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Abstract

In recent years, longer and heavier trains have become more common, primarily driven by
efficiency and cost-saving measures in the railroad industry. Regulation of train length is currently
under consideration in the U.S. at both the federal and state levels, because of concerns that longer
trains may have a higher risk of derailment, but the relationship between train length and risk of
derailment is not yet well understood. In this study, we use data on freight train accidents during
the 2013-2022 period from the Federal Railroad Administration (FRA) Rail Equipment Accident
and Highway-Rail Grade Crossing Accident databases to estimate the relationship between freight
train length and the risk of derailment. We determine that longer trains do have a greater risk of
derailment. Based on our analysis, running 100-car trains is associated with 1.11 (95% confidence
interval: 1.10 to 1.12) times the derailment odds of running 50-car trains (or a 11% increase), even
accounting for the fact that only half as many 100-car trains would need to run. For 200-car trains,
the odds increase by 24% (odds ratio 1.24, 95% confidence interval: 1.20 to 1.28), again
accounting for the need for fewer trains. Understanding derailment risk is an important component
for evaluating the overall safety of the rail system and for the future development and regulation
of freight rail transportation. Given the limitations of the current data on freight train length, this

study provides an important step toward such an understanding.
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1. INTRODUCTION

On February 3, 2023, 38 cars from a 151-car, 9,300-foot-long freight train derailed in East
Palestine, Ohio, leading to the release of hazardous materials that required the evacuation of more
than 2,000 residents. In response to this event and concerns that the length of the train may have
contributed to the derailment, U.S. Senator Sherrod Brown introduced the Railway Safety Act of
2023, which if enacted would require the development of regulations regarding freight train length,
among other things (Congress, 2023). Additionally, several U.S. states are currently considering
state-level regulations regarding freight train length (Bernton, 2023; CBS, 2023). The major freight
rail industry association, the Association of American Railroads, expresses the industry’s
opposition to regulation of freight train length, arguing that “‘Long trains’ have operated safely
for decades, and the industry’s safety record has dramatically improved during that period” (AAR,
2023). However, general improvement in safety over time coinciding with increases in train length
cannot be seen as evidence for a lack of association between the two. Moreover, identifying the
relationship between freight train length and the risk of derailment is challenging and evidence
with respect to this relationship is sparce in the current research literature. Although a number of
related questions, such as how train length relates to the severity of a given derailment, have been
examined in the literature, data availability challenges have made direct investigation of the
relationship between train length and the likelihood of derailment difficult (Dick et al., 2021; Liu
etal., 2017). Indeed, a 2019 U.S. Government Accountability Office report to Congress concludes
that the safety implications of train length is poorly understood and that more study is needed to
assess it (GAO, 2019).

The system-wide safety implications of utilizing longer freight trains are further

complicated by the fact that when longer freight trains are used, fewer trains, on average, are



needed to transport the same amount of freight. Thus, even if longer freight trains are at an
increased risk of derailment, that increased risk must be balanced against the benefits of using
fewer freight trains in reducing overall exposure to derailment risk. Moreover, longer freight trains
also have additional benefits for the U.S. rail transportation system including improved system-
wide fuel efficiency, lower system-wide emissions, and lower overall operating costs (GAO, 2019;
Muller et al., 2022). Consequently, a better understanding of how freight train length impacts
system-wide derailment risk can help policymakers and rail industry decision makers to better
optimize freight train length policies and decisions (Ghofrani, Sun, & He, 2022).

The major challenge to examining the relationship between freight train length and the risk
of derailment is the lack of available exposure data. Although the length of trains involved in
accidents is included in accident reports that railroads file with the Federal Railroad Administration
(FRA), data on the lengths of trains that are not involved in accidents are largely unavailable. This
lack of “exposure” data has precluded estimating the derailment risk by freight train length using
traditional methods. In the work reported here, we overcome this lack of available exposure data
for freight trains by applying the quasi-induced exposure (QIE) approach, a methodology designed
to study risks in settings where exposure data are missing (Jiang, Lyles, and Guo, 2014; Keall and
Newstead, 2009; Stamatiadis and Deacon, 1997). QIE compensates for the lack of true exposure
data by employing data from a control group of accidents whose occurrence is unrelated to the
factor of interest to proxy for exposure risk, creating “quasi-induced” exposure data (Jiang et al.,
2014; Keall and Newstead, 2009). Using QIE, we analyze data on freight train accidents from the
FRA Rail Equipment Accident and Highway-Rail Grade Crossing Accident databases to estimate

the relationship between freight train length and the risk of derailment.



