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We present an updated version of the TEOBRESUMS-DALÍ effective one body (EOB) waveform model for
spin-aligned binaries on noncircularized orbits. Recently computed 4 Post Newtonian (PN) (nonspinning)
terms are incorporated in the waveform and radiation reaction. The model is informed by a restricted
sample (∼60) of spin-aligned, quasicircular, numerical relativity (NR) simulations. In the quasicircular
limit, the model displays EOB/NR maximal unfaithfulness F̄max

EOBNR ≲ 10−2 (with median 1.06 × 10−3)
(with Advanced LIGO noise and in the total mass range 10–200M⊙) for the dominant l ¼ m ¼ 2mode all
over the 534 spin-aligned configurations available through the simulating extreme spacetime catalog of NR
waveforms. Similar figures are also obtained with the 28 public eccentric simulating extreme spacetime
simulations as well as good compatibility between EOB and NR scattering angles. The quasicircular limit
of TEOBRESUMS-DALÍ is highly consistent with the TEOBRESUMS-GIOTTO quasicircular model. We then
systematically explore the importance of NR tuning also the radiation reaction of the system. When this is
done, the median of the distribution of quasicircular F̄max

EOBNR is lowered to 3.92 × 10−4, though balanced by
a tail up to ∼0.1 for large, positive spins. The same is true for the eccentric-inspiral datasets. We conclude
that an improvement of the analytical description of the spin-dependent flux (and its interplay with the
conservative part) is likely to be the cornerstone to lower the EOB/NR unfaithfulness below the 10−4 level
all over the parameter space, thus grazing the current NR uncertainties as well as the expected needs for
next generation of gravitational wave detector like the Einstein Telescope.

DOI: 10.1103/PhysRevD.110.084001

I. INTRODUCTION

Prompted by the desire of obtaining models able to
include a large class of physical effects, the last few years
have seen an increasing interest from the gravitational
waves (GWs) community in the construction of accurate
waveform models incorporating orbital eccentricity and in
general configurations that go beyond the standard quasi-
circular case. These efforts have been particularly vibrant
within the effective-one-body (EOB) framework, with
many studies [1–3] proposing different techniques to model
noncircularized binaries. In particular, the TEOBRESUMS-
DALÍ model [2] immediately proved to be sufficiently
mature to pioneer several parameter estimation studies
involving both bound configurations (i.e., eccentric inspi-
rals) [4] and unbound ones (i.e., scattering or dynamical
capture) [5]. This model is built upon the crucial under-
standing that the factorized and resummed EOB quasicir-
cular waveform and radiation reaction [6] can be
generalized to the case of eccentric binaries by simply
considering generic Newtonian prefactors in the waveform

and fluxes [2,7]. Although this procedure neglects some
(high-order) physical effect, it proved sufficiently accurate in
several context. The idea, technically complemented by the
analytical implementation of (high-order) time derivatives
via an iterative procedure [2,8], was thoroughly tested versus
a large amount of numerical data both in the comparable
mass [5,7,9–13] and in the large mass ratio limit [14,15],
notably also exploring the effect of higher-order PN terms in
radiation reaction and waveform [15–17]. Among the many
findings of this lineage of work, Refs. [2,15] clearly proved
that the Newton-factorized azimuthal part of the radiation
reaction is more accurate than the 2PN-accurate one pro-
posed in Ref. [18] (see Ref. [19] for the 3PN calculation).We
note that the approach of Ref. [2] and subsequent works was
not adopted in a different lineage of eccentric EOB-based
models, dubbed SEOBNRV4EHM [3,19,20]. In this respect,
while TEOBRESUMS-DALÍ was proven to be quantitatively
accurate also for dynamical capture configurations as well as
scattering ones [5,11,12], the corresponding studies involv-
ing SEOBNRV4EHM in this regimewere atmost qualitative [3].
The Achilles’ heel of TEOBRESUMS-DALÍ was however
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hidden in its quasicircular limit, where the model was found
to perform not as well as the quasicircular TEOBRESUMS-
GIOTTOversion, especially for large, positive spins [4,7]. This
problem, related to the strong-field behavior of the radial part
of the radiation reaction, F r was solved, in the nonspinning
case, in Ref. [13] adopting a different analytical expression
for it (see discussion in Sec. IVof Ref. [13] and in particular
Fig. 12 therein). Note in this respect that Ref. [13] did not
consider, on purpose, the eccentric spin case, that deserved
more dedicated understanding and work.
Here we build upon the knowledge acquired in Ref. [13]

and present an improved version of the TEOBRESUMS-
DALÍ model in its avatar introduced in Ref. [10] (that also
deals with spin-aligned binaries). The quasicircular limit of
this new version yields an excellent consistency with
TEOBRESUMS-GIOTTO as well as with the simulating extreme
spacetimes (SXS) [21] quasicircular numerical relativity
(NR) datasets. The model incorporates some new analytical
information, namely the 4PN term in the quadrupolar
waveform (and flux) recently computed in Refs. [22–24].
The availability of this new information enables a detailed
investigation of the effect ofminimal changes in the radiation
reaction and their nonnegligible impact on the phasing. In
this respect, we explore the possibility of tuning the radiation
reaction to the NR data; we conclude that this will likely be
needed to obtain waveform templates highly faithful to NR
data (say, ∼10−4 level) as they are expected to be needed for
third generation (3G) detectors.
The paper is organized as follows. In Sec. II we recall

the main elements of the TEOBRESUMS-DALÍ model of
Refs. [10,13] and highlight the modifications introduced
in this work. In particular, Sec. II A is dedicated to the
factorization and resummation of the 4PN waveform of
Ref. [22] following the standard EOB approach [6], while
Sec. II B discusses the dynamics andmore generally the spin
sector. In Sec. III we present the new spin-aligned model,
discussing in detail quasicircular configurations, eccentric
configurations as well as scattering. In Sec. IVwe break new
ground with respect to previous work by investigating
various improvements in the model that can be obtained
by NR-informing also the radiation reaction. Concluding
remarks are collected in Sec. V. The main text is comple-
mented by a few appendices. In particular, Appendix A
identifies some analytical systematics related to the Padé
resummation of the waveform and discusses their solution;
Appendix B explores the impact of the 4PN-accurate wave-
form (and radiation reaction) on the TEOBRESUMS-GIOTTO
quasicircular model in the nonspinning case; Appendix C
presents the implementation of the initial conditions for
eccentric inspirals using eccentricity and mean anomaly
instead of using eccentricity and frequency at the apastron as
it was done in previous work.
We adopt the following notations and conventions. The

black hole masses are denoted ðm1; m2Þ, the mass ratio
q ¼ m1=m2 ≥ 1, the total mass M≡m1 þm2, the sym-
metric mass ratio ν≡m1m2=M

2, and the mass fractions

Xi ≡mi=M with i ¼ 1, 2. The dimensionless spin magni-
tudes are χi ≡ Si=m

2

1
with i ¼ 1, 2, and we indicate with

ã0 ≡ ã1 þ ã2 ≡ X1χ1 þ X2χ2 the effective spin, usually
called χeff in the literature. Unless otherwise stated, we
use geometric units with c ¼ G ¼ 1.

II. ANALYTIC EOB STRUCTURE:
WAVEFORM AND DYNAMICS

As previouslymentioned, we build upon the spin-aligned,
eccentric TEOBRESUMS-DALÍmodel discussed extensively in
Ref. [10] and Sec. IIIB.2 of Ref. [13], improving few key
aspects of it. In this section, we discuss the analytical
structure of the model. First, we focus on the pure-orbital
sector, and incorporate 4PN waveform information in the
l ¼ m ¼ 2 contribution towaveform and radiation reaction.
Then, we remove the next-to-next-to-leading order (NNLO)
spin-square effects that were first introduced in a factorized
and resummed form in Ref. [10]. This will prompt a new
determination of the ðac

6
; c3Þ EOB flexibility parameters that

will be discussed in the following section (see Sec. III).

A. The 4PN factorized and resummed
nonspinning waveform

In order to be employed in EOB models, PN expression
typically need to be recast in factorized and resummed form
[6,25]. This is particularly important for the radiation
reaction, where the factorization and resummation of the
fluxes is crucial to obtain a faithful description of the
dynamics. Here, we start from the 4PN accurate waveform
obtained in Refs. [22–24] and recast it in the desired form of
[6], following the procedure of Ref. [26].
Let us first recall our notation. The multipolar expansion

of the strain waveform is

hþ − ih× ¼ 1

DL

X

∞

l¼2

X

l

m¼−l

hlm−2Ylm; ð1Þ

where DL is the luminosity distance and −2Ylm are the
s ¼ −2 spin-weighted spherical harmonics. For each multi-
polar mode, the circular waveform is factorized as

hlm ¼ hN
lmĥlm; ð2Þ

where hN
lm is the Newtonian prefactor (given in closed

form, e.g., in Ref. [6]) and ĥlm is the PN correction.
Following [6], this latter is factorized as

ĥlm ¼ ŜeffTlme
iδlmðρlmÞl; ð3Þ

where Ŝeff is the effective source,
1
Tlm is the tail factor [6],

while ρlm and δlm are the residual amplitude and phase
corrections. The tail factor explicitly reads

1
Ŝeff is the effective EOBHamiltonian when lþm ¼ even and

the Newton-normalized angular momentum when lþm ¼ odd.
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Tlm ¼ Γðlþ 1 − 2i ˆ̂kÞ
Γðlþ 1Þ eπ

ˆ̂
ke2i

ˆ̂
k logð2kr0Þ: ð4Þ

Indicating with E the energy along a circular orbit of

frequency Ω, we have ˆ̂
k≡mEΩ, k≡mΩ and r0 ¼ 2=

ffiffiffi

e
p

[27]. The formula above is specified to the l ¼ m ¼ 2 case

starting from Eq. (11) of Ref. [22] (where ĥ22 ≡H22

therein) and E, at 4PN accuracy, given by Eq. (3) therein.
Note that x≡ ðMΩÞ2=3. The factorization (following the
procedure and conventions of Ref. [26] for consistency
with the results given in [22]) yields the following 4PN-
accurate ρ22 function:

ρ4PN
22

ðxÞ ¼ 1þ
�

−
43

42
þ 55

84
ν

�

xþ
�

−
20555

10584
−
33025

21168
νþ 19583

42336
ν2
�

x2

þ
�

1556919113

122245200
−
428

105
eulerlog2ðxÞ þ

�

41π2

192
−
48993925

9779616

�

ν −
6292061

3259872
ν2 þ 10620745

39118464
ν3
�

x3

þ
�

−
387216563023

160190110080
þ eulerlog2ðxÞ

�

9202

2205
þ 8819

441
ν

�

þ
�

−
6718432743163

145627372800
−
9953π2

21504

�

ν

þ
�

10815863492353

640760440320
−
3485π2

5376

�

ν2 −
2088847783

11650189824
ν3 þ 70134663541

512608352256
ν4
�

x4; ð5Þ

where eulerlogmðxÞ≡ γE þ logð2m ffiffiffi

x
p Þ. The residual

phase, instead, reads

δ22 ¼
7

3
y3=2 − 24νy5=2 þ 428

105
πy3

þ
�

30995

1134
νþ 962

135
ν2
�

y7=2 −
5536

105
πνy4; ð6Þ

with y ¼ ðEΩÞ2=3.
Once the first factorization is performed, the residual

functions need to be resummed. Phase and amplitude are
considered separately, and their behaviors in the high-
velocity limit studied. Let us first discuss the 4PN correc-
tion to δ22. The analytical expression for δ22 implemented
in TEOBRESUMS dates back to to Ref. [8] (see Sec. II B 1
and Fig. 1 therein). There, it was obtained by factorizing the
LO part of δ22, δ

LO
22

¼ 7=3y3=2, and resumming the remain-
ing factor, δ̂22, with a Padé (2, 2) approximant in the

variable vy ¼
ffiffiffi

y
p

. In this respect, Fig. 1 ofRef. [8] illustrates
that the chosen Padé approximant is effective in averaging
the various PN truncations of δ22. This fact by itself indicates
that the resummed expression should give a representation
of the function δ22 more robust than the truncated Taylor
expansion and, as such, should be extended at the next
available PN order. Attempting to follow this procedure, we
compute the δ̂22 factor, which at 4PN reads

δ̂22 ¼ 1 −
72

7
νv2y þ

428π

245
v3y þ ν

�

30995

2646
þ 962

315
ν

�

v4y

−
5536π

245
νv5y: ð7Þ

We have explored several ways of treating this expression
analytically. First, one considers the straightforward, Taylor-
expanded expression. If for q ¼ 1 it is close to the former
Padé (2, 2) one, as ν decreases the function is found to
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FIG. 1. Comparing various approximations of the function ρ22 for mass ratios q ¼ ð1; 10; 20Þ: the 3þ2 PN one used in the standard
implementation of TEOBRESUMS; the ρ22 at 4PN accuracy, resummed with the (2, 2) Padé approximant; the 4PN, Taylor-expanded,
function. Note the consistency between the 3þ2 and the 4PN resummed as well as their weak dependence on the mass ratio.
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abruptly grow as vy → 0.3. When moving to Padé approx-
imants, it is natural to consider the near-diagonal ones, i.e.,
P2

3
and P3

2
. However, one finds that the P2

3
develops a

spurious pole, while the P3

2
increases again for vy → 0.3

when ν decreases. By contrast, the (2, 2) approximant
remains robust and keeps the same functional shape for
any choice of ν. In view of these results, for robustness, we
decided to neglect the new 4PN contribution to δ̂22 and just
keep using the Padé (2, 2) approximant.
Theρ22ðxÞ function, Eq. (5), is similarly resummedusing a

Padé (2, 2) approximant. Following standard practice within
the EOB framework [28], the logðxÞ functions appearing
Eq. (5) above are treated as constant when computing the
Padé approximant [29]. The logðxÞ are then replaced in the
resulting rational function. Note that this approach is
implemented for all higher order modes, as suggested in

Refs. [29–31]. This choice, though simple and consistent
with the low-order PN expansion, eventually introduces
some qualitative incorrectness in the high-order terms as
guessed by the resummation procedure. For consistencywith
previousworkwe pursue this approach in themain text of the
paper. However, in Appendix A we revisit this standard
choice and propose a different (though eventually more
accurate) resummation strategy. To appreciate the impor-
tance of the resummation, let us compare the Padé resummed
function with its Taylor-expanded expression as well as with
the ρ22 at 3þ2 PN accuracy used in all implementations of
TEOBRESUMS so far, starting fromRef. [28]. Let us remind the
reader that the notation 3þ2 PN means that the function,
dubbed ρ3

þ2PN
22

hereafter, is obtained by hybridizing the 3PN-
accurate one (with the complete ν dependence)with 4PNand
5PN test-mass terms [6]. It explicitly reads

ρ3
þ2PN

22
¼ 1þ

�

−
43

42
þ 55

84
ν

�

xþ
�

−
20555

10584
−
33025

21168
νþ 19583

42336
ν2
�

x2

þ
�

1556919113

122245200
−
428

105
eulerlog2ðxÞ þ

�

41π2

192
−
48993925

9779616

�

ν −
6292061

3259872
ν2 þ 10620745

39118464
ν3
�

x3

þ
�

−
387216563023

160190110080
þ 9202

2205
eulerlog2ðxÞ

�

x4 þ
�

−
16094530514677

533967033600
þ 439877

55566
eulerlog2ðxÞ

�

x5: ð8Þ

Figure 1 compares ρ3
þ2PN
22

with P2

2
ðρ4PN

22
Þ and the Taylor-

expanded ρ4PN
22

. The figure illustrates that, while ρ4PN
22

shows
a strong dependence on ν, both ρ3

þ2PN
22

and P2

2
ðρ4PN

22
Þ are

weakly dependent on it and in addition are semiquantita-
tively consistent among themselves. As will be shown
below, this guarantees the robustness of the model all over
the parameter space even if ρ3

þ2PN
22

is replaced by P2

2
ðρ4PN

22
Þ,

though this entails some changes in the value of the NR-
informed effective 5PN parameter ac

6
. In the following main

text we will only focus on including the complete 4PN
function in the TEOBRESUMS-DALÍ model, where, as we
will see, will yield improvements with respect to pre-
vious work. For completeness, we have also explored the
impact of the 4PN waveform (and flux) correction on
TEOBRESUMS-GIOTTO, finding however that it does not
improve2 the current state-of-the-art quasicircular model
(see Appendix B). From now on, we will thus consider
P2

2
ðρ4PN

22
Þ and the Padé resummed 3.5PN δ22 as our default

choices for the waveform and radiation reaction. Evidently,
when implemented in the complete EOB model, the energy
along circular orbits E in Eq. (4) will be replaced by the

actual energy during the EOB evolution. Similarly, the
argument of the function along circular orbits, which is now
x ¼ Ω

2=3, will become x ¼ ðrωΩÞ2, where rΩ is a Kepler’s
law correct orbital radius [8,28,32,33].

