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Abstract 

Photocatalysis is an attractive, energy-efficient technology for organic transformations, polymer 

synthesis, and degradation of environmental pollutants. There is a need for new photocatalysts 

stable in different media and that can be tailored for specific applications. Covalent organic 

frameworks (COF) are crystalline, nanoporous materials with π-conjugated backbone monomers, 

representing versatile platforms as heterogeneous, metal-free photocatalysts. The backbone 

structure can be tailored to achieve desired photocatalytic properties, side-chains can mediate 

adsorption, and the nanoporous structure provides large surface area for molecular adsorption. 

While these properties make COFs attractive as photocatalysts, several fundamental questions 

remain regarding mechanisms for different photocatalytic transformations, reactant transport into 

porous COF structures, and both structural and chemical stability in various environments. In this 

perspective, we provide a brief overview of COF photocatalysts and identify challenges that should 

be addressed in future research seeking to employ COFs as photocatalysts. We close with an 

outlook and perspective on future research directions in the area of COF photocatalysts. 

 
 

 
1. Introduction 

Photocatalysis is a method for driving chemical transformations using light as the primary source of energy. 

Adsorption of light by a photocatalyst produces photoexcited electrons and holes that can subsequently react 

with a substrate. Because light supplies the energy to produce photoexcited electrons and holes, 

photocatalyzed reactions can be conducted under milder conditions than in conventional thermal reactions, 

potentially producing massive cost savings. There is significant interest from the pharmaceutical and 

chemical industry in harnessing photocatalysis to produce target chemicals and products more efficiently. 

There is also the potential to use these types of catalysts for applications such as the degradation of 

environmental pollutants, reduction of CO2, water-splitting, light-responsive actuators for robotics, and 

various other photochemical transformations [1–6]. 

Given the many potential application areas, there is a need for affordable, scalable, and effective 

photocatalysts. Many photocatalysts are based on inorganic materials such as TiO2, CdSe, WO3, ZnS, and 

ZnO [7], but these absorb primarily in the UV range and have limited, if any, visible light absorption. 

Significant advances have been achieved using organometallic photocatalysts with Ir or Ru metal centers 

[2, 3], but both Ir and Ru are scarce metals. Organic photocatalysts have broader light absorption compared 

with inorganic or hybrid systems [1], but molecular organic photocatalysts are not easily recovered or 

recycled after use. 

Covalent organic frameworks (COFs) can potentially address the need for photocatalysts that absorb 

visible light, do not rely on precious metals, and are easily recycled. COFs are exciting nanomaterials with a 

unique combination of characteristics. They were first reported in 2005 [8], and subsequent work has 

demonstrated a variety of interesting and useful properties. Reticular chemistry provides molecular-level 

control over characteristics such as pore size, backbone chemistry, and side-chain functionality [9]. COFs are 

generally synthesized using dynamic chemistries, and under proper synthesis conditions result in crystalline, 

nanoporous materials [10–14]. COFs are useful for a variety of applications including separations [15, 16], 
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catalysis [17, 18], energy storage [19, 20], ion transport [21, 22], and electronics [23, 24]. They are also 

all-organic and synthesized using relatively simple building blocks and reaction steps. Furthermore, a subset 

of COFs has extended π-conjugation, resulting in optically active materials and photoexcited states that can 

be harnessed for chemical reactions. They can also be designed with a combination of electron donor and 

acceptor units, which produce long-lived photoexcited states and charge separated states. Finally, COFs are 

completely insoluble in both organic and aqueous solvents, and therefore they can be easily recovered 

through centrifugation or filtration and subsequently re-activated and re-used. 

The goal of this perspective is to highlight some of the attractive features of COFs for photocatalysis while 

also identifying critical areas for further work. We do not provide a comprehensive discussion of 

photocatalysis or COFs, and for more details we point the reader to several reviews which broadly cover 

photo-redox catalysis [2, 3, 7], organic photo-redox catalysis [1], polymeric photo-redox systems [4, 25], 

COF photocatalysts [26–34], and applications of photo-redox systems [35]. We envision an increase in the 

number of researchers interested in COFs for photocatalytic applications in the coming years and work 

focused on both applied and fundamental challenges. 

