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Abstract

Medical texts are notoriously challenging to
read. Properly measuring their readability is
the first step towards making them more ac-
cessible. In this paper, we present a system-
atic study on fine-grained readability measure-
ments in the medical domain at both sentence-
level and span-level. We introduce a new
dataset MEDREADME, which consists of man-
ually annotated readability ratings and fine-
grained complex span annotation for 4,520 sen-
tences, featuring two novel “Google-Easy” and
“Google-Hard” categories. It supports our quan-
titative analysis, which covers 650 linguistic
features and automatic complex word and jar-
gon identification. Enabled by our high-quality
annotation, we benchmark and improve sev-
eral state-of-the-art sentence-level readability
metrics for the medical domain specifically,
which include unsupervised, supervised, and
prompting-based methods using recently devel-
oped large language models (LLMs). Informed
by our fine-grained complex span annotation,
we find that adding a single feature, capturing
the number of jargon spans, into existing read-
ability formulas can significantly improve their
correlation with human judgments. We will
publicly release the dataset and code.

1 Introduction

If you can’t measure it, you can’t improve

it.
– Peter Drucker

Timely disseminating reliable medical knowledge
to those in need is crucial for public health manage-
ment (August et al., 2023). Trustworthy platforms
like Merck Manuals and Wikipedia contain exten-
sive medical information, while research papers
introduce the latest findings, including emerging
medical conditions and treatments (Joseph et al.,
2023). However, comprehending these resources
can be very challenging due to their technical na-
ture and the extensive use of specialized terminol-
ogy (Zeng et al., 2005). As the first step to making
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Figure 1: An illustration of our dataset, with sentence
readability ratings and fine-grained complex span an-
notation on 4,520 sentences, including “Google-Hard”
and “Google-Easy”, abbreviations, and general complex
terms, etc. We also analyze how medical jargon are be-
ing handled during simplification. e.g., a Google-Hard
“oro-antral communication” is copied and elaborated.
Some jargon are ignored for clarity.

them more accessible, properly measuring the read-
ability of medical texts is crucial (Rooney et al.,
2021; Echuri et al., 2022). However, a high-quality
multi-source dataset for reliably evaluating and im-
proving sentence readability metrics for medical
domain is lacking.

To address this gap in research, we present a
systematic study for medical text readability in this
paper, which includes a manually annotated read-
ability dataset (§2), a data-driven analysis to answer

“why medical sentences are so hard”, covering 650
linguistic features and additional medical jargon
features (§3), a comprehensive benchmark of state-
of-the-art readability metrics (§4.1), a simple yet
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Figure 2: The distribution of sentence readability (boxplot on the left y-axis) and the average number of jargon
spans per category (stacked barplot on the right y-axis) in each sentence across both “complex” and “simplied”
versions for 15 commonly used resources for medical text simplification. Sentences with higher readability scores
require a higher level of education to comprehend. The readability of sentences in different resources varies greatly.

effective method to improve LM-based readability
metrics by training on our dataset (§4.2), and an
automatic model that can identify complex words
and jargon with fine-grained categories (§5).

Our MEDREADME dataset consists of 4,520
sentences with both sentence-level readability rat-
ings and fine-grained complex span-level annota-
tions (Figure 1). It covers complex-simple parallel
article pairs from 15 diverse data resources that
range from encyclopedias to plain-language sum-
maries to biomedical research publications (Fig-
ure 2). The readability ratings are annotated us-
ing a rank-and-rate interface (Maddela et al., 2023)
based on the CEFR scale (Arase et al., 2022), which
is shown to be more reliable than other methods
(Naous et al., 2023). We also ask lay annotators
to highlight any words/phrases that they find hard
to understand and categorize the reason using a
7-class taxonomy. Considering that “the major-
ity of people seek health information online be-
gan at a search engine”,1 we introduce two cate-
gories of “Google-Easy” and “Google-Hard” to re-
flect whether jargon is understandable after a quick
Google search, providing a fresh perspective be-
yond binary or 5-point Likert scales.

Our new dataset addresses three limitations in
prior work: (1) Existing work with sentence-level
ratings mainly covers data from general domains,
such as Wikipedia (De Clercq and Hoste, 2016),
news (Stajner et al., 2017; Brunato et al., 2018),
and textbooks for ESL learners (Arase et al., 2022),
which are very different from specialized fields,
such as medicine (Choi and Pak, 2007). (2) Prior

1
https://tinyurl.com/seek-health-info-online

work separates the research on sentence readabil-
ity and complex jargon terms, hence missing the
possible correlations between them (Kwon et al.,
2022; Naous et al., 2023). (3) Previous research on
sentence readability uses document-level ratings as
an approximation, which is shown to be inaccurate
(Arase et al., 2022; Cripwell et al., 2023).

Our analysis reveals that compared to various lin-
guistic features, complex spans, especially medical
jargon from certain domains, more significantly ele-
vate the difficulty of sentences (§3.1). We also scru-
tinize the quality of 15 widely used medical text
simplification resources (§3.4), and find that there
are non-negligible variances in readability among
them, as shown by the differences in the height of
the box plots in Figure 2. While evaluating various
sentence readability metrics, we find that unsuper-
vised methods based on lexical features perform
poorly in the medical domain. Prompting large
language models such as GPT-4 (Achiam et al.,
2023) with 5-shot achieves strong performance, yet
is outperformed by fine-tuned models in a much
smaller size. Inspired by our analysis, we add a
single feature that captures the “number of jargon”
in a sentence into existing readability formulas, and
find it can significantly improve their performance
and also make them more stable.

2 Constructing MEDREADME Corpus

This section presents the detailed procedure for
constructing the Medical Readability Measurement
(MEDREADME) corpus, which consists of 4,520
sentences in 180 complex-simple article pairs ran-
domly sampled from 15 data sources (§2.1).
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Category Definition Example Tok. Len. %

Medical Jargon 2.2±1.5 68.6%

Google-Easy
Medical terms that can be easily understood
after a quick search.

Schistosoma mansoni is a parasitic infection
common in the tropics and sub-tropics.

2.0±1.2 56.9%

Google-Hard
Medical terms that require extensive research
before a layperson can possibly understand them.

. . . retains limited DNA-processing activity,
albeit via a distributive binding mechanism.

3.2±2.5 7.5%

Name Entity
Brand or organization name, excluding general
medical terms such as drugs and equipments.

While vaccination with BioNTech and Moderna
mostly causes only mild and typical . . .

2.7±2.2 4.1%

General Complex
Terms that are outside the vocabulary of 10-12th
graders and not specific to the medical domain.

Treatments used to ameliorate symptoms and
reduce morbidity include opiates, sedatives . . .

1.9±1.2 10.2%

Multi-sense
Spans that have different meanings in the
medical context compared to their general use.

. . . in structural and/or functional aspects of the
interaction with the insect vector.

1.0±0.1 0.5%

Abbreviation 1.1±0.4 20.8%

Medical Domain
Abbreviations that have a specific meaning in
the medical domain.

. . . 4,433 were alive and not withdrawn at an
LTFU participating center.

1.1±0.4 16.6%

General Domain Abbreviations that belong to the general domain. . . . as low risk of bias (95% CI 0.37 to 1.53). 1.0±0.2 4.2%

Table 1: A taxonomy (I) of complex textual spans in the medical domain with examples highlighted by a red
background. The “Medical Jargon” and "Abbreviation" rows are based on the aggregation of sub-categories.