B. Spin-aligned EOB dynamics:
Centrifugal radius and waveform

The conservative part of the model, i.e., the Hamiltonian,
is based on the one discussed extensively in Sec. II of
Ref. [10], with a few differences highlighted below. The
EOB orbital dynamics is encoded within three potentials
ðA;D;QÞ while the spin-orbit sector is determined by the
two gyrogravitomagnetic functions ðGS; GS�Þ. The real
EOB Hamiltonian HEOB is related to the effective one
Ĥeff ≡Heff=μ as [34]

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðĤeff − 1Þ
q

; ð9Þ

where Ĥeff reads

Ĥeff ¼ Ĥorb
eff þ G̃pφ; ð10Þ

with

G̃≡GSŜþGS� Ŝ�; ð11Þ

2This might be due to the combination of the iteration on
NR-informed corrections (NQCs) needed for the TEOBRESUMS-
GIOTTO model together with the lower PN order of the
(resummed) D̄ and Q functions that yield quantitative differences
towards merger, see discussion in Ref. [13].
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where we defined

Ŝ≡ ðS1 þ S2ÞM−2; ð12Þ

Ŝ� ≡

�

m2

m1

S1 þ
m1

m2

S2

�

M−2: ð13Þ

The functions ðA;DÞ are taken at formal 5PNorder (see, e.g.,
[35]), with two free (yet uncalculated) 5PN coefficients ac

6

anddν
2

5
, seeEqs. (2) and (3) inRef. [10]. Thenwe fixdν

2

5
¼ 0,

while ac
6
is informed using NR data. Both functions are

resummed, A using a (3, 3) Padé approximant andD using a
(3, 2) Padé approximant [see Eqs. (6) and (7) of Ref. [10] ].
The Q function includes only the local part and is taken in
Taylor-expanded form as in Eq. (5) of Ref. [10].
Concerning the spin sector, the ðGS; GS�Þ functions

also follow Refs. [10,33] at NNLO with the NR-informed
next-to-next-to-next-to-leading (N3LO) parameter c3 [see
Eqs. (20)–(21) in [10] ]. Note that Ref. [10] also explored
the effect of using the analytical N3LO results obtained in
Ref. [36,37] (see also [38]) but here we only focus on the
NR-informed approach to the spin-orbit sector. Concerning
instead the differences with respect to [10], here we modify
the following: (i) the PN-order of even-in-spin effects
incorporated in the Hamiltonian through the centrifugal
radius rc, see Ref. [33]; (ii) the PN order of spin-dependent
terms entering the waveform. Let us focus first on rc, as
introduced in Ref. [10] to incorporate quadratic-in-spin
corrections at NLO. This is still the state-of-the-art imple-
mentation in TEOBRESUMS-GIOTTO, even if corrections are
actually available up to NNLO (see in particular Ref. [39]
and references therein). As an exploratory study, Ref. [10]
attempted to incorporate NNLO effects in a special fac-
torized and resummed form that eventually turned out to be
unsatisfactory because of the limited flexibility for large,
positive, spins (see in particular Sec. IIB.3 of [10]). Here we
thus go back to using the standard expression of rc at NLO.
More precisely, using for consistency the notation of
Sec. IIB.3 of [10], the centrifugal radius reads

r2c ¼ ðrcÞLOr̂2c; ð14Þ

with

r̂2c ¼ 1þ δa2NLO
rðrLOc Þ2 ; ð15Þ

and

ðrLOc Þ2 ¼ r2 þ ã2
0

�

1þ 2

r

�

; ð16Þ

δa2NLO ¼ −
9

8
ã2
0
−
1

8
ð1þ 4νÞã2

12
þ 5

4
X12ã0ã12: ð17Þ

For what concerns the spin-dependent content of the
waveform (and radiation reaction) we adopt the results
of Ref. [31] outlined in Sec. II B therein except for the
l ¼ m ¼ 2 mode that includes the N3LO and N4LO spin-
orbit corrections obtained by hybridizing the known
ν-dependent term up to NNLO with those coming from
the case of a spinning particle around a spinning black hole
following the approach outlined in Sec. VB of Ref. [30].
For the lþm ¼ even modes the residual waveform
amplitudes are written as

ρlm ¼ ρorb
lm þ ρS

lm; ð18Þ

and in particular for the ρS
22

we formally have

ρS
22

¼ cLOSOx
3=2 þ cLOSS x

2 þ cNLOSO x5=2 þ cNLOSS x3

þ ðcNNLOSO þ cLO
S3
Þx7=2 þ cN

3LO
SO x9=2 þ cN

4LO
SO x11=2;

ð19Þ

where the coefficients explicitly read

cLOSO ¼ −
ã0

2
−
1

6
X12ã12; ð20Þ

cLOSS ¼ 1

2
ã2
0
; ð21Þ

cNLOSO ¼
�

−
52

63
−

19

504
ν

�

ã0−

�

50

63
þ209

504
ν

�

ã12X12; ð22Þ

cNLOSS ¼ 221

252
ã0ã12X12 þ ðã2

1
þ ã2

2
Þ
�

−
11

21
þ 103

504
ν

�

þ
�

−
85

63
þ 383

252
ν

�

ã1ã2; ð23Þ

cLO
S3

¼ 7

12
ã3
0
−
1

4
ã2
0
ã12X12; ð24Þ

cNNLOSO ¼ ã0

�

32873

21168
þ 477563

42336
νþ 147421

84672
ν2
�

− ã12X12

�

23687

63504
−
171791

127008
νþ 50803

254016
ν2
�

; ð25Þ

cN
3LO

SO ¼ cþ
N3LO

ã0 þ c−
N3LO

ã12X12; ð26Þ

cN
4LO

SO ¼ cþ
N4LO

ã0 þ c−N4LOã12X12; ð27Þ

where c�NnLO ≡ ðcNnLO
a � cN

nLO
σ Þ with

cN
3LO

a ¼ −
8494939

467775
þ 2536

315
eulerlog2ðxÞ; ð28Þ

cN
3LO

σ ¼ −
14661629

8731800
þ 214

315
eulerlog2ðxÞ; ð29Þ
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cN
4LO

a ¼ −
890245226581

26698351680
þ 328

6615
eulerlogðxÞ; ð30Þ

cN
4LO

σ ¼ −
90273995723

88994505600
þ 428

6615
eulerlog2ðxÞ: ð31Þ

We remind the reader that ðcNNLOSO ; cN
3LO

SO ; cN
4LO

SO Þ are omit-
ted from the quasicircular TEOBRESUMS-GIOTTO implemen-
tation. Also note that the cNNLOSO term is just one of the
currently known 3.5PN-accurate contributions to the spin-
dependent part of the waveform recently obtained in
Ref. [40]. In particular, these result correct some approxi-
mate expressions, e.g. for the functions ρS

32
or ρS

44
, used in

the current implementation. We have implemented these
new amplitude corrections (after rewriting) and verified that
the effect is so small that could be degenerate with the NR-
informed parameter. As a consequence, for simplicity, in
this work we are not considering any of the new waveform
terms of Ref. [40].

C. Radiation reaction forces

The residual multipolar amplitudes discussed above are
then combined together to yield the flux of angular
momentum and the related radiation reaction force. Let
us recall that in the TEOBRESUMS-DALÍ one deals with two
forces, one taking care of the flux of angular momentum,
F̂φ and the other one of the flux of radial momentum F̂ r� .
These functions were detailed in previous works [10,13],
but we find it useful to briefly review here some informa-
tion. See also Appendix A of Ref. [41] for technical details
about the implementation. The two forces enter two
Hamilton’s equations as

ṗφ ¼ F̂φ; ð32Þ

ṗr� ¼ −

ffiffiffiffi

A

B

r

∂rĤEOB þ F̂ r� ; ð33Þ

where ĤEOB ≡HEOB=μ, AB ¼ D (see Eq. (32) of Ref. [42]
and Sec. II of Ref. [10]), pφ ≡ Pφ=μ is the orbital angular
momentum, pr� ≡ PR�=μ is the radial momentum and

ðF̂φ; F̂ r�Þ follow, respectively, from Eqs. (36)–(38) of
Ref. [10] and Eqs. (6)–(7) of Ref. [13].

III. NONCIRCULARIZED WAVEFORM MODEL
WITH RADIATION REACTION AT 4PN

In this section we complete the model by presenting the
NR-informed parameters and the performance all over the
BBHs parameter space. The validation over the parameter
space is performed—as usual—via EOB/NR comparisons
with various type of NR data. In particular: (i) for the
quasicircular limit, we compare with either the full SXS
catalog of NR quasicircular (spin-aligned) waveform or

with NR surrogates computing EOB/NR unfaithfulness
(see below); (ii) for eccentric inspiral we perform the
same analysis using the 28 SXS waveforms publicly
available [43]; (iii) for scattering configurations, we com-
pare with the scattering angles of Refs. [11,44,45]. For
pedagogic reasons we focus first on the quasicircular
nonspinning case and then gradually move on to consid-
ering quasicircular, aligned spins systems, eccentric inspi-
rals, and scattering configurations. Before entering the
discussion, let us recall that the above mentioned unfaith-
fulness F̄ is defined as follows. Given two waveforms
ðh1; h2Þ, F̄ is a function of the total mass M of the binary:

F̄ ðMÞ≡ 1 − F ¼ 1 −max
t0;ϕ0

hh1; h2i
kh1kkh2k

; ð34Þ

where ðt0;ϕ0Þ are the initial time and phase. We used
khk≡

ffiffiffiffiffiffiffiffiffiffiffiffi

hh; hi
p

, and the inner product between two wave-
forms is defined as hh1; h2i≡ 4ℜ

R

∞

fNRminðMÞ h̃1ðfÞh̃
�
2ðfÞ=

SnðfÞdf, where h̃ðfÞ denotes the Fourier transform of
hðtÞ, SnðfÞ is the detector power spectral density (PSD),
and fNRminðMÞ ¼ f̂NRmin=M is the initial frequency of the NR
waveform at highest resolution, i.e., the frequency mea-
sured after the junk-radiation initial transient. For Sn, in our
comparisons we use either the zero-detuned, high-power
noise spectral density of Advanced LIGO [46] or the
predicted sensitivity of the Einstein Telescope [47,48].
Waveforms are tapered in the time domain to reduce high-
frequency oscillations in the corresponding Fourier
transforms.

A. Nonspinning case: Interplay between conservative
and dissipative contributions

In the nonspinning case, Ref. [13] first introduced the
model using the ρ3

þ2PN
22

waveform and radiation reaction. Its
performance was evaluated in the quasicircular, eccentric,
and scattering case, with explicit comparisons of the
scattering angle (see Figs. 12 and 14 as well as Table III
in Ref. [13]). To start with, we need then to compare the
performance of this model with the new one obtained using
the 4PN-resummed radiation reaction (and a newly deter-
mined ac

6
). While doing so, we realized the presence of a

small bug in the implementation of Fr in Ref. [13].
Although this has minimal quantitative effects, we redo
here the full analysis of Sec. IVof Ref. [13], while also NR
completing the 4PN-resummed model. To start with, we
determine ac

6
by EOB/NR phasing comparisons, with the

requirement, clearly pointed out in [13], that the EOB/NR
phase difference grows monotonically, so to have the
smallest values of the EOB/NR unfaithfulness. To inform
ac
6
we use only six NR datasets, that are listed in Table I.

The points are visualized in Fig. 2. They are easily
representable by the following fits. For ρ22 at 3þ2 PN
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accuracy the values are consistent with those of Ref. [13]
and can be fitted with a quadratic function3

ac;3
þ2PN

6
¼ 530.9514ν2 − 462.5404ν − 0.78979: ð35Þ

For P2

2
ðρ4PN

22
Þ, the functional behavior of the ac

6
points is

simpler, as they can be accurately fitted by the following
linear regression

ac;4PN
6

¼ −32.5953 − 269.4331ν: ð36Þ

The fact that for the 4PN case ac
6
is always smaller than for

the 3þ2PN case is the consequence of P2

2
ðρ4PN

22
Þ < ρ3

þ2PN
22

.
From the physical point of view, this follows from the fact
that the radiation reaction (i.e., mainly the flux of angular
momentum) is smaller in one case than in the other. As a
result, to have the EOB waveform NR faithful one must
tune the conservative dynamics (through ac

6
) so as to

compensate this effect. In practice, as we will see below,
lowering the value of ac

6
means increasing the value of rLSO,

which prompts a faster transition from the radiation-
reaction driven inspiral to plunge. In Fig. 3 we show four
illustrative EOB/NR phasings for q ¼ 1 and q ¼ 8

obtained with either the 3þ2 PN prescription (left-panels)

or the 4PN prescription (right panels). Note that the EOB/
NR phase difference is (essentially) monotonic in both
cases, but its sign is different. The corresponding values of
the LSO for q ¼ 1 are listed in Table II. One sees that the
fact that the lowering of ac

6
needed when using P2

2
ðρ4PN

22
Þ

entails a larger value of rLSO and thus a faster plunge, so as
to compensate for P2

2
ðρ4PN

22
Þ < ρ3

þ2PN
22

during the late
inspiral. On top of this, it is remarkable to note that when
ρ3

þ2PN
22

is used, the good, NR-informed, value of the LSO is
rather small, rLSO ¼ 2.72, notably a 25% smaller than the
value for P2

2
ðρ4PN

22
Þ. This is needed to compensate for what

seems to be an incorrectly large radiation reaction during
the inspiral. With this vision in mind, one can better
understand the left panels of Fig. 3 and in particular the
meaning of the fact that the phase difference ΔϕEOBNR

22
≡

ϕEOB
22

− ϕNR
22

is positive: the radiation-reaction-dominated
inspiral progresses faster than the NR one, so that ϕEOB

22
>

ϕNR
22

and thus ΔϕEOBNR
22

> 0. This effect is compensated by
the repulsive character of the EOB dynamics that is
magnified by tuning ac

6
so that the LSO occurs at a rather

small value of r. With the same rationale in mind, it is
similarly easy to interpret the right panels of Fig. 3, that
exhibit a negative phase difference that begins to grow
already during the late inspiral. This indicates that the effect
of radiation reaction (mainly related to the amplitude of ρ22
being too small) is insufficient (with respect to the NR
benchmark) and thus the transition from inspiral to plunge,
merger, and ringdown is delayed with respect to the

0 0.05 0.1 0.15 0.2 0.25

-120

-100

-80
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-40

-20

0

20

FIG. 2. Behavior of ac
6
for different approximations to the ρ22

function. The 4PN-accurate function (in Padé-resummed form)
entails values of ac

6
that are smaller than the case with ρ22 at 3þ2

PN accuracy in Taylor-expanded form. This mirrors a more
attractive conservative dynamics (the radius of the LSO is larger,
see Table II) that compensates for the weaker action of radiation
reaction due to P2

2
ðρ4PN

22
Þ < ρ3

þ2PN
22

, as shown in Fig. 1. The 4PN-
NR line, that lies between the other two, refers to the case where
the analytical ν dependence in the 4PN is replaced by a suitably
NR-informed one, consistently with Fig. 10 below. See text for
additional details.