2. Background and overview 

Photocatalysis generally refers to the use of light and photocatalysts to drive a chemical transformation which 

is energetically unfavorable in the ground state. The process involves light absorption by the photocatalyst to 

produce an electronically excited state followed by an electron transfer reaction with a substrate and/or 

sacrificial agent. The reaction of the excited state with a substrate can involve either electron transfer from 

the photoexcited catalyst to the substrate (oxidative quenching) or electron transfer to the photoexcited 

catalyst (reductive quenching). In both cases, the reaction with the catalyst excited state is referred to as 

photoinduced electron transfer (PET) [1], and this is the primary mechanism by which COF photocatalysts 

drive chemical transformations. Beyond the charge transfer process, physical interactions between the COF 

and reagents are also important to the photocatalytic process. This can help bring substrates close to the COF 

to enable charge transfer and may also preferentially orient the substrate to drive a specific transformation. 

COFs present unique challenges and opportunities towards the development of organic photocatalysts, 

and below we discuss several that we believe are most important. Specifically, we discuss the challenge of 

designing COFs with desired optical and electronic properties, controlling COF surface chemistry for 

molecular adsorption, processing COF photocatalysts, understanding the transport of substrates or reaction 

products through COF pores, enhancing COF stability, and scaling up the preparation of COFs (figure 1). 

Each of these topics present important challenges that need to be addressed for the development of COF 

photocatalysts for diverse applications. 

3. COF design 

COFs are made through reticular chemistry [9], which enables molecular-level control over pore size, pore 

functionality, the chemistry of the monomers, and the chemistry of the linkage (bond between monomers) 

(figure 2). The pore size can be tuned by varying the size and functionality of monomeric building blocks 

and will impact the total accessible surface area for adsorption. The pore functionality can be controlled 

using monomers functionalized with side groups, and these will influence the interactions between the COF 

and molecules in solution or adsorbed onto the surface. The COF bandgap will be determined by several 

factors, including the units that make up the COF backbone, the conformation or planarity of the COF, and 

also by interlayer interaction, in the case of 2D COFs. The bandgap can be tuned by increasing the 

conjugation length of the backbone [36], incorporating electron donating or withdrawing substituents [37, 

38], incorporating electron donor-acceptor dyads in the COF backbone [39], and through exfoliation of 2D 

COFs to produce nanosheets [40]. 

Altogether, these strategies provide ample opportunities for COF design but also represent a significant 

challenge for optimization of COF structure for a particular application. In the sections that follow, we 

discuss the design challenges in the context of photocatalytic applications. 

4. Challenges and opportunities 

The rational design of COFs for photocatalytic applications is challenging because several properties must be 

optimized simultaneously. Some of the most important properties are: 

 
(1) Optical and electronic properties that control how the COF interacts with light and subsequently transfers 

light-derived energy to catalyze a target reaction. 
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Figure 2. Overview of COF design and engineering. COFs are made using reticular chemistry, which enables engineering pore

 

 

 

 

 

 

 
(2) Surface chemistry that controls molecular sorption of reactants at catalytically active sites. 

(3) Transport properties that control how effectively substrates can be delivered to target sites, often in the 

presence of competing reactants. 

(4) Structural stability in differing reaction environments, which dictates catalyst lifetime. 

(5) Processability of tailored COF designs geared toward specific application scenarios, such as achieving 

catalyst immobilization without inhibiting light penetration. 

(6) Scalability for technological application, which governs the ultimate adaptation of the COF 

photocatalyst. 

 
We address each of these properties and associated design constraints in the following sections. 

Ultimately, the essential challenge is identifying COF photocatalysts with suitable properties in all of these 

design categories. 

 
4.1. Designing COFs with desired optical and electronic properties 

COFs with conjugated backbones have useful photophysical properties that potentially enable their use as 

photocatalysts. A full discussion of the photophysical processes that produce excited electrons and holes in 

COFs is beyond the scope of this perspective and is discussed in more detail elsewhere [1, 41]. Briefly, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Overview of challenges in the development of COF photocatalysts. 
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absorption of light produces electronically excited states. In organic materials, these are bound electron-hole 

pairs with energies that depend not only on the material chemistry but also on structural conformation and 

environment. In general, predicting these effects is challenging, and a combination of experiment and 

modeling is needed to elucidate photophysical characteristics. 

A variety of strategies have been implemented to engineer the bandgap and energy levels of COFs, 

including incorporating alternating electron-rich and electron-deficient (donor-acceptor) monomers, 

monomers with specific functionalities, tailoring the layer-layer interactions, and engineering the 

conjugation length (figure 3) As an example, Meier et al prepared and studied a series of seven different 

triazine COFs varying in the length of a phenylene spacer [42]. Experimentally, they observed a decreased 

optical bandgap with increasing phenylene spacer length due to greater delocalization of electron density. 