2.1 Data Collection and Preprocessing

Different from prior work (Arase et al., 2022;
Naous et al., 2023), our study consists of sentences
from complete complex-simple article pairs, en-
abling a deeper analysis of how professional editors
simplify medical documents. The 15 resources that
we considered include (1) the abstract sections and
plain-language summaries from scientific papers,
such as the National Institute for Health and Care
Research (NIHR) and Cochrane Review of “the
highest standard in evidence-based healthcare”,2

for which we use the aligned article pairs released
from prior studies (Devaraj et al., 2021a; Goldsack
et al., 2022; Guo et al., 2022); and (2) segment and
paragraph pairs in the parallel versions of medical
references from trusted online platforms, such as
Merck Manuals3 and medical-related Wikipedia ar-
ticles we extracted. A detailed description of each
resource and pre-processing steps is provided in
Appendix C.

Target Audience. To ensure our study reflects
the background of a broader audience, our study
mainly targets people who have completed high
school or are entering college, and our dataset is an-
notated by college students without medical back-
grounds using a six-point Likert scale.

2.2 Sentence-level Readability Annotation

To collect ground-truth judgments, we hire three
university students with prior linguistic annotation
experience to annotate the readability ratings for

2
https://www.cochranelibrary.com/

3
https://www.merckmanuals.com/

4,520 sentences. We utilize the “rank-and-rate” in-
terface (Naous et al., 2023) and the CEFR scale
(Arase et al., 2022), with several improvements.

Annotation Guidelines. Following prior work
(Arase et al., 2022), we adopt the Common Eu-
ropean Framework of Reference for Languages
(CEFR) to annotate the sentence readability. CEFR
standards were originally created for language
learners. Because the scale is essentially a six-
point Likert scale, we believe the findings would
be mostly generalizable to a broader audience, in-
cluding native speakers. Another reason for using
the CEFR scale is to make our work comparable to
the existing work and datasets which were created
using the CEFR standards.

CEFR Scale. CEFR is the most widely used in-
ternational criteria to define learners’ language pro-
ficiency, assessing language skills on a 6-level scale
with detailed guidelines,4 from beginners (A1) to
advanced mastery (C2), which are denoted as level
1 (easiest) to level 6 (hardest) in our interface. Fol-
lowing prior work (Arase et al., 2022; Naous et al.,
2023), a sentence’s readability is determined based
on the CEFR level, at which an individual can un-
derstand the sentence without assistance. As med-
ical texts naturally concentrate on the harder-to-
understand side, we introduce the use of “+” and
“-” signs to differentiate the nuance in readability,
e.g., “3+” and “3-”, in addition to each integer level.
They are treated as 3.3 and 2.7 when converting to
the numeric scores.

4
https://tinyurl.com/CEFR-Standard/
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Feature Corr.

Number of unique sophisticated lexical words† 0.645
Corrected type-token-ratio (CTTR) 0.627
Number of syllables 0.589
Max age-of-acquisition (AoA) of words (2012) 0.576
Number of unique words 0.574
Number of words 0.532
Average number of characters per token 0.524
Corrected noun variation 0.513
The maximum dependency tree depth 0.437
Cumulative Zipf score for all words (2012) 0.425

Table 2: Top representative linguistic features and their
Pearson correlation with readability. †Sophisticated lex-
ical words (Lu, 2012) are nouns, non-auxiliary verbs,
adjectives, and certain adverbs that are not in the
2,000 most frequent lemmatized tokens in the American
National Corpus (ANC). More features and more im-
plementation details are provided in the Appendix B.

Rank-and-Rate Framework. Six sentences are
shown together to an annotator, who is instructed
to rank them from most to least readable first, then
rate each sentence using the 6-point CEFR standard.
The interface is shown in Appendix J. Compared to
rating each sentence individually, this method en-
ables annotators to compare and contrast sentences
within each set, leading to higher annotator agree-
ment (Maddela et al., 2023) and a more engaging
user experience (Naous et al., 2023).

Quality Control. For each medical sentence we
annotate for the MEDREADME corpus, we sample
another (mostly non-medical) sentence with compa-
rable length from the existing README++ dataset
(Naous et al., 2023) as a “control”. Therefore, each
set of sentences shown to the annotator consists of
three medical sentences and three control sentences
whose ratings are known. Annotators are asked to
spend at least three minutes on every set, and their
annotation quality is monitored through the use of
control sentences. The 1,924 sentences in the dev
and test sets are double annotated, and the scores
are merged by average. The inter-annotator agree-
ment is 0.742 measured by Krippendorff’s alpha
(Krippendorff, 2011). On the control sentences,
our annotation achieves a Pearson correlation of
0.771 with the original ratings from README++.

2.3 Fine-trained Complex Span Annotation

We propose a new taxonomy to comprehensively
capture 7 different categories of complex spans that
appeared in the medical texts, as shown in Table
1. The complete annotation guideline with more
examples is provided in Appendix L.

Type #Spans #Tokens %Tokens

Medical Jargon 0.644 0.591 0.445
Abbreviation 0.259 0.254 0.134
General Complex 0.112 0.09 0.001
Multi-sense 0.058 0.059 0.035

All Categories 0.656 0.617 0.584

Table 3: The impact of 15 features related to complex
spans, measured by the Pearson correlation with ground-
truth sentence readability on the MEDREADME dataset.

“Google-Hard” Jargon. In pilot study, we find
that some medical terms, such as “Tiotropium bro-
mide” (a drug) and “Plasmodium” (an insect), can
be grasped after a quick Google search, although
they are outside the vocabulary of many people.
Some other phrases, such as “anti-tumour necro-
sis factor failure” and “processive nucleases”, will
require extensive research before a layperson can
possibly (or still not) understand them, even though
some of them contain short or common words. This
seemingly minor distinction can have great impli-
cations in developing technological advances for
medical text simplification and health literacy, mo-
tivating us to propose a novel category “Google-
Hard” for medical jargon, which is separate from
jargon that is “Google-Easy” or “Name-Entity”. In
total, our dataset captures 698 Google-Hard medi-
cal jargon and 5,251 Google-Easy ones.

Annotation Agreement. After receiving a two-
hour training session, two of our in-hour annota-
tors independently annotate each of the 4,520 sen-
tences using a web-based annotation tool, BRAT
(Stenetorp et al., 2012). The annotation interface
is provided in Appendix K. An adjudicator then
further inspects the annotation and discusses any
significant disagreements with the annotators. The
inter-annotator agreement is 0.631 before adjudi-
cation, measured by token-level Cohen’s Kappa
(Cohen, 1960).

3 Key Findings

Enabled by our MEDREADME corpus, we first an-
alyze the sentence readability measurements for
medical texts (§3.1 and §3.4), then dive into medi-
cal jargon of different complexities (§3.2 and §3.3).

3.1 Why Medical Texts are Hard-to-Read?

The readability of a sentence can be impacted by a
mixture of factors, including sentence length, gram-
matical complexity, word choice, etc. We extract
650 linguistic features from each sentence and mea-
sure their correlation with ground-truth readability.
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Figure 3: Left: Readability of sentences with differ-
ent lengths. Compared to the CEFR-SP dataset (Arase
et al., 2022), our corpus contains much longer sentences.
Right: Readability of sentences with different numbers
of jargon. The circle’s radius reflects the number of over-
lapping points at each coordinate. We slightly shifted
the points horizontally (±0.1) for better visualization.

15 additional features are designed to quantify the
influence of complex spans. Based on our qualita-
tive analysis, we found that complex spans, such as
medical jargon, have a more profound impact on
readability compared to other linguistic aspects.