FIG. 3. Left panels: EOB/NR phasings obtained with ρ3
þ2PN

22

and ac
6
given by Eq. (35). Right panels: EOB/NR phasings

obtained with ρ4PN
22

and ac
6
given by Eq. (36). The dash-dotted

vertical lines in the left part of each panel indicate the alignment
window. The dashed line in the right part of each panel marks the
NR merger location.

3This is consistent with, but replaces, the function ac
6
¼

175.5440ν3 þ 487.6862ν2 − 471.7141νþ 0.8178 of [13], which
is also represented as a dashed line in Fig. 2 for completeness.
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NR case. The quantitative assessment of the quality of our
new EOB model is finally completed by computing the
EOB/NR unfaithfulness. Since this quantity was computed
in Ref. [13] using the 3þ2 PN expression of ρ22, it is also
pedagogically useful to compute it here with the 4PN-
resummed model. Figure 4 reports the values of F̄ for a
sample of nonspinning binaries with 1 ≤ q ≤ 10 stepped by
0.5. The performance of the 4PN model is substantially
comparable to that of the 3þ2 PN one, although one has a
small gain for high masses (cf. Fig. 12 in [13]). With this so
well under control, we are ready to move to discussing the
spin sector of the model.

B. Spin-aligned and EOB/NR performance
in the quasicircular case

To complete the spin sector, we need to NR-inform the
N3LO effective spin-orbit parameter c3 introduced above
(see [33]). This procedure was already implemented in
previous versions of the TEOBRESUMS-DALÍ model [7,10],
but it was always found complicated to reduce the EOB/NR

unfaithfulness for large, positive values of the spins, as
discussed extensively in Ref. [10]. We find that the new
analytical setup finally allows us to overcome this problem.
The NR-informed analytical expression for c3 is obtained
using the same functional form and the same set of SXS NR
data of Ref. [13]. It reads

c3ðν; ã0; ã12Þ ¼ c¼
3
þ c≠

3
; ð37Þ

where

c¼
3
≡ p0

1þ n1ã0 þ n2ã
2

0
þ n3ã

3

0
þ n4ã

4

0

1þ d1ã0
; ð38Þ

c≠
3
≡ ðp1ã0 þ p2ã

2

0
þ p3ã

3

0
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

þ p4ã0ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

þ ðp5ã12 þ p6ã
2

12
Þν2: ð39Þ

The NR configurations we used to inform c3 are listed in
Tables IX and X in Appendix D. For each configuration,
we determine the best-guess value of c3 via time-domain
phasing comparison. Then, the resulting values are fitted
using the above functional form. The coefficients of the
fit are reported in Table III. Since this model relies
on 4PN analytical information, we will refer to it as
TEOBRESUMS-DALÍ4PN-analytic or just DALÍ4PN-analytic for
simplicity.
We focus first on the l ¼ m ¼ 2 waveform mode and

estimate the EOB/NR unfaithfulness F̄EOBNR with the
Advanced LIGO PSD. Figure 5 shows F̄EOBNR computed
all over the 534 spin-aligned datasets of the SXS catalog.
The left panel of the figure shows F̄EOBNR versus the
total mass, while the right panel the maximum value for
each configurations, F̄max

EOBNR. We see that the unfaithful-
ness always lies below the 1% threshold except for a
few outliers in the equal-mass, high (positive) spin corner,
that in any case do not exceed the 2% level. This result
alone represents an improvement with respect to previous

TABLE I. Data used to NR-inform the nonspinning section of
the model(s) with various choices for radiation reaction. From left
to right: the Taylor-expanded ρ22 function at 3þ2 PN accuracy
(ρ3

þ2PN
22

); the (2, 2) Padé-resummed ρ22 function at 4PN accuracy
(ρ4PN

22
); the (2, 2) Padé resummed ρ22 at formal 4PN accuracy with

the NR-informed ν dependence of the 4PN coefficient c4. The
corresponding values of cν

4
are listed in the last column of the

table. The fits of the various ac
6
points are illustrated in Fig. 2.

Note that the q ¼ 6 data are used only when ρ3
þ2PN
22

is used.

# ID q ac;3
þ2PN

6
ac;4PN
6

ac;4PN−NR
6

cν
4

1 SXS:BBH:0180 1 −83 −101 −91.9 −13.5
2 SXS:BBH:0169 2 −77.8 −91.5 −84 −11.4
3 SXS:BBH:0168 3 −68.7 −82.5 −76 −8.5
4 SXS:BBH:0166 6 −49.3 −66 … …

5 SXS:BBH:0299 7.5 −43.1 −61 −52.5 −2.5
6 SXS:BBH:0302 9.5 −36.8 −55.5 −47.5 −1.1

TABLE II. Properties of the last stable orbit (LSO) obtained
with the NR-informed ac

6
using ρ3þ2PN

22
or P2

2
ðρ4PN

22
Þ with the

analytical or the NR-informed 4PN coefficient (4PN-NR case).
Lowering ac

6
as is needed when using P2

2
ðρ4PN

22
Þ entails a larger

value of rLSO and thus a faster plunge, so to compensate that
P2

2
ðρ4PN

22
Þ < ρ3

þ2PN
22

during the late inspiral as shown in Fig. 1. The
4PN-NR value is similarly understood by comparing with the NR
tuned P2

2
ðρ4PN

22
Þ in Fig. 10.

Model pLSO
φ rLSO uLSO

3þ2PN 3.034 2.72 0.367
4PN 3.191 4.092 0.244
4PN-NR 3.167 3.631 0.275

TEOBRESUMS-GIOTTO 3.225 4.517 0.221
Schwarzschild 3.464 6.0 0.16̄

FIG. 4. EOB/NR unfaithfulness for the l ¼ m ¼ 2 mode in the
nonspinning for all SXS nonspinning datasets available (with 1 ≤

q ≤ 10 and q ¼ 15) using the 4PN-accurate (resummed) ρ22
function. The performance is similar to, though slightly better
than, the one obtained for ρ22 in Taylor-expanded form at 3þ2 PN
accuracy, Fig. 12 in Ref. [13].
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work [7]. It is also useful to provide a direct comparison
with waveforms generated with the NR surrogates
NRHYBSUR3DQ8 [49] and NRHYBSUR2DQ15 [50]. We
generate 1000 randomly sampled configurations with
q∈ ½1; 8�, total mass M∈ ½40; 140�M⊙ and dimensionless
spins jχij < 0.8 and compute mismatches in the frequency
interval between [20, 2048] Hz. Similarly, when working
with NRHYBSUR2DQ15, we consider another 1000 randomly
sampled configurations with q∈ ½8; 15�, and dimensionless
spins jχ1j ≤ 0.5, χ2 ¼ 0, corresponding to the validity
range of the surrogate model. The values of F̄ are reported
in Fig. 6, together with those corresponding to the
quasicircular version of the model, TEOBRESUMS-GIOTTO,
calculated in Ref. [10]. The figure clearly indicates that the
quasicircular limit of DALÍ4PN-analytic is acceptably consis-
tent with the two NR surrogate models and with the basic
quasicircular model.

1. Direct comparison with GIOTTO

To further investigate differences between the two
avatars of the model, we compute mismatches between
DALÍ4PN-analytic and TEOBRESUMS-GIOTTO using the same
settings employed for the mismatches above, but extend-
ing the range of mass ratios and spins to q∈ ½1; 15�,

χi ∈ ½−0.9; 0.9�, and considering 104 binaries. The results
are shown in Fig. 7. The two models are in very good
agreement with one another, with mismatches below the
1% threshold for 98% of the configurations and below
0.1% for 88% of them. The maximum mismatch is ∼4%,
found for a q ∼ 13, χ1 ∼ 0.8 configuration.
The agreement between the two models further improves

when comparing them using a lower frequency cutoff of
10 Hz for the mismatch computation and the Einstein
Telescope PSD [51]. While the higher mismatch tail
remains similar to the one found with the Advanced
LIGO PSD, both in terms of value and of the corresponding
configurations, the fraction of systems with mismatches
below 0.1% increases to 91%, with a considerable number
of binaries having mismatches below 10−5. This result
indicates that the two models are in very good agreement
with one another during the inspiral phase.
We remind the reader that this consistency is, a priori,

not a trivial achievement because of the many theoretical
differences between the two models. We are now expecting
that this new version of DALÍ4PN-analytic will allow us to
reduce (or eliminate) the systematics in parameter estima-
tion that were found using previous versions of the
model [4].

TABLE III. Coefficients for the fit of c3 given by Eq. (37) for the two NR-informed model discussed in the main text. The
DALÍ4PN-analytic one incorporates the 4PN information in the nonspinning ρorb

22
function; in the DALÍ4PN-NRTuned model the same term is

instead informed using nonspinning NR waveforms.

Model

c¼
3
≡ p0ð1þ n1ã0 þ n2ã

2

0
þ n3ã

3

0
þ n4ã

4

0
Þ=ð1þ d1ã0Þ

c≠
3
≡ ðp1ã0 þ p2ã

2

0
þ p3ã

3

0
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

þ p4ã0ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

þ ðp5ã12 þ p6ã
2

12
Þν2

TEOBRESUMS* p0 n1 n2 n3 n4 d1 p1 p2 p3 p4 p5 p6

DALÍ4PN-analytic 38.625 −0.105187 −0.758427 0.183613 0.057817 0.905420 23.058 12.544 −0.0157 −119.2596 64.4709 54.6568
DALÍ4PN-NRtuned 44.616 −1.609364 0.807277 −0.220357 0.045408 −0.7704 5.67453 −1.214 12.3433 −16.5925 −0.7784 −55.1691
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FIG. 5. EOB/NR unfaithfulness for the l ¼ m ¼ 2 mode. The performance of the model gets progressively worst in the equal-mass,
high-spin corner. This is consistent with a previous version of the model, but less pronounced.
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2. Higher waveform multipoles

Although the main focus of this work lies in the
examination of the quadrupolar ðl; jmjÞ ¼ ð2; 2Þ mode,
TEOBRESUMS can be employed to generate waveforms
encompassing higher modes as well. In the realm of
inspiral-to-merger-only waveforms, the model can compute
waveforms containing modes up to l ¼ m ¼ 8, while the
complete merger-ringdown phase is accessible for
ð2; j1jÞ; ð3; j3jÞ, and ð4; j4jÞ modes, utilizing the fits
described in [13,52]. See in particular Ref. [13] for a
description of the modifications needed within the
TEOBRESUMS framework to use the NR-informed ringdown
fits of Ref. [52]. The careful reader will notice that the full
content of merger ringdown higher modes in this version of

TEOBRESUMS is comparatively lower than its quasicircular
counterpart, TEOBRESUMS-GIOTTO [13]. This discrepancy
arises from the intricacies of modeling binaries on non-
circularized orbits, where the conventional strategy
employed for transitioning between inspiral, plunge, and
merger phases faces challenges. EOB models designed for
quasicircular orbits incorporate next-to-quasicircular NQCs
in the waveform. These corrections account for noncircular
effects during plunge, ensuring a seamless connection
between pre- and postmerger waveforms. In contrast, when
the binary system is noncircularized from the outset, this
conventional strategy must be reevaluated. Reference [7]
introduced a sigmoid function to smoothly eliminate the
noncircular Newtonian prefactor, which might become
inaccurate close to merger, and progressively activate the
NR-informed NQCs. While this method has proven simply
effective for the (2, 2) mode, for higher modes its interplay
with the so-called NQC basis might generate inaccuracies
around the waveform peak in some regions of the parameter
space. While an in-depth characterization of these effects
lies beyond the scope of this work here we present a
preliminary, simple improvement to the (2, 1) mode that
allows us to increase the NR faithfulness of the multipolar
model. Let us briefly review some basic information about
NQC corrections within the present context. We address the
reader to Sec. IIB of Ref. [7]. The EOB multipolar NQC
corrections to the waveform are formally given by

ĥNQC
lm ¼ ð1þ alm

1
nlm
1

þ alm
2
nlm
2
Þeiðblm1 nlm

3
þblm

2
nlm
4

Þ; ð40Þ

where falmi ; blmi g are coefficients determined following the
procedure detailed in, e.g., Ref. [8], and fnlm

1
;…; nlm

4
g are

functions depending on the EOB dynamical variables.
Similar to other EOB building blocks, there is some
freedom in choosing these functions, given their effective
nature. So far, the choice of nis implemented in the DALÍ

model differs slightly from those used in the GIOTTO model
and is the one detailed at the end of Sec. IIB of Ref. [7].
Using these functions, we find that for some configurations,
characterized by large, positive spins, the NQC correction
to the frequency evolution presents an unphysical repentine
increase during the late inspiral. We find that this unwanted
behavior is easily cured by using the following n4 function

n21
4

¼ rΩpr� ; ð41Þ

instead of pr�=ðrΩ1=3Þ previously implemented. This
simple modification allows us to obtain a more correct
frequency evolution for the considered mode.
After performing this improvement, we compute the

EOB/NR surrogate unfaithfulness considering higher
modes for the same configurations considered in Fig. 6.
Following the same procedure as Ref. [13], we fix the
inclination angle to ι ¼ π=3 and minimize the unfaithful-
ness over the sky position of the binary. Results are shown

FIG. 7. Direct comparison between DALÍ4PN-analytic and
TEOBRESUMS-GIOTTO. We compute mismatches for 104 binaries
with q∈ ½1; 15�, χi ∈ ½−0.9; 0.9�.We use two different noise curves
for the computation: the Advanced LIGO PSD (blue) and the
Einstein Telescope PSD (orange). For the former, mismatches are
computed in the frequency range [20, 2048] Hz, while, for the
latter, we use [10, 2048] Hz. The two models are in very good
agreement, in spite of their theoretical differences.

