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Abstract

While instruction fine-tuned LLMs are effec-
tive text generators, sensitivity to prompt con-
struction makes performance unstable and sub-
optimal in practice. Relying on a single ‘best’
prompt cannot capture all differing approaches
to a generation problem. Using this observa-
tion, we propose multi-prompt decoding, where
many candidate generations are decoded from
a prompt bank at inference-time. To ensem-
ble candidates, we use Minimum Bayes Risk
(MBR) decoding, which selects a final output
using a trained value metric. We show multi-
prompt improves MBR across a comprehen-
sive set of conditional generation tasks (Fig-
ure 1), and show this is a result of estimating
a more diverse and higher quality candidate
space than that of a single prompt. Further
experiments confirm multi-prompt improves
generation across tasks, models and metrics.!

1 Introduction

Minimum Bayes Risk (MBR) decoding (Bickel
and Doksum, 1977) improves the generation qual-
ity of large language models (LLMs) over standard,
single-output decoding methods, such as beam
search and sampling. MBR generates a set of candi-
dates and selects the one with the highest expected
utility, using all other hypotheses as references (see
Fig. 2, left), following a simple intuition that a
desirable output should be highly probable and con-
sistent with others. MBR has been applied across a
variety of NLP generation tasks (Amrhein and Sen-
nrich, 2022; Shi et al., 2022; Suzgun et al., 2023;
Jain et al., 2023). In particular, self-consistency
(Wang et al., 2023), a special case of MBR, has
become widely used to improve LLM reasoning
capabilities by ensembling reasoning paths.

A central question to improve the generation
quality of MBR decoding is how to balance be-
tween diversity and adequacy within the candidate

'Our experiment code, data and prompts are available at
https://github.com/davidheineman/multi-prompt.
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Figure 1: Multi-prompt and single prompt MBR results
for code generation on HUMANEVAL, text simplifica-
tion on SIMPEVAL, and translation on WMT ’22 EN-Cs
generated with open-source 7B LLMs (details in §4).

set. Prior work has found success using sampling-
based decoding to generate diverse hypotheses
(Eikema and Aziz, 2020; Freitag et al., 2022a,
2023a). However, naively increasing the sampling
temperature eventually degrades the quality of the
candidates. Recently, instruction fine-tuned LLMs
(Ouyang et al., 2022; Chung et al., 2022) have
opened up the possibility of writing prompts in
various formats to elicit higher diversity genera-
tions. As these models are observed to be sensitive
to prompt design, a slight change in phrasing or
the inclusion of more relevant example can signif-
icantly impact model behavior (Srivastava et al.,
2023; White et al., 2023).

Taking advantage of the prompt sensitivity of
LLMs, we introduce multi-prompt MBR decoding,
which samples candidates using a bank of human-
or model-written prompts (see Figure 2, right). In-
tuitively, exploring a variety of prompts enables
the generation of diverse, high quality hypotheses
that provide a closer representation of the true out-
put distribution. By guiding the model towards
different regions of the output space, each prompt
captures unique sequences that are coherent and
relevant to the specific input example.

We experiment with three distinct generation
tasks: text simplification (Maddela et al., 2023),
machine translation (Kocmi et al., 2022), and code
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generation (Chen et al., 2021). Each task assess the
impact of different prompt components on multi-
prompt MBR, such as instance-level prompts for
code, task descriptions for simplification, and in-
context examples for translation. To account for the
relative quality between prompts, we develop differ-
ent strategies for selecting prompts that outperform
a baseline random choice: sampling prompts from
a large prompt bank based on their usage on an un-
labeled set of task data and selecting prompts using
embedding-based heuristics without any examples.
We evaluate multi-prompt MBR on a broad
range of LLMs including open-source models such
as Llama 2 (Touvron et al., 2023) and state-of-the-
art closed-source models such as GPT-4 (Achiam
et al., 2023). Our results show multi-prompt MBR
consistently improves single-prompt MBR across
all three tasks and model scales, with gains of up
to 7% on HumanEval (Chen et al., 2021) and 5
points of LENS score on SIMPEVAL (Maddela
et al., 2023). Figure 1 displays results for mod-
els at the 7B scale. Finally, we study the dynamics
between different utility and evaluation metrics, re-
vealing that multi-prompt MBR with one metric
improves performance universally across metrics.

2 Preliminaries

Instruction fine-tuned LLMs are trained to follow
arbitrary natural language task descriptions (Wei
etal.,2022a). Given an input x and prompt p, an au-
toregressive language model 7y parameterized by
0 estimates an output sequence y ~ mg(z, p) using
an decoding algorithm by sampling the next token
conditioned on the input 7g(y;|y<i, z, p). The de-
coding algorithm aims to generate y by maximizing
the sequence likelihood over the language model
distribution 7y (y|z, p) = I 7 (yi|y<i, T, p).
Minimum Bayes Risk Decoding. In practice, the
highest likelihood sequence does not necessarily
yield the highest quality generation (Jaeger and
Levy, 2006). From this observation, MBR decod-
ing (Bickel and Doksum, 1977; Eikema and Aziz,
2020) first samples a set of hypotheses H from
the model 7y, approximating the true distribution
of output space ), then selects the output 4y/pr
that maximizes the expected utility (or minimizes
the expected loss in traditional formulation) with
respect to a set of references R:

ymBr = argmax (Eyor, [U(y,R)]), (1)
yeH

where U(y, R) = By r[u(y,y’)] and u(y,y’) isa
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Figure 2: Multi-prompt MBR generates candidates us-
ing a human- or model-written prompt bank and selects
the highest pairwise score with a trained value metric.

utility function that evaluates hypothesis ¢ against
areference 7/. In practice, R is also sampled from
the same model 7 under the assumption that the
model produces reliable outputs in expectation, and
is usually set as identical to hypothesis set H.

Many existing techniques to improve LLMs’ per-
formance such as self-consistency (Wang et al.,
2023) and output ensemble (Kobayashi, 2018)
are special cases of MBR. For instance, self-
consistency can be viewed as MBR using the utility
function u(y,y’) = 1 [ans(y) = ans(y’)], where
ans(y) is the answer extracted from the reasoning
path y (Bertsch et al., 2023).

3 Multi-Prompt MBR Decoding

Prior work on MBR decoding primarily uses mod-
els trained or fine-tuned for a specific generation
task (Freitag et al., 2022a; Fernandes et al., 2022).
With instruction fine-tuned LLMs, the input z is
contained within a structured prompt p, consist-
ing of task instruction and/or in-context examples.
Earlier studies have extensively documented that
the design of the prompt has a dramatic impact on
overall performance (Mishra et al., 2022; Khashabi
et al., 2022; Lu et al., 2022; Sclar et al., 2023).