2. LITERATURE REVIEW
2.1 Quasi-Induced Exposure (QIE)

QIE has been used extensively in studies of road traffic accidents because data on exposure
by vehicle or driver characteristic is usually unavailable, while data on the characteristics of
vehicles and drivers involved in accidents are accessible (Jiang et al., 2014; Keall and Newstead,
2009; Stamatiadis and Deacon, 1997). In practice, the QIE approach involves the creation of a
combined sample containing both the accidents of interest as well as a set of control accidents
whose occurrence is unrelated to the independent variable being analyzed. For example, Leslie et
al. (2021) employed QIE to study, among several other questions, the effect of automobile lane
departure warning (LDW) systems on the incidence of “lane departure” accidents by automobiles.
These authors employed “rear-end struck” accidents, accidents in which a vehicle is rear-ended by
a following vehicle as the control type of accidents, given that the likelihood of being rear-ended
by another vehicle was assumed to be independent of the presence of LDW. These authors
estimated the odds of a lane departure accident for LDW-equipped vs. unequipped vehicles using
a logistic regression analysis with a lane departure accident indicator as the dependent variable, an
indicator of the presence of LDW on a vehicle as the key independent variable, and a set of controls
for vehicle characteristics, driving conditions, and driver characteristics.

QIE analysis uses logistic regression with an indicator variable indicating whether a given
event was of the accident type of interest (rather than the control accident type) as the dependent
variable (Jiang et al., 2014; Keall and Newstead, 2009; Leslie et al., 2021; Stamatiadis and Deacon,
1997). Continuing the previous example, Leslie et al. (2021) conduct a logit regression analysis
with an indicator that an accident is a “lane departure” accident (rather than a “rear-end struck”

accident) as the dependent variable and the presence of a LDW system as the independent variable.



Odds ratios estimated using this logistic regression approach are essentially equivalent to the raw
odds ratios that could be obtained with proxy (quasi-induced) exposure data, but have the
advantage that they may include control variables to account for variables other than the factor of
interest that are known or suspected to affect the occurrence of the accident type of interest.
Although, to our knowledge, QIE has not previously been used to study rail accidents, we
believe the approach is well suited to study freight train derailments so long as a control type of
accident can be identified. The advantages are that train derailment risk as a function of train length
can be systematically studied without obtaining train length data for the exposed population of
trains (i.e., data that are not available), and this systematic study can include other factors that are
known to impact train derailment risk to isolate the effects of train length. The disadvantage of this
approach is that it requires the assumption that the control accident is independent of the factor of
interest (i.e., train length), but we can demonstrate the impact of this assumption on the analysis

results using simulated data (see section 4.1).

2.2. Derailment risk factors

Freight train derailment is an issue of significant interest to railroads, rail regulators, and
communities because the impacts of a derailment can be substantial (Li et al., 2018; Liu et al.,
2017, Liu et al, 2012; Kaeeni et al., 2018). Indeed, derailment is the most common type of serious
train accident in the U.S. (Cao et al., 2020; Liu et al., 2017; Wang et al., 2020; Liu, 2016). Extant
research examines several different risk factors for derailment. For example, a number of studies
examine the effects of railroad track segment characteristics—such as traffic volume, track class,
and method of operation—on risk of derailment (Anderson and Barkan, 2004; Liu et al., 2017;

Nayak et al., 1983; Wang et al., 2020). This work has consistently found that derailment risk is



lower for higher track classes, which is not surprising because higher track classes are required to
be built to more stringent standards and maintained more carefully (Anderson and Barkan, 2004;
Liu et al., 2017; Nayak et al., 1983). These studies also find that derailment risk is lower on track
segments with higher traffic densities, due to more frequent inspection and maintenance of high-
density track (Liu et al., 2017; Wang et al., 2020). Finally, this literature also finds that derailment
risk is reduced on track segments where the method of operation is signaled relative to non-
signaled segments (Liu et al., 2017).

Other literature has examined the relationship between characteristics of trains and the risk
of derailment. For example, studies have examined the derailment risk of loaded relative to
unloaded trains, finding significantly increased risk of derailment for loaded trains over unloaded
ones (Li et al., 2018; Zhang et al., 2022). Additionally, Zhang et al. (2022) also studied the
derailment risk of unit trains (trains composed of only one railcar type carrying only one type of
freight) compared to mixed trains (trains with multiple railcar and freight types). They found that
derailment risk per railcar-mile and per ton-mile of freight is lower for unit trains than for mixed

trains.

2.3 Exposure data in studies of derailment

As noted above, one of the biggest hurdles to studying the relationship between freight
train length and derailment risk is lack of exposure data by train length. Traditional accident
analysis methods would evaluate the impact of a factor (like train length) on the odds that a certain
type of accident (such as derailment) occurs using data on both the number of accidents that
occurred when the factor was and was not present and the number of non-accidents occurrences

(exposures) when the factor was and was not present. In the context of studying derailment, such



exposure data would constitute the data on the number of trains of various lengths that did not
derail.

Data on train length for trains involved in a derailment are available from the FRA—with
length operationalized as the number of railcars making up the train, a common measure of freight
train length (Multer et al., 2022; Zhang et al., 2022). However, data on how many safely
completed, non-accident trips have been made by trains of different lengths (exposure data) are
not readily available. Some have attempted to solve this challenge by employing high-level,
nationwide exposure data. For example, Nayak et al. (1983) estimated the effect of track class on
derailment risk using nationwide estimates of rail traffic flows by track class as exposure data.
More recently, Liu et al. (2017) studied the effects of track class, method of operation, and rail
traffic density on derailment risk using aggregate systemwide traffic data collected from each of
the major U.S. railroads as exposure data. While each of these extant approaches was well suited
to the research question it was designed to address, none of them would allow us to address our
question of interest because the available nationwide or systemwide data on non-accident rail trips
are simply not broken down by train length. Because our analysis of interest requires exposure
data by train length that does not exist, we required a different type of exposure data than any

reported in the extant literature.

