
1

CAMTUNER: Adaptive Video Analytics Pipelines via
Real-time Automated Camera Parameter Tuning

Sibendu Paul∗, Kunal Rao†, Giuseppe Coviello†, Murugan Sankaradas†, Y. Charlie Hu∗, Srimat T. Chakradhar†
∗Purdue University, {paul90, ychu}@purdue.edu

† NEC Laboratories America, {kunal, giuseppe.coviello, murugs, chak}@nec-labs.com

Abstract—In Video Analytics Pipelines (VAP), Analytics Units
(AUs) such as object detection and face recognition operating on
remote servers rely heavily on surveillance cameras to capture
high-quality video streams to achieve high accuracy. Modern
network cameras offer an array of parameters that directly
influence video quality. While a few of such parameters, e.g.,
exposure, focus and white balance, are automatically adjusted
by the camera internally, the others are not. We denote such
camera parameters as non-automated (NAUTO) parameters. In
this work, we first show that in a typical surveillance camera
deployment, environmental condition changes can have significant
adverse effect on the accuracy of insights from the AUs, but
such adverse impact can potentially be mitigated by dynamically
adjusting NAUTO camera parameters in response to changes in
environmental conditions. Second, since most end-users lack the
skill or understanding to appropriately configure these parameters
and typically use a fixed parameter setting, we present CAMTUNER,
to our knowledge, the first framework that dynamically adapts
NAUTO camera parameters to optimize the accuracy of AUs in a
VAP in response to adverse changes in environmental conditions.
CAMTUNER is based on SARSA reinforcement learning and
it incorporates two novel components: a light-weight analytics
quality estimator and a virtual camera that drastically speed up
offline RL training. Our controlled experiments and real-world
VAP deployment show that compared to a VAP using the default
camera setting, CAMTUNER enhances VAP accuracy by detecting
15.9% additional persons and 2.6%–4.2% additional cars (without
any false positives) in a large enterprise parking lot. CAMTUNER
opens up new avenues for elevating video analytics accuracy,
transcending mere incremental enhancements achieved through
refining deep-learning models.

Index Terms—Video analytics pipelines (VAP), Camera param-
eter tuning, Reinforcement learning, Virtual camera.

I. INTRODUCTION

Significant progress in machine learning and computer vision
techniques for analyzing video streams [32], along with the
explosive growth in Internet of Things (IoT), edge computing,
and high-bandwidth access networks such as 5G [45], [14],
have led to the wide adoption of video analytics systems. Such
systems deploy cameras throughout the world to support diverse
applications in entertainment, health-care, retail, automotive,
transportation, home automation, safety, and security market
segments. The global video analytics market is estimated to
grow from $5 billion in 2020 to $21 billion by 2027, at a
CAGR of 22.70% [21].

A typical video analytics system consists of a video analytics
pipeline (VAP) that starts with one or more surveillance cameras
capturing live feed of the target environment. These live feeds
are sent over a 5G network to servers at the edge of the 5G

Fig. 1: Standard video analytics pipeline.

Fig. 2: A taxonomy of techniques for improving AU accuracy
in video analytics.

network where one or more analytics units (AUs) such as
object detection, face detection, and face recognition use deep
learning models to mine valuable information in the live video
streams, as shown in Figure 1. These AUs critically rely on
the cameras to capture high-quality real-time video streams in
order to achieve high accuracy.

There are two general approaches towards improving the
accuracy of an AU in a video analytics system, as shown
in Figure 2: improving the AU design and improving the
quality of the video stream. In the first approach, one can
improve the accuracy of the AU by making algorithmic changes
in the underlying DNN model [26], [24], [29], [30], [41].
This, however, is a very expensive and slow reactive solution,
because it is not practical to keep training the model with
new algorithms and new datasets on costly GPU resources.
Another way to improve the AU is by tuning AU parameters,
which can be done either at the start, i.e., statically, or during
operation, i.e., dynamically. One example of AU parameters is
the minimum number of pixels between eyes, which is used
for the “face detection” AU. This configurable parameter can
be tuned to determine faces in the scene. However, depending
on the environmental conditions around the camera (lighting
conditions), the content in the scene (number of faces, speed
of movement of people), the settings of the camera (brightness,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

2

contrast, color, sharpness, exposure, shutter speed), etc., the
quality of the images obtained from the camera can vary. As a
result, adjusting the configuration value for “minimum pixels
between the eyes” after the image acquisition from the camera
may not be able to improve the AU accuracy if the video frame
itself is not of good quality.

The second general approach to improving AU accuracy is to
improve the quality of data that is fed to the AU. Intuitively, if
the AU receives “good” quality input data, e.g., similar to what
it has seen during “training”, the chance of the AU producing
accurate results is high. There are three different ways in which
the quality of input data to the AU can be improved, namely,
(1) improving the environment around the camera, e.g., by
adding additional light in low-light condition, such that the
camera is able to get a better capture of the scene, by adding
a stabilizer to reduce the camera shake, (2) applying data
transformations such as adjustments in compression quality,
resolution, or frame appearance (e.g., brightness, contrast
etc.) on individual frames of the video feed captured by the
camera [27], [56], [57], and (3) tuning camera parameters in
order to help the camera capture good quality videos. Changing
the environment may not be practical in many scenarios and
applying data transformation is typically too late because the
camera has already captured the scene. However, applying
post-capture transformations is fundamentally different from
directly modifying camera parameters for better image capture
(as in CAMTUNER). Specifically, if the image captured by the
camera is of poor quality due to suboptimal camera settings,
no subsequent transformations of the video stream can enhance
the accuracy of analytics, as demonstrated in Section IX.

Our approach on directly tuning camera parameters is
motivated by two observations: (1) Modern IP cameras come
with and expose a large number of camera parameters that
directly affect the quality of the video stream capture. (2)
While a few of such parameters, e.g., exposure, focus, white
balance are automatically adjusted by the camera internally, the
remaining camera parameters are not. We denote such camera
parameters as non-automated (NAUTO) parameters.

In this paper, we first show that as the environmental
conditions around the cameras change, the quality of video
frames captured by the cameras also changes, and this can
adversely affect the accuracy of insights derived by the analytics
units. In our experiments, we kept all automatic parameter
setting features turned on and thus our experiments show that
those automatic settings are not enough to adapt to different
environments for better analytics accuracy.

Next, we experimentally show that by (manually) dynami-
cally adjusting a prominent set of NAUTO camera parameters,
in particular, four image appearance parameters including
brightness, contrast, color-saturation (also known as colorful-
ness), and sharpness, which are available in both pan-tilt-zoom
(PTZ) and non-PTZ cameras, it is possible to mitigate the
potential loss in accuracy due to adverse environmental changes.
We chose these NAUTO parameters in our study because they
not only directly affect image qualities and hence AU accuracy
but also are challenging to tune due to their large ranges of
values.

Since streaming video analytics systems operate around the

clock (24 hours a day, seven days a week), it is not practical
for humans to manually adjust tens of configurable camera
parameters in real-time in response to every environmental
change. Therefore, we propose CAMTUNER, a system that
detects and dynamically adapts to the changes in environmental
conditions by automatically adjusting camera parameters in
real-time to improve AU accuracy. CAMTUNER uses online
reinforcement learning (RL) [48] to continuously learn good
camera settings and update the camera parameters to enhance
the accuracy of the AUs in the VAP. In particular, CAMTUNER
uses SARSA [52], which is faster to train and achieves slightly
better accuracy in our video stream processing context than
other popular RL approaches like Q-learning.

Although RL is a fairly standard technique, applying it to
tuning camera parameters in a real-time video analytics system
poses two unique challenges.

First, implementing online RL requires knowing the re-
ward/penalty for every action taken during exploration and
exploitation. Since no ground truth for an AU task like face
detection is available during the online operation of a VAP,
calculating the reward/penalty due to an action taken by an
RL agent is a key challenge. To address this challenge, we
propose an AU-specific analytics quality estimator that can
accurately estimate the accuracy of the AU. Our estimator is
light-weight, and it can run on a low-end PC or a simple IoT
device to process video streams in real-time.

Second, bespoke online RL learning at each camera deploy-
ment setup requires initial RL training, which can potentially
take a long time for two reasons: (1) capturing the environmen-
tal condition changes such as the time-of-the-day effect can
take a long time, and (2) taking an action on the real camera
(i.e., changing the camera parameter setting) by using the APIs
provided by the camera vendor incurs a significant delay of
about 200 ms. This limits the speed of state transitions during
RL exploration, and hence the training speed of RL, to about
5 changes (actions) per second. To address these two sources
of RL training inefficiencies, we propose a novel concept
called virtual camera. A virtual camera mimics (in software)
the effect of changing parameters of a physical camera to
capture a scene. There are two key benefits of doing this:
(1) we can complete an action of “camera setting change”
almost instantaneously; and (2) we can digitally augment
a single frame captured by the real camera to derive many
new synthetically transformed frames, as if we had physically
captured many different frames of the same scene by using a
real camera at different environmental conditions (i.e., time-
of-day, lighting conditions, seasonal changes etc.). These two
benefits allow the RL agent to explore actions at a much faster
rate than possible in using a real camera. This drastically
reduces the RL training time required to develop a good, initial
RL model, which can then be further refined in a short period
(adaptation phase) after camera deployment.

Our paper makes the following contributions:
• We show that environmental condition changes can have

a significant negative impact on the accuracy of AUs in
video analytics pipelines, but the negative impact can
be mitigated by dynamically adjusting a set of NAUTO
camera parameters.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

3

• We develop, to our knowledge, the first system that
automatically and adaptively learns and tunes the set of
NAUTO camera parameters in response to unpredictable
environmental condition changes to improve the accuracy
of insights from video analytics pipelines.

• We present two novel techniques that make the RL-based
camera-parameter-tuning design feasible: a light-weight
AU-specific analytics quality estimator that enables online
RL without requiring ground truth, and a virtual camera
that enables fast initial RL model training.

• We show that CAMTUNER improves AU accuracy in
controlled experiments and in real VAP deployment.
In particular, in a real world deployment where two
cameras deployed side-by-side (one camera is managed
by CAMTUNER, while the other is not) are monitoring
a large enterprise parking lot, and the live video streams
are carried over a 5G network, the camera managed by
CAMTUNER detected 15.9% (146) additional persons (in
a 5-minute span) during evening hours, without any false
positives. The camera managed by CAMTUNER detected
2.6%–4.2% (861–881) additional cars (in a 5-minute span)
during morning and evening hours, again without any false
positives.

