: App throughput prediction at 100-ms results using different input features, T-Mobile.

Using App Throughput Using MAC Throughput Using MAC & App Throughput
Model | RMSE ARE95 PARE10 RMSE ARE95 PARE10 RMSE ARE95 PARE10
(Mbps) (%) (%) (Mbps) (%) (%) (Mbps) (%) (%)
Uplink
MLP3 19.64 175.5 17.0 235 89.1 157 21.0 92.4 16.5
GDBT 123 82.0 445 11.5 74.2 37.4 12.1 80.2 443
MVTS 12.22 81.4 46.1 12.36 78.4 44.1 12.35 78.54 435
EWMA 14.8 95.7 332 14.8 95.7 332 14.8 95.7 332
LV 13.9 100.0 429 13.9 100.0 429 139 100.0 429
Downlink
MLP3 193.2 103.5 13.3 212.35 103.3 7.8 194.9 97.1 105.3
GDBT 98.6 110.1 27.2 111.5 111.9 21.1 101.4 108.1 26.7
MVTS 100.7 109.3 26.2 114. 99.7 21.1 102.0 115.8 29.7
EWMA 116.4 150.1 21.3 116.4 150.1 21.3 116.4 150.1 21.3
LV 114.1 150.6 29.3 114.1 150.6 29.3 114.1 150.6 29.3
Verizon Uplink Verizon Uplink Verizon Uplink
100 100
75 MLP3 75
& 50 — GDBT & 50
© -== MVTS ©
25 --- EWMA 25
—— Last Value
0 0
0 20 40 80 100 0 20 40 80 100 0 20 40 80 100

60
Relative Error (%)
(a) Using app throughput as input.

Verizon Downlink

60
Relative Error (%)
(b) Using MAC throughput as input.

Verizon Downlink

60
Relative Error (%)
(c) Using MAC & app throughput as input.
Verizon Downlink

100 100 100

75 LP3 75 75
B 50 — GDBT B 50 B 50
o ——= MVTS o O

25 --- EWMA 25 25

—— Last Value
0 | | 0 | | 0 | | |
0 20 40 80 100 0 20 40 80 100 0 20 40 80 100

60
Relative Error (%)
(d) Using app throughput as input.

60
Relative Error (%)
(e) Using MAC throughput as input.

60
Relative Error (%)
(f) Using MAC & app throughput as input.

Fig. 2: CDF of relative prediction error for Verizon.

“implicit regularization” [25] and explicit regularizers do not
necessarily bring in benefits but may slow down training.

B. Unlearnability and Unpredictability

We run the over-parameterized MLP with normalized inputs
for 20K epochs. In Figure 5a, we observe a decreasing trend
in the training loss, and the minima achieved is 0.139. The
loss decreases at a rate of about 0.0007 per 1K epochs.

Recent deep learning theory [24], [46] guarantees that the
training loss of this over-parameterized MLP trained with SGD
asymptotically converges to zero at a rate of O(exp(—t/k)),
where x is the so-called condition number that is mainly
determined by the training dataset. Figure 5a shows that the
training loss consistently decreases but very slowly, which
indicates that the associated condition number « is extremely
large and the data is not learnable at a long but finite time.

In addition, we note that in Figure 5b, the validation loss
stopped improving even if the training loss is still slowly
improving. The minimum validation losses (unsmoothed)
achieved for log normalization is 0.151 at epoch 14K. We
can see that the validation loss minimum was achieved quite

52

early and then the loss starts to slowly increase. Hence,
even if much longer training time is provided so that the
training loss becomes close to zero, the validation/test loss
would still remain high, which means that the samples in the
validation/test set remains largely unpredictable no matter how
much the training set is fit.

To put the training and validations losses in perspective with
the test accuracies, we achieved RMSE, ARE95, and PARE10
of 7.46, 79.9 and 40.6. Comparing these with the results in
Table IV for Uplink using app throughput, we see that these
accuracies are slightly better than the best we achieved using
smaller models, e.g., MVTS.