3. DATA
3.1. Derailment data

Freight train derailments in the U.S. are tracked by the FRA’s Rail Equipment Accident
(REA) database, which reports information filed by railroads that experience incidents or accidents

that result in rail equipment and/or track damage above a certain threshold (currently $11,500).



This information is reported to the FRA by involved railroads via form FRA F 6180.54. These
REA reports contain information on several characteristics of the accident including but not limited
to: accident type, accident date and time, accident location, reporting railroad, rail equipment type,
visibility condition at the time of the accident, number of loaded and unloaded railcars, number of
locomotives, and the number of railcars transporting hazardous materials. The FRA REA database
is the primary source of information available on train derailments in the U.S. and has been used
in virtually all prior work on derailments for U.S.-based railroads (Liu et al., 2017; Zhang et al.,
2022).

To ensure that our analysis reflects only recent derailments, we extracted from the REA
database information on all derailments occurring within the past 10 years (between 2013 and
2022), about 14,000 incidents. Given that our interest was in derailments of freight trains during
normal freight transport (as many derailments occur in train yards and sidings outside of freight
transport), we retained in the derailment sample only derailments whose “rail equipment type” is
identified as “freight train” (rather than passenger train or other types of rail equipment) and that
occurred on a mainline track (as opposed to a yard, siding, or industrial track). These restrictions
follow those used in prior work on derailments (e.g., Liu et al., 2017). Our final REA derailment

sample, after these restrictions, included 2,906 derailments.

3.2. Highway Rail Grade Crossing Incident Data

QIE analysis requires a control type of accident that is unrelated to the independent variable
of interest. Importantly, the QIE method does not require that the control accidents and the
accidents of interest result from the same causes (Stamatiadis and Deacon, 1995). The primary

requirement for effective control accidents is that their occurrence is independent of the



explanatory variable of interest (Jiang et al., 2014). When this is the case, the incidence of control
accidents in a location provides a reasonable approximation of a random sample of vehicles that
transverse that location with respect to the explanatory variable being studied (Stamatiadis and
Deacon, 1997). This quasi-random sample, then, may be used to represent the true exposure data
(when it is not available). If the control accidents were not independent of the explanatory variable,
their use to represent exposure data would bias the results of the analysis; if they were positively
(negatively) correlated with the explanatory variable, their use would serve to artificially inflate
(deflate) the prevenance of that variable in the exposure set. However, to the extent that the control
accidents are unrelated to the explanatory variable, they can act as a quasi-random sample of
exposure data in that location, whatever their causes.

As the control accident type in the analysis, we employ highway-rail grade-crossing
incidents where the driver of a road vehicle attempted (unsuccessfully) to “beat the train” across
the grade crossing. We chose this accident type as our control as it is unrelated to train length since
road vehicle drivers at rail crossings would rarely have the sight perspective to judge train lengths
greater than a few cars, making the accidents a direct result of the driver’s actions and not train
length (Oh, Washington, and Nam, 2006). Due to long stopping distances, freight trains of any
length would not be able to slow significantly before impact in this type of accident (Bentley and
Bentley, 2007). Thus, the occurrence of this type of accident should be independent of train length
and should serve well as a control accident type in a QIE analysis.

The data on highway-grade accidents used to build the sample of control accidents comes
from the FRA Highway-Rail Grade Crossing Accident (HRGCA) database. The HRGCA contains
data on highway-rail grade-crossing incidents that are incidents involving contact between trains

and road vehicles or pedestrians at locations where roads and rail tracks cross at the same grade



level. Involved railroads are required to report any contact between railroad equipment and
highway users at a highway-rail grade crossing, no matter the severity of the incident, to the FRA
(on form FRA F 6180.57). HRGCA reports contain much of the same information about involved
rail equipment as the REA reports, including all of the characteristics mentioned above (with the
exception that the HRGCA data include only an indicator for whether any railcar in a train contains
hazardous materials rather than the number of cars transporting hazardous materials). HRGCA
reports also contain information about the grade crossing where the incident occurred, the highway
user involved in the incident, and damage to highway vehicles resulting from the incident. The
HRGCA database is the main source of information about grade crossing accidents in the U.S. and
is commonly used in research on these events (Liu et al., 2015; Lu and Tolliver, 2016).