FIG. 6. EOB/NR unfaithfulness for the l ¼ m ¼ 2 model
against the NR surrogate NRHYBSUR3DQ8 and NRHYBSUR2DQ15.
In the first case, q∈ ½1; 8�, M∈ ½40; 140�M⊙ and dimensionless
spins are jχij < 0.8. In the second case q∈ ½8; 15�, jχ1j ≤ 0.5
and χ2 ¼ 0.
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in Fig. 8. The EOB/NR unfaithfulness obtained with the
generic-orbits model is overall consistent with the one
computed with the quasicircular model, though character-
ized by longer tails towards larger values of mismatch.
Such tails can reach up to ∼10% for binaries with large,
positive spins, although the model is NR faithful to more
than 1% for a large portion of the parameter space.

C. Eccentric inspirals

Let us now consider the performance of the model for
mildly eccentric bound systems. Figure 9 shows the EOB/
NR unfaithfulness versus M computed with the 28 SXS
simulations of eccentric inspirals currently publicly
available [43]. In spite of these datasets being rather old,
to date these remain the only SXS data available for
noncircular orbits spanning a considerable number of
orbits. Other eccentric NR waveforms do exist, e.g., from
the RIT [53] and MAYA catalogs [54], but are typically
shorter. The properties of the datasets considered are
collected in Table IV. Following previous works, when
performing EOB/NR comparisons it is necessary to tune
two parameters—the initial frequency at apastron ω0 and
initial nominal eccentricity e0—to correctly match the EOB
and NR inspirals. This is required, in our case, because for
simplicity the EOB dynamics is always started at apastron,
with zero initial radial momentum. This choice is consistent
with previous works of this lineage, from the very first
development of an eccentric model within the TEOBRESUMS

framework [2]. Notably, similar coverage of the parameter
space can be obtained by fixing the initial frequency, and
allowing the initial (true or mean) anomaly4 to vary. This is,

for example, the choice made in Ref. [55]. As also pointed
out in this reference, (i) starting the eccentric inspiral at the
apastron and varying on initial frequency and eccentricity is
equivalent to (ii) starting the eccentric inspiral at fixed

FIG. 8. EOB/NR unfaithfulness for the higher modes, for the
same configurations considered in Fig. 6.
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FIG. 9. EOB/NR unfaithfulness for the l ¼ m ¼ 2 mode
computed over the 28 eccentric inspiral SXS simulations publicly
available of Table IV. The horizontal lines mark the 0.03 and 0.01
values. F̄max

EOBNR is always below 0.01, although the performance
slightly degrades for large, positive spins consistently with the
quasicircular limit behavior.
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FIG. 10. Informing an effective 4PN term cν
4
in ρ22 using NR

data, Eq. (43) in the equal-mass case. The bottom panel shows the
relative difference normalized to the 4PN analytic curve, δρ22,
that is 0.6% at xLSO ∼ 0.25 (see Table II). Such a (tiny) difference
is actually necessary to lower the EOB/NR unfaithfulness by
approximately one order of magnitude, up to ∼10−4, see Fig. 11.

4We remind the reader that, for a given eccentricity and
semilatus rectum, anomalies uniquely identify the position of
the bodies in the elliptic orbit. The inversion points (i.e., apastron
and periastron) are characterized by zero initial radial momen-
tum, while a generic point on the orbit needs not follow this
requirement, and may have nonzero initial radial momentum.
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initial frequency and varying on eccentricity and anomaly.
Both choices entail a complete coverage of the parameter
space, though the approach (ii) is intuitively closer to what
usually done for quasicircular binaries. In Appendix C we
discuss the implementation of the anomaly and a descrip-
tion of initial data that is close, though different, to the one
of Ref. [55]. However, for consistency with previous work,
we here keep giving initial data at apastron. Figure 9 shows
the EOB/NR unfaithfulness versus M. The results improve
with respect to previous work, with F̄EOBNR ≲ 1% all over
the dataset sample. The plot is complemented by Table IV.

D. Scattering configurations

We conclude this section by considering unbound
configurations, and in particular BBH scatterings. Rather
than computing and comparing waveforms, a nontrivial
feat from the NR side, we directly gauge the goodness
of the EOB dynamics by performing comparisons of the
gauge-invariant EOB and NR scattering angles. Following
standard procedures already adopted in previous work, we
consider the nonspinning configurations of Refs. [11,44]
(see Table V) and the spinning configurations of Ref. [45]
(see in Table VI). We do not perform detailed comparisons
for the spinning simulations presented in Ref. [11] because

FIG. 11. Nonspinning case: NR informing at the same time
the EOB interaction potential [via ac

6
, Eq. (42)] and the resummed

radiation reaction via cν
4
, Eq. (43). Top panels: two illustrative

time-domain phasings. Bottom panels: EOB/NR unfaithfulness
for all SXS nonspinning datasets available (up to q ¼ 15) with
both the Advanded-LIGO and ET-D [47,48,56] sensitivity
designs. Phase differences accumulated at merger are ≲0.1 rad,
that yield F̄max

EOBNR ∼ 10−4.

TABLE IV. SXS simulations with eccentricity analyzed in this work. From left to right: the ID of the simulation from the SXS catalog;
the mass ratio q≡m1=m2 ≥ 1 and the individual dimensionless spins ðχ1; χ2Þ; the time-domain NR phasing uncertainty at merger δϕNR

mrg

obtained comparing the highest and second highest resolution; the estimated NR eccentricity at first apastron eNRωa
; the NR frequency of

first apastron ωNR
a ; the initial EOB eccentricity eEOBωa

, and apastron frequency ωEOB
a used to start the EOB evolution; the maximal NR

unfaithfulness uncertainty, F̄max
NRNR and the initial frequency Mfmin used in the EOB/NR unfaithfulness computation shown in Fig. 9

using the 4PN analytical information in the flux and in Fig. 13 using the corresponding NR-tuned one. The last two columns report the
corresponding maximum values of F̄max

EOBNR, the analytical, F̄max;4PNan
EOBNR , and the NR-tuned one, F̄max;4PNnr

EOBNR .

#1 id ðq; χ1; χ2Þ δϕNR
mrg[rad] eNRωa

ωNR
a eEOBωa

ωEOB
a F̄max

NRNR½%� Mfmin F̄
max;4PNan
EOBNR F̄

max;4PNar
EOBNR

1 BBH:1355 (1, 0, 0) þ0.92 0.0620 0.03278728 0.0888 0.02805750 0.012 0.0055 0.173 0.026
2 BBH:1356 (1, 0, 0) þ0.95 0.1000 0.02482006 0.15038 0.019077 0.0077 0.0044 0.159 0.052
3 BBH:1358 (1, 0, 0) þ0.25 0.1023 0.03108936 0.18082 0.021238 0.016 0.0061 0.328 0.065
4 BBH:1359 (1,0,0) þ0.25 0.1125 0.03708305 0.18240 0.021387 0.0024 0.0065 0.441 0.327
5 BBH:1357 (1, 0, 0) −0.44 0.1096 0.03990101 0.19201 0.01960 0.028 0.0061 0.198 0.101
6 BBH:1361 (1, 0, 0) þ0.39 0.1634 0.03269520 0.23557 0.020991 0.057 0.0065 0.357 0.113
7 BBH:1360 (1, 0, 0) −0.22 0.1604 0.03138220 0.2440 0.019508 0.0094 0.0065 0.254 0.085
8 BBH:1362 (1, 0, 0) −0.09 0.1999 0.05624375 0.3019 0.01914 0.0098 0.0065 0.244 0.119
9 BBH:1363 (1, 0, 0) þ0.58 0.2048 0.05778104 0.30479 0.01908 0.07 0.006 0.520 0.381
10 BBH:1364 (2, 0, 0) −0.91 0.0518 0.03265995 0.0844 0.025231 0.049 0.062 0.089 0.054
11 BBH:1365 (2, 0, 0) −0.90 0.0650 0.03305974 0.110 0.023987 0.027 0.062 0.109 0.073
12 BBH:1366 (2, 0, 0) −6 × 10−4 0.1109 0.03089493 0.14989 0.02577 0.017 0.0052 0.201 0.148
13 BBH:1367 (2, 0, 0) þ0.60 0.1102 0.02975257 0.15095 0.0260 0.0076 0.0055 0.108 0.095
14 BBH:1368 (2, 0, 0) −0.71 0.1043 0.02930360 0.14951 0.02512 0.026 0.0065 0.169 0.201
15 BBH:1369 (2, 0, 0) −0.06 0.2053 0.04263738 0.3134 0.0173386 0.011 0.0041 0.559 0.560
16 BBH:1370 (2, 0, 0) þ0.12 0.1854 0.02422231 0.31708 0.016779 0.07 0.006 0.430 0.217
17 BBH:1371 (3, 0, 0) þ0.92 0.0628 0.03263026 0.0912 0.029058 0.12 0.006 0.179 0.115
18 BBH:1372 (3, 0, 0) þ0.01 0.1035 0.03273944 0.14915 0.026070 0.06 0.006 0.105 0.060
19 BBH:1373 (3,0,0) −0.41 0.1028 0.03666911 0.15035 0.02529 0.0034 0.0061 0.749 0.705

(Table continued)
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they are limited to rather extreme cases, with large energies
and spins, and do not present a systematic and detailed
analysis of the numerical error, which was instead per-
formed in Ref. [45]. Collectively, these result suggest that

the analytical EOB description for spin-aligned binaries
becomes less accurate in the part of the parameter space
that is close to the capture threshold. This is evident for the
data of Ref. [45] listed in Table VI, where we can see the

TABLE V. Comparison between EOB and NR scattering angle for nonspinning binaries using either ρ3
þ2PN

22
, the resummed (analytical)

ρ4PN
22

or the NR-tuned one. The NR values are taken from the nonspinning configurations from Refs. [11,44].

# r3
þ2PN

min r4PNanmin r4PNnrmin ENR
in =M JNRin =M2 χNR χEOB

3þ2PN
χEOB
4PN-Analytic χEOB

4PN-NRTuned [%] [%] [%]

1 3.430 3.375 3.408 1.0225555(50) 1.099652(36) 305.8(2.6) 315.94 346.83 326.79 3.31 13.42 6.86
2 3.760 3.738 3.751 1.0225722(50) 1.122598(37) 253.0(1.4) 258.54 265.87 261.06 2.19 5.09 3.18
3 4.059 4.050 4.057 1.0225791(50) 1.145523(38) 222.9(1.7) 225.25 227.85 225.95 1.05 2.22 1.37
4 4.862 4.862 4.863 1.0225870(50) 1.214273(40) 172.0(1.4) 171.62 171.77 171.51 0.22 0.13 0.28
5 5.352 5.353 5.353 1.0225884(50) 1.260098(41) 152.0(1.3) 151.31 151.27 151.18 0.45 0.48 0.54
6 6.503 6.504 6.504 1.0225907(50) 1.374658(45) 120.7(1.5) 119.99 119.92 119.92 0.58 0.64 0.64
7 7.601 7.602 7.602 1.0225924(50) 1.489217(48) 101.6(1.7) 101.09 101.05 101.05 0.49 0.54 0.53
8 8.675 8.675 8.675 1.0225931(50) 1.603774(52) 88.3(1.8) 87.98 87.95 87.96 0.36 0.39 0.39
9 9.735 9.735 9.735 1.0225938(50) 1.718331(55) 78.4(1.8) 78.18 78.16 78.16 0.28 0.30 0.30
10 10.788 10.789 10.788 1.0225932(50) 1.832883(58) 70.7(1.9) 70.50 70.49 70.49 0.28 0.30 0.29

11 3.02 … 2.97 1.035031(27) 1.1515366(78) 307.13(88) 338.0382 plunge 393.73 10.06 … 28.2
12 3.91 3.90 3.91 1.024959(12) 1.151845(12) 225.54(87) 230.0844 234.04 231.37 2.01 3.77 2.58
13 4.41 4.41 4.41 1.0198847(82) 1.151895(11) 207.03(99) 207.5565 208.43 207.6076 0.26 0.68 0.28
14 4.99 4.99 4.99 1.0147923(76) 1.151918(16) 195.9(1.3) 194.6248 194.6735 194.4233 0.67 0.64 0.77
15 6.68 6.68 6.68 1.0045678(42) 1.1520071(73) 201.9(4.8) 200.1620 199.9873 200.0012 0.87 0.95 0.94

TABLE IV. (Continued)

#1 id ðq; χ1; χ2Þ δϕNR
mrg[rad] eNRωa

ωNR
a eEOBωa

ωEOB
a F̄max

NRNR½%� Mfmin F̄
max;4PNan
EOBNR F̄

max;4PNar
EOBNR

20 BBH:1374 (3, 0, 0) þ0.98 0.1956 0.02702594 0.314 0.016938 0.067 0.0059 0.473 0.385

21 BBH:89 ð1;−0.50; 0Þ … 0.0469 0.02516870 0.07194 0.01779 … 0.0025 0.214 0.0749
22 BBH:1136 ð1;−0.75;−0.75Þ −1.90 0.0777 0.04288969 0.1209 0.02728 0.074 0.0058 0.356 0.152
23 BBH:321 ð1.22;þ0.33;−0.44Þ þ1.47 0.0527 0.03239001 0.07621 0.02694 0.015 0.0045 0.204 0.033
24 BBH:322 ð1.22;þ0.33;−0.44Þ −2.02 0.0658 0.03396319 0.0984 0.026895 0.016 0.0061 0.203 0.0486
25 BBH:323 ð1.22;þ0.33;−0.44Þ −1.41 0.1033 0.03498377 0.1438 0.02584 0.019 0.0058 0.131 0.0745
26 BBH:324 ð1.22;þ0.33;−0.44Þ −0.04 0.2018 0.02464165 0.29425 0.01894 0.098 0.0058 1.209 0.671
27 BBH:1149 ð3;þ0.70;þ0.60Þ þ3.00 0.0371 0.03535964 0.06237 0.02664 0.025 0.005 0.660 1.166
28 BBH:1169 ð3;−0.70;−0.60Þ þ3.01 0.0364 0.02759632 0.04895 0.024285 0.033 0.004 0.178 0.129

TABLE VI. Comparison between EOB and the (average) NR scattering angle for some of the equal-mass, spin-aligned, configurations
of Ref. [45]. All datasets share the same initial angular momentum JNRin =M2 ¼ 1.14560. The EOB angles are calculated either using the
(resummed) analytical ρ4PN

22
or the effective 4PN NR-tuned one, with the corresponding values of ac

6
and c3. Note that for large values of

the (anti-)aligned spins the EOB dynamics plunges instead of scattering.