• Furthermore, by recording a real-world car accident
scenario at a traffic intersection (at one of our customer
locations) and by using VC to emulate frame captures
at different times of the day, the VAP with CAMTUNER
reliably detected 9.7% (122) additional cars (across the
frames in a 1.5-minute span), which dramatically improves
the accuracy (and lead time) of collision prediction.

• We show that CAMTUNER incurs very low computation
overhead and CAMTUNER can be easily incorporated into
VAPs that are executing on low-end PC or IoT devices
that are directly attached to the camera.

II. BACKGROUND

Figure 1 also shows the image signal processing (ISP)
pipeline within a camera. Photons from the external world
reach the image sensor through an optical lens. The image
sensor uses a Bayer filter [6] to create raw-image data, which is
further enhanced by a variety of image processing techniques
such as demosaicing, denoising, white balance, color-correction,
sharpening and image compression (JPEG/PNG or video
compression using H.264 [5], VP9 [4], MJPEG, etc.) in the
image-signal processing (ISP) stage [46] before the camera
outputs an image or a video frame.

The camera capture forms the initial stage of the VAP, which
may include a wide variety of analytics tasks such as face
detection, face recognition, human pose estimation, license
plate recognition etc. (see Figure 1).

In this paper, we study video analytics applications that
are based on surveillance cameras. Such cameras are running
24X7 in contrast to DSLR, point-and-shoot or mobile cameras
that capture videos on-demand. Popular IP video surveillance
cameras are manufactured by vendors such as AXIS [16],
Cisco [12], and Panasonic [25]. These surveillance camera
manufacturers have exposed many camera parameters via REST
APIs which can be set by applications to control the image

TABLE I: Parameters exposed by popular cameras. Parameters
with “*” are auto-adjusted by the camera internally.

Camera Setting Parameters

Image

Brightness

Appearance

sharpness
contrast

color level

Exposure

Exposure Control∗

Settings

Max Exposure Time
Exposure Zones∗

Max gain
IR cut filter∗

Image

Defog Effect

Correction

Noise Reduction
Stabilizer

Auto Focus Enabled∗

White Type∗
Balance window∗

Video Stream Parameters

Image
Resolution

Appearance
Compression
Rotate image

Encoder GOP length

Settings H.264 profile

Bitrate
Type of Use

Control
Target Bitrate

Priority

Video Stream Max FPS
MJPEG Max frame size

generation process, which in turn affects the quality of the
produced image or video. The exposed parameters include
those for changing the amount of light that hits the sensor, the
zoom level and field-of-view (FoV) at the image-sensor stage,
and those for changing the color-saturation, brightness, contrast,
sharpness, gamma, acutance, etc. in the ISP stage. Table I lists
the parameters exposed by a few popular surveillance cameras
in the market today. Remotely changing the camera setting
via the exposed APIs, however, incurs a significant delay, e.g.,
about 200 ms on Axis Q1615, Axis Q3515, Axis Q6128-E
and Axis Q3505 MK II network camera.

While a few of these camera parameters, e.g., exposure, focus,
balance, are automatically adjusted by the camera internally,
the remaining camera parameters are not adjusted automatically.
We denote such camera parameters as non-automated (NAUTO)
parameters.

In this paper, we focus our study on the four image
appearance camera parameters, denoted as I-A parameters in
the rest of the paper, which are widely available in both PTZ
and non-PTZ cameras: brightness, contrast, color-saturation
(also known as colorfulness), and sharpness. We choose the
above four NAUTO camera parameters in our study in this
paper for two reasons: (1) they directly affect the quality of
the image which is essential to AUs which typically extract
insights, e.g., face recognition, from individual frames; (2)
These parameters are more challenging to tune due to the
large range (for example, between 1 and 100 for each of the
parameters on Axis Q1615, Axis Q3515, Axis Q6128-E, Axis
Q3505 MK II network camera etc.) compared to other NAUTO
camera parameters which have either a few fixed settings or
just a binary ON/OFF switch. Several AUTO parameters, e.g.,
exposure and white-balance, affect the raw capture before
the four I-A parameters are applied in the ISP stage. Thus,
there is no mutual interference between those AUTO and I-A
parameters when analyzing the impact of I-A parameters on
capture quality.

III. MOTIVATION

We motivate the need for dynamically adjusting NAUTO
camera settings by experimentally showing the impact of
environmental changes on AU accuracy despite all the auto-
setting features are left on, and that tuning a set of NAUTO

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

4

(a) Face detection (b) Person detection

Fig. 3: AU accuracy variation in a day under the default camera
setting.

camera settings can improve AU accuracy under the same
environmental conditions.

A. Impact of Environment Change on AU Accuracy

Environmental changes happen for at least three reasons.
First, such changes can be induced due to the change of the
Sun’s movement throughout a day, e.g., sunrise and sunset.
Second, they can be triggered by changes in weather conditions,
e.g., rain, fog, and snow. Third, even for the same weather
condition at exactly the same time of the day, the videos
captured by the cameras at different deployment sites (e.g.,
parking lot, factory, shopping mall, and airport) can have diverse
content and ambient lighting conditions.

To illustrate the impact of environmental changes on im-
age quality, and consequently on the accuracy of AUs, we
experimentally measure the accuracy of two popular AUs (face
detection and person detection) throughout a 24-hour (one-day)
period. Since there are no publicly available video datasets that
capture the environmental variations in a day or a week by
using the same camera (outside the baseball stadium which was
fairly crowded throughout the day), we use several proprietary
videos provided by our customers that were captured with
the default camera setting – in this paper, the default camera
setting refers to when all auto-setting features are turned on and
NAUTO parameters are set to the default values provided by
the manufacturers. These videos were captured outside airports
and baseball stadiums by stationary surveillance cameras, and
we have labeled ground-truth information for several analytics
tasks including face detection and person detection.

We use RetinaNet [18] for face detection and EfficientDet-
v8 [50] for person detection. We compute the mean Average
Precision (mAP) by using pycocotools [15]. Figure 3a shows
that the average mAP values for the face detection AU during
four different time periods of the day (morning 8AM - 10AM,
noon 12PM - 2PM, afternoon 3PM - 5PM, and evening 6PM
- 8PM), and with the default camera setting, can vary by up
to 40% as the day progresses (blue bars). Similarly, Figure 3b
shows that the average mAP values for the person detection
AU (with the default camera parameter setting) can vary by
up to 38% during the four time periods. We also observed
similar accuracy variation while using other face-detection
(MTCNN) and person-detection models (Yolov5). These results
show that changes in environmental conditions can adversely
affect the quality of the frames retrieved from the camera, and
consequently adversely impact the accuracy of the insights that
are derived from the video data.

(a) DAY (b) NIGHT

Fig. 4: Impact of parameter tuning impact on Face-recognition.

B. Impact of Image Appearance Camera Settings on AU
Accuracy

We experimentally show that adjusting the four image appear-
ance (I-A) (NAUTO) camera settings, i.e., brightness, contrast,
color-saturation (also known as colorfulness), and sharpness,
can help to mitigate the adverse impact of environmental
changes on AU accuracy.

Analyzing the impact of camera settings on video analytics
in general faces a significant challenge: it requires applying
different camera parameter settings to the same input scene
and measuring the resulting accuracy of insights from an
AU. The straightforward approach is to use multiple cameras
with different camera parameter settings to capture the same
input scene. However, this approach is impractical as there
are thousands of different combinations of even just the four
camera parameters we consider. To overcome the challenge,
we proceed with the following workaround which uses a single
real camera.

Face-recognition VAP on static images: In this experiment,
we place face cutouts of 10 unique individuals in front of the
camera as a fixed static scene and evaluate the performance
of the most accurate face-recognition AU, Neoface-v3 [42]1,
for various camera settings and for different face matching
thresholds. Since this face-recognition AU has high precision
despite environmental changes, we focus on measuring Recall,
i.e., true-positive rate. Here, we use a real camera, Axis Q3505
MK II Network camera.

We rerun this experiment for two environmental conditions,
i.e.,DAY and NIGHT conditions in our lab, simulated using
two sources of light. One of them is always kept ON, while the
other light source is manually turned ON or OFF to simulate
DAY and NIGHT environmental conditions, respectively.

We compare AU results under the manufacturer-provided
“Default” camera settings and “Best” settings for the four
camera parameters. To find the “Best” settings, we exhaustively
change the four camera parameters to find the setting that gives
the highest Recall value. Specifically, we vary each parameter
from 0 to 100 in steps of 10 and capture the frame for each
camera setting. This gives us ≈14.6K (114) frames for each
condition. Changing one camera setting through the VAPIX
API takes about 200ms, and in total it took about 7 hours to
capture and process the frames for each condition.

Figure 4a shows the Recall for the DAY condition for various
thresholds. Figure 4b shows the recall for the night condition

1This face-recognition AU is ranked first in the world in the most recent
face-recognition technology benchmarking by NIST.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

5

(a) DAY (b) NIGHT

Fig. 5: Camera captures under different environments.

for various thresholds. We see that (1) under the “default”
setting, the recall for the day condition goes down at higher
thresholds, indicating that some faces were not recognized,
whereas for the night condition, the recall remains constant
at a low value for all thresholds, indicating that some faces
were not being recognized regardless of the face matching
thresholds. (2) in contrast, when we changed the camera
parameters for both conditions to the “Best” settings, the AU
achieves the highest Recall (100%), confirming that all the
faces are correctly recognized. (3) The “Best” settings for DAY
condition ([80,80,60,40]) is different from that for NIGHT
condition ([100,90,30,70]). In the appendix, we illustrate the
performance variations of an object detection VAP in a real-
world video scene and discuss the optimal adjustment of camera
parameters in response to environmental changes.