For the initial HRGCA sample, we again extracted only grade crossing events occurring
between 2013 and 2022, about 21,000 events. We also restricted the sample to include only events
that occurred on a mainline track and that involved freight trains (rather than passenger trains or
other types of rail equipment). These restrictions reduced the HRGCA sample to about 14,000
events. Finally, we retained in the HRGCA sample only grade crossing events in which a highway
vehicle attempted to beat the freight train across the grade crossing. We identified these events as
those where the road vehicle was impacted by the front of the freight train and was moving at the
time of impact (rather than having been stuck unmoving at the crossing). This restriction resulted
in a final HRGCA sample of 8,092 HRGCA events. Although some events can appear both in the
HRGCA database and the REA database (when a grade crossing incident results in significant
damage to rail equipment), there is no overlap between our REA and HRGCA samples because
FRA classifies all such events as “highway-rail” incidents and we only extract REA events

classified as derailments.
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3.3. Final Sample Construction

To ensure that our sample of control accidents matched our derailments sample as closely
as possible (as required by the QIE method), we constructed our final analysis sample by including
only events for which there was a geographic and temporal match between derailments and control
accidents. Specifically, we retained in the final sample only derailments for which one or more
control accidents in our control sample had occurred in the same county and year, and we retained
only the control accidents that occurred in the same county and year as a derailment. This
geographic and temporal matching resulted in a final analysis sample composed of 2,758 events
(1,073 derailments and 1,585 control accidents). We carried out this geographic and temporal
matching using the “exact” function of the Matchit package in the statistical programming
language R. The distributions of train lengths for both derailments and control accidents in the

sample are illustrated in Figure 1.
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Fig. 1. Distributions of the Lengths of Trains Involved in Derailments and Control
Accidents
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4. ANALYSIS APPROACH
4.1. QIE Analysis

A traditional analysis of the influence of a factor on accident risk would estimate the odds
of an accident given the presence of the factor of interest relative to the odds in the absence of the

factor. Thus, the odds ratio would be determined by the following formula:

# accidents when the factor is present
/# non — accident exposures when the factor is present (1)

# accidents when the factor is absent
/ # non — accident exposures when the factor is absent

Thus, the odds ratio of derailment for a train of a certain length (Ilength 1) relative to a

reference length (length 2) could be estimated as:

derailments by trains of length 1/
safely completed trips by trains of length 1 2)
derailments by trains of length 2/ )
safely completed trips by trains of length 2

The REA database contains data on train length. These data can be used to determine the
number of derailments that have occurred by trains of different lengths. However, data on how
many safely completed, non-accident trips have been made by trains of different lengths (exposure
data) are not readily available, making analysis of the relationship between train length and
derailment risk impossible using traditional techniques. We overcame the lack of available
exposure data by train length by employing the QIE method and identifying a type of control
accident whose occurrence is unrelated to the factor being studied. Since the control accident type
is assumed to be closely correlated with exposure, but independent of the factor of interest, the
control accidents provide an excellent estimate of exposure to accident risk, acting as a quasi-
random sample of exposures (Jiang et al., 2014; Keall and Newstead, 2009; Leslie et al., 2021;

Stamatiadis and Deacon, 1997). Using incidence of the control accident as a proxy for exposure to
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risk, then, the relationship between a factor of interest and the odds of a type of accident of interest

may then be estimated as:

accidents of interest when factor is present /
control accidents when factor is present
accidents of interest when factor is absent/ 3).
control accidents when factor is absent

As discussed above, we identified “beat the train” grade crossing accidents as a good
control accident type for our analysis. Studies of the causes of grade crossing accidents point to a
number of factors that affect the likelihood of grade crossing accidents, including driver
characteristics and road vehicle characteristics, but no study that we could find suggests train
length as a possible contributing factor (Davey et al., 2008; Oh et al., 2006; McCollister and
Pflaum, 2007). We summarize again the two primary reasons why this accident type can serve as
a control accident type as follows: 1) because road vehicle drivers very rarely have the visibility
perspective to gauge the length of an oncoming train (Oh et al., 2006; McCollister and Pflaum,
2007), the likelihood that the driver will attempt to beat the train should be independent of train
length, 2) given that freight trains of any length have very long stopping distances (Bentley and
Bentley, 2007), the driver of a freight train of any length would be unable to slow a train
significantly in the time between observing the road vehicle attempting to cross the tracks and
impact. Thus, we concluded that train length was sufficiently unrelated to “beat the train™ grade
crossing accidents to make this type of accident an effective control accident for our analysis of
derailments, and thus serve as a quasi-random sample of exposure data.

Given that QIE has not previously been used to study rail accidents, we carried out a

simulation to explore the conditions under which QIE analysis of derailments would result in
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unbiased vs. biased estimates of the influence of train length on derailment. To carry out this
simulation analysis we created 9 different samples of simulated data representing every
combination of train length being positively associated, negatively associated, or independent of
both derailments and control accidents. We then analyzed the relationship between train length
and derailment risk in the simulated data using both exposure-based analysis of the full samples
(which is possible with the simulated data because they contain non-accident trips as well as trips
that result in accidents) and QIE analysis of only the subsamples of the simulated trips that result
in a derailment or a control accident. We then compared the relationship between train length and
derailment risk in a sample for the exposure-based analysis (which is unbiased) compared to that
for the QIE analysis (which will be biased if the QIE assumptions are not met).

Results of the simulation analysis showed that when the risk of the control accident is
independent of train length, the results of the exposure-based analysis and the QIE analysis are
virtually identical, indicating that the QIE results are unbiased (as discussed above). However,
when the control accident risk is positively associated with train length, the QIE analysis results
are biased downward, and when the control accident risk is negatively associated with train length,
the QIE analysis results are biased upward. Full details of the simulation analysis and results are
reported in Appendix A.

