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1. Introduction and circulant TSP

The Symmetric Traveling Salesman Problem (TSP) is a funda-
mental problem in combinatorial optimization and a canonical
NP-hard problem. An input consists of a set of n vertices [n] :=
{1,2,...,n} and edge costs ¢;j =cj; (for 1 <i, j <n), indicating
the costs of traveling between vertices i and j. The TSP is then
to find a minimum-cost Hamiltonian cycle, visiting each vertex ex-
actly once.

With just this set-up, the TSP is well known to be NP-hard.
An algorithm that could approximate TSP solutions in polynomial
time to within any factor o > 1 would imply P=NP (see, e.g., The-
orem 2.9 in Williamson and Shmoys [31]). Thus it is common to
consider special cases that restrict the edge costs. For instance, re-
quiring costs to be metric (so that c;j +cji > cj for all i, j, k € [n]),
to correspond to distances in an underlying graph on [n], to corre-
spond to Euclidean distances, or to be restricted as c¢;; € {1, 2} for
all i, j (the (1, 2)-TSP). See, e.g., [2,3,8,17,18,22-26,28,29] among
many others.

One special case that is particularly intriguing, but where rela-
tively little is known, is circulant TSP. Circulant TSP instances are
those whose edge costs can be described by a circulant matrix,
which imposes substantial symmetry: the cost of edge {i, j} can
only depend on (i — j) mod n. Our implicit assumption that the
edge costs are also symmetric means that the cost of an edge c;;
is a function of min{(i — j) mod n, (j — i) mod n}, which we in-
terpret as the length of the edge {i, j}. For instance, edges {1, 2},
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{3,2}, and {n, 1} all have the same length 1; we will denote the
cost of any such edge as c;. We can thus describe (symmetric) cir-
culant TSP instances with a symmetric, circulant cost matrix with

n .
5] parameters c1, 2, e €l
0 ¢c1 ¢ ¢3 -+ € (1
c1t 0 ¢4 ¢ --- €3
. n
C=(Cijij=|C a1 0 s c3 |,
c1 € €3 ¢4 --- 1 O

where ¢; =c¢p—; for i =1, ..., L%J denotes the cost of a length-i
edge. That is, the cost of traveling between vertices i and j is

Cij = Cmin{(i—j) mod n,(j—i) mod n}-
See Fig. 1. Importantly, in circulant TSP we do not make the proto-
typical assumption that edge costs are metric.

Circulant TSP was first studied in the 70’s, motivated by waste
minimization ([10]) and reconfigurable network design ([21]). In-
triguingly, in the 70’s Garfinkel [10] showed that circulant TSP can
be easily and efficiently solved whenever the number of vertices
n is prime (see Section 3). In general, circulant symmetry imposes
just enough structure to sometimes - but by no means always -
make a formally hard problem tractable. It is not known if this
is the case for circulant TSP, and circulant TSP’s complexity has
been often cited as a significant open problem (e.g., Burkard [6],
Burkard, Deineko, Van Dal, Van der Veen, and Woeginger [7], and
Lawler, Lenstra, Rinnooy Kan, and Shmoys [19]).

Since the 70s, most work on circulant TSP’s complexity has
been on the simplest non-trivial case of circulant TSP: the two-
stripe symmetric circulant TSP. This is the special case where exactly
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Fig. 1. Circulant symmetry. Edges of a fixed length are indistinguishable and have
the same cost. E.g. all edges of the form {v,v + 1} (where v + 1 is taken mod n)
have length 1, and thus cost c;.

two of the edge costs c1, ¢, -y Cln are finite. Greco and Gerace
[13] and Gerace and Greco [11] made progress on this case, and re-
cently, Gutekunst, Jin, and Williamson [14] resolved it and showed
that the two-stripe symmetric circulant TSP problem is solvable
in polynomial time. In parallel, substantial number theoretic work
has gone into understanding what collections of edge lengths can
constitute a Hamiltonian cycle and/or path (see, e.g., Buratti and
Merola [4], Costa, Morini, Pasotti, and Pellegrini [9], and McKay
and Peters [20], and Horak and Rosa, Pasotti and Pellegrini [27]).