C. Optimal camera setting is AU-specific

Along with the environment, to observe the impact of camera
parameters on various AUs, we printed 12 different person
cutouts obtained from COCO dataset [35] and placed them
in front of an Axis network camera. we use Efficientdet [50]
as person-detection AU and RetinaNet [18] as face-detection
AU and observe the impact on each of these AUs individually
under DAY and NIGHT condition simulated inside our lab using
two light sources. One of them is always kept ON, while the
other light source is manually turned ON or OFF to simulate
DAY and NIGHT environmental conditions, respectively. For
each of these conditions, we vary the four image appearance
camera parameters, i.e., brightness, contrast, sharpness and
color-saturation ranging from 0 to 100 at a step of 10. Figure
5 shows the images captured under the default camera setting
for DAY and NIGHT condition. To find the “Best” settings for
a specific AU, we change the four camera parameters to find
the setting that gives the highest mAP. Specifically, we vary
each parameter from 0 to 100 in steps of 10 and capture the
frame for each camera setting. This gives us ≈14.6K (114)
frames for each condition. Changing the camera setting through
the VAPIX API takes about 200ms, and in total it took about
7 hours to capture and process the frames for each condition.

Table II shows that the best I-A camera parameter setting
for different AUs are unique. Furthermore, these Best camera
settings not only vary across different AUs but change due to
environmental condition changes (i.e., from DAY to NIGHT),
also shown in Table II. This motivates the need for capturing
AU specific perception in tuning the camera parameters.

IV. DESIGN CHALLENGES

Designing CAMTUNER to automatically tune camera param-
eter settings to enhance video analytics accuracy faces several

TABLE II: Best settings across different AUs for various env.

AU-best Best camera setting
[brightness, contrast, color, sharpness]

DAY NIGHT
Person Detection-best [80,90,70,100] [40,90,60,100]
Face Detection-best [80,90,60,80] [60,40,90,90]

challenges. In this section, we discuss these challenges and
our approaches to address each one of them.

Challenge 1: Identifying the best camera setting for a
particular scene. Cameras deployed across different locations
observe different scenes. Moreover, the scene observed by a
particular camera at any one location keeps changing based on
the environmental conditions, lighting conditions, movement of
objects in the field of view, etc. In such a dynamic environment,
how can we identify the best camera setting that will give the
highest AU accuracy for a particular scene? The straightforward
approach of collecting data for all possible scenes that can ever
be observed by the camera and training a model that gives the
best camera settings for a given scene is infeasible.

Challenge 2: No Ground truth in real-time. Implementing
online RL requires knowing the reward/penalty for every action
taken during exploration and exploitation, i.e., what effect a
particular camera parameter setting will have on the accuracy
change of the AU. Since no ground truth of the AU task, e.g.,
face detection, is available during normal operation of the real-
time video analytics system, detecting a change in accuracy of
the AU during runtime is challenging.

Challenge 3: Extremely slow initial RL training. Online
learning at each camera deployment setup requires initial
RL training, which can potentially take a very long time for
two key reasons: (1) Capturing the environmental condition
changes such as the time-of-the-day effect requires waiting
for the Sun’s movement through the entire day until night,
and capturing weather changes requires waiting for weather
changes to actually happen. (2) Taking an action on the real
camera, i.e., changing the camera parameter setting, incurs a
significant delay of about 200 ms. This delay fundamentally
limits the speed of state transition and hence the learning speed
of RL to only 5 actions per second.

V. CamTuner DESIGN

Figure 6 shows the system-level architecture for CAMTUNER,
which automatically and dynamically tunes the camera param-
eters to enhance the accuracy of AUs in the VAP. CAMTUNER
augments a standard VAP shown in Figure 1 with two key
components: a Reinforcement Learning (RL) engine, and an
AU-specific analytics quality estimator. In addition, it employs
a third component, a Virtual Camera (VC), for fast initial RL
training.

A. Reinforcement Learning (RL) Engine

The RL engine is the heart of CAMTUNER system, as it is
the one that automatically chooses the best camera settings
for a particular scene. Q-learning [51] and SARSA [52] are
two popular RL algorithms that are quite effective in learning
the best action to take in order to maximize the reward. We
compared these two algorithms and found that training with
SARSA achieves slightly faster convergence and also slightly

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 6: CamTuner system design. CamTuner augments a
standard VAP shown in Figure 1 with two key components:
a Reinforcement Learning (RL) engine, and an AU-specific
analytics quality estimator.

Algorithm 1: State-Action-Reward-State-Action loop.

1 s ← Observe-Environment()
// ϵ-greedy policy to select next

action
2 a ← Choose-Action(Q, s, ϵ)
3 while Still-Processing() do
4 Perform-Action(a)
5 r ← Compute-Reward()
6 s’ ← Observe-Environment()
7 a’ ← Choose-Action(Q, s’, ϵ)
8 Q (s, a) ← Q (s,a) + α × [r + γ × Q (s’, a’) – Q

(s, a)]
9 s ← s’

10 a ← a’
11 end

better accuracy than with Q-learning. Therefore, we use SARSA
RL algorithm in CAMTUNER.

SARSA is similar to other RL algorithms. The steps
followed by an SARSA RL agent are shown in Algorithm
1. Here, the agent first observes the environment, i.e., state
s, and chooses an appropriate action a to be performed in
state s. After performing the action a, the agent receives an
immediate reward (or penalty) r and is now in a new state
s′. In this new state, the action chosen by the agent is a′ and
the associated Q-value is Q(s′, a′), which the agent uses to
compute the cumulative reward Q(s, a) as per equation 1. The
agent then updates this computed cumulative Q-value and is
now in the new state s′. This process continues for the lifetime
of the AU as the agent continuously learns and adapts to the
environment.

SARSA does not require any labeled data or pre-trained
model, but it does require a clear definition of the state, action
and reward for the RL agent. This combination of state, action
and reward is unique for each application and needs to be
carefully chosen, so that the agent learns exactly what is desired.
In our setup, we define them as follows:

State: A state is a tuple of two vectors, st =< Pt,Mt >,
where Pt consists of the current brightness, contrast, sharpness,
and color-saturation parameter values on the camera, and Mt

consists of the measured values of brightness, contrast, color-
saturation, and sharpness of the captured frame at time t,
measured as in [7], [44], [23], [17].

Action: The set of actions that the agent can take are
(a) increasing or decreasing one of the brightness, contrast,
sharpness or color-saturation parameter value, or (b) not
changing any parameter values. We choose the increase or
decrease of camera parameters at a granularity of 10 only.
The choice of such a granularity of camera parameter setting
adjustment is to strike a balance between adjustment complexity
and potential gain. In particular, we search in a discrete action
space of increments of 10 to make the camera parameter tuning
problem tractable.

Reward: We use an AU-specific analytics quality estimator
as the immediate reward function (r) for the SARSA algorithm.
Along with considering immediate reward, the agent also factors
in future reward that may accrue as a result of the current
actions. Based on this, a value, termed as Q-value (also denoted
as Q(st, at)) is calculated for taking an action at when in state
st using Equation 1.

Q(st, at)← Q(st, at) + α [r + γ ·Q(st+1, at+1)−Q(st, at)]
(1)

Here, α is learning rate (a constant between 0 and 1) used to
control how much importance is to be given to new information
obtained by the agent. A value of 1 will give high importance
to the new information while a value of 0 will stop the learning
phase for the agent.

Similar to α, γ (also known as the discount factor) is another
constant used to control the importance given by the agent
to any long term rewards. A value of 1 will give very high
importance to long term rewards while a value of 0 will make
the agent ignore any long term rewards and focus only on the
immediate rewards. If the environmental conditions change
very frequently, a lower value, e.g., 0.1, can be assigned to γ
to prioritize immediate rewards, while if the conditions do not
change frequently, a higher value, e.g., 0.9, can be assigned to
prioritize long term rewards.

Exploration vs. Exploitation. We define a constant called ϵ
(between 0 and 1) to control the balance between exploration
vs. exploitation in taking actions. At each step, the agent
generates a random number between 0 and 1; if the random
number is greater than the set value of ϵ, then a random action
(exploration) is chosen.

B. AU-specific Analytics Quality Estimator

In online operations, the RL engine needs to know whether its
actions are changing the AU accuracy in the positive or negative
direction. In the absence of ground truth, the analytics quality
estimator acts as a guide and generates the reward/penalty for
the RL agent.

Challenges. There are three key challenges in designing
an online analytics quality estimator. (1) During runtime, AU
quality estimation has to be done quickly, which implies a
model that is small in size. (2) A small model size implies
using a shallow neural network. For such a network, what
representative features should the estimator extract that will
have the most impact on the accuracy of AU output? (3)
Since different types of AUs (e.g., face detector, person

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 7: AU-specific analytics quality estimator design.

detector) perceive the same representative features differently,
the estimator needs to be AU-specific.

Insights. We make the following observations about esti-
mating the quality of AUs. (1) Though estimating the precise
accuracy of AU on a frame requires a deep neural network,
estimating the coarse-grained accuracy, e.g., in increments of
1%, may only require a shallow neural network. This insight is
based on the observation that binning the accuracy into coarse-
grained bins (with 1% increments) and predicting which bin the
accuracy of the DNN falls into is a simpler task than estimating
the precise accuracy. (2) Most of the “off-the-shelf” AUs use
convolution and pooling layers to extract representative local
features [10]. In particular, the first few layers in the AUs
extract low-level features such as edges, shapes, or stretched
patterns that affect the accuracy of the AU results. We can
reuse the first few layers of these AUs in our estimator to
capture the low-level features. (3) To capture different AU
perceptions from the same representative features extracted in
the early layers, we need to design and train the last few layers
of each quality estimator to be AU-specific. During training,
we need to use AU-specific quality labels.

Design. Motivated by the above insights, we design our light-
weight AU-specific analytical quality estimator to consist of
two components: (1) feature extractor and (2) quality classifier,
as shown in Figure 7. We use supervised learning to train the
AU-specific quality estimator.

Feature Extractor. Different AUs and environmental con-
ditions can manipulate local features of an input frame at
different granularities [22]. For example, blur (i.e., motion or
defocus blur) affects fine textures while light exposure affects
coarse textures. While face detector and face recognition AUs
focus on finer face details, person detector is coarse-grained
and it only detects the bounding box of a person. Similarly, in
convolution layers, larger filter sizes focus on global features
while stacked convolution layers extract fine-grained features.
To accommodate such diverse notions of granularities, we
use the Inception module from the Inception-v3 network [49],
which has convolution layers with diverse filter sizes.