To investigate this phenomenon, we show in
Figure 3a (bottom) the likelihoods and quality of
samples from 10 prompts of varying performance
for a text simplification task, measuring quality
as the LENS metric score against a set of gold
references. Greedy sampling (7 = 0) estimates
different sequences for each instruction, with sin-
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Figure 3: (a) LENS score and sequence probability for 1000 generations on a single text simplification example decoded from
Llama 2 7B Chat with temperatures 7 = [0,0.1,0.5] using a single prompt (top) and multiple prompts (bottom). As the
temperature increases, we find each prompt estimates candidate sequences centered at different modes. (b) LENS scores of the
best generation per-prompt for the first 20 sentences in SIMPEVAL, showing no single prompt produces the best overall output.
(c) Dataset-level LENS performance of each prompt when performing single prompt MBR vs. multi-prompt MBR.

gle prompt (Figure 3a, top) generating a single se-
quence. As we increase temperature 7, generations
from a single prompt simply exhibit noise centered
around the mode of the highest likelihood sequence,
while multi-prompt estimates a generations around
modes uniquely defined by each prompt. For in-
stance, one of the prompts (i.e., Prompt 9 high-
lighted in green) produces the highest quality gen-
eration for this one input sentence, despite having
a low performance over the entire dataset. In fact,
no prompt consistently produces the highest qual-
ity sequences, as illustrated in Figure 3b, rather
prompts are most effective at different inputs.

Building upon these insights, we propose multi-
prompt MBR decoding, depicted in Figure 2, where
the MBR hypothesis set H consists of outputs sam-
pled from n distinct prompts p:

H= U H;, where H; = {yly ~ mp(z, pi)}. (2)

i=1
Bertsch et al. (2023) show that MBR seeks the
mode of some distribution ¢ over a quality feature
¢(y) applied to the output space rather than the
mode of the model’s distribution:

YmBR ~ arg max q(o(y)|x). 3)

yeEH

We hypothesize, in expectation, the mode of ¢(y)
across outputs from multiple prompts has higher

downstream performance compared to that derived
from a single prompt. This is empirically sup-
ported by our example, where Figure 3¢ shows that
multi-prompt MBR outperforms individual single-
prompt MBR across the full task dataset.
Although multi-prompt ensembles hypothesis
spaces between prompts, some notion of objective
quality still exists when constructing the prompt
bank. As shown in Figure 3c, the majority of the 10
human-written prompts fall within a 10-point range
of LENS scores when evaluated on the task dataset
but a few prompts consistently produce low-quality
generation. Therefore, to account for the hierar-
chy in prompt quality, we propose two methods for
choosing the prompts used at generation time from
a prompt bank P: sampling from a learned distri-
bution of prompts, based on a small unlabeled train
set (§3.1); and selecting a subset of prompts based
on heuristics in the absence of a train set (§3.2).

3.1 Prompt Sampling

In this approach, we first calculate the probability
of each prompt p(p) as the proportion of times that
prompt generates the highest scoring output on a
separate training set. At inference time, prompts
are sampled with replacements from this learned
probability distribution, and candidate outputs are
then generated given these prompts.

Top-p Prompt Sampling. Inspired by the principle
of nucleus sampling (Holtzman et al., 2020), our
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goal is to keep the prompts with high probability
and truncate the least used prompts by setting their
probabilities to zero. We define the top-p prompt
set as the minimal set Pyop., € P such that:

[Prop-pl
> plpi) = p. “
i=0
We then re-normalize the distribution of Py,p., and
sample prompts from the new distribution:

2O ifp e Prop.
ZPGPtop.p p(p) p . top-p (5)
0 otherwise.

P(p) =

3.2 Prompt Selection

Prompt selection chooses a fixed subset Ppegr C P
of |Poest| = k prompts based on heuristics. Com-
pared to sampling, this does not require an ad-
ditional training set to evaluate prompt efficacy.
We consider the following heuristics for select-
ing Prest: prompts that have the closest similarity
and greatest dissimilarity with others, and prompts
that are randomly selected from each k-NN cluster,
which is also useful when a training set is presented,
allowing the selection of high-performing prompts
within each cluster. We calculate the semantic
(dis)similarity of prompts based on SentenceBERT
(Reimers and Gurevych, 2019) embeddings.

4 Experiment Setup

In this section, we describe the experimental details
for evaluating the efficacy of multi-prompt MBR
decoding across tasks, prompt setups, models, and
utility metrics, with results and analyses in §5.

4.1 Tasks & Datasets

Unlike previous work applying MBR to a single
generation task (Shi et al., 2022; Eikema and Aziz,
2022), we deliberately select three unique tasks
to demonstrate the universality of multi-prompt:
text simplification with task-level instructions, code
generation with example-level instructions, and ma-
chine translation with in-context examples.

Code Generation. We use HumanEval (Chen
et al., 2021) benchmark, where models are tasked
with generating a Python program given a descrip-
tion with unit tests. Since each example is a unique
coding task, we generate a unique prompt bank for
each input. Following Zhang et al. (2023), we re-
ject empty, degenerate (e.g., pass, return None),
or non-compiling programs before applying MBR.

Text Simplification. We use the SIMPEVALgg99
test set (Maddela et al., 2023), containing com-
plex sentences from Wikipedia, paired with human-
written simplifications. The prompt bank is gen-
erated based on author-written examples (Table 4)
and are used for the entire dataset.

Machine Translation. We intentionally choose
the EN — CS language pair from the WMT 22
(Kocmi et al., 2022) newstest corpus, ensuring its
exclusion from the training data of recent transla-
tion LLMs or metrics (Xu et al., 2024). Results on
additional language pairs are in Appendix C.2.

4.2 Constructing the Prompt Bank

For text simplification and code generation exper-
iments, we first collect a small set of manually
written seed prompts and construct the full prompt
set by using GPT-4 Turbo to generate diverse para-
phrases of the seed prompts. The authors manually
write 10 seed prompts for text simplification (Table
4) and use the original HUMANEVAL instruction
from each example as the seed prompt for code
generation. For translation experiments, we use
randomly sampled in-context examples taken from
previous WMT shared tasks as the prompt bank
instead of generating translation instructions. In
our preliminary experiments, we found translation
LLM performance to be more sensitive to varying
examples rather than translation instructions.

For multi-prompt experiments, we select from
the prompt bank with top-p prompt sampling (§5.2)
using p=0.6, where the prompt usage p(p) is cal-
culated using a held-out 20% split of each dataset.
For our single prompt baselines, we use a randomly
selected prompt from the prompt bank. Human-
written prompts and prompt generation instructions
are included in Appendix A.

4.3 Models

Our main experiments are performed with Llama
2-7B Chat (Touvron et al., 2023) for simplification,
ALMA-7B-R (Xu et al., 2024) for translation and
CodeLLLaMA-13B Instruct (Roziere et al., 2023)
for code generation, all fine-tuned to follow instruc-
tions. In §5.3 we further explore a wide range of
model architectures and sizes, including state-of-
the-art and task-specific fine-tuned models. Unless
otherwise specified, we generate the hypothesis
set using nucleus sampling (Holtzman et al., 2020)
with 7 =0.9,p = 0.95. We include a detailed re-
view of all models in this work in Appendix B.2.
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Figure 4: Candidate set diversity and LENS scores on
SIMPEVAL for 200 repetitions of single-prompt and
multi-prompt at various temperatures. At low temper-
atures, the increased candidate diversity from multi-
prompt directly translates to improved performance.

4.4 Utility Metrics & Evaluation

Our core experiments use the trained LENS (Mad-
dela et al., 2023) for simplification and COMET
(Rei et al., 2020) for translation as the candidate se-
lection metric. For code generation, we use MBR-
EXEC (Shi et al., 2022), which executes each can-
didate program against a set of test cases, selecting
the program with the highest agreement over all
test cases’ outputs. As in Zhang et al. (2023), we
use the docstring examples as test cases for MBR-
EXEC and evaluate with pass@ 1. Given the grow-
ing body of work on metric development, we verify
our multi-prompt results across a broad range of
utility and evaluation metrics in §5.4.