We hypothesize that these issues are caused by the structure
of the dataset, where there exist many similar inputs that have
significantly different ground-truth labels. In practice, large
condition numbers are often caused by very similar inputs,
because their similarity makes these inputs hard to distinguish.
Theoretically, the more similar the samples are, the larger the
condition number is, which slows down the training at a rate
of O(exp(—t/k)). Intuitively, when many similar inputs with
significantly different labels exist, the ML model function has

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

AT&T Uplink AT&T Uplink AT&T Uplmk
100 o — 100 100 —
75 MLP3 75 75
& 50 = GDBT & 50 & 50
o -== MVTS o o
25 --- EWMA 25 25
—— Last Value
0 0 0
0 20 40 80 100 0 20 40 80 100 0 20 40 80 100
Relative Error (%) Relative Error (%) Relative Error (%)
(a) Using app throughput as input (b) Using MAC throughput as input (c) Using MAC & app throughput as input
AT&T Downlink AT&T Downlink AT&T Downlink
100 100 100
75 75 75
w [w
a 50 a 50 o 50
(u] (u] (u]
25 25 25
—— Last Value
0 0 ‘ o
0 20 40 80 100 0 20 40 80 100 100
Relative Error (%) Relative Error (%) Relat|ve Error (%
(d) Using app throughput as input (e) Using MAC throughput as input (f) Using MAC & app throughput as input
Fig. 3: CDF of relative prediction error for AT&T.
T-Mobile Uplink T-Mobile Uplink T-Mobile Uplink
100 100 100
75 MLP3 75 75
& 50 = GDBT & 50 & 50
o --- MVTS o o
25 --- EWMA 25 25
—— Last Value
0 0 O
0 20 40 60 80 100 0 20 40 60 80 100 100
Relative Error (%) Relative Error (%) Relat|ve Error (%
(a) Using app throughput as input (b) Using MAC throughput as input (c) Using MAC & app throughput as input
T-Mobile Downlink T-Mobile Downlink T-Mobile Downlink
100 100
73 MLP3 75
& 50 = GDBT & & 50
o --- MVTS o o
25 --- EWMA 25
Last Value
0 | ‘ 0 ‘
0 20 40 80 100 0 20 40 60 80 100 0 20 40 80 100

Relative Error (%)
(d) Using app throughput as input

Relative Error (%)
(e) Using MAC throughput as input

Relative Error (%)
(f) Using MAC & app throughput as input

Fig. 4: CDF of relative prediction error for T-Mobile.

to be very “spiky” and very well fine-tuned to fit the training
data well, which makes the training exceptionally hard and
slow. This is illustrated in Figure 6.

Moreover, the existence of such similar inputs indicates that,
within those particular input regions, the ground-truth labels
are intrinsically quite uncertain and have large variance. In
this sense, for any unseen data (i.e., from the validation or test
sets), the ML model generically could not generate accurate
and precise predictions.

C. Verification of the hypothesis

To validate this hypothesis, we analyze the “badness” of the
dataset, measured as the percentage of conflicting sample pairs,
defined as a pair of samples sharing similar throughput history,

53

i.e., with the angle between the two input vectors less than a
predefined threshold «, but having current throughput values
(labels) that differ significantly, i.e., with absolute difference
larger than a threshold 5. We use the angle between input
vectors as the measure of similarity of samples, because [47]
found that, due to the homogeneity of the ReLU activation
function, the condition number of a ReLU MLP is directly
related to the angle separation, instead of other metrics, such
as Euclidean distance, between data samples.

In Figure 7, we take all pairs of input vectors in our Verizon
uplink dataset and calculate the angle between the pairs. We
observe that most of the pairs have small angle separation,
with the peak at 3°. This indicates that a large portion of

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

0.200

—— Train Loss

0.175 —— Validation Loss
v
£ 0.150
-

0.125

0.100 0 5000 10000 15000 20000

Training Epochs
(a) For complete dataset.

0.6
0w 0.4
S

0.2

0.0

0 5000 10000 15000 20000

Training Epochs
(b) For dataset filtering such that no two inputs have

angle < 1 °.
0.6 '
n 0.4
1]
S
0.2
0.0 0 5000 10000 15000 20000

Training Epochs
(c) For dataset filtering such that no two inputs have
angle < 3 °.
Fig. 5: Training and validation loss of over-parameterized MLP
models for Verizon uplink.

f(x)

X
Fig. 6: Illustration of the necessity of a very “spiky” func-
tion/model to fit the dataset that contains similar inputs but
very different labels.

input vectors point to similar directions, resulting in a very
high condition number and thus making fine-tuning of ML
models necessary to fit the training data, hence slowing down
the learning of the model, as seen in Figure 5Sa.

Figure 8 further plots the statistics of the badness of the
uplink throughput trace for Verizon, for & = 1° and 3° under
varying (3 threshold values. For example, for « = 1°, 58% of
all input vector pairs are similar, e.g., their angles are less than
1°, out of which, 81% have very different labels under 8 =
1.0, i.e., their labels differ more than 1.0, which account for

54

le9

4.0 1
~—~ 3.5

Frequency (Billions

Y S &

Degrees

,]9

Fig. 7: Histogram of the angles between all pairs of input
vectors, Verizon uplink.