Quality classifier. The goal of the quality classifier is to take
the features extracted by the feature extractor and estimate
the coarse-grained accuracy of the AU on an input frame,
e.g., in increments of 1%. As such, we divide the AU-specific
accuracy measure into multiple coarse-grained labels, e.g., from
0% to 99%, and use fully-connected layers whose output nodes
generate AU-specific classification labels.

Detailed design and training of two concrete AU-specific
analytics quality estimators are described as follows.

(1) Face recognition AU: The quality classifier of face

recognition consists of 2 fully-connected layer and has 101
output classes. One of the classes signifies no match, while
the remaining 100 classes correspond to match scores between
0 to 100% in units of 1%.

To generate the labeled data, we used 300 randomly-sampled
celebrities from the celebA dataset [37]. We choose two images
per person. We use one of them as a reference image and add
it to the gallery. We use the other image to generate multiple
variants by applying digital transformations on the image. These
variants (∼4 million) form the query images. For each query
image, we obtain the match score (a value between 0 and
100%) using the Face recognition AU, Neoface-v3. The query
images along with their match score form the labeled samples,
which are used to train the quality estimator.

(2) Face and object detection AU. The quality classifier of
face and object (i.e., car and person) detection AU consists of
2 fully-connected layers, and has 201 output classes to predict
the quality estimate of the face and object detection AU for
a given frame. One of the classes signifies AU cannot detect
anything accurately, and the remaining 200 classes correspond
to the cumulative mAP score between 0 to 100 and IoU score
between 0 to 1, i.e., mAP + IOUTrue−Positive ∗ 100. To
generate the labeled data to train face-detection AU specific
quality estimator, we used the Olympics [39] and HMDB [33]
datasets, and created ∼7.5 million variants of the video frames
by applying digital transformations. Then, for each frame, we
use the face detection AU (i.e., RetinaNet [18]) to determine
the analytical quality estimate. Similarly, we use the object
detection AU (i.e., EfficientDet [50]) on labeled images from
COCO dataset [35] that contain car and person object classes
and their augmented variants. The video frames/images and
their quality estimates form the labeled samples, which are
used to train the estimator model.

For both the classifier training, we use a cross-entropy loss
function to train AU-specific analytics quality estimators, initial
learning rate is 10−5, and we use Adam Optimizer [31]

C. Virtual Camera

We design a virtual camera (VC) to accelerate initial RL
training by mimicking the effect of environmental conditions
and camera setting changes on the frame capture of a real
camera. In particular, the VC can takes a frame captures at
one time of the day t1 and renders it for a different time of
the day t2 as if it was captured by the camera at time t2.

Motivation for VC. The Virtual Camera (VC) provides
significant flexibility for training and evaluating CAMTUNER.
Given that environmental conditions change very slowly,
training (or exploring) an RL agent to learn diverse conditions
throughout the day can be time-consuming if we wait for the
conditions to change naturally, e.g., which generates only one
set of data per day. To address this, we utilize a Virtual Camera
(VC) that can render the same frame at different capture times
of the day. In its current version, the VC augments frames by
adjusting brightness, color, contrast, and sharpness to simulate
various times of the day. We plan to enhance the VC with
adjusting additional settings in future iterations.

More specifically, the VC can enhances the CAMTUNER
design in several ways:

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

8

Fig. 8: VC block diagram.

1) Experimental control and reproducibility: The VC allows
us to apply various camera parameter configurations
to the exact same scene, ensuring repeatability and
reproducibility in our experiments, which is not feasible
with a real camera.

2) Faster experimentation: Unlike a real camera which
captures at 25-30 frames per second, the VC can process
video frames at much higher speeds, up to 300 frames
per second, significantly accelerating experimentation.

3) Independent testing and training: The VC enables in-
dependent testing and training of RL algorithms with
various reward functions.

Additionally, in scenarios where multiple Analytics Units
(AUs) operate on a single video feed, each AU might require
different optimal camera settings. A real camera can only apply
one camera setting at any given time, but the VC can simulate
custom “best” settings for each AU according to its specific
requirements.

Definition. A VC (shown in Figure 8) takes an input frame
fi, captured by a real camera, the target time-of-the-day Tk,
and VC parameter settings V , as input, and outputs a frame
fo as if it was captured by the physical camera at time Tk. To
generate a frame at time Tk, VC uses a composition function
Compose(Xk, V), which composes output frame fo using Xk,
which is the transformation that augments the environmental
effects corresponding to the target time Tk on input frame fi,
and V , which is the VC parameter settings. The composition
function is defined as Xk∗10V−0.5, which considers Xk and V
simultaneously, similar to a real camera. Using this composition
function, Xk is scaled up if the value of V is greater than 0.5
and scaled down if the value is less than 0.5; no scaling of
Xk happens for V equal to 0.5.

To understand how VC works, we first introduce an important
definition. Each frame fi, from a real physical camera,
possesses distinct values of brightness, contrast, colorfulness
and sharpness metrics, denoted as a metric (or feature) tuple
Mi =< αM , βM , γM , ζM >. The unique metric tuple
encapsulates the environmental conditions and the default
physical camera settings when the frame was captured.

Offline profiling phase: VC derives two tables for a given
physical camera deployment during an offline profiling phase
and then uses the two tables during online operation to generate
the output frame fo.

The first table (TM) maps a given time-of-the-day Tk to the
metric tuple Mk which captures the distinct values of brightness,
contrast, colorfulness and sharpness metrics of frames taken by
the physical camera with the default settings at time Tk. Since,

(a) TM table (b) MDT Table

Fig. 9: Offline generated tables for VC.

metric tuples for different part of the frames show different
profiles as shown in Figure 10, we generate the table to cover
the full 24-hour period with a granularity of 15 minutes, i.e.,
the table has one mapping for every 15 minutes, for a total of
96 mappings. To construct the table, we use a full 24-hour long
video and break it into 15-minute video snippets. We extract all
the frames from the video snippet for each 15-minute interval
Tk. , we divide each frame into 12 tiles as shown in Figure
11 , obtain the corresponding metric tuple for each tile, and
compute the mean metric tuple for the corresponding tiles in
all frames in the 15-minute interval as the metric tuple for that
tile, and the list of tuples for all 12 tiles form the entry for
time Tk in the table, as shown in Figure 9a.

The second table (MDT) maps the difference between two
metric tuples Mi and Mk, δ(Mi,Mk), to the corresponding
transformation tuple Xk that would effectively transform a
frame captured by the physical camera with metric tuple
Mi to become a frame captured by the physical camera for
the same scene with metric tuple Mk. We note since each
camera parameter can take 11 values, from 0 to 100 with
increments of 10, the difference between any two metric tuples
can possibly be mapped to one of these 14K (114) settings.
We construct the entries for the table backward as follows. (1)
We select a random frame from each 15-minute interval to
form a collection of 96 frames with varying environmental
conditions, i.e., corresponding to different time-of-the-day. (2)
For each possible transformation Xk, we transform the 96
frames into 96 virtual frames. We then obtain the delta metric
tuples between each pair of original and transformed frames,
calculate the median of the 96 delta metric tuples, δk, and
store the pair of < δk, Xk > in the table. (3) We repeat the
above process for all possible transformation settings (14K in
total) to populate the table, as shown in Figure 9b.

Finally, at runtime when the table is used by the VC, if
the entry for a given delta metric tuple δi is empty, we return
the entry whose delta metric tuple δk is closest to δi using
L1-norm.

Online phase. VC transforms the input frame fi to output
frame fo in five steps. (1) It measures the current metric
tuple Mi =< αM , βM , γM , ζM >curr from input frame
fi; (2) It looks up Time-to-Metric (TM) table for the metric
tuple Mk =< αM , βM , γM , ζM >desired that corresponds
to the target time of the day (Tk); (3) It calculates the
difference between Mi and Mk, δ(Mi,Mk) or δik; (4) It looks
up Metric-difference-to-Transformation (MDT) table to find
the transformation Xk =< αX , βX , γX , ζX >applied that
corresponds to δik; (5) It applies Xk along with V using the
composition function Compose(Xk, V) to input frame fi and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

9

000102030405060708091011121314151617181920212223

Time (Hours)

25
50
75

100
125
150
175
200

br
ig

ht
ne

ss

tile_1
tile_2
tile_3
tile_4

(a) Brightness

000102030405060708091011121314151617181920212223

Time (Hours)
10
20
30
40
50
60
70

co
nt

ra
st

tile_1
tile_2
tile_3
tile_4

(b) Contrast

000102030405060708091011121314151617181920212223

Time (Hours)
0
5

10
15
20
25
30
35
40

co
lo

r-s
at

ur
at

io
n

tile_1
tile_2
tile_3
tile_4

(c) Color-Saturation

000102030405060708091011121314151617181920212223

Time (Hours)
0

250
500
750

1000
1250
1500

sh
ar

pn
es

s
tile_1
tile_2
tile_3
tile_4

(d) Sharpness

Fig. 10: Day-long feature profiles for different tiles.

Fig. 11: Tiled representation of a captured frame.

generates output frame fo.
Since different parts of an input frame may exhibit varying

local feature or metric values, to improve the effectiveness
of virtual knob transformation, instead of applying the above
steps directly to input frame fi, we split it into 12 (3 X 4)
equal-sized tiles, as shown in Figure 11, apply Steps 1-3 to
each of the 12 tiles, i.e., each of Mi, Mk, and δik consists of
12 sub-tuples corresponding to the 12 tiles, respectively. The
12 sub-tuples in δik are looked up in the MDT table to find
12 transformation tuples. Finally, to ensure smoothness, we
calculate the mean of these 12 sub-tuples Xk, which is then
applied to input frame fi.

D. Integrating VC with the RL engine

During initial RL training, the RL agent performs fast
exploration by leveraging VC as follows. It reads each frame
fi from the input training video, and repeats the following
exploration steps for all time-of-the-day values Tk. At each
exploration step j, the agent which is at state s =< Pj ,Mj >
performs tasks: (1) based on current state (s), it takes a random
action a and apply that on Vj , which is VC equivalent of Pj

for a real camera, to get a new virtual knob setting for next
exploration step (j + 1), Vj+1; (2) it invokes the VC with
frame fi for the target time-of-the-day Tk, and current VC
parameters Vj+1 as input, and the VC outputs frame fo. The
measured tuple Mj+1 of brightness, contrast, colorfulness and
sharpness metric values of output frame fo along with the

virtual knob setting Vj+1, form the new state of the RL agent,
snew =< Vj+1,Mj+1 >; (3) it calculates the reward/penalty
by feeding fo into the AU-specific quality estimator; and (4)
it updates the Q-table entry Q(s, a).