The simulation results suggest that if our assumption that the risk of the occurrence of the
control, “beat the train,” type of accident is independent of train length is not accurate, the QIE
analysis results of the relationship between train length and derailment will be conservative (biased
downward) if control accidents are more likely to occur for longer trains. In particular, if, drivers
are more likely to try to beat longer trains across a grade crossing because they can see how long

a train is and because waiting for a longer train would take more time then the results of the QIE
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analysis would be conservative. On the other hand, the size of the relationship between train length
and derailment in the QIE analysis results will only be inflated in the case that the risk of the
control accident is reduced for longer trains, i.e., if, drivers are less likely to try to beat longer
trains across a grade crossing. It seems more likely that drivers would be more (rather than less)
likely to try to beat longer trains, if indeed there is an association between train length and “beat
the train” accidents. Thus, the simulation results demonstrate that even if our assumption that risk
of a control accident is independent of train length does not hold, the QIE results presented below

would be conservative (rather than inflated) estimates.

4.2. Variables

Following standard QIE methods, we carried out our analysis of the final sample using
logistic regression, with an indicator variable that took a value of 1 for derailments and a value of
0 for control accidents as the dependent variable. The independent variable in the analysis was
train length measured in the number of railcars composing the train. We included in the analysis
as controls a set of variables that have been shown in prior work to influence derailments or that
were relevant to our context. First, given prior work showing that track class influences derailment
rate (Liuetal., 2017; Nayak et al., 1983; Wang et al., 2020), we included a set of indicator variables
for the class of the track on which each accident occurred. Track classes in our sample included
FRA track classes 1, 2, 3,4, 5, 6, 8,9, and X (the omitted category). Second, since prior work finds
an effect of the method of operation on derailment (Liu et al., 2017), we controlled for method of
operation (signaled or un-signaled) as an indicator variable. Third, to account for the possible
effects of visibility on derailments and grade crossing incidents, we included a control for the

visibility conditions at the time of the incident (dawn--the omitted category, day, dusk, or dark).

15



Fourth, because trains transporting hazardous materials may be managed with extra precautions
(Zhang et al., 2022), we included an indicator variable that takes a value of one for trains
transporting any hazardous materials, and a value of zero otherwise. Fifth, we included a control
for the number of locomotives in the train (per 100 railcars). To control for temporal effects on
derailment, we included fixed year and month effects. Finally, to account for variation in
derailment risks across railroads, we included fixed railroad effects in the model. Unfortunately,
we were unable to include a control for traffic density or whether a train was loaded or unloaded
because, although the REA database reports these variables, the HRGCA database does not.
Nonetheless, we expect that our geographic matching of derailments and control accidents partially
controls for these factors.

We considered several different functional forms for modelling the relationship between
train length and derailment risk, by testing linear, quadratic, cubic, logarithmic, and exponential
transformations of train length. Because the logarithmic transformation produced the best model
fit, we employed this functional form in the reported models. However, the reported results are
robust to this modelling choice since the same pattern of results is obtained when any of the other
functional forms are used instead. The logistic regression models were estimated using the glm
function in R. The relationship between train length and derailment odds ratio estimated using the
logistic regression model is virtually identical to that obtained estimating the basic QIE odds ratio

using the following equation:

derailments among trains of length 1 /
control accidents among trains of length 1

derailments among trains of length 2/ (4).
control accidents among trains of length 2
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4. RESULTS
4.1. QIE Logistic Regression Results

The results of the logistic regression model are presented in Table I. Model 1 shows the
results for the full sample, model 2 for only class 1 railroads (those with greater than $943.9M in
annual revenue), and model 3 for only smaller (class 2 and class 3) railroads.

Table I. Results of the QIE Logistic Regression Analysis

Model 1 Model 2 Model 3

Full Sample Class 1 Railroads Class 2 & 3 Railroads
Variable coef se p coef se p coef se p
Train Length (logged) 1.15 0.10 0.000 *** 1.19 0.11 0.000 *** 137 0.34 0.000 ***
Track Class 1 -1.01 0.63 0.108 -147 1.17 0.210 -0.19 0.89 0.834
Track Class 2 -2.00 0.63 0.001 ** -2.66 1.16 0.022 * -0.71 091 0434
Track Class 3 -2.86 0.63 0.000 *** -347 1.16 0.003 ** -2.,55 1.03 0.013 *
Track Class 4 -2.97 0.63 0.000 *** -358 1.16 0.002 ** -2.28 1.31 0.082
Track Class 5 -2.64 0.64 0.000 *** -327 1.17 0.005 **
Track Class 6 -3.75 1.02 0.000 *** -437 1.41 0.002 **
Track Class 8 -20.14 2400 0.993 -16.78 325 0.959
Track Class 9 14.13 2400 0.995 9.78 325 0.976
Signaled Operation 0.73 0.11 0.000 *** 1.01 0.12 0.000 *** -1.88 0.47 0.000 ***
Visibility - Day 0.01 0.15 0.947 -0.02 0.16 0.879 1.08 0.75 0.148
Visibility - Dusk 0.03 0.20 0.877 0.02 0.20 0.919 134 1.12 0.233
Visibility - Dark 0.38 0.16 0.017 * 0.37 0.16 0.023 * 0.85 0.72 0.236
Hazmat 0.24 0.10 0.011 * 0.23 0.10 0.019 * 0.44 0.48 0.359
Locomotives per 100 cars 0.02 0.01 0.017 * 0.03 0.01 0.002 ** 0.02 0.02 0.511
Year Fixed-Effects included included included
Month Fixed Effects included included included
Railroad Fized Effects included included included