χ1 χ2 ã0 ENR
in =M r4PNanmin r4PNnrmin χNR χEOB

4PN-Analytic χEOB
4PN-NRTuned ΔχEOBNR

4PNan ½%� ΔχEOBNR
4PNnr ½%�

−0.3 −0.30 −0.30 1.022690 … … plunge plunge plunge … …

−0.25 −0.25 −0.25 1.022680 … … 367.55 plunge plunge … …

−0.23 −0.23 −0.23 1.022670 … … 334.35 plunge plunge … …

−0.20 −0.20 −0.20 1.022660 3.46 3.50 303.88 386.9102 352.5517 27.32 16.02
−0.15 −0.15 −0.15 1.022650 3.65 3.68 272.60 305.6974 294.9987 12.14 8.22
−0.10 −0.10 −0.10 1.022650 3.80 3.82 251.03 269.0546 263.6445 7.18 5.03
−0.05 −0.05 −0.05 1.022640 3.93 3.94 234.57 245.3143 242.1832 4.58 3.25

(Table continued)
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sequence as the effective spin ã0 is decreased, but the same
phenomenology is present also in the data of Ref. [11],
although they were not such to systematically cover the
transition.
Let us finally mention that, for the nonspinning con-

figurations of Table V, we also list EOB calculations that
use the model based on 3þ2 PN Taylor-expanded ρ22
function. For the most extreme configurations (first rows
in Table V) the corresponding angles are closer to the
NR ones than those obtained using the fully analytical 4PN
ρ22. The fact that a model that is less NR faithful for
quasicircular configurations is actually more NR faithful
for scattering configurations highlights the difficulty in
constructing a model capable of covering well all configu-
rations, as well as the delicate interplay between dissipative
and conservative effect in the description of the dynamics.
In the next section we will see that it is actually possible to
do better by carefully improving the description of the
radiation reaction using NR information. The delicacy of
the interplay between the various effects is evident by
looking at dataset number 11 in Table V: in the 3þ2 PN case
we have a scattering (that is, at least, qualitatively con-
sistent with the NR prediction) while in the 4PN case the
system plunges.

IV. NONCIRCULARIZED WAVEFORM MODEL
WITH NR-INFORMED RADIATION REACTION

The analysis we have carried out so far has highlighted
the importance of the analytical choice made for the
radiation reaction. In particular, it has shown that its effect
cannot be completely absorbed/corrected by NR tuning ac

6
.

We have two models with different performances versus
NR waveforms. From the above discussion, it seems clear
that the 3þ2PN ρ22 is too large and entails an incorrect
phase acceleration, with a positive phase difference accu-
mulated with respect to the NR waveform up to merger. On
the other hand, the P2

2
ðρ4PN

22
Þ function, which is smaller,

yields an accumulated phase difference up to merger is
negative and nonnegligible. On the basis of this analysis we
thus expect that a function that is slightly larger than
P2

2
ðρ4PN

22
Þmight succeed in improving the EOB/NR phasing

agreement up to the 0.01 rad level during the latest orbits
before the beginning of the plunge. As a first attempt, we
took ρ22 at 4þ1PN with an effective 5PN parameter linear in
ν that can be tuned. This is then resummed using either a
(2, 3) or a (3, 2) Padé approximant. Unfortunately we find
that in both cases the Padé approximant develops a spurious
pole, which prevents us from following this route. As an
alternative, we can, instead, still work at 4PN accuracy, but
replace the exact 4PN ν dependence with an effective term
of the form νcν

4
x4, where cν

4
is a parameter to be determined

via EOB/NR comparison. Schematically, the 4PN term in
ρ22 thus reads ðc0 þ νcν

4
Þx4, where now cν

4
is a parameter

intended to replace the analytical ν dependence of the
function in Eq. (5). For consistency with our previous
choice, we then take the (2, 2) Padé approximant that now
depends on cν

4
. It turns out that it is easy to tune c4 to reduce

the dephasing in the last part of the inspiral; similarly, one
can additionally tune ac

6
so to adjust the phase difference

through late plunge, merger and ringdown, so to to have it
negative and monotonically decreasing.5 By iteratively
tuning both cν

4
and ac

6
one eventually finds that the best

values approximately lie on two straight lines and can be
accurately fitted as follows:

ac
6
¼ −24.453 − 270.25ν; ð42Þ

cν
4
¼ 5.3896 − 75.26ν: ð43Þ

TABLE VI. (Continued)

χ1 χ2 ã0 ENR
in =M r4PNanmin r4PNnrmin χNR χEOB

4PN-Analytic χEOB
4PN-NRTuned ΔχEOBNR

4PNan ½%� ΔχEOBNR
4PNnr ½%�

þ0.00 0.0 0.0 1.022640 4.04 4.05 221.82 228.1024 226.1822 2.83 1.97
þ0.10 þ0.10 þ0.10 1.022650 4.24 4.24 202.61 203.7849 203.0811 0.58 0.23
þ0.20 þ0.20 þ0.20 1.022660 4.40 4.40 187.84 186.8409 186.7207 0.53 0.59
þ0.20 −0.20 0.0 1.022660 4.04 4.05 221.82 228.1338 226.2067 2.85 1.98
þ0.30 þ0.30 þ0.30 1.022690 4.53 4.53 176.59 174.0689 174.2778 1.43 1.31
þ0.40 þ0.40 þ0.40 1.022740 4.65 4.65 167.54 163.9378 164.3545 2.15 1.90
þ0.60 þ0.60 þ0.60 1.022880 4.85 4.84 154.14 148.6040 149.3273 3.59 3.12
þ0.60 0.0 þ0.30 1.022760 4.53 4.53 177.63 174.2648 174.2686 1.89 1.89
þ0.70 −0.30 þ0.20 1.022840 4.38 4.38 190.41 187.2741 186.7755 1.65 1.91
þ0.80 −0.80 0.0 1.023090 4.01 4.02 221.68 229.5845 227.4832 3.57 2.62
þ0.80 −0.50 þ0.15 1.022940 4.30 4.30 198.99 195.3268 194.4505 1.84 2.28
þ0.80 þ0.20 þ0.50 1.022880 4.75 4.75 162.07 155.7832 156.1319 3.88 3.66
þ0.80 þ0.50 þ0.65 1.022950 4.89 4.88 152.30 145.5650 146.3084 4.42 3.94
þ0.80 þ0.80 þ0.80 1.023090 5.00 4.99 145.36 137.3641 139.1984 5.50 4.24

5We remind the reader that the idea of NR informing at the
same time the conservative and nonconservative part of the
dynamics is not new as it dates back to some pioneering EOB/NR
works [32,57,58]. In particular, note that Ref. [59] already
explored the possibility to NR inform an effective 4PN correc-
tions to the waveform and radiation reaction.
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It is interesting to note that the fractional difference
between the NR-tuned cν

4
and the analytic one is at most

∼0.6% around the LSO crossing. In the flux, this means
∼1.2% fractional difference between the fluxes. Focusing
first on the EOB/NR comparisons for nonspinning con-
figurations, Fig. 11 gives us a flavor of the EOB/NR
performance that can be achieved this way. In the top panel
we show the time-domain phasing for two illustrative mass
ratios, q ¼ 1 and q ¼ 6, while the bottom panels display
F̄EOBNR for 19 different values6 of q. The plot shows that
an accumulated phase difference ≃0.1 rad translates in
F̄EOBNR ∼ 10−4, the level of accuracy that we may expect
to be needed for 3G detectors.
When considering spinning system, we have to deter-

mine a new expression of c3 by EOB/NR phasing com-
parison. In doing so, one quickly realizes that the current
implementation of the spin-dependent waveform terms
yields an emission of gravitational radiation (and thus
backreaction of the system) that exceeds the NR prediction:
the transition from inspiral to plunge occurs too fast. This
points us towards the identification of systematic inaccur-
acies also in this building block of the model, that thus
should be modified accordingly. As a minimal attempt in
this direction, for the m ¼ even modes up to l ¼ 4 we
implement the orbital-factorized (and resummed) ampli-
tudes introduced in Refs. [29,30]. Analytical expressions
constructed following this approach were found to agree
well with the corresponding numerical data in the test-mass
limit, although their potentialities were not explored in full
in the comparable mass case. The ρlm’s residual amplitudes
are written in orbital-factorized form

ρlm ¼ ρorb
lmρ̂

S
lm; ð44Þ

and then both functions are resummed. The ρorb
lms are the

same as those considered in the previous section; i.e., they
are resummed using Padé approximants. The ρ̂S

lm are
instead replaced by their inverse-Taylor resummed expres-
sions, ρ̄S

lm, which are defined as

ρ̄S
lm ¼ ½Tnðρ−1lmÞ�−1; ð45Þ

where Tn indicates the Taylor expansion of order n. The
ρ̄S
lm are then functions that formally read

ρ̄S
lm ¼ ð1þ clm

3=2x
3=2 þ clm

2
x2 þ clm

5=2x
5=2 þ clm

3
x3

þ clm
7=2x

7=2
…Þ−1; ð46Þ

where x is some (squared) velocity PN variables. Here
integer powers correspond to terms even in the spins, while
semi-integer powers to terms that are odd in the spin. In

particular, up to l ¼ 4, the m ¼ even functions that we
consider are explicitly given by

ρ̄S
22

¼
�

1þ
�

ã0

2
þ 1

6
X12ã12

�

x3=2 −
ã2
0

2
x2

þ
�

ã0

�

337

252
−

73

252
ν

�

þ X12ã12

�

27

28
þ 11

36
ν

��

x5=2

þ
�

ã2
0

�

11

42
þ 31

252
ν

�

þ ã1ã2

�

19

63
−
10

9
ν

�

−
179

252
X12ã12ã0

�

x3 þ
�

2083

2646
ã0 −

13

12
a3
0

þ X12ã12

�

ã2
0

12
þ 13367

7938

��

x7=2
�

−1

; ð47Þ

ρ̄S
32

¼
�

1þ
�

−
ã0

3 − 9ν
þ X12ã12

3 − 9ν

�

x1=2
�

−1

; ð48Þ

ρ̄S
44

¼
�

1þ
�

19

30
ã0 þ

1 − 21ν

30 − 90ν
X12ã12

�

x3=2
�

−1

; ð49Þ

ρ̄S
42

¼
�

1þ
�

ã0

30
þ 19 − 39ν

30 − 90ν
X12ã12

�

x3=2
�

−1

: ð50Þ

With this analytic choice, we proceed determining a new
expression for c3, with the same functional form discussed
above. The corresponding fitting coefficients are listed in
the second row of Table III. The model, now dubbed
DALÍ4PN-NRtuned, is then validated computing the unfaithful-
ness (using Advanced Ligo sensitivity) with all SXS
quasicircular NR simulations. The result is reported in
Fig. 12. The left panel of the figure shows F̄EOBNR versus
the total massM, while the right panel gives F̄max

EOBNR versus
ðã0; qÞ. This analysis indicates that the tuning of the
nonspinning flux eventually yields an improved EOB/
NR agreement for negative and mild spins, with a global
shift of all values towards the 10−4 goal. The performance
for eccentric configurations is reported in Fig. 13. Not
surprisingly, the NR-tuning of the nonspinning radiation
reaction allows for a general reduction of the EOB/NR
unfaithfulness even for eccentric bound systems. We
similarly recompute the scattering angle for all configura-
tions previously considered. The corresponding values are
listed in Tables Vand VI. Also in this case one sees that the
NR-tuning of the (nonspinning) flux eventually yields an
improve agreement between the NR and EOB scattering
angles.
To better understand the impact of these changes on the

EOB dynamics and put these numbers into perspective, it is
instructive to observe how the changes in the model reflect
on the potential energy. The left panel of Fig. 15 shows

Ecirc=M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðÊcirc
eff − 1Þ

q

where Êcirc
eff ¼ Að1þ p2

φu
2Þ

for configuration #1 in Table V for various choices of the
6We consider 1 ≤ q ≤ 10 with steps of 0.5 plus the q ¼ 15

case.

EFFECTIVE-ONE-BODY WAVEFORM MODEL FOR … PHYS. REV. D 110, 084001 (2024)

084001-15



potential A. The black line corresponds to χEOB
4PN-analytic ¼

346.83, while the red curve to χEOB
4PN-NRtuned ¼ 326.79. The

smaller value of the scattering angle is due to the fact that
the peak of the potential energy, corresponding to the
unstable orbit, is higher. By keeping the NR-informed
4PN-like radiation reaction, we find that fixing ac

6
¼ −85,

instead of the value ac
6
≃ −92 coming from Eq. (42), result

in an increase of the peak of the potential energy such to
yield for the scattering angle χEOB ¼ 308.76, i.e., with
approximately 1% fractional difference with the NR pre-
diction χNR ¼ 305.8. This shows that it is actually possible
to match the NR values consistently with their nominal
error bars by just a fine tuning of the A function (improved
EOB/NR agreement is evidently found also for the other
configurations).
An analogous explanation holds in the spinning case,

as highlighted in Fig. 16. The figure refers to the second
configuration of Table VI, ð1;−0.25;−0.25Þ, with the
NR-informed 4PN-effective radiation-reaction term. In this
case, the EOB model predicts a plunge, while NR gives
χNR ¼ 367.55 deg. Since the EOB and NR values in the
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FIG. 12. EOB/NR unfaithfulness for the l ¼ m ¼ 2 mode obtained with the NR-informed effective 4PN term in ρorb
22
, the inverse-

resummed spin-dependent radiation reaction and the consistently obtained fits given by Eqs. (42), (43) and the second row of Table III
for c3. Comparing with Fig. 5 one sees the largely improved EOB/NR unfaithfulness for negative and mildly positive spins. By contrast,
one finds a loss in accuracy for large, positive spins. This is understood as due to an overestimate of the action of the radiation reaction
force. See text for discussion.
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FIG. 13. EOB/NR unfaithfulness for the l ¼ m ¼ 2 mode
computed over the eccentric SXS simulations publicly available
using the TEOB-DALÍ4PN-NRtuned model, analogous of Fig. 9
above. The unfaithfulness is much smaller except for a single
outlier ∼1%. This configuration has ã0 ¼ 0.675 and F̄max

EOBNR,
which is consistent with the quasicircular value, ∼0.01, at
(3, 0.675), as illustrated by the right panel of Fig. 12.

FIG. 14. Eccentric case: understanding the unfaithfulness of
Figs. 9 and 13 in terms of time domain phasing for SXS:
BBH:1149, i.e., ð3;þ0.70;þ0.60Þ. The left panel corresponds to
DALÍ4PN-analytic and the right panel to DALÍ4PN-NRtuned. The
worsening of the F̄max

EOBNR from 4 × 10−3 (in Fig. 9) to ∼10−2

in Fig. 13 is due to the (approximate) doubling of the phase
difference at merger related to the improvable spin sector of
DALÍ4PN-NRtuned. See Sec. IVA for discussion.
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nonspinning case are rather consistent, with a fractional
difference ∼2%, we argue that the spin sector, though NR
informed by quasicircular simulations, might need to be
further modified to properly match the NR scattering angle.
In principle the effects are expected to be shared between
both the conservative and nonconservative part of the spin
sector of the model. As a first exploratory step, we only
decide to modify the Hamiltonian, looking for a value of c3
such to yield an acceptable EOB/NR consistency. This is
obtained by fixing c3 ¼ 110, that determines a rise in the
peak of the potential such to yield χEOB ≃ 363. This corres-
ponds to a large modification to the normalized gyro-
gravitomagnetic functions ðĜS; ĜS�Þ shown in the right panel
of Fig. 16. Clearly, this value of c3 will not yield an accurate
phasing in the quasicircular case. This simple analysis
thus highlights the complication of finding full consistency
between the quasicircular case and configurations that are
close to direct plunge. By contrast, the flexibility (and
robustness) of themodel is such that each case can bematched
accurately with the tuning of one single parameter. Note that
these effects were already pointed out in Ref. [11] using,
however, configurations with higher values of the (negative)
spins. Finally, is worth stressing that the current analysis
should be seen as essentially illustrative and qualitative.