5 Experiment Results

We compare multi-prompt decoding to traditional
MBR (§5.1), ablate the prompt sampling mecha-
nism (§5.2), vary model architectures (§5.3), evalu-
ate across utility metrics (§5.4) and finally evaluate
multi-prompt on efficient MBR alternatives (§5.5).

5.1 How does multi-prompt MBR perform?

Multi-prompt Improves MBR. We report our
main results in Figure 1, which compares single
prompt and multi-prompt performance when gen-
erating up to 500 candidates. Multi-prompt consis-
tently outperforms standard MBR for all tasks.

Candidate Diversity = Quality. To measure the
impact of temperature on the candidate set quality,
we report performance and diversity, as measured
by novel bi-grams, across temperatures in Figure
4. For low temperatures, we find that multi-prompt
generates a consistently more diverse candidate
space, which directly translates to higher-quality
generation. While single prompt MBR perfor-
mance improves with temperature 7 > 1, despite
generating an equal or greater diversity set than

pass@l LENS COMET
Single Prompt (|H|=100) 48.78 74.67 88.93
Multi-Prompt + Prompt Sampling (|P|=100)
Random Selection - 7491*  89.98*
Prompt Sampling - 78.29*  90.33*
Top-p Prompt Random - 78.61*  90.11*
Top-p Prompt Sampling - 79.08*  90.36*
Single Prompt (|H|=10) 4155 6126 8724

Multi-Prompt + Prompt Selection (Ppest C P, | Poest| =10)

Random Selection 39.63 60.00 87.81*
k-NN Cluster Random 40.24 58.73  87.80*
Farthest Similarity 44.51* 5832  88.14*
Closest Similarity 37.80 61.53* 87.73*
Highest Performance - 62.43*  87.65
k-NN Cluster Performance - 66.12*  87.73*

Table 1: Results for prompt sampling using 100 prompts
(top) and subset selection using 10 of 100 prompts (bot-
tom). * = Statistically significant improvement with
p<0.05. Sampling from a weighted, truncated distribu-
tion improves multi-prompt across candidate set sizes.

multi-prompt, multi-prompt MBR still produces
higher quality candidates. As 7 — 2, the quality of
single and multi-prompt MBR begins to degrade
as their candidate sets become too noisy to gener-
ate high-quality sequences. Framing the decoding
process as each prompt estimating a unique distri-
bution of candidate generations (§3), the ability of
multi-prompt to achieve higher quality generation
as a result of candidate set diversity is intuitively
the byproduct of combining multiple candidate dis-
tributions defined by each instruction.

We include additional results on our main experi-
ments in in Appendix C, notably that multi-prompt
outperforms beam search and that the choice of the
single prompt impacts the baseline performance.

5.2 What is the impact of the prompt bank?

Sampling Prompts Improves Candidate Quality.
Table 1 (top) reports results for multi-prompt across
different prompt sampling methods for text simpli-
fication and translation. We perform a hypothesis
test for the statistical significance of each varia-
tion of multi-prompt outperforming single prompt
MBR using bootstrap sampling with 1000 itera-
tions (Koehn, 2004). Note that, code generation
results are omitted as a unique set of prompts is
generated for each HumanEval example. We find
sampling prompts by usage and truncating the top-
p prompts improves multi-prompt over a random
selection baseline, with top-p prompt sampling per-
forming the best on both tasks.

A Higher Quality Prompt Bank Improves Multi-
prompt. Table 1 (bottom) reports results for dif-
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Table 2: Metric scores for state-of-the-art systems com-
pared to LLMs with multi-prompt using |#| candidates.
Translation and simplification baselines are as reported
in Hendy et al. (2023) and Maddela et al. (2023).

ferent prompt subset selection methods, which use
heuristics to select a smaller set of prompts for
multi-prompt to maximize performance. The best
selection method for each task had a significant
impact on performance when compared to a sin-
gle prompt MBR (+2.9 pass@1, +4.9 LENS and
+0.9 COMET). For text simplification, decoding
with the 10 highest performing prompts is further
improved by selecting prompts from a k-NN clus-
tering of prompt embeddings, which enforces a
dis-similarity between prompts. However, trans-
lation and code generation benefit from using the
farthest similarity, or semantically distant prompts.
These results highlight multi-prompt’s sensitivity to
the prompt construction, and shows that enforcing
both diversity via multi-prompt and performance
via prompt selection improves candidate genera-
tion. A direct comparison between prompt sam-
pling and selection using the same candidate set
size is included in Table 6 in Appendix C.4.

5.3 Does multi-prompt MBR improve quality
across model architectures and sizes?

Multi-prompt Improves MBR Across Models.
Figure 5 reports improvement of multi-prompt over
single prompt across widely used LLMs as a A

1 20 40 60 80 100
Candidate Set Size

Figure 5: A metric improvement from single prompt
to multi-prompt across model sizes and architectures,
reported with a 95% CI bootstrapped over 20 iterations.
For absolute performance, see Figure 10.

change in score, with per-model results in Ap-
pendix C.5. In all cases, multi-prompt outperforms
single prompt using a sufficiently large candidate
set size, showing an increasing or constant metric
improvement. In fact, smaller models surpass their
larger counterparts’ single output decoding at large
enough candidate set sizes (Fig. 10). For instance,
CodeLlama 13B outperforms its 70B variant using
multi-prompt with 18 candidates (48.26 > 47.99
pass@1) and TowerInstruct 7B outperforms 13B
with 5 candidates (81.73 > 80.14 COMET).

LLMs with Multi-prompt Outperform Fine-
tuned Models. Whether general-purpose, instruc-
tion fine-tuned LLMs outperform models trained
on a specific generation task is still an active ques-
tion (Qin et al., 2023), so we compare state-of-
the-art results from each task dataset using single
prompt MBR to instruction fine-tuned LLMs using
multi-prompt MBR with top-p prompt sampling. In
Table 2, we report previous SOTA results for each
task: an 11B T5-based text simplification model
with control tokens for simplification operations
(Sheang and Saggion, 2021), the EN-CS results for
the WMT ’22 winning submission (Kocmi et al.,
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Evaluation Metric >
Text Simplification (LLaMA 7B Chat)
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%, R g Qb “Lkp
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LENS -0.67 -0.05 +5.78* +4.69* +0.82*
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BLEU +0.34* +0.47* +0.67* -0.14 +0.04 +0.11*
BERTSCORE +0.51* +1.59* +1.68* +2.48* +0.22* +0.29*
COMET-22 +0.71* +0.89* +1.72* +3.29* +0.13* +0.18*
COMETKIWIRF  +0.80* +1.03* +1.06* +2.87* +0.07* +0.08*
XCOMET +0.14 +0.85* +0.84* +3.34* +0.09* +0.04*
METRICX +0.36* +0.81* +0.36 +3.93* +0.07* -0.04
METRICX-QERF  +0.60* +1.68* +2.11* +5.31* +0.08* +0.03*

Y

Table 3: A metric improvement from single prompt
to multi-prompt across metrics. RF = Reference-free
reranker. * = Statistically significant improvement with
p < 0.05. For absolute performance, see Table 8.