Impact of linguistic features. For each sentence,
650 linguistic features are extracted, including
syntax and semantics features, quantitative and
corpus linguistics features, in addition to psycho-
linguistic features (Vajjala and Meurers, 2016),
such as the age of acquisition (AoA) released by
Kuperman et al. (2012), and concreteness, mean-
ingfulness, and imageability extracted from the
MRC psycholinguistic database (Wilson, 1988).
These features are extracted using a combination
of toolkits, each of which covers a different subset
of features, including LFTK (Lee and Lee, 2023),
LingFeat, Profiling–UD (Brunato et al., 2020a),
Lexical Complexity Analyzer (Lu, 2012), and
L2 Syntactic Complexity Analyzer (Lu, 2010).
We select and present top-10 representative fea-
tures in Table 2, and provide a more complete list
of the top-50 influential features in Appendix B
with more detailed definition of each feature. We
found that resource-based methods, such as the
count of “sophisticated lexical words” (Lu, 2012)
and Zipf score (Powers, 1998), are very useful.
Length-related features are also informative.

Impact of Complex Spans. Based on our pi-
lot study and feedback from annotators, we ob-
served that the specialized terminology, while al-
lowing for precise and concise communication
among experts, significantly affects the difficulty
level of texts in specialized domains. With our
fine-grained span-level annotations (§2.3), we can
directly measure the effects that each type of

Figure 4: Breakdown of Google-Easy and Google-Hard
jargon into different medical domains based on our man-
ual analysis of 400 randomly sampled jargon.

complex words and jargon have on readability.
Specifically, we design three features “number-
of-jargon-spans”, “number-of-jargon-tokens”, and
“percentage-of-jargon-tokens” for complex span in
each category: medical jargon, abbreviation, gen-

eral complex terms, and multi-sense words. We
then compute their correlation with the sentence-
level readability ratings. As shown in Table 3, we
find that medical jargon significantly affects read-
ability, and abbreviations follow in influence.

Figure 3 plots the relationship between readabil-
ity and both sentence length (left) and the number
of jargon spans (right). On the left, we notice that
the lines representing “complex” and “simple” sen-
tences begin to diverge as sentence length exceeds
20 tokens, suggesting that factors beyond length
affect the readability. In contrast, a stronger overall
correlation between the number of jargon spans
and readability is observed in the right figure.

3.2 What Makes a Jargon Easy (or Hard)?

Based on the feedback from annotators, we iden-
tify two major factors that influence the perceived
difficulty of medical jargon, as listed below:

Inherent Complexity of Topics. To analyze the
perceived difficulty of medical jargon from differ-
ent domains, we randomly sample 200 Google-
Easy and 200 Google-Hard medical jargon, and
manually analyze their topics. The results are pre-
sented in Figure 4. Google-Easy terms are more
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Sources Length
FKGL

(Kincaid et al.)
ARI

(Smith and Senter)
SMOG

(Mc Laughlin)
RSRS

(Martinc et al.)
FKGL-Jar

(Ours)
ARI-Jar
(Ours)

SMOG-Jar
(Ours)

RSRS-Jar
(Ours)

Cochrane 0.628 0.743 0.689 0.749 0.826 0.717 0.719 0.726 0.721

PNAS 0.554 0.480 0.441 0.615 0.594 0.660 0.650 0.685 0.657

NIHR Series 0.529 0.482 0.455 0.661 0.659 0.577 0.583 0.632 0.616

eLife 0.505 0.196 0.244 0.371 0.467 0.644 0.638 0.690 0.733

PLOS Series 0.436 0.414 0.413 0.446 0.613 0.716 0.717 0.704 0.707

Wiki 0.352 0.400 0.368 0.471 0.670 0.677 0.681 0.785 0.703

MSD 0.259 0.618 0.576 0.604 0.694 0.836 0.835 0.805 0.859

Mean ± Std 0.466 ± 0.127 0.476 ± 0.173 0.455 ± 0.143 0.56 ± 0.134 0.646 ± 0.109 0.690 ± 0.080 0.689 ± 0.080 0.718 ± 0.060 0.714 ± 0.076

Table 4: Pearson correlation (↑) between human ground-truth readability and each unsupervised readability metric.
NIHR and PLOS are aggregations of 5 sources for each. All correlations are statistically significant. “-Jar” denotes
adding a “number-of-jargon” feature into existing readability formula (more details in §4.2). Our proposed method
significantly improves the correlation over existing metrics, as demonstrated by the average correlation.

Operation Google-Easy Google-Hard

Knowledge Panel

Covered 45.6% 10.3%
Explained by Figure 13.6% 4.6%

Feature Snippets

Covered 55.3% 21.2%
Highlighted Text 52.4% 18.5%
Explained by Figure 22.8% 3.6%

Table 5: The percentage of explanatory content provided
by Google. An annotated screenshot of the webpage is
provided in Figure 6 in Appendix I to visually demon-
strates “Knowledge Panel” and “Feature Snippets”,

diversified across different topics, while Google-
Hard terms mainly fall under Genetics / Cellular

Biology and Biology / Molecular Processes. This
suggests that jargon associated with genetics or
molecular procedures tends to be more challenging
to read, possibly due to the specialized knowledge
required to interpret them.

Variance in the Explanation. We also observed
that the accessibility of medical jargon is greatly
improved when search engines offer explanations
or visual aids in their results. Search engines may
provide the explanation of a medical term in two
places: (1) the feature snippets in the answer box;
and (2) the knowledge panel, which is powered by
a knowledge graph. An annotated screenshot of the
search results is provided in Figure 6 in Appendix
I to demonstrate each element visually. By parsing
the Google search results for 2,731 unique Google-
Easy and 504 Google-Hard medical jargon from
our corpus, we quantified the existence of these
explanations in Table 5. The Google-Easy jargon is
more frequently accompanied by explanatory con-
tent compared to the Google-Hard category. The
use of visual aids also follows a similar pattern;
Google-Easy terms are much more likely to be ex-
plained by figures compared to Google-Hard ones.

Operation Google-Easy Google-Hard

Kept 22% 13% (↓ 9%)
Deleted 56% 52% (↓ 4%)
Rephrased 3% 10% (↑ 7%)
Kept + Explained 8% 8% (−)
Del.+ Explained 11% 17% (↑ 6%)

Table 6: The distribution of operations to 200 medical
jargon (100 in each type), based on our manual analysis.

3.3 How Professional Editors Simplify the

Medical Jargon?

To study how jargon are handled during the man-
ual simplification process, we randomly sample
200 jargon and manually analyze the operation ap-
plied to them. The results are presented in Table
6. We find that the majority part of jargon in both
categories got deleted. Compared to Google-Easy,
“Google-Hard” jargon got copied less, and are being
rephrased and explained more often. This findings
indicate that trained editors adopt different strate-
gies to handle jargon with different complexities.

3.4 Readability Significantly Varies Across

Existing Medical Simplification Corpora

To better understand the quality of medical text
simplification corpora, in Figure 2, we plot the dis-
tribution of sentence readability and numbers of
jargon per sentence across 15 different resources.
Within each source, the simplified texts are rated
as easier to understand than their complex coun-
terparts, though the extent varies. However, when
compared across the board, simplified texts from
some sources can be even more challenging to
read than the complex texts from other sources,
suggesting that not all plain texts are equally sim-
ple. In addition, some resources, such as “PLOS
pathogens”, are especially difficult for laypersons
without domain-specific knowledge to understand.
The current research practice in medical text sim-
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plification often treat all data uniformly, such as
concatenating all available corpora into one giant
training set. However, we argue for a more cautious
approach. For some resources, the “simplified” ver-
sion remains quite complex, and the topics may not
be directly relevant to laypersons. Therefore, the
decision to include a corpus or not should be made
after considering the intended audiences’ desired
readability level and their use cases.

4 Medical Readability Prediction

In this section, we present a comprehensive evalua-
tion of state-of-the-art readability metrics for medi-
cal texts (§4.1), and design a simple yet effective
method to further improve them (§4.2).