100 - o=
- -3
80
[
(o))
& 60
C
[V]
<4
5 40
o
20

Fig. 8: Statistics of conflicting sample pairs. The vertical axis
represents the percentage of similar pairs with conflicting
labels, out of the total similar pairs for their respective «
values. For o« = 1° and 3°, similar vectors account for 58%
and 85% of the whole dataset, respectively.

47% of all input vector pairs in the data set. Note that the label
range (after the log normalization) is (0, 7). A label difference
of 8 > 1.0 is considered quite large. These badness statistics
clearly show that there is a large portion of conflicting samples
within the cellular network throughput dataset, confirming our
hypothesis.

A few examples of these similar pairs can be seen in
Table VII. The table also shows the denormalized input vectors
and labels in Mbps as a more easily understandable reference.
We observe that, for each pair, one label is more in line with
the trend of the vector but the other label is a big shift from
the trend. For example, for the first pair, where both vectors
consist mostly of 0 values, the first (denormalized) label is O
Mbps but the second label is 466.5 Mbps.

We further verify our hypothesis by removing these “con-
flicting samples” from the complete dataset (including both
training and validation sets) and retrain the MLP model.
Specifically, we filter out all the similar input vectors, by
incrementally removing one vector for each similar input
vector pairs, so that in the remaining dataset no pair of input

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Samples of similar vectors, showing the input pairs that have very low angle between them but have a big

difference in label.

15¢ Vector, Normalized 274 Vector, Normalized Angle 15t Label, Nmlz. 24 Label, Nmlz.
15t Vector, Denormalized 274 Vector, Denormalized 15t Label, DeNmlz. | 2"¢ Label, DeNmlz.
(0,04,0,0,0,0,0, 0 0, 1.1, 0, 0, 0, 0, 0, 0) 0 0 6.1
(0, 0.5,0,0,0,0, 0, 0) (0,2.3,0,0,0,0,0, 0) 0 466.5
(1.2, 1.3,0.9, 0,0, 0, 0, 0) (3.9, 4.0,2.8,0,0,0,0, 0) 0.7 0 5.7
(2.6,2.7,15,0,0,0,0, 0) (51.7, 53.6, 16.9, 0, 0, 0, 0, 0) 0 326.2
(4.5, 4.6,4.6,4.5,4.6,4.4,0,0) 4.0, 4.0, 4.1, 4.0, 4.1, 3.9, 0, 09) 0.8 5.6 0
(95.6, 102.0, 106.9, 94.0, 101.0, 88.2, 0, 0) (58.0, 55.6, 61.1, 55.0, 65.0, 51.3, 0, 0.1) 286.0 0
(44,42,45,44,44, 4.6, 4.6,3.3) (2.6,25,27,26,2.7,27,2.6, 1.9) 0.9 5.1 0
(84.4,71.7, 98.0, 84.1, 88.0, 99.9, 101.8, 27.3) | (13.1, 12.2, 14.3, 13.1, 14.3, 14.0, 13.7, 5.8) 165.1 0

vectors has angle less than the threshold «. The training and
validation loss curves are shown in Figure 5b (for threshold
a = 1°) and Figure 5c (for threshold o = 3°). It is easy
to see that, after filtering, the convergence of training loss
becomes faster, confirming our hypothesis that the “conflicting
samples” slow down the neural network training. However,
we observe that, after filtering, the validation loss becomes
worse, suggesting that these similar input vectors contain
“true” information that cannot be simply discarded. This re-
affirms the difficulty of learning and predicting the cellular
network throughput.

VI. CONCLUSION

We studied the feasibility of accurate throughput prediction
in today’s cellular networks under high mobility and at fine
time-scales, e.g., in the order of 100 ms. Using a dataset we
collected through a 4-day, 1000+ km driving trip, we found
that popular ML models previously claimed to predict well
for various wireless networks scenarios can not predict well
under app-centric metrics such as ARE95 and PARE10. We
further utilized recent ML theories developed based on over-
parameterized ML models to uncover the root cause for the
limitations of ML models as the conflicting sample sequences
in fine-grained cellular network throughput — cellular net-
work throughout can be so dynamic that very similar sample
throughput sequences can be followed by very different next
samples, forcing the ML models to learn “spiky” functions,
which are often very slow to learn and not predicting well.
Acknowledgement. This work is supported in part by Cisco
Research and by NSF grants CNS-2312834, CNS-2112778,
and CNS-2211459.