2022) and StarCoder 15B, a code infilling and gen-
eration LLM (Li et al., 2023), not explicitly trained
to follow natural language instructions. LLMs sur-
pass fine-tuned model performance when using
multi-prompt, for instance Llama 2 13B shows +5.8
LENS over fine-tuned T5 11B.

Candidate Set Overlap May Explain the Perfor-
mance Similarity for Large Models. Finally, in
Table 2, we observe that stronger systems, such
as GPT-4 on translation, show smaller differences
between single and multi-prompt. One explanation
may be due to stronger models generating similar
candidate sets between both methods. To under-
stand this behavior, we measure the similarity be-
tween the candidate set generated by multi-prompt
and single prompt, where a higher similarity candi-
date set may indicate a smaller improvement from
multi-prompt. We report the ‘Candidate BLEU
(target on references)’ score, which measures
of the n-gram overlap of a set of target sequences
over the bank of references. In our results, we
find that stronger models produce single prompt
candidate sets which contain more multi-prompt
n-grams (as shown in ‘SP on MP’), and that candi-
date sets show a higher n-gram coverage as models
improve. This increasing similarity between the
candidates may explain the decreasing performance

improvement for multi-prompt.

5.4 Does multi-prompt MBR over-fit to the
utility metric?

An inherent challenge of evaluating MBR is that
the utility metric used to select candidates is typ-
ically also used for the final evaluation, in such
cases it is difficult to attribute the metric improve-
ment to higher quality generation (Bertsch et al.,
2023). Given growing attention to metric devel-
opment, we leverage various trained metrics to
test whether multi-prompt using one utility met-
ric improves performance cross all other utility
metrics. We experiment with traditional overlap-
based metrics, (BLEU, SARI), embedding simi-
larity (BERTSCORE), small (~100M parameter)
trained metrics with references (LENS, COMET-
22) and without references (COMETKIWI, LENS-
SALSA, SLE), and large (3B+ parameter) trained
metrics (XCOMET, METRICX, METRICX-QE).
These metrics represent diverse text evaluation ap-
proaches and encompass the full state of evaluation
in both tasks. We include a full description of met-
ric architectures in Appendix B.1.

Multi-prompt MBR Improves Across Metrics.
Table 3 reports results for cross-metric evaluation,
with the diagonal reflecting the traditional MBR
evaluation setup (i.e., calculate MBR and evalu-
ate using the same metric) and other cells indicate
generalization from one metric to all others. Multi-
prompt improves performance on most evaluation
setups, with a few notable exceptions such as dis-
agreement between trained and overlap-based met-
rics for simplification and COMET-based metrics
for translation. For simplification, trained metrics’
failure when evaluated by SART and BERTSCORE
may be a byproduct of the test set size, as these met-
rics typically require a substantial number of refer-
ences for stable evaluation (Alva-Manchego et al.,
2020), more than what are provided in SIMPEVAL.
Interestingly, the magnitude of performance im-
provement is highly variable to the specific utility
metric, with no clear relationship between the met-
ric architecture and improvement of multi-prompt,
but typically a lower baseline performance indi-
cates multi-prompt performs better (Table 8 in Ap-
pendix for more details).

5.5 How does the metric type impact
multi-prompt MBR?

As discussed by Fernandes et al. (2022), the MBR
operation requires each candidate evaluate against
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Figure 6: Alternative MBR formulations for multi-prompt across candidate set sizes for code generation, text
simplification and translation. Efficient MBR methods show inconsistent results, dependent on task and metric.

every other candidate (i.e., O(n?) comparisons),
this becomes inefficient in practice for a large n, es-
pecially when using a trained utility metric. There-
fore, we explore multi-prompt MBR alternatives
using reference-free utility metrics:

* Reranker (O(n)). Re-ranking directly estimates
the quality of each candidate using a reference-
free metric: Jmpr = argmax, ey [U(y)]. We
use the trained LENS-SALSA for simplification
(Heineman et al., 2023) and COMET-MQM (Rei
et al., 2021) for translation. For code genera-
tion, we use Code Reviewer (Shi et al., 2022),
which calculates agreement between the per-
token probability of the generation given the doc-
string and the original docstring given the gener-
ation. Reference-free re-ranking only requires n
metric calculations to directly estimate quality.

» Reranker + MBR (O(n + m?)). We use a two-
stage selection where we first rerank all n candi-
dates and select the top m to use for MBR, where
the cheap re-ranker can distill the candidate set
and the expensive MBR metric performs the final
selection, where m < n.

* Multi-turn MBR (O(n? + m?)). Similar to the
previous approach, we perform MBR and then
re-compute MBR using the top m candidates.

Results. We report results across candidate se-
lection methods in Figure 6, finding the multi-
prompt achieves performance improvement across
reference-based and reference-free metrics, yet the
relative performance of methods varies between
tasks. With text simplification, the methods first
narrowing the candidate set (‘Rerank + MBR’) and
iteratively performing MBR (‘Multi-turn MBR”)
either match or out-perform vanilla MBR. We spec-
ulate the first pass may prune the lowest quality
generations such that the second pass only consid-
ers a distilled candidate set, which better informs
the MBR calculation. For translation, the more ef-
ficient re-ranker outperforms vanilla MBR, which

follows recent work finding trained reference-based
and reference-free MT metrics are approaching a
similar quality (Freitag et al., 2023b). For code gen-
eration, the re-ranker under-performs MBR, which
may be reflective of the performance of Code Re-
viewer compared to MBR-EXEC, as the latter has
access to multiple test cases.

6 Related Work

Output Selection. Ensembling outputs across a
generation set has become a widely used tech-
nique for improving LLM performance in classi-
fication tasks, such as using a majority vote over
reasoning chains (Wang et al., 2023), or merging
outputs from multiple models (Kobayashi, 2018;
Martinez Lorenzo et al., 2023). This work applies
the same underling concept to text generation by
leveraging trained automatic evaluation metrics. To
our knowledge, it is the first to propose a multi-
prompt decoding scheme for text generation.

MBR Decoding. MBR decoding has been previ-
ously used to improve generation quality for ma-
chine translation (Kumar and Byrne, 2004; Eikema
and Aziz, 2020; Miiller and Sennrich, 2021) text
simplification (Maddela et al., 2023), summa-
rization and style transfer (Suzgun et al., 2023).
Bertsch et al. (2023) highlight the growing popular-
ity of MBR as a simple technique in machine trans-
lation and reporting shared tasks results. While our
work is the first to propose generating the MBR
hypothesis space using a prompt bank, Farinhas
et al. (2023) perform preliminary experiments with
paraphrases of a single sentence prompt, but found
no difference in performance. Recent work argues
sampling strategies like nucleus (Eikema and Aziz,
2022) or epsilon (Freitag et al., 2023a) offer slightly
better performance over beam search for MBR,
with this work extending their findings by attribut-
ing candidate set quality to sampling diversity.

Prompt Selection. Current work on prompting for
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text generation has instead focused on optimiza-
tion, such as in-context example selection (Min
et al., 2022), example ordering (Lu et al., 2022)
and prompt selection (Gonen et al., 2023). Notably,
Agrawal et al. (2023) show selecting in-context
examples for MT by maximizing n-gram over-
lap between the source and examples improves
few-shot performance. Zhou et al. (2023) experi-
ment with LLMs as prompt generators, and Yang
et al. (2023) show using LLMs to iteratively rewrite
prompts on a development set can distill a single,
high-performant prompt. Our work builds on LLM-
written prompts and basic heuristics for distilling
the prompt bank to further improve multi-prompt.