4.1 Evaluating Existing Readability Metrics

Enabled by our annotated corpus, we first evaluate
commonly used sentence readability metrics.

Unsupervised Methods. The Pearson correla-
tions between ground-truth readability and each
unsupervised metric are presented in the left half
of Table 4. The metrics we considered include
FKGL (Kincaid et al., 1975), ARI (Smith and Sen-
ter, 1967), SMOG (Mc Laughlin, 1969), and RSRS
(Martinc et al., 2021), and their detailed formula-
tions are provided in Appendix A. We also add
sentence length as a baseline. We find that the un-
supervised methods generally do not perform very
well. The language model-based RSRS score sig-
nificantly outperforms the traditional feature-based
metrics, among which SMOG performs best.

Supervised and Prompt-based Methods. The
results are presented in Table 7. For supervised
methods, we fine-tune language models on our
dataset and existing corpora (Naous et al., 2023;
Arase et al., 2022; Brunato et al., 2018) to pre-
dict the sentence readability. We also evaluate the
performance of in-context learning by prompting
large language models such as GPT-4 and Llama-
35 (AI@Meta, 2024) using 5-shot. The prompts are
constructed following Naous et al. (2023). More de-
tails and the full prompt template are in Appendix
H. We find that prompt-based methods achieve
competitive results, e.g., GPT-4 outperforms the
strongest unsupervised metric RSRS, although they
still fall behind supervised methods.

5More specifically, we used gpt-4-0613 and
Llama-3.1-8B-Instruct in the experiments.

4.2 Improving Readability Metrics with

Jargon Identification

To incorporate the consideration of jargon into ex-
isting metrics, we add and tune a weight α for the
feature “number-of-jargon” as follows:

FKGL-Jar = FKGL + α× #Jargon,

where “FKGL-Jar” denotes adding jargon into the
FKGL score, similarly for other metrics with a suf-
fix “-Jar”. The weight α is chosen by grid search on
the dev set using gold annotation for each metric.
As RSRS scores are smaller than 1, we scale them
by 100 before the parameter search. The right sides
in Table 4 and 7 report the performance of each
unsupervised and supervised method on the test
set, after adding our proposed term. To reflect the
real-world scenario, we use jargon predicted by our
best-performing complex span identification model
(more details in §5), instead of the ground-truth
annotation. The optimal weights (α) we tuned for
“FKGL-Jar”, “ARI-Jar”, “SMOG-Jar”, and “RSRS-
Jar” are 4.85, 6.43, 1.1, and 0.45, respectively. We
find that introducing a single term significantly im-
proves the correlation with human judgments.

Length-Controlled Experiment. To analyze the
impact on sentences of varied lengths, in Figure
5, we present the 95% confidence intervals for the
Kendall Tau-like correlation (Noether, 1981) be-
tween the ground-truth readability and predictions
from each metric (Maddela et al., 2023). We find
the proposed “-Jar” term is advantageous for sen-
tences at all lengths and is especially helpful for
feature-based methods, such as SMOG. In addition,
the incorporation of jargon makes the metrics more
stable, as demonstrated by the narrower intervals.

5 Fine-grained Complex Span

Identification

Based on our analysis in §4.2, identifying complex
spans in a sentence can help the judgment of its
readability. It can also improve the performance of
downstream text simplification system (Shardlow,
2014). We formulate this task as a NER-style se-
quential labeling problem (Gooding and Kochmar,
2019), and utilize our annotated dataset to train and
evaluate several models.

Data and Models. The 4,520 sentences in our
corpus is split into 2,587/784/1,140 for train, dev,
and test sets. We mainly consider BERT/RoBERTa-
based standard tagging models, initialized with dif-
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Sources
5-shots Trained on Each Corpus The Trained + an Jargon Term

GPT-4
(Achiam et al.)

Llama 3-8b
(AI@Meta)

ReadMe++
(Naous et al.)

CEFR-SP
(Arase et al.)

CompDS
(Brunato et al.)

MEDREADME

(Ours)
ReadMe++Jar

(Ours)
CEFR-SPJar

(Ours)
CompDSJar

(Ours)
MEDREADMEJar

(Ours)

Cochrane 0.908 0.665 0.858 0.899 0.870 0.947 0.842 0.850 0.785 0.882
PNAS 0.780 0.528 0.852 0.820 0.791 0.874 0.780 0.824 0.744 0.873
NIHR Series 0.713 0.485 0.824 0.753 0.706 0.885 0.697 0.687 0.634 0.700
eLife 0.538 0.188 0.594 0.715 0.608 0.712 0.812 0.802 0.777 0.861
PLOS Series 0.672 0.520 0.680 0.691 0.635 0.702 0.787 0.843 0.744 0.850
Wiki 0.670 0.447 0.824 0.709 0.607 0.843 0.712 0.619 0.673 0.709
MSD 0.766 0.562 0.784 0.778 0.757 0.867 0.918 0.880 0.863 0.937

Mean ± Std 0.721 ± 0.115 0.485 ± 0.148 0.774 ± 0.1 0.766 ± 0.073 0.711 ± 0.101 0.833 ± 0.092 0.793 ± 0.076 0.786 ± 0.096 0.746 ± 0.075 0.830 ± 0.090

Table 7: Pearson correlation (↑) between human ground-truth readability and each prompting and supervised

readability metric. All numbers are averaged over five runs, and all correlations are statistically significant.
denotes RoBERTa-large models. “-Jar” means adding a “jargon” term (more details in §4.2). Prompt-based methods
are competitive, while still outperformed by fine-tuned models in much smaller sizes.

0.2 0.3 0.4 0.5 0.6 0.7

FK

FK-Jar

SMOG

SMOG-Jar

RSRS

RSRS-Jar

Sentences with Length 0-15

0.2 0.3 0.4 0.5 0.6

Sentences with Length 15-30

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Sentences with Length 30-45

0.2 0.0 0.2 0.4 0.6

Sentences with Length 45+

Figure 5: The 95% confidence intervals for Kendall Tau-like correlation (↑) between ground-truth readability
annotation and predicted outputs from each automatic metric for sentences with different lengths, calculated by
bootstrapping (Deutsch et al., 2021). In addition to a higher correlation with human judgments, incorporating jargon
(“-Jar”) makes each metric more stable, as shown by the smaller intervals.

ferent pre-trained embeddings. The implementa-
tion details are provided in Appendix D.

Evaluation Metrics. We consider two variants
of F1 measurements: (1) entity-level partial match,
indicating the number of jargon, where the type
of the predicted entity matches the gold entity and
the predicted boundary overlaps with the gold span.
We use the evaluation script released by Tabas-
sum et al. (2020).6 We also report the exact match
performance at entity-level in the Appendix F. (2)
token-level match, measuring the number of jar-
gon tokens. For each metric, we conduct evalua-
tions at three levels of granularity: (1) fine-grained
level with 7 categories, (2) associated 3 higher-
level classes (i.e., medical / general+multisense /
abbreviation), and (3) binary judgments between
complex or non-complex text spans.

Results. The evaluation results are presented in
Table 8. All results are averaged over 5 runs with
different random seeds. The fine-tuned RoBERTa-
large model (Liu et al., 2019) achieves 86.8 and
80.2 F1 for binary tasks at token- and entity levels.
Using predictions from this model, we significantly
improve existing readability metrics’ correlation

6
https://github.com/jeniyat/WNUT_2020_NER/

tree/master/code/eval

with human judgment (§4.2). We find the domain-
specific models at base size, such as PubMedBERT
(Tinn et al., 2021), also achieve competitive perfor-
mance. However, differentiating between the seven
categories of complex spans remains challenging.