REFERENCES

—
—

“Networking Research in the Age of AI/ML: More Science, Less
Hubris,” https://infocom2024.ieee-infocom.org/program/keynote.

M. Ghoshal, S. Mohanti, and D. Koutsonikolas, “Enabling Emerging
Applications in 5G Through UE-Assisted Proactive PHY Frame Con-
figuration,” in Proc. of IEEE PIMRC, 2024.

S. Aggarwal, U. S. Sardesai, V. Sinha, D. D. Mohan, M. Ghoshal, and
D. Koutsonikolas, “LiBRA: Learning-Based Link Adaptation Leverag-
ing PHY Layer Information in 60 GHz WLANSs,” in Proc. of ACM
CoNEXT, 2020.

M. Polese, F. Restuccia, and T. Melodia, “DeepBeam: Deep Waveform
Learning for Coordination-Free Beam Management in mmWave Net-
works,” in Proc. of ACM MobiHoc, 2021.

J. Hall, N. Thawdar, T. Melodia, J. Jornet, and F. Restuccia, “Deep
Learning at the Physical Layer for Adaptive Terahertz Communications,”
IEEE Transactions on Terahertz Science and Technology, 2023.

2

—

[3

—

[4

=

(5

—

55

[6] Y. Zhang, T. Osman, and A. Alkhateeb, “Online beam learning with
interference nulling for millimeter wave MIMO systems,” IEEE Trans-
actions on Wireless Communications, vol. 23, no. 5, 2024.

A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, “An experi-
mental study of the learnability of congestion control,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 479-490, 2014.
M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC vivace: Online-learning congestion control,” in Proc.
of NSDI, 2018.

A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Owl: Congestion
control with partially invisible networks via reinforcement learning,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1-10.

S. Rajasekaran, M. Ghobadi, G. Kumar, and A. Akella, “Congestion
control in machine learning clusters,” in Proc. of ACM HotNets, 2022.
X. Liao, H. Tian, C. Zeng, X. Wan, and K. Chen, “Towards
fair and efficient learning-based congestion control,” arXiv preprint
arXiv:2403.01798, 2024.

H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video
Streaming with Pensieve,” in Proc. of ACM SIGCOMM, 2017.

F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: A randomized experiment in video
streaming,” in Proc. of USENIX NSDI, 2020.

J. Meng, Q. Xu, and Y. C. Hu, “Proactive energy-aware adaptive video
streaming on mobile devices,” in Proc. of USENIX ATC, 2021.

B. Han et al., “ViVo: Visibility-Aware Mobile Volumetric Video Stream-
ing,” in Proc. of ACM MobiCom, 2020.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
Delay-Tolerance,” in Proc. of USENIX NSDI, 2017.

Z.Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai, “Furion: Engineering high-
quality immersive virtual reality on today’s mobile devices,” in Proc. of
ACM MobiCom, 2017.

J. Meng, S. Paul, and Y. C. Hu, “Coterie: Exploiting frame
similarity to enable high-quality multiplayer VR on commodity
mobile devices,” in Proc. of ASPLOS, 2020. [Online]. Available:
https://doi.org/10.1145/3373376.3378516

Z.J. Kong, Q. Xu, J. Meng, and Y. C. Hu, “Accumo: Accuracy-centric
multitask offloading in edge-assisted mobile augmented reality,” in Proc.
of ACM MobiCom, 2023.

Z.J. Kong, Q. Xu, and Y. C. Hu, “Arise: High-capacity ar offloading
inference serving via proactive scheduling,” in Proc. of ACM MobiSys,
2024.

M. Rudow, F. Y. Yan, A. Kumar, G. Ananthanarayanan, M. Ellis, and
K. Rashmi, “Tambur: Efficient loss recovery for videoconferencing via
streaming codes,” in Proc. of USENIX NSDI, 2023.

X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M.
Mao, “EMP: Edge-assisted Multi-vehicle Perception,” in Proc. of ACM
MobiCom, 2021.

“XCAL Solo,” https://accuver.com/sub/products/view.php?idx=11;.

C. Liu, L. Zhu, and M. Belkin, “Loss landscapes and optimization in
over-parameterized non-linear systems and neural networks,” Applied
and Computational Harmonic Analysis, vol. 59, pp. 85-116, 2022.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” in Proc. of ICLR,
2016.

M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical bias—variance trade-off,”

(71

(8

—

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the National Academy of Sciences, vol. 116, no. 32,
pp. 15849-15854, 2019.