7 Conclusion

In this work, we propose multi-prompt, a gener-
alized case of MBR for conditional text genera-
tion. Multi-prompt successfully ensembles outputs
of instruction fine-tuned language models across
prompt constructions and in-context examples. We
highlight the importance of prompt selection and
sampling when constructing the prompt bank with
top-p prompt sampling and further verify our re-
sults across tasks, models and utility metrics.

Limitations

We limit our study of the prompt bank to a basic set
of seed prompts and GPT-written paraphrases. No-
tably, we do not study the impact of prompt formats
(e.g., passage:{}\n answer{} vs. Passage: :{}
Answer: :{}, Sclar et al., 2023), in-context exam-
ple ordering (Lu et al., 2022) or example selec-
tion (Agrawal et al., 2023) on multi-prompt perfor-
mance, although multi-prompt may extend to such
methods. We leave the question of exhaustively
constructing a prompt bank to future work.

An inherent limitation of MBR is the increase
in inference time, where we generate up to 500
samples in our experiments, and use a neural utility
metric with either linear or quadratic comparisons
between candidates. To illustrate this, the wall
clock time for the main experiment setup (Figure
1) using standard decoding on a single A40 GPU is
4.73,2.10, 2.21 seconds per input sentence and for
multi-prompt with 100 candidates is 38.76, 183.81,
124.70 seconds per input sentence for code genera-
tion, simplification and translation respectively.

In practice, the generation time was signifi-
cantly lowered by decoding in parallel and the use
of efficient-memory attention techniques such as

paged and flash attention used in the VLLM library
(Kwon et al., 2023). The computational bottleneck
for large candidate set sizes was instead evaluat-
ing the utility metrics across all pairs of generated
candidates. To lower the number of metric compar-
isons, promising results have been demonstrated by
pruning low-scoring candidates during the MBR
process (Cheng and Vlachos, 2023), aggregating
embedding representations of candidates (Vamvas
and Sennrich, 2024) or selecting a subset of refer-
ences for each candidate using heuristics on refer-
ence embeddings (Deguchi et al., 2024). Similarly,
we show in §5.5 efficient alternatives to MBR such
as using reference-free metrics largely preserve the
benefits from multi-prompt.

Along with MBR, many widely used methods
improving LLM abilities trade increased compute
at inference time for higher performance, such as
using chain-of-thought to decode a reasoning chain
for a single answer or using self-consistency to
selects an answer among multiple reasoning chains
(Wei et al., 2022b; Wang et al., 2023).
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Human-Written Text Simplification Prompt

Prompt-Generation Instruction

I am writing a sentence, please take a look at this sentence and write a simpler version
such that a non-english speaker or an individual with disabilities could better understand
the sentence.

Rewrite the following complex sentence in order to make it easier to understand by
non-native speakers of English. You can do so by replacing complex words with simpler
synonyms (i.e. paraphrasing), deleting unimportant information (i.e. compression),
and/or splitting a long complex sentence into several simpler ones. The final simplified
sentence needs to be grammatical, fluent, and retain the main ideas of its original
counterpart without altering its meaning.

You are an artificial intelligence designed to simplify human written text. The text you
are given will contain complex ideas, phrases or concepts and your job is to rewrite that
text in a simple and easy to understand way. Your simplification should be completely
fluent and retain the ideas of the simplification.

I would like you to simplify the following sentence such that the text is as concise and
easy to read as possible.

You are to act as a text simplification bot. As a text simplification bot, you will simplify
the following sentence such that it is syntactically easier to read and semantically easier
to understand. Please do not make the text more complex, longer or difficult for a reader.

Make this sentence more approachable for a non-english speaker or an individual with a
disability.

Rewrite the following sentence in simpler terms to help non-native English speakers and
people with disabilities understand it better.

This is a sentence from Wikipedia, rewrite it such that it could appear on Simple English
Wikipedia

You are an Al assistant that writes text simplification. Text simplification can be defined
as any process that reduces the syntactic or lexical complexity of a text while attempting
to preserve its meaning and information content. The aim of text simplification is to
make text easier to comprehend for a human user, or process by a program. Please
simplify the following sentence.

The following sentence has a high CEFR rating. Can you please rewrite it such that it
will have a lower CEFR classification?

Table 4: Text simplification prompts used for the de-
coding experiment in Figure 3 and used as examples to
write GPT-4 prompts for experiments in §5.

A Prompt Bank Construction

Table 4 contains the human-written prompts for
text simplification. These human-written prompts
are provided as examples to GPT-4 when automat-
ically generating prompts for large-scale experi-
ments in §5. For code generation, we extract the
docstring in the original HUMANEVAL examples
as the human-written prompt, and provide it as an
example prompt to GPT-4. For machine translation,
our few-shot examples were sampled randomly
from the WMT newstest19 test corpus (Barrault
et al., 2019).

B Detailed System Descriptions

In this section, we include a full description of the
generation models and utility metrics used in exper-
iments throughout §5.3 and §5.4. All experiments
were inference-based and were run on up to 4xN-
VIDIA A40 GPUs, depending on the requirements
of the specific model or utility metric. The use of
models, metrics and datasets in this project follows
their respective licenses and intended use.

Please write a variation of the following instruction for a coding task. You may be
creative in proposing potential solutions, or explaining the nature of the task. Please do
not write any examples.

Example: {example_prompt}

Prompt:

Create a prompt for a language model to simplify a sentence, this prompt will explain the
text simplification task and instructions for how to perform the task. The prompt should
be diverse, include a description of simplification and clearly state what is expected of
the language model.

Example: {example_prompt_1}
Example: {example_prompt_2}

Prompt:

Table 5: Instruction templates provided to GPT-4 when
generating task instructions for code generation (top)
and text simplification (bottom).

B.1 Utility Metrics
B.1.1 Code Generation

MBR-EXEC (Shi et al., 2022) executes candidate
generations on a series of test cases, and selects the
candidate with the highest agreement on its output
with all other candidates. While the authors do not
evaluate on HUMANEVAL, we replicate the setup
in Zhang et al. (2023) by using the test cases in
the docstring to calculate the agreement. We use a
soft loss over all test cases, as many HUMANEVAL
docstring examples are trivial or edge cases. If two
candidates have the same MBR score, we break ties
using the candidate with higher probability under
the language model.

Code Reviewer (Zhang et al., 2023) attempts to
find a consensus between the likelihood of the gen-
erated program p(y|z) and the original docstring
using a minified version of the generation p(x|y).
We use their implementation for rejecting degen-
erate samples, minifying code and calculating the
reviewer score. We use the same models for gener-
ation and re-ranking.

B.1.2 Simplification

SARI (Xu et al., 2016) is an n-gram overlap based
metric that compares edits on inputs, outputs and a
bank of references.

BERTSCORE (Zhang et al., 2020) calculates a
word-level cosine similarity of BERT embeddings.
Alva-Manchego et al. (2021) find BERTSCORE is
an adequate measure of quality generation, but that
it does not correlate with simplicity.