Models
Token-Level Entity-Level

Binary 3-Cls. 7-Cate. Binary 3-Cls. 7-Cate.

Large-size Models

BERT (2019) 86.1 80.9 67.9 78.5 74.1 43.9

RoBERTa (2019) 86.8 82.3 68.6 80.2 75.9 67.9

BioBERT (2020) 85.3 80.7 67.0 78.4 72.6 64.9

PubMedBERT (2021) 85.7 82.3 68.3 79.0 75.2 66.5

Base-size Models

BERT (2019) 85.4 80.4 66.3 77.0 72.5 63.3

RoBERTa (2019) 86.2 81.7 68.0 79.7 75.2 66.6

BioBERT (2020) 84.2 79.6 66.4 77.1 72.8 64.1

PubMedBERT (2021) 85.2 81.2 67.7 78.5 74.8 66.3

Table 8: Micro F1 (↑) of different systems for complex
span identification on the MEDREADME test set. The
best and second-best scores are highlighted. Models
are trained with fine-grained labels in seven categories
and evaluated at different granularity.

Transfer Learning. We use two existing datasets
(Paetzold and Specia, 2016; Yimam et al., 2017) to
train RoBERTa-large (Liu et al., 2019) models, and
evaluated them on the test set of our MEDREADME.
Table 9 presents the performance for binary com-
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Training Corpus Domain #Sent. Token Entity

SemEval2016 (2016) Wikipedia 200 38.6 29.0

CWIG3G2 (2017) News, Wiki 1,988 46.4 28.7

MEDREADME (Ours) Medical Articles 4,520 86.8 80.2

Table 9: F1 on the test set of MEDREADME for mod-
els trained on different datasets. “Entity” and “Token”
denote binary entity-/token-level performance. “#Sent”
is the number of unique sentences in the training set.

plex span identification task, as existing corpora
consist of binary labels, and SemEval2016 (Paet-
zold and Specia, 2016) only has complex word
annotation. We find that both models trained using
general domain data do not perform well in the
medical field. This results demonstrate the neces-
sity for our medical-focus dataset.

6 Related Work

Readability Measurement in Medical Domain.

Unsupervised metrics, such as FKGL (Kincaid
et al., 1975), ARI (Smith and Senter, 1967),
SMOG (Mc Laughlin, 1969), and Coleman-Liau
index (Coleman and Liau, 1975) have been widely
adopted in existing research on the medical read-
ability analysis, as they do not require training data
(Fu et al., 2016; Chhabra et al., 2018; Xu et al.,
2019; Devaraj et al., 2021a; Kruse et al., 2021;
Guo et al., 2022; Kaya and Görmez, 2022; Hartnett
et al., 2023, inter alia). However, their reliabil-
ity has been questioned (Wilson, 2009; Jindal and
MacDermid, 2017; Devaraj et al., 2021b), as they
mainly rely on the combination of shallow lexical
features. Unsupervised RSRS score (Martinc et al.,
2021) utilizes the log probability of words from
a pre-trained language model such as BERT (De-
vlin et al., 2019), while other supervised metrics
rely on fine-tuning LLMs on the annotated corpora
(Arase et al., 2022; Naous et al., 2023); however,
previously, the performance of these methods on
the medical texts were unclear. Enabled by our
high-quality dataset, we benchmark existing state-
of-the-art metrics in the medical domain (§4.1),
and also further improve their performances (§4.2).

Complex Span Identification in Medical Do-

main. Kauchak and Leroy (2016) collects a
dataset that consists of the difficulty for 275 words.
CompLex 2.0 (Shardlow et al., 2020) consists of
complex spans rated on a 5-point Likert scale.
However, it only covers spans with one or two to-
kens. MedJEx corpus (Kwon et al., 2022) consists

of binary jargon annotation for sentences in the
electronic health record (EHR) notes, whereas the
dataset is licensed. Other work on complex word
identification mainly focuses on general domains,
such as news and Wikipedia, and other specialized
domains, e.g., computer science. Due to space
limits, we list them in Appendix E. Our data is
based on open-access medical resources and con-
tains both sentence-level readability ratings and
complex span annotation with a finer-grained 7-
class categorization (§2).

7 Conclusion

In this work, we present a systematic study for sen-
tence readability in the medical domain, featuring
a new annotated dataset and a data-driven study to
answer “why medical sentences are so hard.”. In
the analysis, we quantitatively measure the impact
of several key factors that contribute to the com-
plexity of medical texts, such as the use of jargon,
text length, and complex syntactic structures. Fu-
ture work could extend to the medical notes from
clinical settings to better understand real-time com-
munication challenges in healthcare. Additionally,
leveraging our dataset that categorizes complex
spans by difficulty and type, further research could
develop personalized simplification tools to adapt
content to the target audience, thereby improving
patients’ understanding of medical information.

Limitations

Due to the reality that major scientific medical
discoveries are mostly reported in English, our
study primarily focuses on English-language medi-
cal texts. Future research could extend to medical
resources in other languages. In addition, the fo-
cus of our work is to create readability datasets
for general purposes following prior work. We
did not study or distinguish the fine-grained dif-
ferences and nuances between native speakers and
non-native speakers (Yimam et al., 2017).

The readability ratings of a sentence can be im-
pacted by a mixture of factors, including sentence
length, grammatical complexity, word difficulty,
the annotator’s educational background, the design
and quality of annotation guidelines, as well as the
target audience. We choose to use the CEFR stan-
dards, which is “the most widely used international
standard” to access learners’ language proficiency
(Arase et al., 2022). It has detailed guidelines in 34
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languages7,8 and have been widely used in many
prior research (Boyd et al., 2014; Rysová et al.,
2016; François et al., 2016; Xia et al., 2016; Tack
et al., 2017; Wilkens et al., 2018; Arase et al., 2022;
Naous et al., 2023, inter alia).

Ethics Statement

During the data collection process, we hired under-
grad students from the U.S. as in-house annotators.
All annotators are compensated at $18 per hour or
by credit hours based on the university standards.
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A Formulas of Readability Metrics

In this section, we list the formulas for four unsu-
pervised readability metrics.

FKGL. The Flesch-Kincaid Grade Level formula
is a well-known readability test designed to indicate
how difficult a text in English is to understand. It
is calculated using the formula:

FKGL = 0.39

(

total words
total sentences

)

+ 11.8

(

total syllables
total words

)

− 15.59

ARI. The Automated Readability Index (ARI)
is another widely used readability metric that esti-
mates the understandability of English text. It is
formulated based on characters rather than sylla-
bles. The ARI formula is given by:

ARI = 4.71

(

total characters
total words

)

+ 0.5

(

total words
total sentences

)

− 21.43

SMOG. The SMOG (Simple Measure of Gob-
bledygook) Index is a readability formula that mea-
sures the years of education needed to understand
a piece of writing. SMOG is particularly useful
for higher-level texts. The formula is as follows,
where the polysyllables are calculated by counting
the number of words in a text that have three or
more syllables:

P = number of polysyllables

S = number of sentences

SMOG = 1.0430

√

P ×
30

S
+ 3.1291

RSRS. The RSRS (Ranked Sentence Readability
Score) leverages log probabilities from a neural
language model and the sentence length feature.
It’s calculated through a weighted sum of individ-
ual word losses. Each word’s Negative Log Loss
(WNLL) is sorted in ascending order and weighted
by its rank. The formula assigns higher weights
to the out-of-vocabulary (OOV) words, by setting
α = 2 for all OOV words and 1 for others. The
formula for RSRS is:

RSRS =

∑S
i=1[

√
i]α ·WNLL(i)

S

And WNLL can be calculated by:

WNLL = −(yt log yp + (1− yt) log(1− yp))

Here, S is sentence length, yp is the predicted
distribution from the language model, and yt is
the empirical distribution, where 1 for words that
appear in the text, and 0 for all others.