Complementary electronic structure calculations found a reduction in the ionization potential with 

increasing linker length. The reduced ionization potential indicated that the energy level of the highest 

occupied molecular orbital increased with linker length. This increase in turn reduced the energetic 

favorability for a photo-generated hole to oxidize water, thus lowering the thermodynamic driving force for 

the water splitting reaction. As a result, they observed an optimal linker length intermediate between the 

longest and shortest linker tested [42]. In another example, Sachs et al used experiments and simulations to 

show that the presence of water along a conjugated polymer backbone produced a more polar environment, 

which resulted in improved efficiencies for charge separation and longer lifetimes for photoexcited electrons 

[43]. Similar effects will influence the electronic properties of COFs. 

As a result, the design of optical and electrical properties of COFs often relies on empirical approaches. 

For example, constructing donor-acceptor structures by using electron-deficient and electron-rich 

monomers to construct the COF backbone can produce broad light absorption and enhanced charge 

separation. Donor-acceptor pairs can be identified using electronic structure calculations to assess orbital 

energy level alignments [44]. Another popular approach to the design of COF photocatalysts is the 

incorporation of functional monomers such as porphyrins that exhibit broad light absorption [45]. Libraries 

of common monomeric building blocks for photoactive COFs are provided in recent reviews [29, 33]. 

Linkage chemistry is also important for band gap engineering. In recent work. He et al compared a series 

of COFs with similar monomeric building blocks but varying in the linkage chemistry [46]. They tested 

hydrazone, imine, azine and carbon-carbon double bond (C=C) linkages and observed an impact on the 

resulting absorption band, emission color, quantum yield, fluorescence lifetime, HOMO/LUMO levels, 

distribution of frontier electron density, concentration and mobility of charge carriers, and magnetic 

permeability, thereby affecting the final photocatalytic performance. Their work also demonstrated that 

hydrazone linkages do not provide conjugation across the linkage, imine and azine provide partial 

conjugation, and C=C provides the greatest amount of conjugation between monomers. On the other hand, 

the synthesis of COFs with C=C linkages is challenging due to the poor reversibility of this bond. 

For 2D COFs, interlayer interactions also affect their electronic properties. Lukose et al investigated a set 

of reported and hypothetical 2D hexagonal COFs examining their electronic properties by density functional 

theory (DFT) and DFT tight-binding (DFTB) methods [47]. They investigated the role of stacking, and while 

they found that the electronic densities of states (DOS) was not significantly different from that of a 

monolayer, layering did impact the band gap. These examples demonstrate the complexities involved in 

designing COFs for a specific photochemical process. While these approaches can be effective, they only 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Schematic for COF bandgap engineering strategies. 
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provide general guidelines for the preparation of COFs and cannot account for the effects of solvent, 

crystallinity, or defects. 

More efficient and effective approaches for exploring the vast parameter space of COFs are needed. One 

possible approach is to use high throughput methods for COF synthesis and characterization [48]. Another 

approach may be to rely on coarse grained computational methods that enable more efficient and accurate 

exploration of COFs. The large unit cell of COFs often renders electronic structure calculation methods 

impractical, especially when accounting for several stacking layers and the presence of solvent. In such cases, 

atomistic interatomic potentials are necessary to study the dynamic structural evolution of the COF under 

different conditions (e.g. varying solvents and temperatures), as demonstrated by Duong et al [49]. 

Structural information sampled with molecular dynamics using classical interatomic potentials can then 

motivate appropriately simplified models amenable for more expensive electronic structure calculations. It is 

currently not possible for experiments or simulations alone to fully elucidate the physical and optoelectronic 

properties of COFs, and therefore combined approaches to COF analysis will continue to be necessary. 

 
4.2. Controlling COF surface chemistry for molecular adsorption 

COF surface chemistry can also play a direct role mediating interactions with different reactants (i.e. 

substrates, sacrificial agents, and solvent molecules). This chemistry features direct formation of chemical 

bonds between functional units of the COF structure and the reactants. The impact of COF surface 

chemistry is relatively understudied compared with electronic and photophysical properties, but prior work 

has demonstrated how it can have an important impact on photocatalytic activity. Chen et al studied the 

photocatalytic reduction of H2O to produce H2O2 in porous triazine frameworks containing acetylene or 

di-acetylene linkers functionalities in the backbone. They found that frameworks containing these functional 

groups could bind to and stabilize the formation of adsorbed OH, an intermediate in the production of 

H2O2. They also observed enhanced production of H2O2 and attributed this to the formation of chemical 

bonds on the linker itself [50]. Thus, in this example the COF structure acts similarly to a traditional 

heterogeneous catalysis with extended surfaces by directly forming chemical bonds with the substrate to 

stabilize reaction intermediates (figure 4). 