A reduction of the EOB/NR disagreement between scattering
angles close to the threshold of capture might be also obtained
by modifying other sectors of the model, like the radiation
reaction or the noncircular part of the conservative dynamics,
e.g., the D function (see, e.g., an exploratory analysis along
these lines in Ref. [9]). Our findings are just supposed to
highlight the delicate interplay of various effects in the subtle
regime around the threshold of immediate merger and will
deserve more dedicated studies in the future.

A. Discussion: Understanding the results

So far we have explored two, different, NR-informed
routes to obtain an eccentric waveform model that is
consistent with the quasicircular, spin-aligned, SXS wave-
form data as well as with the NR surrogates NRHYBSUR3DQ8
and NRHYBSUR2DQ15. In one case, we use 4PN-resummed
analytical radiation reaction and we find a satisfactory
model with F̄max

EOBNR ≃ 1% all over the parameter space of
spin-aligned quasicircular configurations. In the other case,
we additionally NR-tune the spin-independent part of the
radiation reaction force and change the analytic description
of the m ¼ even waveform (and radiation) modes up to
l ¼ 4: this gives rather low EOB/NR unfaithfulness values
for negative and mildly positive values of the effective spin
(10−4 ≲ F̄max

EOBNR ≲ 10−3), though they can be as large as a
few parts in 10−2 for large, positive spins. The performance
of both models is summarized in Fig. 17, that shows

FIG. 15. Configuration #1 in Table V, comparing different
potential energies that yield different values of the scattering
angle.

FIG. 16. Configuration #1 in Table VI ð1;−0.25;−0.25Þ. Left
panel: the potential energy. Right panel, the gyro-gravitomagnetic
ratios. The value c3 ¼ 110 corresponds to the red curve in the left
panel that yields a value of the angle compatible with the NR one.
To do so, the magnitude of the spin-orbit coupling has to be
reduced with respect to standard case (thick line versus thin lines
in the right panel).

FIG. 17. Quasicircular limit: comparing F̄max
EOBNR for

DALÍ4PN-analytic and DALÍ4PN-NRtuned. Despite the tail towards
values of F̄max

EOBNR ∼ 0.1 (corresponding to large, positive, spins),
thanks to the NR tuning of the (nonspinning) flux,
DALÍ4PN-NRtuned performs globally better all over the SXS catalog
of spin-aligned waveforms, with median ∼3.92 × 10−4. The
corresponding value for DALÍ4PN-analytic is instead 1.06 × 10−3,
although F̄max

EOBNR is at most ∼0.01. The performance of
DALÍ4PN-NRtuned suggests that a careful NR tuning of the dis-
sipative part of the dynamics might be eventually needed to
construct a highly faithful (say ≃10−4) model all over the BBH
parameter space.
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together the two distributions of F̄max
EOBNR. Despite the tail

towards values of F̄max
EOBNR ∼ 0.1 (corresponding to large,

positive spins), the model with the NR-informed, effective
4PN radiation reaction (and waveform) performs globally
better all over the SXS catalog, with median ∼3.92 × 10−4,
approximately three times smaller than the 1.06 × 10−3

corresponding to the 4PN analytical model. This suggests
that a careful NR-tuning (or at least analytical improve-
ment) of the dissipative part of the (spin-dependent)
dynamics might be eventually needed to construct a highly
faithful (say ≃10−4) model all over the BBH parameter
space. Although this task is beyond the scope of the present
work, it is pedagogically useful to connect some selected
values of F̄max

EOBNR to the time-domain phasing so as to get a
sense of their actual meaning. This is done in Fig. 18 for
four selected configurations. The top row of the figure is
obtained with the DALÍ4PN-analytic model, while the bottom
panel with the DALÍ4PN-NRtuned model. The leftmost
panels, ð1;−0.60;−0.60Þ and (3, 0, 0), connect the values
Fmax

EOBNR ≃ 10−4 with phase differences around merger
≲0.05 rad. Similarly, the increase of the values of
F̄max

EOBNR for larger spins is mirroring either a larger value
of ΔϕEOBNR

22
at merger, or the fact that the phase difference

is notmonotonic through late plunge,merger, and ringdown.
As is thoroughly discussed in Ref. [13], this is one
of the features of the phase difference that is mirrored
into large values of F̄max

EOBNR. The fact that the phasing

inaccuracies increasewith thevalue of the effective spin ã0 is
explained as follows. The figure shows that, for bothmodels,
and in the presence of positive spins, the EOB dynamics
predicts a transition from inspiral to plunge and merger that
is less adiabatic (i.e., faster) than the NR one, with a
(positive) phase difference that accumulates progressively
during the late inspiral. This phase difference cannot be
reduced only by the tuning of the dynamic parameter c3, as it
happens at spatial separations (or frequencies) where its
tuning is practically ineffective. The reason for this is that c3
parametrizes spin-orbit corrections that are proportional to
r−3, and thus that become important only when r is small
enough. In any case, the fact that the phasing predicted by
DALÍ4PN-NRtuned is highly NR faithful for (3, 0, 0), with a
dephasing of approximately −0.02 rad at merger, while it is
not for larger spins indicates that the spin sector of themodel
should be improved in someway.7 Improving the spin sector
means controlling the subtle interplay between conservative
and nonconservative effects, similarly to what we discussed
already in the nonspinning case. In particular, the fact that
the phase difference is positive and grows during the late
inspiral already suggests that the radiation reaction force is
inaccurate as the two objects get close and should be
modified in some way. We thus explore, as a proof of

FIG. 18. Quasicircular case: understanding the unfaithfulness of Figs. 5 and 12 with selected time-domain phasing analysis. Top
panels: model DALÍ4PN-analytic. Bottom panels: model DALÍ4PN-NRtuned (that also differs for the spin part of radiation reaction). The
bottom-left panels show the excellent EOB/NR phasing agreement brought by the NR tuning of the flux. By contrast, progressively large
dephasings as the spins are increased are found because of inaccuracies in the spin-dependent part of the flux. This well explains the
behavior of F̄max

EOBNR shown in the right panel of Fig. 12. Note in particular that in the bottom-right panel the phase difference is
nonmonotonic in time around merger, which eventually yields large values of F̄EOBNR.

7Note in this respect that DALÍ4PN-NRtuned already uses the
factorized expression of the ρlms with m ¼ even instead of the
additive ones, that, we verified, give even larger differences.
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principle, whether the EOB/NR agreement can be improved
by NR tuning, at the same time, the spin-dependent part of
the radiation reaction and consistently the spin-orbit
Hamiltonian via c3. Focusing on ρ̄S

22
, we recall that it is

given in inverse resummed form at NNLO (i.e., 3.5PN
accuracy). As a first attempt, we explored the effect of
adding higher-order terms (i.e., beyond 3.5PN) to Eq. (47).
Such terms, notably ðc22

4
x4; c9=2x

9=2; c5x
5Þ, were obtained

by extrapolating to the comparable mass case the corre-
sponding terms in the test-particle limit, following
the procedure introduced in Sec. VB of Ref. [30]. Not
surprisingly,we found no effect on the late-inspiral behavior.
We decided then to tune an effective 3.5PN term, i.e.,
replacing the analytical c22

7=2 coefficient with an effective
one. Since our aim is only to understand the origin of the
physical effect, we consider the single configuration
ð3;þ0.60;þ0.60Þ. Analogously to the nonspinning case
discussed above, we realized that it is possible to tune,
iteratively, both ðc22

7=2; c3Þ so as to reduce the EOB/NR phase
difference through the late inspiral, merger, and ringdown
and have it growing monotonically with time. Figure 19
reports our final result: it is obtained with c22

7=2 ¼ 3.1 and
c3 ¼ 33.8. Analytically, for this configuration [from
Eq. (47)] one has c22

7=2 ¼ 0.49 and the previously NR-tuned
value of c3was c3 ¼ 21.11Themeaning of these numbers is
as follows. One needs to reduce the action of the analytical
radiation reaction (and thus the amplitude ρ̄S

22
) so to slow the

rate of inspiral down. The value c22
7=2 ¼ 3.1 corresponds to

the red line in the rightmost panel of Fig. 19, which lies
below the analytical curve. One has a fractional difference of
∼2% at x ∼ 0.20, which corresponds to a (fractional)
reduction of the flux of ∼10% at the same value of x.
The effect of this reduction on the EOB/NR phase difference
is illustrated by the dotted, gray line in the leftmost panel of

Fig. 19, that however still retains c3 ¼ 21.11, as obtained
from the second row of Table III. At this stage, it is
additionally possible to modify c3, and thus reduce the
magnitude of the spin-orbit interaction (i.e., shortening the
EOB waveform), until one obtains the ΔϕEOBNR

22
curve

depicted in light blue in the leftmost panel of the figure.
This corresponding to c3 ¼ 33.8. As mentioned above, this
result was obtained tuning iteratively the two parameters
whose action is, partly, degenerate. Although it is certainly
possible to increase both parameters to further reduce the
phase difference atmerger, we here content ourselves to show
that this is feasible and that it is necessary to NR tune the
radiation reaction force so to obtain an inspiral waveform that
is more NR faithful. Although in this case we reached this
goal by tuning one additional parameter, it might be possible
that other analytical representation of the resummed wave-
form (and radiation reaction) exist such to eventually yield a
similar result. The important take away message is that an
improved analytical representation of the (spin-dependent)
part of the flux might be important in order to get to the 10−4

unfaithfulness level also for large-positive spins.

V. CONCLUSIONS

In this work we present an updated model for spin-
aligned, coalescing black hole binaries for generic (i.e.,
noncircularized) planar orbits, from eccentric inspirals to
scattering configurations. This model builds upon, improves
and replaces previous work in the TEOBRESUMS lineage
[2,4,7,9,10,13,17], notably Refs. [10,13]. The most impor-
tant feature of the new eccentric model is that its quasi-
circular limit shows an excellent consistency with the latest
avatar of the quasicircular model TEOBRESUMS-GIOTTO [13].
The new physical understanding of this paper is a fresh look
at the importance of the radiation reaction force in correctly
modeling the late-inspiral dynamics and waveform. In
particular, we explored the influence of various version of

FIG. 19. Proof of principle: effect of tuning, at the same time, the spin-dependent part of the waveform (and radiation reaction), with an
effective 3.5PN coefficient, and the N3LO effective spin-orbit parameter c3. The phase difference during the early inspiral is now flat
(cf. the corresponding panel in the bottom row of Fig. 18) and approximately zero, increasing then monotonically up to only ∼0.2 rad
around merger (left panel). Consistently, the EOB/NR unfaithfulness (middle panel) is at most ∼1.9 × 10−3 for large masses. The right
panel shows the reduction of the NR tuned ρ22 with respect to the analytical one. This entails a fractional reduction of ∼10% in the
radiation reaction force around x ∼ 0.2 that eventually yields the dotted-line phase difference in the leftmost panel of the figure. The
further tuning of c3 yields the ∼0.2 rad at merger displayed and the rather low F̄EOBNR ∼ 10−3 all over the mass range.

EFFECTIVE-ONE-BODY WAVEFORM MODEL FOR … PHYS. REV. D 110, 084001 (2024)

084001-19



the azimuthal component, Fφ, that drives the backreaction
on the orbital motion due to the loss of angular momentum
through gravitational waves. We thus analyze the class of
analytic waveform systematics related to the dissipative part
of the dynamics, complementing similar studies reported in
Refs. [7,13] that were focused only on systematics related to
changes to the conservative part of the dynamics. In doing
this exploration, we ended up with two different, though
consistent, prescriptions for building an improved waveform
model for eccentric binaries. These two main results can be
summarized as follows.

(i) We took advantage of the recently computed 4PN
waveform terms in the l ¼ m ¼ 2 mode [22–24]
and updated the model with this new analytical
information. We argued that the use of a resummed
4PN residual amplitude is important and carefully
compared (in the nonspinning case) the performance
of the ρ4PN

22
with the ρ22 at 3þ2PN accuracy used in

all implementations of TEOBRESUMS since 2009
[28]. We clarified that in one case the actual flux
seems to be overestimated (and thus the transition
from inspiral to plunge occurs faster than the NR
prediction), while in the other case it is slightly
underestimated (and thus the transition is slower),
although in this second case the performance of the
model is generally better. Therefore, we conclude
that the 4PN-resummed ρ22 function looks like the
current best analytical choice to build EOB radiation
reaction and waveform. The model is then informed
by quasicircular NR-data so as to determine the
usual coefficients ðac

6
; c3Þ, respectively modeling

effective 5PN correction in the orbital interaction
potential and effective 4.5PN (or N3LO) spin-orbit
effects [33]. The model performance is then evalu-
ated all over the parameter space currently covered
by public NR simulations or data, in particular as
follows: (i) in the quasicircular limit, it is compared
with the full SXS catalog [60] of public NR
simulations (up to q ¼ 15) as well as with the
quasi-circular NR surrogates NRHYBSUR3DQ8 and
NRHYBSUR2DQ15; (ii) for eccentric inspiral, it is
compared with the 28 public SXS simulations;
(iii) scattering angles. Figure 6 shows the excellent
consistency between TEOBRESUMS-GIOTTO [13] and
the 4PN-based TEOBRESUMS-DALÍ model for quasi-
circular configurations. For the considered eccentric
configurations, F̄max

EOBNR is always well below 1%
(except a single outlier, that also corresponds to a
rather noisy dataset). Furthermore, the scattering-
angle comparisons (see Table V) are satisfactory and
consistent with previous literature.

(ii) From the understanding that ρ4PN
22

underestimates the
effect of the actual radiation reaction, while ρ3

þ2

22

overestimates it, we decided to attempt charting an
unexplored territory by NR-informing, at the same
time both the conservative and nonconservative part

of the EOB dynamics. This is done NR tuning both
ac
6
and an effective 4PN term entering the Padé

resummed ρ4PN
22

that replaces the analytical 4PN
information of Ref. [22]. In the nonspinning case,
one finds that just a small modification to the
analytically known P2

2
ðρ4PN

22
Þ (together with a new

ac
6
) is by itself sufficient to bring the EOB/NR phase

difference at merger below ∼0.1 rad, a value that is
consistent with the expected NR uncertainty. This
results in F̄max

EOBNR ∼ 10−4 for all available nonspin-
ning datasets up to mass ratio q ¼ 15. In the
presence of spins, we, again, clearly highlighted
the importance of the spin-dependent part of the
radiation reaction and evaluated the influence of
different analytical prescriptions for the resummed
EOB waveform that were discussed in the literature.
For example, we concluded that the additive expres-
sion ρorb

22
þ ρS

22
implemented in any version of TEO-

BRESUMS is overestimating the flux for positive spins
and that a better (though certainly improvable)
representation of the residual amplitude corrections
is obtained by the factorized and inverse-resummed
prescription discussed in Refs. [29,30]. With this
choice, and a new expression of the NR informed c3,
we may eventually end up having a model, dubbed
TEOBRESUMS-DALÍ-4PNTUNED, that is globally more
NR faithful than the current TEOBRESUMS-DALÍ. A
new look at the analytical representation of the EOB-
resummed radiation reaction is postponed to fu-
ture work.