B More Results on the Influence of Each

Linguistic Feature

In this section, we provide more results on the in-
fluence of linguistic features, including syntax and
semantics features, quantitative and corpus linguis-
tics features, in addition to psycho-linguistic fea-
tures (Vajjala and Meurers, 2016), such as the age
of acquisition (AoA) released by Kuperman et al.
(2012), and concreteness, meaningfulness, and im-
ageability extracted from the MRC psycholinguis-
tic database (Wilson, 1988).

The features are extracted using a combina-
tion of toolkits, each of which covers a differ-
ent subset of features, including 220 features
from the LFTK package (Lee and Lee, 2023), 255
from the LingFeat (Lee et al., 2021), 61 from
Text Characterization Toolkit (TCT) (Simig
et al., 2022), 119 from Profiling–UD (Brunato
et al., 2020a), 33 from the Lexical Complexity

Analyzer (LCA) (Lu, 2012) and 23 from the L2

Syntactic Complexity Analyzer (L2SCA) (Lu,
2010). The top 50 most influential features are pre-
sented in Table B after skipping the duplicated and
nearly equivalent ones, e.g., the typo-token-ratio

and root-type-token-ratio.
For each of the listed features, we look into the

implementation details from the original toolkit
and explain them in the "Implementation Details"
column. To facilitate reproducibility, we also in-
clude the exact feature name used in the original
code in the "Original Feature Name" column.
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Package Original Feature Name
Pearson

Correlation
Implementation Details in the Original Toolkit

LCA (2012) len(slextypes.keys()) 0.6452 Number of unique sophisticated lexical words, which are
lexical words (i.e., nouns, non-auxiliary verbs, adjectives,
and certain adverbs that provide substantive content in
the text) and are also “sophisticated” (i.e., not in the list
of 2,000 most frequent lemmatized tokens in the ANCa

corpus).

LCA (2012) len(swordtypes.keys()) 0.6408 Number of unique sophisticated words. “Sophisticated” is
defined as not in the list of 2,000 most frequent lemmatized
tokens in the American National Corpus (ANC)

LFTK (2023) corr_ttr 0.6271 Corrected type-token-ratio (CTTR), which is calculated as
(number-of-unique-tokens/

√
2× number-of-all-tokens),

based on the lemmatized tokens.

LFTK (2023) corr_ttr_no_lem 0.6158 Corrected type-token-ratio (CTTR), which is calculated as
(number-of-unique-tokens/

√
2× number-of-all-tokens),

based on the tokens without lemmatization.

LCA (2012) slextokens 0.6120 Number of all sophisticated lexical words, which are lexical
words (i.e., nouns, non-auxiliary verbs, adjectives, and
certain adverbs that provide substantive content in the text)
and are also “sophisticated” (i.e., not in the list of 2,000
most frequent lemmatized tokens in the ANC corpus).

LCA (2012) swordtokens 0.6083 Number of all sophisticated words. “Sophisticated” is de-
fined as not in the 2,000 most frequent lemmatized tokens
in the American National Corpus (ANC)

LCA (2012) ndwz 0.6037 Number of different words in the first Z words. Z is com-
puted as the 20th percentile of word counts from a dataset,
resulting in a value of 16 in our case.

LCA (2012) ndwesz 0.6024 Number of different words in expected random sequences
of Z words over ten trials. Z is computed as the 20th
percentile of word counts from a dataset, resulting in a
value of 16 in our case.

LingFeat (2021) WRich20_S 0.6006 Semantic richness of a text, which is calculated by sum-
ming up the probabilities of 200 Wikipedia-extracted top-
ics, each multiplied by its rank, indicating the text’s variety
and depth of topics. The 200 topics were extracted from
the Wikipedia corpus using the Latent Dirichlet Allocation
(LDA) method.

LCA (2012) len(lextypes.keys()) 0.5996 Number of unique lexical words. Lexical words include
nouns, non-auxiliary verbs, adjectives, and certain adverbs
that provide substantive content in the text.

LCA (2012) ndwerz 0.5961 Number of different words expected in random Z words
over ten trials. Z is computed as the 20th percentile of
word counts from a dataset, resulting in a value of 16 in
our case.

LFTK (2023) t_syll 0.5888 Number of syllables.

LFTK (2023) t_char 0.5806 Number of characters.

TCT (2022) WORD_PROPERTY_AOA_MAX 0.5758 Max age-of-acquisition (AoA) of words. The AoA of each
word is defined by Kuperman et al. (2012).

LCA (2012) lextokens 0.5750 Number of lexical words. Lexical words include nouns,
non-auxiliary verbs, adjectives, and certain adverbs that
provide substantive content in the text.

Table 10: Top 50 most influential linguistic features on readability assessment.

a
https://anc.org/
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Package Original Feature Name
Pearson

Correlation
Implementation Details in the Original Toolkit

LFTK (2023) t_uword 0.5744 Number of unique words.

LingFeat (2021) WTopc20_S 0.5686 The count of distinct topics, out of 200 extracted from
Wikipedia, that are significantly represented in a text, show-
ing the breadth of topics it covers.

LFTK (2023) t_syll2 0.5607 Number of words that have more than two syllables.

LingFeat (2021) BClar20_S 0.5598 Semantic Clarity measured by averaging the differences
between the primary topic’s probability and that of each
subsequent topic, reflecting how prominently a text focuses
on its main topic, based on 200 topics extracted from the
WeeBit Corpus.

LingFeat (2021) to_AAKuW_C 0.5379 Total age-of-acquisition (AoA) of words. The AoA of each
word is defined by Kuperman et al. (2012).

TCT (2022) DESWC 0.5323 Number of words.

LingFeat (2021) BClar15_S 0.5294 Semantic Clarity measured by averaging the differences
between the primary topic’s probability and that of each
subsequent topic, reflecting how prominently a text focuses
on its main topic, based on 150 topics extracted from the
WeeBit Corpus.

LingFeat (2021) at_Chara_C 0.5237 Average number of characters per token.

LFTK (2023) corr_noun_var 0.5127 Corrected noun variation, which is computed as
(number-of-unique-nouns/

√
2× number-of-all-nouns)

LingFeat (2021) as_AAKuW_C 0.5069 Average age-of-acquisition (AoA) of words. The AoA of
each word is defined by Kuperman et al. (2012).

LFTK (2023) t_bry 0.5046 Total age-of-acquisition (AoA) of words. The AoA of each
word is defined by Brysbaert and Biemiller (2017).

LFTK (2023) t_syll3 0.5044 Number of words that have more than three syllables.

LingFeat (2021) WTopc15_S 0.4956 The count of distinct topics, out of 150 extracted from
Wikipedia, that are significantly represented in a text, show-
ing the breadth of topics it covers.

LFTK (2023) corr_adj_var 0.4764 Corrected adjective variation, which is computed as
( number-of-unique-adjectives√

2×number-of-all-adjectives
)

LFTK (2023) n_unoun 0.4694 Number of unique nouns.

LingFeat (2021) at_Sylla_C 0.4691 Average number of syllables per token.

LFTK (2023) a_bry_ps 0.4586 Average age-of-acquisition (AoA) of words. The AoA of
each word is defined by Brysbaert and Biemiller (2017).

LFTK (2023) n_noun 0.4581 Number of nouns.

LingFeat (2021) to_FuncW_C 0.4515 Number of function words, excluding words with POS tags
of ’NOUN’, ’VERB’, ’NUM’, ’ADJ’, or ’ADV’.