There are several examples where side-chain chemistries are modified to enhance adsorption of a target 

molecule or tune hydrophilicity. For example, Ji et al designed COFs that contained side-chains terminated 

with primary amine groups. They found that these primary amines significantly enhanced the adsorption 

capacity for molecules containing an acid functionality, such as perfluorooctanoic acid [51]. Another recent 

study demonstrated that simply changing the length of alkyl substituents in a hydrazone COF aerogel could 

widely tune the hydro- and oleophilicity, resulting in a material that could absorb significant amounts of 

water (up to 20 g/g COF) to one that completely repelled water [52]. Hydrophobic side-chains can also 

discourage interactions with water and reduce the relative rate of competing redox reactions like water 

splitting in favor of the target reaction [53]. Additionally, side-chains can also influence interactions with a 

substrate to provide chiral selectivity [54, 55]. 

However, predicting these properties a priori remains a challenge due to the large size of the required unit 

cell for computations and the complex interplay of materials chemistry, crystallization, conformation, and 

solvent environment. Experiments and simulations also must account for various conformations of the 

adsorbent COF and different locations of the adsorbate to find the lowest energy binding sites while also 

accounting for interactions with solvent molecules. The impact of dynamic structural changes at the 

molecular level on electrochemical properties is also challenging to capture with static electronic structure 

calculations. Additionally, modifications and adjustments to side chains often impact the electronic structure, 

so side chains introduced to enhance adsorption may have deleterious effects on light absorption and active 

site reactivity. As an example, Li et al introduced pillararenes into a hydrazone-linked COF (see figure 5). 

This functionality affected charge separation efficiency due to its electron-rich cavity and also enhanced the 

degree of conjugation of the framework, consequently influencing the photoelectric properties [56]. 

 
 
 
 
 
 

 
Figure 4. Illustration of COF surface chemistry mediating the direct oxidation of water to form hydrogen peroxide, as proposed in 
Chen et al [50]. 
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Figure 6. Illustration of light penetration and mass transport during COFs photocatlytical process. 

 

 

 
 

 
We currently lack design rules for tailoring the surface chemistry of COFs to particular photocatalytic 

applications. Design rules for enhancing adsorption or reducing interaction with a specific solvent or 

co-contaminant could help increase photocatalytic activity and may come with other benefits, such as 

improving stability due to reduced side-reactions. Future work using experiments and simulations to 

establish such design rules is a critical need in the field. 

 
4.3. Understanding the transport of substrates or reaction products through COF pores 

A unique characteristic of COFs is their regular, nanoporous architecture. This potentially provides a large 

surface area for molecular adsorption and interaction. However, surprisingly, it remains unclear how 

relevant this nanoporous architecture is for photocatalysis. As in other nanoporous heterogeneous catalysts, 

the restricted pore size presents transport and diffusion limitations [57]. Additionally, light penetration is 

reduced inside a pore away from the outer surface, and the COF morphology can also impact the 

directionality of charge transport (figure 6). As an example of the latter, Niu et al prepared crystalline and 

amorphous triazine framework photocatalysts and found that the amorphous triazine framework 

outperformed the crystalline COF. They attributed this to three-dimensional charge transport in the 

amorphous material compared with two-dimensional transport in the crystalline COF [58]. Conversely, 

Wang et al developed a COF based on a benzo-bis(benzothiophene sulfone) moiety and found that their 

COF showed a much higher activity for photocatalyst hydrogen evolution than its amorphous or 

semicrystalline counterparts. They attributed the high quantum efficiency of this COF to the crystallinity, 

strong visible light adsorption, and wettability [59]. 

While there has been an emphasis on studying and developing transport properties of COFs [60, 61], 

more work is needed to understand the importance of intrapore transport in photocatalytic COF processes. 

Independent measurements of molecular transport, such as through pulsed field-gradient NMR 

measurements [62], should be combined with independent measurements of photocatalytic reaction rates. 

These can also be coupled with variations in the COF pore size and architecture to gain insight into the 

relationship between COF structure, pore size, and photocatalytic reaction rates. It is also possible to 

systematically vary COF crystallinity [63], enabling a deeper understanding of how crystal structure impacts 
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both transport and catalysis. Studies into transport properties can both advance our understanding of 

morphology in the catalytic process and help identify optimal morphological features for enhancing 

photocatalytic reaction rates. 