In Model 1, the coefficient for train length for the full sample is positive and significant,
indicating the risk of a train experiencing a derailment increases as train length goes up. To
illustrate the magnitude of this positive relationship, it is helpful to compare the odds of derailment
for a train of a given length relative to that of a baseline train length. As an example, we chose a

50-car train as the baseline train length and calculated odds ratios for the odds of derailment for
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trains of between 1 and 250 cars in length relative to that of a 50-car train. These odds ratios (along
with 95% confidence intervals) are presented in Figure 2. Odds of derailment as well as 95%
confidence intervals were computed using the “predict” function in R based on the results from
Model 1 in Table I. The figure shows a positive relationship between train length and the odds of
derailment. A value of 2 in the figure (for a roughly 90-car train) reflects 2 times (or double) the

odds of derailment compared to a 50-car train.

Odds Ratio Relative to 50-Car Train

0 50 100 150 200 250
Number of Cars in Freight Train

Fig. 2. The Odds Ratio of Derailment (along with 95% Confidence Interval) by Number of
Cars in a Train Relative to a 50-Car Train.

Several of the control variables are also significantly related to the odds of derailment in
Model 1. The odds of derailment are lower for higher track classes as found in prior work (Liu et
al., 2017; Nayak et al., 1983; Wang et al., 2020). On the other hand, derailment odds are higher
when the method of operation is signaled rather than non-signaled. This finding is not in line with

prior work (e.g., Liu et al., 2017) but probably reflects the influence of mode of operation on “beat
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the train” highway-rail crossing accidents in that drivers are less likely to try to beat trains in areas
where trains are signaled. The odds of derailment increase when visibility conditions are
categorized as “dark”, relative to the other visibility conditions (dawn, day, and dusk), and the
odds of derailment also increase as hazardous material is present and as the number of locomotives
per 100 railcars increases.

Model 2 reports results for logistic analysis of the subsample of our data that only includes
data on class 1 (large) railroads, and Model 3 reports results for the subsample of smaller class 2
and class 3 railroads. In both models, the train length coefficient is positive and significant,
indicating a meaningful positive relationship between train length and derailment risk. The
magnitude of this relationship is illustrated in Figure 3, which shows the odds ratios of derailment
for trains of varying lengths relative to a baseline 50-car train for both class 1 and class 2 and 3
railroads. The odds ratios are estimated using the “predict” function in R using the results from
Models 2 and 3 in Table I. The relationship between train length and derailment odds for class 1
railroads is virtually identical to that for the full sample (which is not surprising given that the bulk
of the sample came from class 1 railroads), while the relationship for class 2 and 3 railroads is
somewhat more positive. This result indicates that the positive relationship between train length

and derailment odds is somewhat stronger for class 2 and 3 railroads compared to class 1 railroads.
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Fig. 3. The Odds Ratio of Derailment by Number of Cars in a Train Relative to a 50-Car
Train for Class 1 Railroads Compared with Class 2 and 3 Railroads

4.2. Accounting for the effect of train length on rail-system-wide derailment exposure

The results displayed above suggest a strong positive relationship between train length and
derailment risk. However, these results represent this relationship only for an individual freight
train and, thus, may overstate the system-wide impact of train length on derailment risk for the
whole freight rail system because the use of longer trains allows the same amount of freight to be
transported on fewer trains (Zhang et al., 2022). The use of longer trains inherently implies fewer
train trips overall, corresponding to a reduction in the aggregate exposure to derailment risk. This
exposure reduction effect will operate in the opposite direction to the positive relationship between
train length and derailment risk. The exposure reduction associated with freight trains of different

lengths relative to a baseline 50-car train is calculated as exposure equals 50 cars divided by the
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number of railcars in the train length of interest. Thus 25-car trains would have twice the exposure
of 50-car trains and 100-car trains would have half of the exposure. This exposure effect is

illustrated in Figure 4 for trains of varying lengths.
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Fig. 4. The Derailment Exposure of Trains of Varying Lengths Relative to 50-Car Trains

This effect of longer trains on derailment exposure must be accounted for to understand
the full relationship between train length and derailment risk for the overall U.S. rail system. An
aggregate estimate of the overall relationship is estimated by multiplying the odds ratio of
derailment for a given train length (relative to the baseline 50-car train) by the derailment exposure
effect for that train length. This aggregate estimate is the most complete representation of the full
relationship between train length and derailment risk because it accounts for both the increase in

derailment risk for individual trains as they become longer and the decrease in derailment exposure
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that longer trains create in the overall freight rail system. This aggregate relationship (relative to a
baseline 50-car train) is illustrated in Figure 5 (along with its 95% confidence interval) based on

the results of the QIE logistic regression analysis in Model 1 of Table 1.
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Fig. 5. The Aggregate Derailment Odds Ratio for Trains of Varying Lengths Relative to 50-
Car Trains Accounting for the Reduction in Derailment Exposure for Longer Trains

The aggregate relationship between freight train length and odds of derailment is positive

and meaningful in size. The results show that 100-car trains are associated with 1.11 (95% CI1 1.10

to 1.12) times the derailment odds of 50-car trains (or a 11% increase), accounting for the exposure

reduction given that only half as many 100-car trains would be needed to transport the same

amount of freight. For 200-car trains, the derailment odds increase by about 24% (OR 1.24, 95%

CI 1.20 to 1.28) net of the exposure reduction. Thus, longer trains are associated with increased
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derailment risk even with the reduction in exposure accounted for. This increase in derailment risk
is statistically significant.