LFTK (2023) n_adj 0.4497 Number of adjectives.

LFTK (2023) n_uadj 0.4483 Number of unique adjectives.

Profiling–UD (2020b) avg_max_depth 0.4371 The maximum tree depths extracted from a sentence, which
is calculated as the longest path (in terms of occurring
dependency links) from the root of the dependency tree to
some leaf.

LingFeat (2021) WNois20_S 0.4362 Semantic noise, which quantifies the dispersion of a text’s
topics, reflecting how spread out its content is across differ-
ent subjects. It is calculated by analyzing the text’s topic
probabilities on 200 topics extracted from through Latent
Dirichlet Allocation (LDA).

LCA (2012) ls1 0.4255 Lexical Sophistication-I, calculated as the ratio of sophisti-
cated lexical tokens to the total number of lexical tokens.

Table 11: Top 50 most influential linguistic features on readability assessment (continue).
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Package Original Feature Name
Pearson

Correlation
Implementation Details in the Original Toolkit

LFTK (2023) t_subtlex_us_zipf 0.4253 Cumulative Zipf score for all words, based on frequency
data from the SUBTLEX-US corpus (Brysbaert et al.,
2012). Zipf scores are a measure of word frequency, with
higher scores indicating more common words.

LingFeat (2021) WTopc10_S 0.4242 The count of distinct topics, out of 100 extracted from
Wikipedia, that are significantly represented in a text, show-
ing the breadth of topics it covers.

Profiling–UD (2020b) avg_links_len 0.4167 Average number of words occurring linearly between each
syntactic head and its dependent (excluding punctuation
dependencies).

LFTK (2023) n_adp 0.4144 Number of adpositions.

LingFeat (2021) SquaAjV_S 0.4088 Squared Adjective Variation-1, which is calculated as the

( (number-of-unique-adjectives)2

number-of-total-adjectives ).

LFTK (2023) n_upunct 0.4053 Number of unique punctuations.

LFTK (2023) corr_adp_var 0.4031 Corrected adposition variation, which is computed as
( number-of-unique-adpositions√

2×number-of-all-adpositions
)

LFTK (2023) n_uadp 0.4022 Number of unique adpositions.

LFTK (2023) corr_propn_var 0.3895 Corrected proper noun variation, which is computed as
( number-of-unique-proper-nouns√

2×number-of-all-proper-nouns
)

LingFeat (2021) WClar20_S 0.3879 Semantic Clarity measured by averaging the differences
between the primary topic’s probability and that of each
subsequent topic, reflecting how prominently a text fo-
cuses on its main topic, based on 200 topics extracted from
Wikipedia Corpus.

LingFeat (2021) SquaNoV_S 0.3864 Squared Noun Variation-1, which is calculated as the
((number-of-unique-nouns)2/number-of-total-nouns).

Table 12: Top 50 most influential linguistic features on readability assessment (continue).
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C Introduction of Medical Text

Simplification Resources

Our dataset is constructed on top of open-accessed
resources. Each of the resources is detailed below.
Table 13 presents the basic statistics of 180 sampled
article (segment) pairs.

Biomedical Journals. The latest advancements
in the medical field are documented in the research
papers. To improve accessibility, the authors or do-
main experts sometimes write a summary in lay lan-
guage, providing a valuable resource for studying
medical text simplification. We include five sub-
journals from NIHR, five sub-journals from PLOS,
and the Proceedings of the National Academy of
Sciences (PNAS) compiled by (Guo et al., 2022).
In addition, we also include the eLife corpus com-
piled by (Goldsack et al., 2022), which consists of
the paper abstracts and summaries in life sciences
written by expert editors.

Cochrane Reviews. As “the highest standard
in evidence-based healthcare”, Cochrane Review9

provides systematic reviews for the effectiveness of
interventions and the quality of diagnostic tests in
healthcare and health policy areas, by identifying,
appraising, and synthesizing all the empirical ev-
idence that meets pre-specified eligibility criteria.
We use the parallel corpus compiled by (Devaraj
et al., 2021a).

Medical Wikipedia. As their original and simpli-
fied versions are created independently in a collab-
oration process, the two versions are on the same
topic but may not be entirely aligned (Xu et al.,
2015). We apply the state-of-the-art methods (Jiang
et al., 2020) to extract aligned paragraph pairs from
Wikipedia, of which we improve the quality and
quantity over existing work (Pattisapu et al., 2020).
Specifically, we first collect 60,838 medical terms
using Wikidata’s SPARQL service10 by querying
unique terms that have 30 specific properties, in-
cluding UMLS code, medical encyclopedia, and
the ontologies for disease, symptoms, examination,
drug, and therapy. Then, we extract corresponding
articles for each term from Wikipedia and simple
Wikipedia dumps,11 based on title matching using
WikiExtractor library,12 resulting in 2,823 aligned
article pairs after filtering the empty pages. Finally,

9
https://www.cochranelibrary.com/

10
https://query.wikidata.org/

11The March 22, 2023 version.
12
https://attardi.github.io/wikiextractor/

Source of the Publication
Avg. #Sent. Avg. Sent. Len.

Comp./Simp. Comp./Simp.

Public Library of Science (PLOS)

Biology 8.3 / 8.2 28.2 / 26.8
Genetics 10.2 / 6.2 28.9 / 30.3
Pathogens 8.9 / 7.2 30.7 / 29.5
Computational Biology 9.1 / 7.2 29.3 / 27.4
Neglected Tropical Diseases 10.2 / 8.0 29.3 / 26.4

National Institute for Health and Care Research (NIHR)

Public Health Research 23.4 / 14.3 26.2 / 20.5
Health Technology Assessment 25.1 / 12.9 27.3 / 25.7
Efficacy and Mechanism Evaluation 22.6 / 14.9 28.2 / 21.4
Programme Grants for Applied Research 27.6 / 14.2 27.6 / 22.6
Health Services and Delivery Research 23.2 / 14.1 27.9 / 23.2

Medical Wikipedia 5.4 / 5.8 23.3 / 19.4
Merck Manuals (medical references) 5.0 / 5.6 23.8 / 16.3
eLife (biomedicine and life sciences) 6.5 / 15.6 27.0 / 26.3
Cochrane Database of Systematic Reviews 25.4 / 16.1 27.3 / 22.2
Proc. of National Academy of Sciences 9.1 / 5.5 27.2 / 24.1

Table 13: Average # of sentences and their length for
180 sampled parallel articles (segments) from 15 re-
sources.

we use the state-of-the-art neural CRF sentence
alignment model (Jiang et al., 2020) with 89.4 F1
on Wikipedia to perform paragraph and sentence
alignment for each complex-simple article pair.

Merck Manuals. We use the segment pairs from
prior work (Cao et al., 2020), which are manually
aligned by medical experts.

D Implementation Details for Complex

Span Identification Models

We use the Huggingface13 implementations of the
BERT and RoBERTa models. We tune the learning
rate in {1e-6, 2e-6, 5e-6, 1e-5, 2e-5} based on F1
on the devset, and find 2e-6 works best for our best
performing RoBERTa-large model. All models are
trained within 1.5 hours on one NVIDIA A40 GPU.

E More Related work on Complex Span

Identification in Medical Domain

Other work mainly focuses on the general domains
such as news and Wikipedia, including CW cor-
pus in SemEval 2016 shared task (Shardlow, 2013;
Paetzold and Specia, 2016) and CWIG3G2 corpus
in SemEval 2018 (Yimam et al., 2017, 2018). In
addition, Guo et al. (2024) collects a jargon dataset
from computer science research papers, Lucy et al.
(2023) studies the social implications of jargon us-
age, and August et al. (2022); Huang et al. (2022)
focus on the explanation of jargon.