 

 
4.4. Processing COF photocatalysts 

Processing can present unique challenges to the application and use of COF photocatalysts. COFs are 

typically produced in the form of insoluble powders and are completely insoluble in aqueous or organic 

solvents. Unlike organic photocatalysts, COFs are heterogeneous catalysts. Therefore, strategies to immobilize 

the COFs are needed to scale up photochemical transformations. For example, photocatalysts can be 

immobilized on a surface or the walls of a reactor [64]. Another approach is to use an immersion well reactor, 

where the source of light is placed inside the reaction vessel [65]. Flow-based photochemical reactors offer a 

simple approach to scale-up and can also reduce reaction times under the appropriate design considerations 

[35, 66]. Implementing each of these approaches with COFs requires addressing processing challenges to 

immobilize the COF photocatalyst in the reactor while also ensuring sufficient light penetration. 

There have been important advances in COF processing [67–69] that have not yet been leveraged in COF 

photocatalysis processes. For example, a variety of methods for making COF foams and gels are now 

available, affording microporous COF scaffolds for use as photocatalytic materials [70–72]. Several 

approaches are available for fabricating COF thin films [67], including monolayer COF films with aligned 

pores [73], enabling approaches to immobilized COF photocatalysts on surfaces and reactor walls. Recent 

work has also enabled solution-based processing approaches [71], which can facilitate the preparation of 

coatings, control over film thickness, and potentially produce packed bed microreactors. It remains unclear, 

however, whether these various processing methods can be used for photoactive COFs and how the 

processing approach will impact light penetration, morphology, and performance. 

 

 
4.5. Stability 

COFs are formed through dynamic chemistries, which enable crystallization but can also result in chemical 

and structural degradation. Understanding stability limitations of COFs and degradation mechanisms will 

be important to any application of COF photocatalysts. For example, Zhu et al studied the activation stability 

of COFs and demonstrated how pore size, pore substituent, and solvent surface tension impacted COF 

porosity and crystallinity [74, 75]. They also demonstrated that the activation stability could be tuned by 

selecting building blocks with varying sizes of pore substituents [63]. Several studies have investigated COF 

stability under basic or acidic aqueous conditions, and in general the stability depends on the linkage 

chemistry, pore size, and substituent. Boron-based linkages are highly reversible and COFs based on this 

linkage have high crystallinity and surface area. However, their chemical stability is limited due to their 

susceptibility to nucleophilic attack by water [76]. Imine-linked COFs have moderate to high chemical 

stability [77] depending on microenvironment around chemical bonds. Nevertheless, there are cases where 

imine linkage can be degraded (or digested [78, 79]) under extremely acidic or alkaline conditions, which 

can lead to the collapse of the COF framework. For example, Qian et al investigated the transformation of 

COF-to-COF using a linker exchange strategy. To determine the extent of linker exchange over time, they 

subjected COFs to complete hydrolysis in a hot sodium hydroxide solution and monitored the process using 
1H NMR spectroscopy. Similar digestion experiments can also be conducted under high concentrations of 

acidic conditions. Zhu et al used concentrated deuterated hydrochloric acid to dissolve COF and determine 

the monomer ratio in three-dimensional COF [79]. In contrast, triazine and sp2 carbon-linkage are more 

robust linking chemistries, providing not only remarkable stability but also enhanced conjugation [80–82]. 

Nonetheless, obtaining high-quality crystalline materials using these two linking methods is more 

challenging. 

In addition to the reduction in crystallinity of 2D COFs due to chemical stability, other factors in reaction 

processes can alter the properties of COF material. First, the characteristics of 2D materials determine that 

changes in interlayer stacking patterns can lead to reduced or lost crystallinity and alterations in 

photoelectric properties [74, 83]. This is due to the electron transitions, energy transfer, and material 

exchange occurring during the reaction, which can affect the conformation of COFs, and the reversibility of 

these changes remains largely unknown. Secondly, different wavelengths of light sources are introduced 

during the reaction process, yet the photostability of COFs, whether light exposure causes irreversible 

damage or alteration of the structure, remains relatively underexplored [84]. Research on stability is 

advantageous for developing long-lasting COF photocatalysts that balance performance and stability, 

allowing for their repeated and sustainable use. 
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4.6. Scalability 

Although COFs are all-organic materials, this does not mean that they are necessarily low cost, affordable, or 

scalable. Recent analysis of organic semiconductors for photovoltaics has demonstrated that many high 

performance materials are also impractical due to synthetic complexity, requiring as many as 14 separate 

reaction and purification steps [85]. However, a similar analysis of COF scalability has not been reported. 