The aggregate relationship between train length and derailment risk (relative to a baseline
50-car train) for class 1 compared with class 2 and 3 railroads based on the results of the QIE
logistic regression analysis in Models 2 and 3 of Table I is illustrated in Figure 6. As before, the
positive relationship between train length and derailment risk is stronger for trains operated by

class 2 and 3 railroads relative to those operated by class 1 railroads.
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Fig. 6. The Aggregate Derailment Odds Ratio for Trains of Varying Lengths from Class 1
Compared to Class 2 and 3 Railroads Relative to S0-Car Trains Accounting for the
Reduction in Derailment Exposure for Longer Trains

We should note that our analysis used the number of railcars in the train as its measure of train

length. This is a common measure of train length, but other measures such as linear feet are also
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commonly used. Our results may be translated to train length in linear feet by multiplying the

number of cars by an average car length of 62 feet (Dick et al., 2021).

5. CONCLUSIONS

This paper describes a quantitative method for analyzing the risk of derailment when
considering train length. It provides a statistical procedure to examine the available accident data
from the freight train industry to support policy making to address derailment risk. Derailment
risk, however, is just one factor that needs to be considered by policy makers. Longer freight trains
have many significant benefits for the rail system relative to shorter freight trains including greater
fuel efficiency, lower emissions per ton transported, and lower operational costs than both shorter
trains and many other forms of transportation (GAO, 2019; Muller et al., 2022). The operation of
longer freight trains also come with costs such as increased wait times at railroad grade crossings
for road vehicles in communities where freight trains frequently operate (GAO, 2019).
Additionally, as recent cases like the East Palestine derailment demonstrate, derailments can have
significant negative environmental and health impacts on communities, although rail remains a
safer mode of transportation for hazardous chemicals than other options (Bagheri, Verma, &
Verter, 2014). As the Railway Safety Act of 2023 is debated including the pros and cons of longer
trains, an important consideration in these debates is the additional risk of derailment in the system
that comes with longer trains. Until this time, quantifying this relationship has been elusive.
However, the model described here provides a process for analyzing this relationship, and the
results presented suggest a clear, monotonic, and positive relationship between freight train length

and derailment risk. Even when accounting for the reduction in the number of freight trains
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operated when the average train is longer, longer freight trains are associated with an increase in
the aggregate odds of freight train derailment.

Knowing the direction and estimated size of the relationship between train length and
derailment risk is important information when considering the future development and regulation
of freight rail transportation, as it allows derailment risk to be more accurately weighed against the
other costs and benefits of longer freight trains for the overall system. Additionally, understanding
the risk could spur additional innovations in preventive measures. As demonstrated by the
differences in risk between trains operated by larger, class 1 railroads compared to small railroads,
more stringent standards and better maintenance can help address the risk of longer trains. This
research could encourage the FRA to collect additional data on length of trains not involved in
accidents so that the exposure risk can be further studied.

Finally, this research demonstrates the applicability of QIE to safety incident analysis
beyond its previous use in the study of road traffic accidents. While the procedure has broader
applicability to many other industries, the limitations are that incident data for the case study of
interest and a control that is independent of the factor of interest are needed, and the results are
relative ratios not explicit rates. Therefore, the technique can be useful in many situations but not
for all applications.
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APPENDIX A.

As noted above, quasi-induced exposure (QIE) is an analytic technique designed to study
how factors influence the likelihood of accident occurrence in contexts where exposure data are
limited or unavailable. QIE is an accepted methodology in the study of road accidents, but does
not appear to be well known in the broader risk analysis community. For example, we can find no
examples of QIE being used to study rail accidents.

Here, we use QIE to study the influence of train length on the likelihood of derailment. Our
QIE results suggest a significant positive relationship between freight train length and the risk of
a derailment. However, the validity of this finding is contingent on the key assumption of the QIE
method being met—namely that the “control” accident type is genuinely independent of train
length. Given the data limitations that require us to use QIE analysis in the first place (i.e., the lack
of exposure data by train length), we cannot obtain the data necessary to fully test this assumption
empirically. To explore the ramifications for our QIE analysis if this assumption is not met, we
conducted an analysis of simulated data allowing for the observation of exposure by train length.
In the analysis of the simulated data, we explored how results of a QIE analysis on a subset of a
data set would differ from those of a traditional, exposure-based analysis of the whole data set.