In conclusion, we have now at hand twowaveformmodels
for noncircularized binaries that differ because of (i) the
analytic content and (ii) the amount of NR-information
included. Although in the quasicircular limit none of these
two model is as NR faithful as TEOBRESUMS-GIOTTO, they
will hopefully allow us to give a very precise quantitative
meaning to the actual impact of waveform systematics on
current and future GW detectors [47,61].
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APPENDIX A: ALTERNATIVE PADÉ
RESUMMATION OF ρ22 AND IMPLICATIONS

In Sec. II A the ρ4PN
22

function was resummed by taking a
global Padé approximant obtained by replacing the logðxÞ
terms with some formal constants and then reinserting them
back. Historically this has been a standard approach within
the EOB model (see, e.g., Ref. [28] and references therein),
that, however, was never carefully tested with alternatives.
It should also be noted that in the test-mass limit this
approach was extensively used in Refs. [29,30] and found
sufficiently satisfactory at the time. In this Appendix we
point out that this method introduces some analytic
systematics that were overlooked so far and that might
be important at the level of accuracy we are currently
pushing our models. Despite this, the results discussed in
the main text are expected to stand even against these
systematics. To start with, let us review in detail our
resummation procedure so as to highlight its drawbacks.
The 4PN-accurate function of Eq. (5) schematically reads

ρ ¼ 1þ c1xþ c2x
2 þ x3½c3 þ c

log
3

logðxÞ�
þ x4½c4 þ c

log
4

logðxÞ�: ðA1Þ
For pedagogical purpose, let us first assume all the
coefficients equal to one. Then, one poses logðxÞ ¼ c
and takes the (2, 2) Padé approximant. This reads

ρ0 ≡ P2

2
ðρÞ ¼ 1þ x − cx2

1 − ð1þ cÞx2 : ðA2Þ

There are two sorts of inconsistencies. First, by expanding
this expression in powers of c, we find

ρ0 ¼ 1

1 − x
þ x3

ð1þ xÞð1 − xÞ2 cþOðc2Þ; ðA3Þ

and we should compare it with the original function ρ,
Eq. (A1), after replacing c with logðxÞ. In particular, we
notice that even though

x3

ð1þ xÞð1 − xÞ2 − ðx3 þ x4Þ ¼ Oðx5Þ; ðA4Þ

which is consistent with the error of Padé approximation,
the rational function x3

ð1þxÞð1−xÞ2 has a degree 3 denominator,

which is an unreasonable approximation of x3ð1þ xÞ.
Second, by expanding ρ0 in Eq. (A2) at higher order, e.g.,

5PN, we have

ρ0 ∼ 1þ xþ x2 þ ð1þ cÞx3 þ ð1þ cÞx4 þ ð1þ cÞ2x5

þOðx6Þ: ðA5Þ

When the constant c is replaced by the logðxÞ, one
immediately sees that a 5PN term of the form log2ðxÞx5
appears. In the general case, where the coefficients are not
equal to one, the 5PN term guessed by the Padé approx-
imant has the structure

c
guess
5PN ¼ n0 þ n1cþ n2c

2

d1þ d2c
; ðA6Þ

where, again, the c ¼ logðxÞ. So, in the general case, the
PN expansion of the Padé where the logarithms are
considered as constant introduces an even more intricate
logarithmic structure. Unfortunately, this is qualitatively
inconsistent with the PN expansion of ρ22, where the
log2ðxÞ terms are known to only appear at 6PN order, as
first shown in Ref. [62], Eq. (7) therein. The same
inconsistency pointed out here at 4PN is present also in
the 6PN-based resummed amplitude of Ref. [30], where a
(4, 2) Padé approximant (with constant logs) was used for
most multipoles. This affects, quantitatively, the (test-mass)
radiation-reaction driven dynamics of Refs. [14,63,64] as
well as the comparable-mass dynamics of several works
that were incorporating the approach of Ref. [30] where
different versions of TEOBRESUMS were developed, e.g.,
Refs. [13,31]. Nonetheless, it should be noted that, since
the EOB dynamics is additionally informed by NR simu-
lations, this inconsistency is not expected to have a dramatic
influence on well established results. In this respect, in the
main textwe showed that a NR-informed effective 4PN term,
within the same Padé resummed structure, may eventually
yield an improved waveform model, with unfaithfulness
≃10−4. This, together with the inconsistency in our resum-
mation strategy, calls for an alternative approach to resum-
ming ρ4PN

22
such that the transcendental structure of the

function is preserved. A very simple procedure consists in
resumming separately the polynomial part and the terms that
are proportional to the logðxÞ. In this way, the trascendental
order of the function is guaranteed not to be changed by the
resummation procedure and, a priori, we may expect results
more consistent with the exact function. Schematically, ρ4PN

22

can be recasted as

ρ4PN
22

ðxÞ ¼ p
ð4Þ
0
ðxÞ þ p

ð4Þ
logðxÞ logðxÞ; ðA7Þ

where pð4Þ
0
, pð4Þ

log are polynomials of the form

p
ð4Þ
0
ðxÞ ¼ 1þ c1xþ c2x

2 þ c3x
3 þ c4x

4; ðA8Þ

p
ð4Þ
logðxÞ ¼ c

log
3
x3 þ c

log
4
x4: ðA9Þ

Then, we resum p
ð4Þ
0

and p
ð4Þ
log separately. For p

ð4Þ
0

we use a

(2, 2) Padé approximant. Forpð4Þ
0
, we factorize the x3 term in

front and the rest is resummed taking at (0, 1) Padé
approximant. When evaluated in the test-mass limit, the
resulting analytical function is found to be closer to the exact
one, obtained numerically (see, e.g., [30] and references
therein), than the our standard choice discussed in the main
text. In particular the fractional difference at xLSO ¼ 1=6 is
∼ − 0.000969 versus the value −0.00456 obtained with the
Padé approximant with constant logs. We will come back to
the impact of this case on the comparable-mass case below.
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Before this, since most of the established test-mass results
mentioned above are based on 6PN-accurate ρlms (see
Table I in Ref. [30]), we also briefly investigate the effect
of the new resummation at 6PN. A more comprehensive
analysis of all multipoles will be reported elsewhere [65].
Schematically, ρ6PN

22
can be recasted as

ρ6PN
22

ðxÞ ¼ p
ð6Þ
0
ðxÞ þ p

ð6Þ
logðxÞ logðxÞ þ p

ð6Þ
log2

ðxÞlog2ðxÞ;

ðA10Þ

where pð6Þ
0
, pð6Þ

log, p
ð6Þ
log2

are polynomials of the form

p
ð6Þ
0
ðxÞ ¼ 1þ c1xþ c2x

2 þ c3x
3 þ c4x

4 þ c5x
5 þ c6x

6;

ðA11Þ

p
ð6Þ
logðxÞ ¼ c

log
3
x3 þ c

log
4
x4 þ c

log
5
x5 þ c

log
6
x6; ðA12Þ

p
ð6Þ
log2

ðxÞ ¼ c
log2

6
x6: ðA13Þ

Then we observe that resumming only p
ð6Þ
0

(and taking the

Taylor expansion of pð6Þ
log and p

ð6Þ
log2

) gives a better approxi-

mation than resumming both pð6Þ
0

and pð6Þ
log. For p

ð6Þ
0

we use a
(4, 2) Padé approximant. As already noticed at 4PN, when
evaluated in the test-mass limit, the resulting analytic
function is found to be closer to the exact one, obtained
numerically than our standard choice discussed. In particular
the fractional difference at xLSO ¼ 1=6 is ∼ − 0.000317
versus the value −0.000654 obtained using a (4, 2) Padé
approximant with constant logarithms.8 This suggests that at

6PN the logarithmic terms pð6Þ
log and p

ð6Þ
log2

are well approxi-

mated by the Taylor expansion, while the polynomial part

p
ð6Þ
0

needs to be resummed. The same reasoning applies at
7PN and 8PN, where we observe that resumming only the
polynomial part gives a better approximation than resum-
ming separately the polynomials and the logarithic terms.9

We collect the fractional differences at xLSO ¼ 1=6 in
Table VII. Notably, comparing the fractional differences at
xLSO ¼ 1=6, the resummation procedure described above
gives a better approximation than the Taylor expansion (an
exception, just by chance, is given by the 7PN, while at 8PN
they are essentially equivalent). In addition, looking at the
fractional differences, we see that resumming only the
polynomial part is stable from 6PN to 8PN. The stability
of this resummation at higher PN orders will be investigated
elsewhere [65]. A priori we expect the scheme to remain
robust up to 10PN, but things might become more subtle at

higher orders, since fractional powers of x appear. Whereas,
going from 4PN to 6PN, we saw that different resummation
methods of ρ22 are effective as shown in Fig. 20; in particular,
the logarithmic terms were resummed with a Padé approx-
imant only at 4PN and 5PN, and they were not resummed at
6PN. Furthermore, at 6PNwe also have log2ðxÞ terms which
give a better approximation of the singular behavior of ρ22.
Hence, the different summation procedures at 4PN and 6PN

can be justified as follows: Padé approximants of pðkÞ
0

for
k ¼ 4, 5, 6 capturewell the singular behavior ofp0ðxÞ, which
seems “dominant” also at lower PN orders. Conversely, from
6PN (and at least up to 8PN) the singular behavior of
plogðxÞ þ logðxÞplog2ðxÞ is better capturedby the presence of
log2ðxÞ, thus the Taylor expansion of plog gives a good
approximation. Figure 20 summarizes our results at 4PN,
5PN, and 6PN comparing the old resummation strategy (left
panel) with the new one (right panel). It is remarkable the
improvement found already at 4PN.
Now that we have a better understanding of the test-mass

case, let us move to considering comparable mass binaries.
We work then with ρ4PN

22
resummed as described above

(evidently, including the ν-dependent terms) that thus
yields a new waveform amplitude and radiation reaction.
We then NR inform a new function ac

6
¼−14.24−320.26ν,

whose behavior is shown in Fig. 21. It is interesting to note
that for ν ∼ 0.25 the values are compatible with those
obtained with the NR-informed value of cν

4
. By contrast, the

slope of the straight line is different than before. The model
performance is then evaluated by computing either phas-
ings in the time domain or the EOB/NR unfaithfulness with
the SXS datasets available. We remind the reader that we
consider mass ratios 1 ≤ q ≤ 10 spaced by 0.5 as well as
the q ¼ 15 dataset of Ref. [50]. Figure 22 displays the time-
domain phasing for q ¼ 1 and q ¼ 6 obtained with the new
treatment of the logarithmic terms. It is quantitatively
consistent with Fig. 11 of the main text, though without
NR-tuning of radiation reaction. Figure 23 shows that, on
the F̄EOBNR quantity, the model performance gives, on
average, F̄max

EOBNR ∼ 10−4 and it substantially equivalent to
the same analysis done with the NR tuned cν

4
, see Fig. 11.

This remarkable fact suggests the following two consid-
erations. On the one hand it is an example that, by a

TABLE VII. Fractional differences δρ22 ¼ ðρX
22
− ρExact

22
Þ=ρExact

22

at xLSO ¼ 1=6 obtained with different analytical approximations.
The function where the logðxÞ are treated separately is generally
closer to the exact data at each PN order.

Padé logðxÞ separated Padé logðxÞ ¼ c Taylor

4PN −0.000950 −0.004563 0.001804
5PN −0.001234 −0.001358 −0.001621
6PN −0.000317 −0.000654 −0.000425
7PN −0.000187 −0.000393 þ0.000001
8PN −0.000168 −0.000143 −0.000106

8When we resum both p
ð6Þ
0

and p
ð6Þ
log [using, respectively,

a (4, 2) and (3, 3) Padé approximant], the fractional difference
at xLSO ¼ 1=6 is ∼ − 0.000525.

9We resum p
ð7Þ
0

with Padé approximant (5, 2), and p
ð8Þ
0

with
Padé approximant (6, 2). In both cases, the poles are complex
conjugate.
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(simple) improvement on the analytical side, one can obtain
an excellent waveform model reducing the amount of NR
tuning. This is an important conceptual lesson that should
be kept in mind for future studies (see below). On the other
hand one has here an example of the extreme robustness of
our EOB framework: even when an analytic systematic is
present, it can be corrected by careful NR tuning of some
parameters and the actual performance without this sys-
tematic can be (substantially) obtained. It must be noted,
however, that the model with the new ac

6
and resummation

of ρ22 actually performs better than the totally NR-tuned FIG. 22. EOB/NR time-domain phasings for q ¼ 1 and q ¼ 6.
The EOB performance is comparable to the case with the
NR-informed flux discussed in the main text, see Fig. 11.
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FIG. 21. New values of the NR informed ac
6
obtained using the

resumed ρ4PN
22

based on the log-separation of Eqs. (A8)–(A9).
Note that the values of ac

6
are close to the values corresponding to

the NR-informed cν
4
coefficient, but they progressively differ as ν

decreases. This has implications on the phasing and the global
EOB/NR performance of the model, which turns out to get
improved with respect to the versions discussed in the main text.
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FIG. 20. Test-mass limit (ν ¼ 0). Resummed ρ22 at 4PN, 5PN, and 6PN using Padé approximants (2, 2), (3, 2), and (4, 2), accordingly
to the PN order. Left panel: factorize the logarithmic terms and separately resum the polynomial coefficients. Right panel: set
c ¼ logðxÞ, resum the polynomial with parameter c, and finally substitute back c ¼ logðxÞ. The bottom panels show the relative
differences with the exact curve obtained numerically, δρ22 ≡ ðρX

22
− ρExact

22
Þ=ρExact

22
.
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FIG. 23. EOB/NR unfaithfulness for nonspinning configura-
tions up to q ¼ 15. It is remarkable that the global EOB
performance is substantially comparable to the left panel of
Fig. 11, where the radiation reaction was also tuned to NR
simulations.
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one. This is apparent for the q ¼ 15 case. Figure 24 shows
the EOB/NR time-domain phasing for the three models
considered in the paper. From left to right: (i) Padé
resummation of ρ4PN

22
with the logðxÞ taken as constant

when doing the Padé, NR tuning of ac
6
only; (ii) same Padé

approximant but tuning both ðac
6
; cν

4
Þ; (iii) the model

discussed in this Appendix. It is remarkable that the
dephasing at merger in this case is ∼0.3 rad, with more
than a factor of 2 gained with respect to the standard
approach. We may argue that additional improvement
should be brought once that a similar treatment of the
logðxÞ-dependent term is applied also to the subdominant
modes, that are more relevant in this case than for q ¼ 1.
Let us finally mention that the same problem with the
Padé resummations performed under the assumption
logðUÞ ¼ c, where u≡GM=ðRc2Þ, is present also in the
EOB conservative dynamics, through the functions A and
D̄ that are similarly resummed as discussed in Ref. [10]. As
a preliminary investigation, we considered the 5PN accu-
rate Taylor-expanded A (with ac

6
undetermined parameter)

and resummed it using a (3, 3) Padé approximant for the
polynomial part and a (0, 1) one for that proportional to
the logðuÞs, once that the term u5 logðuÞ is factored out. In
the adiabatic limit, one finds that the new resummed
function (and in particular the effective photon potential
u2A) is sufficiently flexible to match the one obtained with
the current model once a suitable value of ac

6
is chosen, that

is found again to be linear in ν. In conclusion, we state that
the results discussed in the main text are expected to stand
(and possibly improve) even with the correct treatment of
the log-dependent terms in the potentials. This analysis was
recently completed and is detailed in Ref. [41].