[27] “Fine-grained cellular throughput prediction dataset,” 2024.
[Online]. Available: https://github.com/NUWiINS/MASS_2024_
Throughput_Prediction/tree/main

[28] J. Jung, S. Lee, J. Shin, and Y. Kim, “Self-attention-based uplink radio
resource prediction in 5g dual connectivity,” IEEE Internet of Things
Journal, vol. 10, pp. 19925-19936, 2023.

[29] J. Lee et al., “PERCEIVE: Deep Learning-Based Cellular Uplink
Prediction Using Real-Time Scheduling Patterns,” in Proc. of ACM
MobiSys, 2020.

[30] M. Ghoshal ef al., “An In-Depth Study of Uplink Performance of 5G
mmWave Networks,” in Proc. of ACM 5G-MeMU, 2022.

[31] M. Ghoshal, I. Khan, Z. J. Kong, P. Dinh, J. Meng, Y. C. Hu, and
D. Koutsonikolas, “Performance of Cellular Networks on the Wheels,”
in Proc. of ACM IMC, 2023.

[32] E. Eyceyurt, Y. Egi, and J. Zec, “Machine-learning-based uplink
throughput prediction from physical layer measurements,” Electronics,
vol. 11, no. 8, p. 1227, 2022.

[33] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei, “Linkforecast:
Cellular link bandwidth prediction in lte networks,” IEEE Transactions
on Mobile Computing, vol. 17, no. 7, pp. 1582-1594, 2017.

[34] F. Jomrich, A. Herzberger, T. Meuser, B. Richerzhagen, R. Steinmetz,
and C. Wille, “Cellular bandwidth prediction for highly automated
driving,” in Proc. of VEHITS 2018, 2018.

[35] D. Minovski, N. Ogren, K. Mitra, and C. Ahlund, “Throughput predic-
tion using machine learning in Ite and 5g networks,” IEEE Transactions
on Mobile Computing, vol. 22, no. 3, pp. 1825-1840, 2021.

[36] A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. Fezeu,
U. K. Dayalan, S. Verma, P. Ji, T. Li er al., “Lumos5g: Mapping and
predicting commercial mmwave 5g throughput,” in Proc. of ACM IMC,
2020.

[37] T. Azmin, M. Ahmadinejad, and N. Shahriar, “Bandwidth prediction in
5g mobile networks using informer,” in Proc. of IEEE Conference on
Network of the Future (NoF), 2022.

[38] C. Fiandrino, G. Attanasio, M. Fiore, and J. Widmer, “Toward native
explainable and robust ai in 6g networks: Current state, challenges and
road ahead,” Computer Communications, vol. 193, pp. 47-52, 2022.

[39] C. Fiandrino, E. Perez Gomez, P. Férnandez Pérez, H. Mohammadal-
izadeh, M. Fiore, J. Widmer et al., “Aichronolens: Advancing explain-
ability for time series ai forecasting in mobile networks,” in Proc. of
IEEE INFOCOM, 2024.

[40] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, and J. Li, “Realtime
mobile bandwidth prediction using Istm neural network,” in Proc. of
PAM, 2019.

[41] D.Raca, D. Leahy, C.J. Sreenan, and J. J. Quinlan, “Beyond throughput,
the next generation: A 5g dataset with channel and context metrics,” in
Proc. of ACM MM, 2020.

[42] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao, F. Qian, and Z.-L. Zhang, “A Variegated
Look at 5G in the Wild: Performance, Power, and QoE Implications,”
in Proc. of ACM SIGCOMM, 2021.

[43] nuttcp - Network Performance Measurement Tool, Online. [Online].
Available: https://www.nuttcp.net

[44] S. Aggarwal, Z. Kong, M. Ghoshal, Y. C. Hu, and D. Koutsoniko-
las, “Throughput Prediction on 60 GHz Mobile Devices for High-
Bandwidth, Latency-Sensitive Applications,” in Proc. of PAM, 2021.

[45] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A
transformer-based framework for multivariate time series representation
learning,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, p. 2114-2124.

[46] C. Liu, D. Drusvyatskiy, M. Belkin, D. Davis, and Y. Ma, “Aiming
towards the minimizers: fast convergence of sgd for overparametrized
problems,” Advances in neural information processing systems, vol. 36,
2023.

[47] C. Liu and L. Hui, “Relu soothes the ntk condition number and
accelerates optimization for wide neural networks,” 2023. [Online].
Available: https://arxiv.org/abs/2305.08813

56

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:00:09 UTC from IEEE Xplore. Restrictions apply.