The above initially trained SARSA model with the VC is
then deployed in the real camera for the normal operations of
CAMTUNER. First, the ϵ value is set to low (0.1) and α is set
to high (0.85) so that the SARSA RL agent will go through
a short adaptation phase, e.g., for an hour, by performing
primarily exploration. Afterward, the ϵ and α values are set
to high (0.9) and low (0.15), respectively, so that SARSA
performs primarily exploitation using the trained model. We
use a γ of 0.9. We also use a smoothing parameter of 0.7 as
the weight parameter of the exponential weighted average that
is used to modify any Q-table entry.

VI. IMPLEMENTATION

A. Hardware Setup

For the evaluation, we implemented a VAP using an
Axis Q3505 MK II network surveillance camera. We run
CAMTUNER on a low-end Intel NUC box 2 while face detection
and object detection AUs and initial pre-training with VC run
on a high-end edge-server equipped with Xeon(R) W-2145
CPU and GeForce RTX 2080 GPU. The captured frames are
sent for AU processing on the edge-server over a 5G network
with an average frame uploading latency of 39.7 ms.

B. Software Implementation

We implemented the SARSA RL agent in Python, the light-
weight AU-specific analytics quality estimators in pytorch
framework which runs as a service using the ZeroMQ [3]
networking library, and the Virtual Camera in Python which
is trained on the GPU edge server. We use PIL [13] and
OpenCV [2] for image processing during the offline profiling
phase in VC design and also during offline training of the
SARSA RL agent. We use Axis’ VAPIX API to change the
camera parameters decided by the SARSA-RL agent as well
as to capture input frames.

Similar to a real camera, our VC runs continuously during
offline SARSA RL training and streams the output frames
on a NATS [1] queue at the same frames-per-second (FPS)
with which the video was captured. Each frame is sent in
BSON format which includes the frame number, frame data
(i.e., array of bytes), and timestamp. Like a real camera, VC
exposes REST APIs that are used to query and change its
settings to allow augmenting various environmental effects.

VII. EVALUATION

We extensively evaluate the effectiveness of CAMTUNER by
measuring its impact on AU accuracy improvement in a VAP
via controlled experimental emulation and in a real deployment
(§VII-A – §VII-C). We also evaluate its system performance
(§VII-D) and the efficacy of its two key components, AU-
specific analytics quality estimator and VC (§VII-E).

2Currently it is performed at the edge (an Intel-NUC box), but camera
parameter tuning can be performed either at the edge or on a device.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

10

A. End-to-end VAP Performance

We first evaluate the effectiveness of CAMTUNER by
comparing AU accuracy of five different VAPs.

1) Experimental Setup: We compare three CAMTUNER
variants against two baseline VAPs. All system variants,
including CAMTUNER, only differ in how the four I-A camera
parameters are tuned, while keeping all automatic parameter
setting features turned on and the rest NAUTO parameters
at the default values. (1) Baseline: In the Baseline VAP, the
I-A camera parameters are not adapted to any environmental
changes. (2) Strawman: The Strawman approach applies a time-
of-the-day heuristic that tunes the four I-A camera parameters
based on a human perception metric. In particular, we use
the BRISQUE quality metric [38] and exhaustively search
for the best camera parameters for the first few frames in
each hour and then apply the best camera setting found for
the remaining frames in that hour. This exhaustive search
of camera settings using initial frames takes a few minutes
(which is expensive) and our results show that performing
this adaptation more often than once per hour does not give
significant improvement. (3) CAMTUNER-β: This variant of
CAMTUNER only uses a few rounds of online exploration
(i.e., which takes about 1 hour, same as in online exploration
performed by CAMTUNER), i.e., the SARSA RL agent does
not rely on the VC for initial offline exploration. Instead, at
the start of online exploration, the CAMTUNER-β framework
is initially seeded with an empty Q-table. (4) CAMTUNER-α:
This variant of CAMTUNER adjusts the I-A camera setting
dynamically by using only the offline trained SARSA RL
agent, i.e., the agent does not perform any exploration during
online operation. (5) CAMTUNER: The complete CAMTUNER
framework is seeded with offline trained SARSA RL agent, and
then during online operation, the agent continues exploration
initially and then moves towards exploitation, as described in
§V-D. For CAMTUNER-β, CAMTUNER-α and CAMTUNER,
the RL agent adaptively adjusts the four I-A camera parameters
periodically; the time interval is configurable and we choose
it to be 10s.

Experimental methodology. Comparing these 5 VAPs in
a real-world deployment is difficult because (1) even with 5
co-located cameras, it is difficult to see the identical scene from
the same angle; (2) furthermore, in a real-world deployment,
the captured scenes do not have the ground-truth to measure
the AU accuracy. To overcome the above challenge, we loop
a pre-recorded (original) 5-minute video snippet (a customer
video captured at an airport) labeled with ground-truth through
VC – VC is used here not for RL training but for generating
augmented input videos that emulate different environmental
changes to be fed into the five VAPs. In particular, we gradually
change the VC model parameters (i.e., digital transformations)
to simulate the changes that happen during the day as the Sun
changes its position and finally sets, and we ensure (through
manual inspection) that same ground-truths are carried over
in the VC generated videos from the original video. We then
project these VC-generated videos on a monitor screen in front
of a real camera, and run each of the five VAPs in turn. We
note that the above controlled experimental setup is the closest

V1 V2 V3 V4 V5 V6 V7 V80

2

4

6

8

10

12

14

m
AP

 im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

Strawman
CamTuner-
CamTuner-
CamTuner

(a) Face detection AU
V1 V2 V3 V4 V5 V6 V7 V80

2

4

6

8

m
AP

 im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

Strawman
CamTuner-
CamTuner-
CamTuner

(b) Person detection AU

Fig. 12: mAP improvements for different AUs.

approximation to a real-world deployment.
2) End-to-end Accuracy: We evaluate the AU accuracy

improvement of VAPs 2-5 over VAP 1 for eight 5-minute video
segments randomly selected from the VC-generated videos
consisting of 7500 frames each, and the video segments are
separated by 1 hour apart. Using the labeled ground-truth, we
evaluate the detection accuracy of the 5 VAPs for face-detection
and person-detection AUs.

Figure 12 shows the bar-plot of mAP improvement of
VAPs 2-5 over VAP 1 for the eight 5-min video segments
corresponding to eight different hours of the day. We make
the following observations. The strawman approach based
on the time-of-the-day heuristic can provide only nominal
improvement over Baseline, i.e., less than 1% on average
across the videos for both face detection and person detection.
Just a few hours of “slow” online exploration (i.e., with no
VC-accelerated offline exploration) enables CAMTUNER-β
to improve face detection accuracy by 2.70% on average
and person detection accuracy by 2.31% on average over
Baseline. In contrast, fast offline exploration using virtual
camera (with no online exploration) helps CAMTUNER-α to
improve face detection accuracy by 6.01% on average and
person detection accuracy by 5.49% on average over Baseline.
Finally, dynamically tuning the real camera parameters with
online learning in CAMTUNER improves the face detection AU
accuracy by up to 13.8% and person detection AU accuracy
by up to 9.2%, with an average improvement of 8.63% and
8.11% for face detection AU, and average improvement of
7.25% and 7.08% for person detection AU compared to
Baseline and Strawman, respectively. Note that the environment
observed by the camera during the hours corresponding to
bars v5-v8 in Figure 12 has not changed significantly while
the environment observed for bars v1-v4 is largely different
from that during offline exploration. This explains why the
improvement gap between CAMTUNER-α and CAMTUNER
over VAP 1 seems to diminish for bars v5-v8.

In summary, during offline phase VC helps the SARSA
RL agent to quickly train through fast and equivalent envi-
ronmental changes and camera parameter changes applied to
the input scene. Then during online operation, a few rounds
of exploration helps CAMTUNER to achieve better accuracy
than directly using the initially trained SARSA model with
VC (CAMTUNER-α).

3) In-depth Analysis: Next, we show how CAMTUNER
dynamically adjusts the camera parameter setting for one of
the 5-minute video snippet (i.e., V3 in Figure 12) used in

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

11

0 50 100 150 200 250 300
Time (seconds)

0
10
20
30
40
50
60
70
80

Ca
m

er
a

Pa
ra

m
et

er
s

Brightness
Contrast
Color-Saturation

Sharpness
Baseline

(a) Camera setting adaptation

0 50 100 150 200 250 300
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Io

U

Baseline CamTuner

(b) mIoU variation

Fig. 13: CamTuner in operation during morning.

§VII-A2 for face-detection AU. Recall at every 10 seconds,
based on the current environmental condition and content seen
by the camera, CAMTUNER either chooses to “increment”
or “decrement” one of the four parameters, i.e., increase or
decrease by 10 within the parameter range of [0, 100], or keep
the previous parameter setting. Figure 13a shows how the
camera parameters are adapted throughout the video length
during the exploitation phase, and Figure 13b shows how the
corresponding mean intersection-over-union (mIoU) (i.e., IoU
across all ground-truth bounding boxes in each frame) varies
for the CAMTUNER-based VAP and the Baseline VAP.

We make the following observations. (1) Starting with
the default camera parameter setting, i.e., [50, 50, 50, 50],
CAMTUNER decrements the sharpness parameter after looking
into the initial two frames, and then decrements contrast after
7 tuning intervals (at 70th second). At the 13th tuning interval,
it increments a third parameter, brightness. Then again after
two intervals (at 150th second), it increments the sharpness
parameter. In the subsequent interval, CAMTUNER decides to
decrement color-saturation after looking into the most recently
captured scene. Finally, CAMTUNER further decrements the
sharpness parameter three more times where the first two
are separated by 10s but the last parameter change (at 270th

second) happens after a 90s gap. Throughout the 5-minute
video, CAMTUNER adjusts the camera setting 8 times. The
camera setting adaption improves the mIoU per frame by 0.026
on average with the maximum mIoU improvement of 0.67 in
comparison with using the default camera parameter setting.
(2) CAMTUNER improves the mIoU for 24.8% of the video
frames (by a maximum of 0.67) and only minimally reduces
the mIoU for 1.6% of the frames (by a maximum of 0.005). An
mIoU value of zero implies that no face in the input scene is
detected by the face-detection AU. (3) Figure 13b also shows
that while faces are not detected under the default setting for
2.4% of the frames, the face-detection AU can detect faces in
those frames once CAMTUNER adapts the camera parameters.