LENS (Maddela et al., 2023) is a RoBERTa-based
metric trained using human ratings of text simpli-
fication model outputs. The authors train on an
adaptive loss to allow a high score for generations
that are close to any references, encouraging the
metric to consider different simplification types.
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LENS-SALSA (Heineman et al., 2023) extends
the LENS architecture by fine-tuning on a dual
sentence- and word-level quality objective. The
authors show LENS-SALSA is more sensitive to
specific edit operations, while not requiring any
reference simplifications.

SLE (Cripwell et al., 2023) is a RoBERTa-based
metric trained to estimate the simplicity of text,
with the simplicity score defined as the difference
in simplicity between the complex and simplified
sentences. SLE was trained on 0-4 readability
scores of news articles in the Newsela corpus (Xu
et al., 2015), with an additional label softening for
individual sentences in each article.

B.1.3 Translation

BLEU (Papineni et al., 2002) is an n-gram overlap
based metric comparing a translation to a bank of
references. BLEU remains a widely-used standard
for automatic evaluation, despite lower correlation
to human judgement compared to learned metrics
(Freitag et al., 2022b). We use the ScareBLEU
implementation (Post, 2018).

COMET (Rei et al.,, 2020) is a widely used
RoBERTa-based metric, trained on direct assess-
ments of simplification quality. For reference-free
evaluation, we use the CometKiwi-XXL variant
(Rei et al., 2022, 2023), trained to predict sentence-
and word-level scores simultaneously.

XCOMET (Guerreiro et al., 2023) is a fine-tuned
XLM-R model (Goyal et al., 2021) based on the
CometKiwi architecture, but scaling the model size
and training data, including with synthetic data
created by randomly swapping n-grams or entire
sentences with unrelated translations. We use the
11B XCOMET-XXL in our experiments.

METRICX (Juraska et al., 2023) is a recent fine-
tuned 11B mT5-XXL (Xue et al., 2021) trained on
DA data from 2015-20, MQM data from 2020-21
(Freitag et al., 2021) and synthetic data based on
the MQM and DEMETR (Karpinska et al., 2022)
taxonomies of translation errors. Notably, the Met-
ricX architecture encodes both candidates and ref-
erences together, while COMET encodes both sep-
arately and combines the outputs to calculate the
final score. We also use the reference-free variant
METRICX-QE. The WMT ’°22 test data used in
this work is not included in the training data of any
translation metrics we considered.

B.2 Model Architectures

B.2.1 Code Generation

StarCoder 2 (Li et al., 2023) is trained from-
scratch on 4T tokens from 600+ programming lan-
guages. Although the model is not instruction fine-
tuned, we see a slight performance improvement
with multi-prompt, likely because comments and
code descriptions are included in its pre-training.

CodeLLaMA (Roziere et al., 2023) is a fine-tuned
Llama 2 model on 500B-1T tokens of code-related
datasets, including Python, substantially outper-
forming the base Llama 2 model on HumanEval.

B.2.2 Simplification

Instruction Fine-tuned Models. We experiment
with widely used instruction fine-tuned LLMs, aim-
ing for a broad coverage of current models: Llama
2 Chat (Touvron et al., 2023), Gemma (Team et al.,
2024) and Mistral (Jiang et al., 2023).

Fine-tuned Control TS5 (Sheang and Saggion,
2021) is a T5-based text simplification model fine-
tuned on the Wiki-Auto (Jiang et al., 2020) dataset
of aligned English-Simple English Wikipedia ar-
ticles. We use their same control token setup:
<NC_0.95> <LS_0.75> <DR_0.75> <WR_0Q.75>.

B.2.3 Translation

ALMA-R (Xu et al., 2024) is a class of translation
LLMs. The base ALMA (Xu et al., 2023) is a fine-
tuned LLaMA model trained on monolingual text
in each target language and further trained using
parallel data. ALMA-R (Xu et al., 2024) is an ex-
tension trained on a contrastive preference loss on
ratings of translation quality.

TowerInstruct (Alves et al., 2024) is a fine-tuned
Llama 2 model on multi-lingual instructions, aim-
ing to incorporate tasks beyond translation, such
as paraphrasing, post editing and grammar error
correction.

Aya 101 (Ustiin et al., 2024) is an mT5-based
model fine-tuned on multi-lingual data in 101 lan-
guages. While mT5 is an instruction-following
model, Aya is not fine-tuned on instruction data.

Additionally, we provide results from the WMT
’22 winning submission, and the Microsoft Trans-
late API, as reported in Hendy et al. (2023).
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Figure 7: Multi-prompt, single prompt and beam search MBR decoding performance across candidate set sizes for
code generation, text simplification and translation. Results are an average over 5 repetitions.

C Further Results

C.1 Beam Search & Oracle Performance

Following related work in MBR, we report upper-
bound ‘oracle’ results (similar to Shi et al., 2022)
and a lower-bound beam search baseline (similar
to Freitag et al., 2023a) in comparison to our main
results (Figure 1) in Figure 7.

Beam Search. The MBR candidate set historically
has consisted of the top beam search candidates, but
as language models have become better generators
recent work has argued sampling leads to a better
estimation of the hypothesis space (Freitag et al.,
2023a). For this reason, we exclusively use nucleus
sampling in §5, but we report beam search as a
baseline in Figure 7, with a ‘candidate set size’ of
n corresponding to the top n beam candidates, or n
candidates with nucleus sampling for other results.

Oracle. As the final MBR performance can be
impacted both by the quality of the candidate set
and the choice of utility metric, we report an upper-
bound performance by deliberately selecting the
best candidate generations. Given a test set with
gold-standard references R, we define the oracle
performance as the set of the highest scoring possi-
ble selection of candidates:

Oracle(R*) = max [U(y,r)] (6)

EH
reR* Y

Since code generation is evaluated using pass@1,
its oracle uses expected pass @k (Shi et al., 2022),
which measures whether at least one candidate
within the candidate set passes all unit tests 7 :

ExPass@K = E in1[t 7
xPass . [ryne%rtgl,p [(y)]} (7

Results. As oracle performance measures candi-
date set quality independent of the utility metric,

we find an increase in oracle performance coincides
with an improvement when using multi-prompt, in-
dicating that a utility metric can naturally select
candidates when the candidate set is higher qual-
ity. This suggests improving utility metrics may
be a promising direction to bridge the gap between
candidate quality and candidate selection. Beam
search was a particularly strong baseline for small
candidate set sizes, particularly for code generation,
but beam search is not as sensitive to improvement
as the candidate set size increases. Additionally,
as code generation is evaluated using the binary
pass @1 metric, rather than a scalar quality metric
as used by translation and simplification, there is a
large gap between MBR and oracle performance,
also observed by Shi et al. (2022).

C.2 En-XX Translation Results

For brevity, we limit our multi-prompt experiments
to only the English-Czech language pair, but report
results across the full ALMA test set, including
WMT ’°22 test data and a subset of NTREX (Feder-
mann et al., 2022), in Figure 8, where we observe
improvement with multi-prompt is dependent on
the language pair. Generally, high resource lan-
guages (such as French, German, Russian) do not
have a substantial difference, which may be a result
of the low prompt sensitivity for such pairs.