We first simulated 9 different samples of simulated data representing every combination
of train length being positively associated with, negatively associated with, or independent of both
the risk of derailments and control accidents. Each of the 9 simulated samples contained 500,000
observations of simulated train trips. In all 9 samples, the length of the freight train making a given
trip was randomly drawn from a normal distribution with a mean of 100 cars and a standard
deviation of 25 cars. Indicators of whether a given trip ended in a derailment or a control accident

were randomly drawn from binomial distributions with different levels of risk. The risk of
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derailment was set as 0.001 (or 1 in 1000 trips) for the conditions in which derailment was assumed
to be independent of train length, 0.001 * (train length / 100 cars) for the conditions in which
derailment was assumed to be positively associated with train length, and 0.001 * (100 cars / train
length) for the conditions in which derailment was assumed to be negatively associated with train
length. Because control accidents were more common in our data than derailments, the risk of a
control accident was set at 0.005 when control accidents were independent of train length, 0.005
* (train length / 100 cars) when control accidents were positively associated with train length, and
0.005 * (100 cars / train length) for conditions where control accidents were negatively associated
with train length. For each simulated observation, a train length was randomly determined and
then given the train length, whether that train observation was a derailment accident or a control
(crossing) accident was determined.

We then analyzed the relationship between train length and derailment risk in each of the
simulated data samples using logit regression with the derailment indicator as the dependent
variable and the train length as the independent variable. First, exposure-based analysis was carried
out via logit regression of the full sample. Second, QIE analysis was carried out via logit regression
of the subsample of trips that ended in either derailment or a control accident. This second model
mimics the real-world conditions under which QIE is used, when data on accidents is available but
data on non-accident exposure is not. Because the exposure-based analyses return unbiased
estimates of the relationships between train length and derailment risk, comparison between the
results of the exposure-based analysis and the QIE analysis shows the conditions under which the

QIE analysis results are biased and unbiased.
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Table AI presents the results of the analysis of the 9 different simulated samples
representing different assumptions about the relationships between train length and derailments
and control accidents.

Table Al. Results of Analysis of Simulated Data. Exposure Coef. stands for the coefficient of

train length in the exposure-based analysis. QIE Coef. stands for the coefficient of train length in

the QIE analysis.
Exposure p- Qaw p- QIE Sample
Condition Coef. value Coef. value Size
Derail = Positive; Control = Positive 0.006 0.000 -0.004 0.045 2999
Derail = Positive; Control = Independent 0.012 0.000 0.012 0.000 2993
Derail = Positive; Control = Negative 0.011 0.000 0.022 0.000 3110
Derail = Independent; Control = Positive -0.001 0.483 -0.012 0.000 3027
Derail = Independent; Control = Independent 0.002 0.390 0.002 0.400 2965
Derail = Independent; Control = Negative 0.000 0.988 0.011 0.000 3226
Derail = Negative; Control = Positive -0.011 0.000 -0.020 0.000 3043
Derail = Negative; Control = Independent -0.012 0.000 -0.011 0.000 3064
Derail = Negative; Control = Negative -0.013 0.000 0.001 0.770 3284

As can be seen in the table, when train length is independent of control accident risk, the
QIE analysis results are virtually identical to the exposure-based analysis results, showing that in
that case, the QIE results are unbiased. This finding is fully in line with our assumptions about the
need for the control accident to be independent of the independent variable in QIE analysis.
However, when train length is positively related to control accident risk, the QIE analysis results
are biased downward, such that the relationship between train length and derailment risk appears
more negative in the QIE analysis than in the exposure-based analysis. And when train length is
negatively related to control accident risk, the QIE analysis results are biased upward, such that
the relationship between train length and derailment risk appears more positive in the QIE analysis

than in the exposure-based analysis.
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Given that we observe a significant positive relationship between train length and
derailment risk in the QIE analysis of our real-world data, if the risk of control accidents was
actually positively related to train length, our reported results would be conservative and the true
relationship between train length and derailment risk would be even more strongly positive than
what we report. In this case, the magnitude of the relationship we report in the main analysis may
be conservative, but the direction of this relationship would remain correct. On the other hand, if
the risk of control accidents was negatively related to train length, our reported results could be
completely spurious in that a false positive relationship between train length and derailment risk
could be created by the QIE methodology in this case. Thus, the greatest threat to the validity of
the reported results is the possibility of a negative effect of train length on the risk of the control,
“beat the train” grade crossing, accidents.

We remain convinced that it is most likely that the occurrence of “beat the train” grade
crossings is indeed independent of train length for the reasons argued in the paper. However, even
if this logic is inaccurate and drivers’ decisions to attempt to beat trains across grade crossings are
related to train length, it seems more likely that attempts to beat the train (and thus the likelihood
of being hit by the train) would be more common for longer trains than for shorter trains because
the amount of time that drivers could save by beating a train would be greater for longer trains. It
appears unlikely that if drivers could perceive the length of an approaching freight train, they
would preferentially choose to attempt to beat shorter trains relative to longer trains. Thus, the
simulation results suggest that even if the assumptions we made in conducting the QIE analysis do
not fully hold, the most likely result would be that the reported QIE results are somewhat

conservative in magnitude, but correct in direction, rather than spurious.
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