0 50 100 150 200 250 300
Time (seconds)

0
10
20
30
40
50
60
70
80

Ca
m

er
a

Pa
ra

m
et

er
s

Brightness
Contrast
Color-Saturation

Sharpness
Baseline

(a) Camera setting adaptation

0 50 100 150 200 250 300
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Io

U

Baseline
CamTuner

(b) mIoU variation

Fig. 14: CamTuner in operation during afternoon.

While Figure 13 illustrates CAMTUNER’s reaction to environ-
mental and content variations during the morning, Figure 14a
showcases the adjustments to camera parameters during a
different time-of-day, i.e., afternoon, and their impact on face-
detection accuracy, shown in Figure 14b in terms of mean IoU.
Starting with the default camera parameter setting, i.e., [50,
50, 50, 50], CAMTUNER only adjusts the camera setting 5
times throughout the 5-minute video during afternoon which
is fewer than the adjustments recorded in the morning, also
shown in Figure 13a. These adaptations improve the mIoU
per frame by 0.037 on average with the maximum mIoU
improvement of 0.55 compared to using the default camera
parameter setting. Furthermore, CAMTUNER enhances the
mean IoU for 41.2% of the video frames (by a maximum
of 0.72) and minimally reduces the mean IoU for 1.7% of the
frames (by a maximum of 0.003) during the randomly selected
5-minute period in the afternoon. Figures 13, 14 illustrate how
diverse environmental conditions and content variations during
different times of the day prompt CAMTUNER to adapt camera
parameters accordingly, enhancing analytics accuracy.

B. How quickly does CAMTUNER react to suboptimal settings

Here, we evaluate how quickly CAMTUNER can react if the
camera is set to a suboptimal setting that leads to degraded
analytical outcome. We place two side-by-side cameras in front
of a scene consisting of 3D objects as shown in Figure 15.
In this scene, 3D slot cars are continuously moving over the
track and 3D human models are kept stationary. Both cameras
start with a same suboptimal setting (we use two suboptimal
settings denoted as SS1 and SS2) and stream at 10 FPS for
2-minute period, during which the I-A parameters of Camera
1 are kept to the same initial suboptimal values, while the I-A
parameters of Camera 2 are tuned by CAMTUNER every 2s.
On every frame streamed from camera, we use Yolov5 [28] as
the object detector to detect and record the type of objects with
their bounding boxes 3. Figure 16 plots the normalized moving
average of the total number of object detections in the last 100
frames in the Y axis (to clearly show the trend) of the two
cameras under two different initial suboptimal settings, SS1 and
SS2. We observe a small initial gap between the performance of
YOLOv5 between the two camera streams which indicates that
within the first 10 seconds, CAMTUNER changes the camera
parameters once based on analytics quality estimator output
and achieves better object detection. Furthermore, we observe

3Manual inspection confirms no false-positive detection in the 2-minute
period.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

12

(a) capture under
SS1

(b) capture under
SS2

(c) CAMTUNER cam-
era capture

Fig. 15: Sample static & CAMTUNER camera captures.

20 40 60 80 100 120
Time (seconds)

0

20

40

60

80

100

Ob
je

ct
s d

et
ec

te
d

Static
camTuner

(a) suboptimal setting 1 (SS1)

20 40 60 80 100 120
Time (seconds)

0

20

40

60

80

100

Ob
je

ct
s d

et
ec

te
d

Static
camTuner

(b) suboptimal setting 2 (SS2)

Fig. 16: CAMTUNER reaction to suboptimal settings (Normal-
ized Moving average of total object detection is computed over
last 100 frames, shown in Y axis).

that CAMTUNER gradually converges to a best-possible setting
within a minute that enables Yolov5 to detect all objects from
the scene (total 5-7 more object detections per frame).

C. Real-world Deployment (Parking Lot)

To validate that similar accuracy improvement from video-
playback in §VII-A2 is achieved in real-world deployment
where the I-A parameters of the camera are continuously
reconfigured by CAMTUNER, we evaluated our deployment of
CAMTUNER at a large enterprise parking lot. The real-world
deployment has two co-located cameras, as shown in Figure
17. One camera is part of the Baseline VAP (VAP 1) while the
other camera is part of the CAMTUNER VAP (VAP 2). Both
VAP deployments use Axis Q3505 MK II Network cameras,
which upload the captured frames over 5G network to a remote
edge-server (with a Xeon processor and an NVIDIA GPU)
running the Efficientdet [50] object detection model to detect
cars and persons in the parking lot. In VAP 2, the captured
frames are also sent in parallel to CAMTUNER which runs on
a low-end Intel-NUC box (with a 2.6 GHz Intel i7-6770HQ
CPU). CAMTUNER is seeded with the same initially VC-trained
RL agent as in §VII-A2 and it performs a few initial online
exploration rounds and then starts exploitation and adjusts
camera settings every 30 seconds. To evaluate the accuracy
of the AUs in the VAPs, we ensure that both cameras view
almost identical scenes at the same time.

We ran both VAPs side-by-side for 8 continuous hours in
a day and recorded the videos from both VAPs. Since we
want to manually inspect and validate the detections from
both VAPs, we randomly picked detections for 5-minute
spans during Morning and Evening time and compare car and
person detections across the two VAPs. Figure 19 shows the
cumulative number of true-positive car and person detections.
Figure 19a and Figure 19c show that CAMTUNER detects 2.2%
(3) and 15.9% (146) additional persons than Baseline during
Morning and Evening, respectively. CAMTUNER also detects
2.6% (861) and 4.2% (881) more cars than the Baseline VAP
during Morning and Evening, respectively, as shown in Figure
19b and Figure 19d. Upon manual inspection of the videos, we

Fig. 17: CAMTUNER real-
world deployment setup.

Face
Recognition

Face
Detection

Object
Detection

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
rre

la
tio

n

Pearson Spearman

Fig. 18: Analytics quality estima-
tor performance.

(a) Morning-time video (b) Morning-time video

(c) Evening-time video (d) Evening-time video

Fig. 19: CAMTUNER performance in Parking lot.

confirmed that CAMTUNER does not have any false positive
detections for car/person. In appendix, we have also evaluated
the performance of CAMTUNER for a 5G use-case.

D. System Performance

Since CAMTUNER runs in parallel with the AU, it does not
add any additional latency to the VAP and hence the AU latency.
In the following, we show that the normal online operation
of CAMTUNER is light-weight, and the initial training phase
using VC can explore each action extremely fast.

First, during online operation, each iteration of CAMTUNER
involves three tasks: evaluating the AU-specific quality esti-
mator, evaluating the Q-function by the SARSA agent, and
changing the parameters of the physical camera. We run
CAMTUNER on a low-end edge device, an Intel-NUC box
equipped with a 2.6 GHz Intel i7-6770HQ CPU. The AU-
specific quality estimator takes 40ms on the Intel-NUC edge
device, i.e., 10X faster than the SOTA image classifiers, and
the SARSA RL agent takes less than 1 ms to complete Q-
function calculation and Q-table update. Since the two tasks
can be pipelined with changing the physical camera settings
which takes up to 200 ms on the AXIS Q3505 MK II Network
camera we used, each iteration of CAMTUNER takes 200 ms,
i.e., 5 iterations per second, and the average CPU utilization
is only 15% with 150 MB memory footprint.

Next, we run the initial RL training phase on a high-end PC
with a 3.70 GHz Intel(R) Xeon(R) W-2145 CPU and GeForce
RTX 2080 GPU. During the one-hour training phase performed

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

13

TABLE III: Accuracy of VC.

Parameter Brightness Contrast Color Sharpness
-Saturation

Mean error 5.4% 13.8% 17.3% 19.8%
Std. dev. 1.7% 4.3% 9.6% 8.1%

in §VII-E, in each iteration of the RL exploration, VC takes 4
ms to output fo, the quality estimator takes 10 ms, and the RL
agent take less than 1 ms to evaluate the Q-function and update
the Q-table, for a total of 15 ms. As a result, CAMTUNER
can explore around 70 actions per second, which is 14X faster
than using the physical camera. The CPU utilization in this
case is steady at 60%.

E. Accuracy of Offline Trained Models

Finally, we evaluate the efficacy of two key components of
CAMTUNER which are trained offline: VC and AU-specific
analytics quality estimator model.

Virtual camera. VC is designed to render a frame taken at
one time (T1) to another time (T2), as if the rendered frame
were captured at time T2. First, we trained VC in the offline
profiling phase as discussed in §V-C using a 24-hour long video
obtained from one of our customer locations at an airport. To
evaluate how well VC works online, we obtained several video
snippets at 6 different hours of the day from the same camera.
Next, we fed 1 video snippet V S0 from one particular hour H0

through VC which applies different digital transformation to
generate 5 video snippets V Sj corresponding to the hours of
the other 5 videos. For each generated video snippet V Sj , we
calculated the relative error of the metric tuple values of each
frame in V Sj relative to that of the corresponding original
video frame and average such error across all the frames in
V Sj (over 37.5K frames). We collected 30 VC error tuples by
repeating the experiment for six original video snippets, each
corresponding to a different hour. Table III shows the mean
error and standard deviation among all 30 VC error tuples. We
observe that the average VC errors are 5.4%, 13.8%, 17.3%, and
19.8% for brightness, contrast, color-saturation, and sharpness
respectively. Table III shows that the average VC errors for
color-saturation and sharpness are significantly higher than for
brightness. This is because brightness remains relatively stable
over short periods (e.g., a 15-minute window), while other
image metrics fluctuate more. Despite this variance, the results
demonstrate that with preliminary camera virtualization, we can
render the same frame at different times of day with an average
error of less than 20%, which can accelerate SARSA RL
exploration. Lower VC errors could improve the effectiveness
of CAMTUNER’s RL model in learning the best actions to take
upon environmental changes, and improving virtual camera
accuracy is a key area of future research.

We note that simulating different times alone may be insuffi-
cient for cameras deployed in diverse locations, especially when
the locations vary significantly. Location-specific exploration of
the CAMTUNER RL agent remains an area for future research.