C.3 Additional Multi-Prompt Results

In our main experiments, the single prompt setup
uses a randomly selected prompt from the prompt
bank. Instead, we experiment with using the
prompt with the highest prompt usage p(p) on the
held-out 20% of each dataset. In Figure 9, we
report the performance of each method using the
same setup as the main experiment (Figure 1) but
using the alternative single prompt setup. For trans-
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Multi-Prompt Translation Performance per Language Pair
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Figure 8: Multi-prompt and single prompt performance of ALMA 7B R across En-XX translation pairs. For low
resource language pairs (e.g., Urdu, Turkish, Czech) we observe larger performance improvements compared to

high resource pairs (e.g., French, German, Russian).
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Figure 9: Multi-prompt and single prompt MBR results
from the setup in Figure 1 with a different single prompt
baseline. The single prompt was chosen as the highest
usage p(p) on the held-out dataset.

lation, we observe single-prompt and multi-prompt
show a smaller performance difference. For text
simplification, the highest usage prompt outper-
forms multi-prompt for small candidate sizes.

C.4 Additional Prompt Selection Results

To further compare prompt sampling and prompt
selection with the same candidate set size, we repli-
cate the same experiment as Table 1, but modify
prompt selection (bottom) to use 10 candidates
for each prompt, such that both sampling and se-
lection use 100 candidates. We find similar re-
sults when comparing between prompt selection
methods, where at least one selection method leads
to a statistically significant improvement on each
task. However, all prompt selection methods under-
perform prompt sampling. This underscores the
benefit of the increased diversity from generating
using a full prompt bank with multi-prompt.

C.5 Detailed Multi-Model Results

See Figure 10 contains separated results for multi-
prompt and single prompt for each model, as re-
ported in Figure 5 and discussed in §5.3.

pass@l  LENS COMET

Single Prompt (|H|=100) 48.78 74.67 88.93

Multi-Prompt + Prompt Sampling (|P| =100, |H|=100)

Random Selection - 7491*  89.98*
Prompt Sampling - 78.29*  90.33*
Top-p Prompt Random - 78.61*  90.11*
Top-p Prompt Sampling - 79.08*  90.36*
Single Prompt (|H|=100) 48.78  74.67  88.93

Multi-Prompt + Prompt Selection (| Ppest| = 10, |H|=100)

Random Selection 47.40 70.95  89.90*
k-NN Cluster Random 45.73 72.04  90.14*
Farthest Similarity 49.17*  71.64  90.18*
Closest Similarity 45.73 7217 90.87*
Highest Performance - 72.56  90.27*
k-NN Cluster Performance - 75.88*  90.43*

Table 6: Results for prompt sampling using 100 prompts
(top) and subset selection with 100 candidates using 10
of 100 prompts (bottom). * = Statistically significant
improvement with p < 0.05.

C.6 Detailed Cross Metric Evaluation

Table 8 contains the full results for the MBR exper-
iments across metrics as discussed in §5.4. While
using the same metric for MBR and the final eval-
uation exhibits the highest improvement (see en-
tries on the diagonal), we find that multi-prompt
using any value metric universally improves perfor-
mance when evaluated on any other metric. Recent
neural metrics, which achieve higher correlation
with human judgements, also have a higher over-
all performance. Note, METRICX scores within
the range [0, 25] corresponding to an MQM rating,
where lower is better and SLE scores within the
range [0, 4] corresponding to a Newsela simplifica-
tion rating, where higher is better. For clarity, we
negate the METRICX results in Table 3 such that
all the green cells indicate a metric improvement.
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Top 10 GPT-4 Generated Text Simplification Prompts (Sorted by No. Generations Selected)

Rewrite the following sentence in a simplified manner, making sure the same meaning and message are still conveyed clearly. The simplification should be done such that it can be read and
understood easily by an individual who may not have knowledge of the English language or any disabilities that limit their understanding.

Please simplify the following sentence so that it is easy to understand by people with disabilities or those who are unfamiliar with English. Try to use shorter words, fewer clauses, and a
simpler structure.

Simplify this sentence such that a non-English speaker or a person with disabilities is able to understand the sentence. Focus on replacing complex words and structures with simpler ones,
while keeping the meaning intact. You can remove unnecessary words, break up longer phrases, and generally make the text more readable.

Text simplification is an important task in natural language processing for creating a simplified version of a sentence that conveys the same meaning as the original sentence but with less
complex language. For this task, you will be given a sentence and asked to rewrite it using simpler words and structures so that a non-English speaker or an individual with disabilities can
better understand it. Please use semantic compression to create a simplified version of the following sentence.

You are an artificial intelligence designed to simplify written text. The text you are given may be complex, and your job is to rewrite it in a way that a non-english speaker or an individual
with disabilities could easily understand. While you simplify the text, you should make sure it is grammatically correct and retains the original meaning of the text.

You are an Al assistant tasked with creating a simpler version of a text. Text simplification can be defined as the reduction of the syntactic or lexical complexity of a text without changing its
meaning. The aim of text simplification is to make the text easier to understand for a human or process by a program. Please simplify the following sentence.

Rewrite this sentence in a simple and easy to understand way. Make sure to retain the meaning and ideas of the original sentence while using shorter words and sentences.

Create a simpler version of the sentence below so that it can be better understood by non-English speakers or individuals with disabilities. Text simplification techniques should be used to
reduce the complexity of the language while preserving the original meaning and information.

You are an Al assistant that writes text simplification. Text simplification can be defined as any process that reduces the syntactic or lexical complexity of a text while attempting to preserve
its meaning and information content. The aim of text simplification is to make text easier to comprehend for a human user, or process by a program. Your task is to take the following
sentence and produce a simplified version that would be easier for a non-English speaker or someone with disabilities to understand. Please simplify the sentence.

This prompt asks you to simplify the given sentence. In order to do so, reduce the sentence to its most basic and clear components. Remove unnecessary words, clauses, and phrases that can
be inferred from the context. Use shorter, more concise words where possible. After simplifying, the resulting sentence should still convey the same essential message.

Top 5 Randomly S led Fi hot Translation Instructions (Sorted by No. Generations Selected)

Anglickd véta: To do this, simply access your order page, tap "Help and support’ and choose the option ’Call rider’.

Ceska véta: Cheete-li to provést, jednoduse prejdéte na stranku objednavky, kliknéte na ,,Napovéda a podpora“ a vyberte moznost ,,Zavolat jezdcic.

Anglicka véta: A private mass and the national anthem preceded the ceremony, which featured a portrait of De Klerk between two candles and a choir decorated with white flowers.
Ceskd véta: Soukromé me a statn{ hymna piedchézely tomuto ceremonidlu, ktery predstavil portrét De Klerka mez dvéma svickami a sbor ozdobeny bilymi kvéty.

Anglicka véta: After that, we cannot offer an estimate on delivery times as it comes down to individual country’s postal service and customs if outside of the EU.

Ceski véta: Poté nemiiZeme odhadnout dobu dodant, protoZe zdleZi na postovnich a celnich sluzbach v jednotlivych zemich, pokud se nachdzeji mimo EU.

Anglickd véta: This item is an original American comic and is in English!

Ceska véta: Tato polozka je origindlni americky komiks a je v angli¢ting!

Anglickd véta: If they cannot find you they will surely call.

Ceski véta: Pokud vés nenajdou, uréité zavolaji.

Anglickd véta: New Zealand’s computer emergency response team was among the first to report that the flaw was being "actively exploited in the wild" just hours after it was publicly
reported Thursday and a patch released.