While COF building blocks are generally much simpler than those of organic semiconductors, reaction times 

can be long, and purification of the final product generally involves several solvent washing steps along with 

activation using supercritical CO2 or a low-boiling point solvent. There is both an opportunity to analyze the 

scalability of common COF photocatalysts and also to develop and demonstrate more scalable and low-cost 

approaches to the synthesis of COF photocatalysts. For example, Zhang et al reported COFs prepared from 

2,4,6-collidine as a building block and demonstrated the synthesis of charged, vinylene-linked COFs at 

product yields exceeding 500 g [86]. Further efforts to scale-up the synthesis of COFs and bring down 

reagent and preparation costs will be necessary to translate COF synthesis to real-world applications. 

5. Summary and outlook 

COFs provide tremendous opportunities for low-cost, energy efficient transformations through 

photocatalysis and enable optimization and tailored design through molecular-level tuning of pore size and 

functionality. Specifically, a variety of photochemical transformations are accessible only using molecular 

catalysts [3], which can be difficult or impossible to re-use or recycle. COFs can potentially replace these 

molecular catalysts, providing a reduction in cost with little or no reduction in performance. As detailed in 

this perspective, work is needed to address both fundamental and practical challenges related to COF 

photocatalysis. 

At a fundamental level, we need more efficient approaches for designing COFs with desired electronic 

properties tailored to specific photocatalytic applications. We see significant potential in the development of 

high throughput synthesis and characterization methods coupled with computational predictions and 

machine learning algorithms to identify promising COF chemistries. These may be essential to take full 

advantage of COFs and also address challenging targets for photocatalysis, such as the photochemically- 

catalyzed ring opening metathesis polymerization using pyrylium salts as oxidizers [87]. 

Tailoring the surface chemistry of COFs for photocatalytic applications remains an understudied area of 

research. Most studies have emphasized tailoring energy levels and bandgaps, but the physical interactions 

between COFs and substrates or reagents can play an equally important role in photocatalysis. A simple 

approach to improve the performance of COF photocatalysts would be to systematically tailor the 

hydrophobicity/hydrophilicity to identify an optimal surface chemistry for a specific application. A more 

elegant but challenging approach would be to introduce specific surface functional groups that interact with 

reagents in a desired way to improve product yields. 

Very little is known about the role of transport through nanoscale pores and its importance to 

photochemical transformations. In some cases, depending on the size of substrates, photochemical 

transformations may occur on the surface of COF particles and transport through the pores may not be 

important. Experiments or simulations that can probe the role of transport into/through COF nanopores 

will help aid in the design of more effective COF photocatalysts. 

There has been tremendous progress in the scalable synthesis and processing of COFs [88], but 

processing strategies relevant to photocatalytic applications are needed. Specifically, flow photochemistry 

systems [89] provide a number of advantages in terms of cost and efficiency, but are difficult to implement 

with COFs as the catalyst due to their poor processability. Approaches to produce such continuous flow 

photoreactors using COFs could provide a boost in terms of conversion efficiency and productivity rates. 

Advances in COF processing now enable the preparation of gels, thin films, composites, and coatings, but 

these have yet to be explored widely for photocatalytic applications. 

Addressing long-term stability will be an important issue for the implementation of COFs in real-world 

applications. Work investigating the stability of COFs in the presence of different solvents and solution 

conditions has demonstrated that highly stable COFs can be produced by engineering the linkage chemistry 

and introducing appropriate substituents. In some cases, the most stable linkages, such as the C=C double 

bond, also provide favorable electronic properties. A number of strategies are therefore available for 

improving COF stability while maintaining favorable electronic properties. The role of extended exposure to 

radiation should also be emphasized. Finally, the scalable production of COFs will also be critical to 

translation to real-world applications. Most work with COFs is performed at the laboratory scale, so it 

remains unclear how feasible it will be to scale up the production at reasonable while maintaining product 

quality. This may require developing new processing and synthesis strategies or identifying low-cost 

monomers as building blocks [86]. 
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In summary, a number of fundamental and practical challenges remain in the development and 

exploration of COF photocatalysts. These challenges provide excellent opportunities for both scientists and 

engineers to work together to advance the development of COF photocatalysts. We look forward to further 

developments in the field and envision rapid progress in the development and discovery of COF 

photocatalysts. 
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