AU-specific analytics quality estimator. This estimator
is a lightweight model that predicts coarse-grained accuracy
measure of the heavyweight DNN model (i.e., used in AU), it

is not meaningful to compare its accuracy against the accuracy
achieved by the heavyweight model (derived using ground
truth). Thus, we evaluated the quality of the AU-specific quality
estimator by measuring the Spearman and Pearson correlation
between the two accuracies for three different AUs i.e. face-
recognition, face-detection, and person-detection. First, we
trained the three estimators through supervised learning as
described in Section V-B. To evaluate the face-recognition
estimator, we used the celebA-validation dataset which contains
200 images (i.e., different from the 300 original training images
used in Section V-B) and their about 2 million variants from
augmenting the original images using the python-pil image
library [13]. Figure 18 shows that the quality predicted by
the face-recognition analytics quality estimator is strongly
correlated with the output by the AU (both Pearson and
Spearman correlation are greater than 0.6) [47], [8].

To evaluate the face-detection quality estimator, we used
annotated video frames from the olympics [39] and HMDB
datasets [33] along with their 4 million generated variants.
To evaluate object-detection analytics quality estimator, we
used labelled images (i.e., only consist car and person object
classes) from the COCO dataset [35] and their 7 million
augmented variants Figure 18 shows that there is a strong
positive correlation between the measured mAP and IoU metric
and the predicted quality estimate for both face-detection and
object-detection AUs. Such a high correlation between the AU-
specific analytics quality estimator’s predictions and the heavy-
weight DNN’s predictions suggests that our lightweight model
effectively captures the heavy-weight DNN’s perception, which
significantly boosts CAMTUNER’s adaptability to external
environmental changes.

VIII. RELATED WORK

Similar to our findings, Jang et al. [26] also observe the
impact of environmental conditions on VAP, but they propose
adapting different AUs based on these conditions. However,
developing AUs for every environmental scenario is impractical.
In contrast, CAMTUNER maintains a fixed AU while adjusting
camera settings to accommodate environmental changes.

Several works investigate tuning parameters of a VAP after
camera capture and before sending it to an AU or changing
the AU based on the input video content. Videostorm [57],
Chameleon [27], and Awstream [56] tune the after-capture
video stream parameters such as frames-per-second or frame
resolution to ensure efficient resource usage while processing
video analytics queries at scale. In contrast, CAMTUNER
dynamically tunes camera parameters to improve the AU
accuracy of VAPs.

Recent studies, e.g., Focus [24], NoScope [29], Ekya [41],
and AMS [30], explored adapting AU model parameters
based on captured video content, necessitating additional
GPU resources for periodic model retraining showing less
reactivity to video content changes. In contrast, CAMTUNER
quickly adapts camera parameters in real-time to environmental
changes.

Several frame filtering techniques on edge devices [9], [43],
[11], [34] are complementary to CAMTUNER. While CAM-
TUNER’s AU-specific analytics quality estimator focuses on

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

14

(a) Suboptimal Setting-1 (S1) (b) Suboptimal Setting-2 (S2)

(c) Suboptimal Setting-3 (S3) (d) Suboptimal Setting-4 (S4)

Fig. 20: Parameter tuning vs. postprocessing for NIGHT.

quality estimation tailored to each AU, AQuA’s estimator [43]
performs coarse-grained, AU-agnostic image quality estimation.

There is a large body of work on configuring the Image
Signal Processing pipeline (ISP) in cameras to improve human-
perceived quality of images from the cameras [54], [36], [19],
[40], [55]. In contrast, we study dynamic camera parameter
tuning to optimize the accuracy of VAPs.

Recent works like MadEye [53] and AcTrak [20] concentrate
on tuning PTZ cameras. MadEye [53] autonomously adjusts
camera orientations through periodic searches in a vast orien-
tation space, while AcTrak [20] employs RL to dynamically
zoom in on targets and detect new arrivals in the scene.Two
recent works focus on tuning PTZ cameras.

IX. DISCUSSION

In addition to dynamically tuning network camera parameters
before frame capture, CAMTUNER can also determine optimal
digital transformations for post-capture processing, especially
for cameras that do not expose REST APIs for remote
camera parameter tuning. However, it is important to note
that adjusting camera parameters for better image or video
capture is fundamentally different from applying post-capture
transformations. To evaluate this, we observed the performance
of a face recognition AU (Neoface-v3) under four different
sub-optimal camera settings (S1, S2, S3, S4) during NIGHT
conditions following the same experimental setup described
in III-B.

Figure 20 compares the results of actual camera parameter
tuning and post-capture transformations. The initial frames
were of poor quality, resulting in low Recall (true-positive
rate) across all settings. After applying digital transformations
to these frames, Recall improved but remained suboptimal.
In contrast, directly tuning the camera to the “best setting”
achieved a perfect Recall (i.e., 100%). These results indicate
that while post-capture transformations can enhance capture
quality, they are limited compared to direct camera parameter
tuning, which not only yields better accuracy of analytics but
also reduces end-to-end latency.

X. FUTURE WORK

In future work, we will explore a broader spectrum of envi-
ronmental influences and external factors beyond CAMTUNER’s
four primary NAUTO image-appearance parameters.

(a) Vibration of sensor (b) Sensor heating up

Fig. 21: Camera misconfigurations and its visual impacts.
Use cases that require diagnosis and camera tuning.
There are potentially many usecases of VAP deployments
that require diagnosis and camera parameter adjustments. For
instance, external factors such as camera vibration due to
environmental conditions can induce motion blur, as depicted in
Figure 21a. This can be mitigated through anti-vibration mounts
or adjusting the stabilizer parameter in the camera. Additionally,
unsynchronized object movement with camera shutter speed
can further induce motion blur. Furthermore, variations in
voltage and illumination may lead to sensor heating, adding
Gaussian noise to the capture, as illustrated in Figure 21b.
Such occurrences may also impede the generation of specific
on-camera alerts if the camera sensor and processing device
become overheated, causing CPU throttling. Diagnosing such
issues and providing feedbacks to tune camera parameters
accordingly can markedly enhance the accuracy of VAPs.
Tuning other NAUTO parameters. While our initial demon-

stration in this paper focuses only on a subset of NAUTO
camera parameters related to image appearance, there are
several other NAUTO parameters such as max exposure time,
maximum gain, defog effect (listed in Table I) that can be
dynamically tuned to enhance video analytics accuracy. While
image appearance parameters (e.g., brightness, contrast, color
level, and sharpness) individually influence a single perceived
metric, exposure settings not only determine the brightness
of a captured image but also affect depth of field, motion
blur, sharpness of moving content, and image noise. On the
other hand, video stream-specific parameters such as frame
resolution target bitrate, and GOP length impact both the size
and quality of the output frame or video stream. In our future
work, we plan to study the impact of dynamically tuning these
other camera parameters as well.

Finally, CAMTUNER’s dynamic tuning methodology can
be used to automatically and dynamically tune other complex
sensors such as depth and thermal cameras. In the appendix, we
demonstrate the superiority of modifying in-camera parameters
over applying post-capture digital transformations and discuss
the potential extension of our approach to finding optimal
post-capture parameters.

XI. CONCLUSION

In this paper, we presented the design and assessment of
CAMTUNER, to our knowledge the first VAP framework that
enhances AU accuracy by dynamically learning the optimal
settings for NAUTO camera parameters deployed in real-
world scenarios. CAMTUNER’s design and its key components,
Virtual Camera and light-weight AU-specific analytics quality
estimators, can be applied to dynamically tune many other
non-automated (NAUTO) parameters of cameras as well as
other complex sensors such as depth and thermal cameras.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

15

REFERENCES

[1] NATS: Connective Technology for Adaptive Edge & Distributed Systems.
https://nats.io/.

[2] Open Source Computer Vision Library. https://opencv.org/.
[3] Zeromq: An open-source universal messaging library. https://zeromq.org/.
[4] Vp9. https://www.webmproject.org/vp9/, 2017.
[5] x264. http://www.videolan.org/developers/x264.html, 2021.
[6] B. E. Bayer. Color imaging array, July 20 1976. US Patent 3,971,065.
[7] S. Bezryadin, P. Bourov, and D. Ilinih. Brightness calculation in digital

image processing. In International symposium on technologies for digital
photo fulfillment, volume 2007, pages 10–15. Society for Imaging Science
and Technology, 2007.

[8] T. BMJ. correlation-and-regression. https://www.bmj.com/
about-bmj/resources-readers/publications/statistics-square-one/
11-correlation-and-regression, 2019.

[9] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky,
and S. Dulloor. Scaling Video Analytics on Constrained Edge Nodes. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine
Learning and Systems, volume 1, pages 406–417, 2019.

[10] E. H. Chen, P. Röthig, J. Zeisler, and D. Burschka. Investigating Low
Level Features in CNN for Traffic Sign Detection and Recognition. In
2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages
325–332, 2019.

[11] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan.
Glimpse: Continuous, real-time object recognition on mobile devices.
In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168, 2015.

[12] CISCO. Cisco Video Surveillance IP Cameras. https://www.cisco.com/
c/en/us/products/physical-security/video-surveillance-ip-cameras/index.
html.

[13] A. Clark and Contributors. Pillow library. https://pillow.readthedocs.io/
en/stable/.

[14] CNET. How 5G aims to end network latency.
CNET 5G network latency time, 2019.

[15] cocoapi github. pycocotools. https://github.com/cocodataset/cocoapi/tree/
master/PythonAPI/pycocotools.

[16] A. Communication. AXIS Network Cameras. https://www.axis.com/
products/network-cameras.

[17] K. De and V. Masilamani. Image sharpness measure for blurred images
in frequency domain. Procedia Engineering, 64:149–158, 2013.

[18] J. Deng, J. Guo, Z. Yuxiang, J. Yu, I. Kotsia, and S. Zafeiriou. RetinaFace:
Single-stage Dense Face Localisation in the Wild. In arxiv, 2019.

[19] S. Diamond, V. Sitzmann, F. Julca-Aguilar, S. Boyd, G. Wetzstein, and
F. Heide. Dirty Pixels: Towards End-to-end Image Processing and
Perception. ACM Transactions on Graphics (TOG), 40(3):1–15, 2021.