APPENDIX B: TEOBRESUMS-GIOTTO

WITH 4PN FLUX

In the main text we discussed the use of the 4PN-accurate
resummed waveform (and flux) only to improve the
TEOBRESUMS-DALÍ model valid for generic orbits for spin
aligned binaries, while briefly mentioning that the same

strategy would have not been equally successful for the
simple quasicircular model TEOBRESUMS-GIOTTO. The aim
of this appendix is to support this statement by explicitly
considering a version of the TEOBRESUMS-GIOTTO model
where ρ3

þ2PN
22

is replaced by ρ4PN
22

, though in resummed form
and either treating the logarithm as constant within the Padé
resummetion (dubbed as 4PN-OLDLOGS) or factoring them
out (dubbed as 4PN-NEWLOGS). The other elements of the
model precisely coincide with those described in Ref. [13],
except evidently for ac

6
that needs to be redetermined for

each version of radiation reaction considered. We con-
sider only the nonspinning case, since this is sufficient
to justify the choices we made in the main text. We recall
that, differently from the case of TEOBRESUMS-DALÍ,
with TEOBRESUMS-GIOTTO the NQC corrections are also
included in the radiation reaction, so that three iterations are
needed to get the NQC parameters converged (see Ref. [66]
for details). For both choices of the resummed ρ4PN

22
we

determined ac
6
using the same procedure discussed in the

main text. Table VIII reports the chosen values of ac
6
(with

the corresponding SXS datasets) in the 4PN-OLDLOGS and
4PN-NEWLOGS case. The points in Table VIII are accurately
fitted as
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FIG. 24. EOB/NR phasing for q ¼ 15 comparing three different representations of ρ22 (at formal 4PN accuracy) with the
corresponding values of ac

6
. Left panel: analytical 4PN with Padé (2, 2) resummation taking the logðxÞ as constant. Middle panel: same

function but with the NR-tuned effective cν
4
term of Eq. (43). Right panel: new resummation of ρ4PN

22
separating the logðxÞs from the

rational part as described in Appendix A. The reduction of the EOB/NR dephasing at merger in this case is evident.

TABLE VIII. First-guess values of ac
6
for the TEOBRESUMS-

GIOTTO model with 4PN (resummed) information. These num-
bers are then accurately fitted with the functional forms of
Eqs. (B1) and (B2), respectively.

# ID q ac
6;4PN−oldlogs ac

6;4PN−newlogs

1 SXS:BBH:0180 1 −118 −100

2 SXS:BBH:0169 2 −103.5 −89

3 SXS:BBH:0168 3 −91 −76

4 SXS:BBH:0166 6 −70 −51

5 SXS:BBH:0298 7 −65 −46

5 SXS:BBH:0299 7.5 −62 −43.5
6 SXS:BBH:0302 9.5 −54 −35.5
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ac
6;oldlogs ¼ −13583ν3 þ 6670.8ν2 − 1390.9νþ 25.238;

ðB1Þ

in one case, and by

ac
6;newlogs ¼ 132.98ν2 − 432.68νþ 0.19937 ðB2Þ

in the other. The left panel of Fig. 25 shows the EOB/NR
phasing comparison for the standard version of
TEOBRESUMS-GIOTTO, i.e., the model of Ref. [13]. In fact,
this plot is the current version of the top-left panel of Fig. 1
of [13] (where the model was actually dubbed D3Q3_NQC)
and the slightly smaller dephasing accumulated during
merger and ringdown is due to the fact that the fit used to
determine the NQC corrections now is different from the
one used for Fig. 1 of [13], as explained in the same
paper. The middle panel of Fig. 25 shows the performance
obtained using the oldlogs resummation [and Eq. (B1)

for ac
6
] and the rightmost panel using the newlogs resum-

mation [and Eq. (B2)] for ac
6
. One sees that for the current

choice of ac
6
the use of 4PN (resummed) information

does not allow to reduce further the phase difference
around merger. Note that, as explained in Ref. [13], ac

6

is determined requiring that ΔϕEOBNR
22

decreases monoton-
ically and its derivative does not change sign, since this
would eventually determine a worsening of the unfaithful-
ness. The global performance of the TEOBRESUMS-GIOTTO-
4PN models for all mass ratios covered by (public) SXS
simulations in explored in Fig. 26, that displays the
EOB/NR unfaithfulness F̄EOBNR versus the total mass of
the binary M. For the reader’s ease, in the leftmost panel
of the figure we reported F̄EOBNRðMÞ obtained with
TEOBRESUMS-GIOTTO, which is equivalent to the quantities
displayed in top panel of Fig. 2 of Ref. [13]. Quantitatively,
for q ¼ 1 TEOBRESUMS-GIOTTO gives F̄max

EOBNR ¼ 0.052%,

FIG. 26. EOB/NR l ¼ m ¼ 2 unfaithfulness with the three flavors of the TEOBRESUMS-GIOTTO model computed with alla SXS
nonspinning datasets available, with 1 ≤ q ≤ 10 and q ¼ 15. The full 4PN waveform information (in two different resummed fashions)
yields a less performant model with respect to the standard version (leftmost panel) that relies on the Taylor-expanded ρ3

þ2PN
22

function.
The solid, thin gray lines correspond to F̄max

EOBNR < 10−3.
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FIG. 25. Phasing performance for (various flavors of) the quasicircular TEOBRESUMS-DALÍ model with q ¼ 1. The standard ρ3
þ2PN

22

(leftmost panel) is replaced by two different ρ4PN
22

in resummed form: one with the logarithms assumed to be constant when computing
the Padé approximant (oldlogs) and the other with the logarithms factored out and the coefficient Padé resummed (newlogs). Each
choice of radiational reaction yields a different determination of ac

6
, see Eqs. (B1) and (B2), respectively. It turns out that the use of 4PN

resummed information (in any form) effectively reduces the flexibility of the model and the tuning of ac
6
is unable to match the phasing

performance of the standard model with the ρ3
þ2PN

22
(nonresummed) function.
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which worsens to 0.3% when using 4PN-OLDLOGS or to
0.21% when using 4PN-NEWLOGS. This simple analysis,
together with similar investigation done starting from the
TEOBRESUMS-DALÍ model and reported in the main text,
eventually convinced us that it was not worth to attempt to
improve the TEOBRESUMS-GIOTTO any further with 4PN
information, and just focus on TEOBRESUMS-DALÍ in
this paper.

APPENDIX C: ECCENTRIC INITIAL
CONDITIONS

Determining the initial conditions for eccentric bound
systems in the EOB formalism is equivalent to finding the
mapping between the desired initial eccentricity e0, true
anomaly ζ0 and some reference frequency Ω0 and the EOB
dynamical parameters ðr0; p0

r� ; pφ;0Þ. In previous iterations
of TEOBRESUMS, for simplicity and without loss of general-
ity, the value of the anomaly ζ0 was fixed to either 0 or π.
This implied that—in order for all possible orbits to be
covered during parameter estimation—the initial eccentric-
ity e0 and the initial frequency Ω0 had to be treated as free
parameters [2,4,7]. Further, the user-specified initial fre-
quency Ω0 was interpreted as the average frequency
between periastron and apastron, Ω0;avg ¼ ðΩþ þ Ω−Þ=2.
(see Appendix C of Ref. [7] for details). In this work, we
implement an alternative approach to determine the initial
conditions for eccentric orbits, which allows to fix the value
of the true anomaly ζ0 to any desired value and allows for
users to specify an initial orbit-averaged frequency Ω̄0 as
input parameters. This approach follows the one described
in [20] and relies on the following steps:

(i) Given a set of initial conditions ðe0; ζ0; Ω̄0Þ, we
compute the instantaneous frequencies at apastron
and periastron Ω� via the Newtonian expression:

Ω� ¼ Ω̄0ð1� e0Þ2
1 − e2

0

3=2

: ðC1Þ

From the istantaneous frequencies at apastron and
periastron we then estimate Ω0;avg.

(ii) Recalling that

r ¼ ρ0=ð1þ e0 cosðζ0ÞÞ; ðC2Þ

we numerically find the initial semilatus rectum ρ0
and radial momentum p0

r� by imposing that the
average frequency is the desired one:

2Ω0;avg ¼
dĤ

dpφ

ðrðρ0;e0;ζ0 ¼ 0Þ;j0ðρ0;e0Þ;p0
r� ¼ 0Þ

þ dĤ

dpφ

ðrðρ0;e0;ζ0 ¼ πÞ;j0ðρ0;e0Þ;p0
r� ¼ 0Þ

ðC3Þ

and ensuring energy conservation at the point
specified by ζ0:

Ĥeffðrðρ0; e0;ζ0 ¼ 0Þ; j0ðρ0; e0Þ; p0
r� ¼ 0Þ

¼ Ĥeffðrðρ0; e0; ζ0Þ; j0ðρ0; e0Þ; p0
r�Þ:

ðC4Þ

In the equations above, j0 is the value of angular
momentum obtained by imposing energy conserva-
tion at apastron and periastron.

Wenote that these initial conditions are adiabatic,meaning
that they do not incorporate effect of radiation reaction.
While this approximation is expected to not lead to signifi-
cant errors for large eccentricities, in the quasicircular limit it
is known that nonadiabatic initial data can lead to some
spurious eccentricity in the waveforms [67,68]. Given that
we find such spurious eccentricity to be of the order of 10−3,
we expect this to be a minor effect with respect to other
differences between the two TEOBRESUMS-GIOTTO and
TEOBRESUMS-DALÍ models.

APPENDIX D: NUMERICAL RELATIVITY
QUASICIRCULAR DATASETS

In this appendix we collect the details of the simu-
lations employed in the paper to inform or validate the
TEOBRESUMS-DALÍ model.
The configurations employed to inform a6c are collected in

Table I, that also report the first-guess values of ac
6
shown in

Fig. 2. Note that the table lists the values for the three choices
for the radiation reaction that we have explored, that is,
(i) using ρ22 at 3þ2 PN accuracy in Taylor-expanded form;
(ii) usingρ22 at 4PNaccuracy, fully analytical, and resummed
with a (2, 2) Padé approximant; (iii) using ρ22 at effective
4PNaccuracy (still in Padé resummed form)where the 4PN ν

TABLE IX. First-guess values for c3 for equal-mass, equal-spin
configurations. They are used to determine c¼

3
in Eq. (37).

# ID ðq; χ1; χ2Þ ã0 c4PNan
3

c4PNnr
3

1 BBH:1137 ð1;−0.97;−0.97Þ −0.97 86.0 91.0
2 BBH:0156 ð1;−0.9498;−0.9498Þ −0.95 84.5 90.4
3 BBH:0159 ð1;−0.90;−0.90Þ −0.90 80.5 86.8
4 BBH:2086 ð1;−0.80;−0.80Þ −0.80 73.5 79.5
5 BBH:2089 ð1;−0.60;−0.60Þ −0.60 64 71.0
6 BBH:2089 ð1;−0.20;−0.20Þ −0.60 48 53.0
7 BBH:0150 ð1;þ0.20;þ0.20Þ þ0.20 29 37.0
8 BBH:0170 ð1;þ0.4365;þ0.4365Þ þ0.20 23.5 29.0
9 BBH:2102 ð1;þ0.60;þ0.60Þ þ0.60 18.0 23.5
10 BBH:2104 ð1;þ0.80;þ0.80Þ þ0.80 12.5 15.5
11 BBH:0153 ð1;þ0.85;þ0.85Þ þ0.85 11.5 14.5
12 BBH:0160 ð1;þ0.90;þ0.90Þ þ0.90 10.3 11.0
13 BBH:0157 ð1;þ0.95;þ0.95Þ þ0.95 8.7 6.4
14 BBH:0177 ð1;þ0.99;þ0.99Þ þ0.99 7.0 6.0
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dependence is informed to NR simulations. The first-guess
values for c3, for either DALÍ4PN-analytic and DALÍ4PN-NRtuned
are listed in the two rightmost columns of Tables IX and X.
Scattering angles are reported in Table V (for nonspinning

configurations), again with the three different analytical
choices explored in the main text. Finally, the EOB/NR
unfaithfulness for the publicly available SXS simulations are
listed in Table IV.
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20 BBH:1146 ð1.5;þ0.95;þ0.95Þ þ0.95 14.35 12.0
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28 BBH:2139 ð3;−0.50;−0.50Þ −0.50 65.3 65.0
29 BBH:0036 ð3;−0.50; 0.0Þ −0.38 61 58
30 BBH:0174 ð3;þ0.50; 0.0Þ þ0.37 28.5 27.4
31 BBH:2158 ð3;þ0.50;þ0.50Þ þ0.50 27.1 27.5
32 BBH:2163 ð3;þ0.60;þ0.60Þ þ0.60 24.3 25.5
33 BBH:0293 ð3;þ0.85;þ0.85Þ þ0.85 16.0 18.0
34 BBH:0292 ð3;þ0.73;−0.85Þ þ0.335 30.6 31.5
35 BBH:1447 ð3.16;þ0.7398;þ0.80Þ þ0.75 19.2 21.0
36 BBH:1452 ð3.641;þ0.80;−0.43Þ þ0.534 25.6 28.5
37 BBH:2014 ð4;þ0.80;þ0.40Þ þ0.72 21.5 22.5
38 BBH:1434 ð4.368;þ0.7977;þ0.7959Þ þ0.80 19.8 19.8
39 BBH:0111 ð5;−0.50; 0.0Þ −0.42 54 53.5
40 BBH:0110 ð5;þ0.50; 0.0Þ þ0.42 29.5 30.5
41 BBH:1428 ð5.516;−0.80;−0.70Þ −0.784 80 80
42 BBH:1440 ð5.64;þ0.77;þ0.31Þ þ0.70 21.5 24.5
43 BBH:1432 ð5.84;þ0.6577;þ0.793Þ þ0.68 25 24.0
44 BBH:1437 ð6.038;þ0.80;þ0.15Þ þ0.7076 21.5 24.0
45 BBH:1375 ð8;−0.90; 0.0Þ −0.80 70 63.5
46 BBH:1419 ð8;−0.80;−0.80Þ −0.80 81.5 80
47 BBH:0114 ð8;−0.50; 0.0Þ −0.44 61 57.5
48 BBH:0065 ð8;þ0.50; 0.0Þ þ0.44 26.5 27.0
49 BBH:1426 ð8;þ0.4838;þ0.7484Þ þ0.51 30.3 28.5
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