13
https://github.com/huggingface/transformers
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F More Results for Complex Span

Identification

Table 14 presents the results of the exact match
at entity level for the complex span identification
task on the MEDREADME test set. As medical
jargon and complex spans have diverse formats in
the medical articles, it is challenging for the models
to predict the exact matched entities.

Models Binary 3-Class 7-Category

Large-size Models

BERT (2019) 72.0 68.2 48.5
RoBERTa (2019) 74.9 71.2 64.1

BioBERT (2020) 72.4 67.6 60.5
PubMedBERT (2021) 73.4 69.9 62.2

Base-size Models

BERT (2019) 70.7 67.0 59.3
RoBERTa (2019) 73.5 70.0 62.4
BioBERT (2020) 70.5 67.1 59.8
PubMedBERT (2021) 72.2 69.0 61.2

Table 14: Micro F1 of exact match at entity-level for
complex span identification task on the MEDREADME

test set. The best and second best scores within each
model size are highlighted. Models are trained with
fine-grained labels in seven categories and evaluated at
different granularity.

G More Results on Medical Readability

Prediction

We conducted an additional experiment to study
how different complex span identification models
used in Section 5 affect the performance of medical
readability prediction. We find that using predic-
tions from different complex span prediction mod-
els leads to similar improvements in readability
prediction, with a ± 0.015 difference in average
Pearson correlation across different resources.
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H Prompts for Sentence Readability

Rate the following sentence on its readability level. The readability is defined as the cognitive load
required to understand the meaning of the sentence. Rate the readability on a scale from very easy to very
hard. Base your scores on the CEFR scale for L2 learners. You should use the following key:

1 = Can understand very short, simple texts a single phrase at a time, picking up familiar names, words
and basic phrases and rereading as required.

2 = Can understand short, simple texts on familiar matters of a concrete type

3 = Can read straightforward factual texts on subjects related to his/her field and interest with a satisfactory
level of comprehension.

4 = Can read with a large degree of independence, adapting style and speed of reading to different texts
and purpose

5 = Can understand in detail lengthy, complex texts, whether or not they relate to his/her own area of
speciality, provided he/she can reread difficult sections.

6 = Can understand and interpret critically virtually all forms of the written language including abstract,
structurally complex, or highly colloquial literary and non-literary writings.

EXAMPLES:

Sentence: “[EXAMPLE 1]”

Given the above key, the readability of the sentence is (scale=1-6): [RATING 1]

Sentence: “[EXAMPLE 2]”

Given the above key, the readability of the sentence is (scale=1-6): [RATING 2]

Sentence: “[EXAMPLE 3]”

Given the above key, the readability of the sentence is (scale=1-6): [RATING 3]

Sentence: “[EXAMPLE 4]”

Given the above key, the readability of the sentence is (scale=1-6): [RATING 4]

Sentence: “[EXAMPLE 5]”

Given the above key, the readability of the sentence is (scale=1-6): [RATING 5]

Sentence: “[TARGET SENTENCE]”

Given the above key, the readability of the sentence is (scale=1-6): [RATING]

Table 15: Following (Naous et al., 2023) in prompt construction, we utilize the same description of the six CEFR
levels that were provided to human annotators, along with five examples and their ratings, randomly sampled from
the dev set. Then, the model is instructed to evaluate the readability of a given sentence. The full template is
presented above.
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I Annotated Screenshot of Search Engine Results

Knowledge Panel

Answer Box

Featured Snippets

Highlighted Text

Figure 6: An annotated screenshot of search results from Google. Search engines may provide the explanation of a
medical term in two places: (1) the feature snippets in the answer box and (2) the knowledge panel on the right-hand
side, which is powered by a knowledge graph.
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J Annotation Interface for Sentence Readability

1

2

3

4

?

Figure 7: Instructions for annotating the sentence readability.
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Figure 8: The interface for annotating sentence readability. Annotators can click the “+ Context” button to see the
surrounding sentences.
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K Annotation Interface for Complex Span Identification

66 66

77

Figure 9: The annotation interface for complex span identification.
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L Annotation Guideline for Complex Span Identification

Assumption:
ï English-speaking (both native and non-native) with a college-level education

background. With access to Google and dictionaries.

TL;DR:
w Abbr-general
w Abbr-medical
w General-complex
w General-Medical-multisense (same word, different meaning under medical context)
w Medical-jargon-google-easy (medical terms, but can be easily looked up in Google or

Medical Dictionary)
w Medical-jargon-google-hard (often multi-word expression which is hard to understand

even with Google, even if each individual word might be easy to understand)
w Medical-name-entity (something like a specific brand name, <Pfizer,= not general

medicine or equipment name)

Guidelines:
w Abbreviation: (new Rule)

§ [Abbr-medical] Abbreviation with a specific meaning in the medical domain.
¥ TB: tuberculosis
¥ BP: blood pressure
¥ BID: twice a day

§ [Abbr-general] an abbreviation that does NOT belong to the medical domain,
including statistical terms

¥ MD: mean deviation,
¥ RCT: randomized controlled trial
¥ CI: confidence intervel

w [General-complex] General complex words/phrases: words that are outside the
vocabulary of 10-12th graders and NOT specific/strictly to the medical domain

¥ aberrant
¥ tender
¥ ammonia
¥ Rule of thumb: Assuming you are a normal college student without a

medical background, can you understand the term? If not, put it here.

w [General-Medical-multisense] Multi-sense terms: layman terms that have specific
meanings in the clinical context, which are off from their general meaning. [Note: This
might be the hardest category for lay annotators to annotate.]

¥ accommodate: a drug or substance that stops the action or effect of
another substance.

¥ antagonize: when the eye changes focus from far to near
¥ formed: stool that is solid
¥ resident: a physician receiving specialized clinical training in a hospital

Figure 10: The annotation guideline for complex span identification.
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w Medical complex words/phrases: medical terminology that may be unfamiliar to
persons without clinical experience (Note: For medical terms, if you don9t know the 99%
nearly <exact meaning,= please annotate it; <roughly getting it= is not enough.)

§ [Medical-jargon-google-easy] Medical/technical terms that are (1) outside the
vocabulary of 10-12th graders, (2) specific to the medical domain, (3) but can
easily be understood by Google or Dictionary.

¥ tonsils: a part of the body.
¥ airway protection: insert a tube from the outside to the inside to open up

the upper airways for the patient
¥ monotherapy

§ [Medical-jargon-google-hard] Often multi-word expressions. They mean
something different or are difficult to understand quickly from their individual
parts.

¥ hazard of a disease-free survival event
¥ treatment-by-time interaction
¥ Rule of thumb: after Googling, can you confidently explain this to another

person? If not, put it here.

§ [Medical-name-entity] For example, the brand name. But please exclude
general medical terms, such as medicine and medical equipment.

¥ Pfizer, Moderna: company name
¥ Cochrane, Embase: medical publication platform
¥ But not: norfloxacin, artificial cardiac pacemaker

Additional Notes:
w Medical terms whose definitions are widely known do NOT need to be labeled. (e.g.,

muscle)
w On top of the annotation of medical terms following the categorizations below,

annotators can flag an optional attribute to reflect if the medical term is elaborated or
defined/explained in the content.
§ Elaborated: carbon dioxide, which is the gas we breathe out.

¥ Here, carbon dioxide is not defined but just further elaborated with an
example.

§ Defined: Hazard ratio (HR).
¥ Here, HR is defined as the hazard ratio.

Figure 11: The annotation guideline for complex span identification (continue).
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