[20] A. Fahim, E. Papalexakis, S. V. Krishnamurthy, A. K. Roy Chowdhury,
L. Kaplan, and T. Abdelzaher. Actrak: Controlling a steerable surveillance
camera using reinforcement learning. ACM Transactions on Cyber-
Physical Systems, 7(2):1–27, 2023.

[21] V. Gaikwad and R. Rake. Video Analytics Market Statistics: 2027, 2021.
[22] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja. Deep learning

for object detection and scene perception in self-driving cars: Survey,
challenges, and open issues. Array, 10:100057, 2021.

[23] D. Hasler and S. E. Suesstrunk. Measuring colorfulness in natural images.
In Human vision and electronic imaging VIII, volume 5007, pages 87–95.
International Society for Optics and Photonics, 2003.

[24] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu. Focus: Querying Large Video
Datasets with Low Latency and Low Cost. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages
269–286, Carlsbad, CA, Oct. 2018. USENIX Association.

[25] i PRO. i-PRO Network Camera. http://i-pro.com/global/en/surveillance.
[26] S. Y. Jang, Y. Lee, B. Shin, and D. Lee. Application-Aware IoT Camera

Virtualization for Video Analytics Edge Computing. 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pages 132–144, 2018.

[27] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica. Chameleon:
scalable adaptation of video analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
pages 253–266, 2018.

[28] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,
L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek,
L. Diaconu, and M. T. Minh. ultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and Inference, Feb. 2022.

[29] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. NoScope:
Optimizing Neural Network Queries over Video at Scale. Proc. VLDB
Endow., 10(11):1586–1597, Aug. 2017.

[30] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh. Real-
Time Video Inference on Edge Devices via Adaptive Model Streaming.
arXiv preprint arXiv:2006.06628, 2020.

[31] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[33] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a
large video database for human motion recognition. In Proceedings of
the International Conference on Computer Vision (ICCV), 2011.

[34] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali.
Reducto: On-Camera Filtering for Resource-Efficient Real-Time Video
Analytics. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 359–376,
2020.

[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context.
In European conference on computer vision, pages 740–755. Springer,
2014.

[36] L. Liu, X. Jia, J. Liu, and Q. Tian. Joint demosaicing and denoising
with self guidance. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2240–2249, 2020.

[37] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep Learning Face Attributes
in the Wild. In Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[38] A. Mittal, A. K. Moorthy, and A. C. Bovik. No-reference image quality
assessment in the spatial domain. IEEE Transactions on image processing,
21(12):4695–4708, 2012.

[39] J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling temporal structure
of decomposable motion segments for activity classification. In European
conference on computer vision, pages 392–405. Springer, 2010.

[40] J. Nishimura, T. Gerasimow, S. Rao, A. Sutic, C.-T. Wu, and G. Michael.
Automatic ISP image quality tuning using non-linear optimization, 2019.

[41] A. Padmanabhan, A. P. Iyer, G. Ananthanarayanan, Y. Shu, N. Karianakis,
G. H. Xu, and R. Netravali. Towards Memory-Efficient Inference in
Edge Video Analytics.

[42] M. N. Patrick Grother and K. Hanaoka. Face Recognition Vendor
Test (FRVT). https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8271.pdf,
2019.

[43] S. Paul, U. Drolia, Y. C. Hu, and S. T. Chakradhar. Aqua: Analytical
quality assessment for optimizing video analytics systems. In 2021
IEEE/ACM Symposium on Edge Computing (SEC), pages 135–147. IEEE,
2021.

[44] E. Peli. Contrast in complex images. JOSA A, 7(10):2032–2040, 1990.
[45] Qualcomm. How 5G low latency improves your mobile experiences.

Qualcomm 5G low-latency improves mobile experience, 2019.
[46] R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew. Color image

processing pipeline. IEEE Signal Processing Magazine, 22(1):34–43,
2005.

[47] Statisticssolutions. Pearson correlation coefficient. https://www.
statisticssolutions.com/free-resources/directory-of-statistical-analyses/
pearsons-correlation-coefficient/, 2019.

[48] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the Inception Architecture for Computer Vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826,
2016.

[50] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object
detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10781–10790, 2020.

[51] C. J. C. H. Watkins and P. Dayan. Q-learning. In Machine Learning,
pages 279–292, 1992.

[52] M. Wiering and J. Schmidhuber. Fast Online q(λ). Machine Learning,
33(1):105–115, Oct 1998.

[53] M. Wong, M. Ramanujam, G. Balakrishnan, and R. Netravali. Madeye:
Boosting live video analytics accuracy with adaptive camera configura-
tions. arXiv preprint arXiv:2304.02101, 2023.

[54] C.-T. Wu, L. F. Isikdogan, S. Rao, B. Nayak, T. Gerasimow, A. Sutic,
L. Ain-kedem, and G. Michael. VisionISP: Repurposing the image signal
processor for computer vision applications. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 4624–4628. IEEE, 2019.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

https://nats.io/
https://opencv.org/
https://zeromq.org/
https://www.webmproject.org/vp9/
http://www.videolan.org/developers/x264.html
https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression
https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression
https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression
https://www.cisco.com/c/en/us/products/physical-security/video-surveillance-ip-cameras/index.html
https://www.cisco.com/c/en/us/products/physical-security/video-surveillance-ip-cameras/index.html
https://www.cisco.com/c/en/us/products/physical-security/video-surveillance-ip-cameras/index.html
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://www.cnet.com/news/how-5g-aims-to-end-network-latency-response-time/
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
https://www.axis.com/products/network-cameras
https://www.axis.com/products/network-cameras
http://i-pro.com/global/en/surveillance
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8271.pdf
https://www.qualcomm.com/news/onq/2019/05/13/how-5g-low-latency-improves-your-mobile-experiences/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/

16

[55] F. Xu, Z. Liu, Y. Lu, S. Li, S. Xu, Y. Fan, and Y.-K. Chen. Ai-assisted isp
hyperparameter auto tuning. In 2023 IEEE 5th International Conference
on Artificial Intelligence Circuits and Systems (AICAS), pages 1–5, 2023.

[56] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee. Awstream:
Adaptive wide-area streaming analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
pages 236–252, 2018.

[57] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman. Live Video Analytics at Scale with Approximation and
Delay-Tolerance. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 377–392, Boston, MA,
Mar. 2017. USENIX Association.

Sibendu Paul is an applied scientist at Amazon
Prime Video Team. He earned his Ph.D. in Electrical
and Computer Engineering from Purdue University in
2022, where he received the Bilsland Dissertation Fel-
lowship. His research encompasses mobile systems,
computer vision, video analytics, AR/VR systems
and machine learning systems, with publications in
esteemed conferences like ACM HotMobile, Sensys,
ASPLOS, and INFOCOM etc. Furthermore, he holds
three granted patents and was awarded the University
Gold Medal during his undergraduate studies at

Jadavpur University.

Kunal Rao is a researcher in the Integrated Systems
Department at NEC Laboratories America, Inc. in
Princeton, NJ. He has received a Master’s degree in
Electrical and Computer Engineering from University
of Florida, Gainesville. His research interests have re-
volved around High Performance Computing (HPC),
Heterogeneous Cluster Computing, GPGPU Comput-
ing, Xeon Phi Computing, Graph Computing and
Graph Analytics, and more recently into Distributed
Real-time Stream Processing Systems for AI-powered
video analytics solutions, and application of AI/ML

techniques to solve systems problems. Kunal has received several business
contribution and spot recognition awards at NEC Laboratories America, Inc.
and has over 20 publications in top tier IEEE/ACM conferences and over 20
granted patents.

Giuseppe Coviello is a researcher in the Integrated
Systems Department at NEC Laboratories America,
Inc. in Princeton, NJ. He has been working in the
“computing” environment since 2003. He has started
as a hobbyist and contributed to many Open Source
projects liken CRUX, a GNU/Linux distributions,
the Linux kernel, Fedora Linux. He got a BS degree
in Computer Science in 2010. His main research
interests are related to the operating systems, the
high performance computing, the cloud computing.
In all of those years of hobby, study and research he

built a very good knowledge about the internals of Linux, starting from the
kernel to the system administration and to the software development.

Murugan Sankaradas is a Senior Researcher in
NEC Laboratories America, whose research interests
lie in video analytics, vision language models, 5G
networks, and edge computing. His patents and
publications portfolio span a wide range of topics,
including stream processing, microservices, resource
management, machine learning, deep learning and
data processing.

Y. Charlie Hu (Fellow, IEEE) received the Ph.D.
degree in computer science from Harvard University
in 1997. From 1997 to 2001, he was a Research
Scientist at Rice University. He is currently a Michael
and Katherine Birck Professor of ECE with Purdue
University. His research interests include mobile
computing, operating systems, distributed systems,
and wireless networking. He has published over 180
papers in these areas. He received the NSF CAREER
Award in 2003. He is an ACM Distinguished Scien-
tist.

Dr. Srimat Chakradhar is a Department Head
at NEC Laboratories America, Princeton, NJ. He
has over thirty years of experience in AI, machine
learning, video analytics, digital transformation, dis-
tributed computing, 5G networking, and embedded
systems in domestic and global sectors. He is a
hands-on leader with proven track record of success
in designing and delivering several commercially
successful, award-winning innovative AI solutions,
services and products. Dr. Chakradhar is a Fellow of
the IEEE.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3540667

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2025 at 16:48:29 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background
	Motivation
	Impact of Environment Change on AU Accuracy
	Impact of Image Appearance Camera Settings on AU Accuracy
	Optimal camera setting is AU-specific

	Design Challenges
	CamTuner Design
	Reinforcement Learning (RL) Engine
	AU-specific Analytics Quality Estimator
	Virtual Camera
	Integrating VC with the RL engine

	Implementation
	Hardware Setup
	Software Implementation

	Evaluation
	End-to-end VAP Performance
	Experimental Setup
	End-to-end Accuracy
	In-depth Analysis

	How quickly does CamTuner react to suboptimal settings
	Real-world Deployment (Parking Lot)
	System Performance
	Accuracy of Offline Trained Models

	Related Work
	Discussion
	Future Work
	Conclusion
	References
	Biographies
	Sibendu Paul
	Kunal Rao
	Giuseppe Coviello
	Murugan Sankaradas
	Y. Charlie Hu
	Dr. Srimat Chakradhar