Ceska véta: Tym Nového Zélandu pro reakci na po&itatové ohroZeni byl mezi prvnimi, kdo nahldsil, Ze tato zdvada se ,,aktivné divoce zneuzivé“ jen par hodin po tom, co byla vefejné
nahlasena ve tvrtek a byla vydana zéplata.

Anglickd véta: Not sure, but I don’t think we had any way of having them pay.

Ceskd véta: Nejsem s

sty, ale nemyslim si, Ze bychom méli n&jaky zplisob,a by museli zaplatit.

Anglicka véta: Luckily, the guy was honest and rather than trying to charge the higher price, he sold me the tires for the price I had on my printout.
Ceskd véta: Nastésti byl ten chlapik Cestny a neZ aby se pokousel tictovat vyssi cenu, prodal mi pneumatiky za cenu, kterou jsem mél na mém vytisku.
Anglicka véta: The Cowboys just made sure Zeke and his teammates got that opportunity.

Ceski véta: Cowboys se pravé postarali o to, aby Zeke a jeho spoluhradi tuto prileZitost dostali.

Anglickd véta: Description Please scroll to the bottom of the listing for more pictures.

Ceska véta: Popis Pro vice obrazkii sjed’te na konec nabidky.

Anglickd véta: This is on a quote only basis and you need to supply us with your address for a quotation.

Ceska véta: Tato sluzba je poskytovdna pouze na zdkladé cenové nabidky dle vami poskytnuté adresy.

Anglickd véta: Fed up completely, she asks "Are you even going to work today?"

Ceskd véta: Totdln& znechucens se pta: ,,.Budes dnes viibec pracovat?

Anglickd véta: So there was the usual gentle chaos that attends any gathering of toddlers.

Ceska véta: TakZe nastal obvykly mirny chaos, ktery provézi kazdé setkédni batolat.

Anglickd véta: We currently do not have the exact information on what happened to the rider as well as to your order.

Ceskd véta: V soutasné dob& nemdme presné informace o tom, co se stalo s jezdcem, stejné jako s vasi objednévkou.

Anglickd véta: UK media reported that "thousands” were eager to raise cash for the protesters by purchasing the gray T-shirt, which depicts an empty plinth with "Bristol" written above it.

I

Ceskd véta: Média ve Velké Britdnii hldsila, Ze , tisice lid
nad nim.

nedockavé vybirali hotovost pro protestujici zakoupenim Sedého tricka, které zobrazuje prazdny podstavec s napsanym Bristol

Anglickd véta: A. No, we do not include receipts in packages unless requested.

Ceské véta: A. Ne, Gétenku nepiikldddme, pokud to neni poZadovéno.

Anglickd véta: Russia warned of *consequences’ if Ukraine attacked

Ceska véta: Rusko bylo varovéno pred “ndsledky®, pokud napadne Ukrajinu

Anglickd véta: He noted that up to 90% of all Russian investments in the Arab world are made in the UAE.

Ceské véta: Poznamenal, Ze aZ 90 % ruskych investici v arabském svété jsou provadény v SAE.

Anglicka véta: Many view the Softie 12 Osprey the ultimate four season synthetic fill sleeping bag available.

Ceska véta: Mnohymi je spaci pytel Softie 12 Osprey povaZovin za nejlepsi dostupny ¢tyfsezénni spacdk se syntetickou vyplni.
Anglickd véta: - Sign out and signing back in to your eReader.

Ceski véta: - Odhlaste se a piihlaste se znovu do vasf e-ctecky.

Anglickd véta: I told ya so....

Ceski véta: Rikala jsem vdm to...

Anglickd véta: All information about the products on our website is provided for information purposes only.

Ceska véta: Vechny informace o produktech na nasich internetovych strankdch maji pouze informativni charakter.

Anglickd véta: I'm in HR and have worked payroll in the past.

Ceska véta: Jsem na persondlnim odd&leni a v minulosti jsem pracoval na mzdovém.

Anglickd véta: Years ago, I worked at a cabinet shop.

Ceska véta: Pred lety jsem pracoval v obchodé se skifnémi.

Anglickd véta: De Klerk’s foundation issued a posthumous video apologizing "for the pain, hurt, indignity and damage that apartheid has done" to South Africa’s non-white populations.

Ceské véta: Fond De Klerka vydal posmrtné video omlouvajici se ,,za bolest, zranéni, poﬂl,?& Zlii(odu, kterou apartheid udé€lal , jihoafrickému nebélo§skému obyvatelstvu*.

Table 7: Prompts with highest usage for multi-prompt using the held-out split for simplification and translation.
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Figure 10: Results of multi-prompt MBR compared to single prompt MBR across model sizes and architectures.

Multi-prompt MBR consistently improves performanc2feddss architectures and as models scale. A candidate size
of 1 is equivalent to standard, single-output decoding.



Evaluation Metric > Evaluation Metric ——

MBR Utility Metric

Text Simplification (LLaMA 7B Chat) Text Simplification (LLaMA 7B Chat)
Ste, L4, s, S, S, L4y Siig S

&44) 3 0@6\ GA/S Sq 4Lk &‘IQ y O/()G GA{S‘ Sq 40 L pws

SARI 44.33 92.64 58.73 72.31 1.42 SARI 43.25 91.58 51.49 67.97 1.04

BERTSCORE 45.46 93.71 60.86 71.47 1.37 BERTSCORE 44.02 92.62 54.68 68.36 0.92

LENS 39.98 92.18 76.29 79.55 2.30 LENS 40.64 92.24 70.51 74.86 1.49

LENS-SALSA®  38.55 91.29 73.31 84.59 2.47 LENS-SALSA®  39.38 90.94 65.21 79.93 1.51

SLE®® 33.57 85.36 52.33 64.74| 3.84 SLE®" 38.82 90.07 49.94 69.26 2.79

Translation (ALMA 7B) Translation (ALMA 7B)
Ay,
) €7, 3
Lp, Oy % Af &, Ep, G % A{
7Sy, % fzr* ““x. 25, O, Tk, Yo, ey,

Lp]’!’p OA?@ Q[ CL‘» Q@ Re OOQG\ @ 22 I’I’I/?p Af@ IP’O(F Q@ Rp
BLEU 90.91 87.12 81.16 72.43 1.15 124  BLEU 90.57 86.65 80.49 72.57 1.20 1.35
BERTSCORE 91.41 88.11 82.15 73.59 1.10 1.15  BERTSCORE 90.90 86.52 80.48 71.10 1.31 1.44
COMET-22 90.45 91.18 86.17 76.71 0.61 0.63  COMET-22 89.74 90.28 84.44 73.42 0.74 0.81
COMETKIWI®"  [90.67 90.56 85.64 81.16 0.51 0.57 CoMETKIwWI®" 89.87 89.53 84.58 78.29 0.58 0.65
XCOMET 90.15 90.03 83.19 86.73 0.70 0.79  XCOMET 90.01 89.18 82.35 83.39 0.79 0.83
METRICX 89.35 89.07 82.00 69.26 0.47 0.69 METRICX 88.99 88.26 81.63 65.32 0.54 0.66

METRICX-QE®" 89.58 89.29 83.93 68.78[0.43 0.25, METRICX-QE"" 88.98 87.61 81.82 63.47 0.50 0.27

Table 8: Multi-prompt and single prompt performance across metrics. RF = Reference-free reranker.
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