In this paper, we present three results that, while motivated by
recent work on the two-stripe symmetric circulant TSP, apply more
generally to circulant TSP:

e Our first result, in Section 3, is the first complexity result for
circulant TSP based on the factorization of n since Garfinkel’s
70’s result [10] that circulant TSP can be efficiently solved
when n is prime. Specifically, we show that circulant TSP is
also efficiently solvable when the number of vertices n is a
prime-squared, continuing to flesh out connections between
circulant TSP and number theory.

e In Section 4, we study the two-class circulant TSP, which spe-
cializes the (1,2)—TSP to circulant instances: this is the circu-
lant TSP when the edge costs cq, ¢3, s Clny € {1, 2}. Perhaps
counter-intuitively, it turns out that the two-class problem is
considerably easier than the two-stripe circulant TSP.

e Finally, in Section 5, we return to the two-stripe setting and
present a 10/9-approximation algorithm for finding an Eule-
rian, connected sub-(multi)graph (using all vertices) of min-
imum cost on two-stripe instances (or equivalently, finding
a minimum-cost Hamiltonian cycle on the metric comple-
tion of a two-stripe instance). This substantially improves the
best previous result for this setting, which is Gerace and Irv-
ing [12]'s (4/3)-approximation algorithm for general circulant
TSP instances that are also metric (and therefore for finding
minimum-cost Eulerian, connected sub-(multi)graphs on any
circulant instance).

We begin in Section 2 by briskly introducing background about
circulant graphs and their Hamiltonicity, which we will repeatedly
make use of.

2. Preliminaries: circulant graphs and hamiltonicity
Let SC({1,2,..., L%J} be a set of edge lengths. We consider cir-

culant graphs, which are graphs on vertex set [n] with exactly the
edges whose lengths are in S.
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Definition 2.1. Let S C {1, ..., ng }. The circulant graph C(S) is the
(simple, undirected, unweighted) graph on vertex set [n] includ-
ing exactly the edges whose lengths are in S. Le., the graph with
adjacency matrix A = (aij)?q =1 where

G — 1, (i—j)modneSor(j—i)modneS
Y7o, else.
Burkard and Sandholzer [5] studied Hamiltonicity in circulant
graphs, and deduced the following:

Proposition 2.2 (Burkard and Sandholzer [5]). Let {ay, ....ac} € [L5]]
and let G = ged(n, ay, ..., ar). The circulant graph C({a1, ..., at}) has G
components. The ith component, for 1 < i < G, consists of n/G nodes

{i—i—kaodn: Ofkgg—l,keZ}.

C{{aq, ..., a;}) is Hamiltonian if and only if G = 1.

A complete proof can be found in [5], showing how to recur-
sively construct Hamiltonian cycles whenever G = 1 and giving
rise to an O(nlog(n))-time algorithm for finding Hamiltonian cy-
cles whenever G = 1. Because many of our results will lean on
this proposition, we sketch the idea below, taking care to empha-
size details pertinent to our results. We also adopt two notational
conventions: First, all vertex labels are implicitly taken modulo n
(e.g. v +ajy is shorthand for (v +aq) mod n, so that {v,v+ay}is a
length-a; edge). Second, we use =, to denote congruence modulo
n.

The idea of the proof is to start with a cycle on the vertices

{vil<v<nv=gdna 1%

given our notational conventions, we write this more succinctly
as {V:V =gcdm,ap) 1} Getting such a cycle is straightforward: we
start at vertex 1, and follow length-a; edges until returning to 1.
Then from s =2 to s =t, we extend a cycle visiting all vertices
in the set {v:V =gdm,ay,...a,_;) 1} to one visiting all vertices in
{v:V=g¢dma,..a) 1}- We do so by “copying and translating” our
original cycle by multiples of ag, and then using circulant sym-
metry to merge these cycles. The proof sketch below makes these
ideas more precise. While the proof is not particularly technical, it
is notationally cumbersome; we thus begin with an example that
captures the process and role of symmetry.

Example 2.3. Suppose n = 72, and S = {ay, az, as, as} with a1 =
12,a; = 24,a3 =9, and a4 = 16. The graph C({ay}) is a cycle
cover with ged(n, a;) = 12 cycles each of length n/gcd(n,a;) =6.
We start with the cycle containing vertex 1: we start at vertex
1 and follow length-a; edges until we return, yielding the cy-
cle 1,13,25,37,49, 61, 1. This cycle visits every vertex in the set
{14+ Agcd(n,a):0<1r< m — 1}, which is exactly the same
as (v :V =gdmap 1} ={v:v=121}.

Then we start our iterative process at s = 2, and extend our
cycle visiting each vertex in {v : vV =gcdm,ay) 1} t0 {V 1V =gcdm,ay,a9)
1}. Since gcd(n, aq,a) = 12 = ged(n, a1), we already have such a
cycle so we move on to s = 3. Since gcd(n, aj, az,as) =3, we will
“grow” our cycle on {v: v =13 1} to a cycle visiting every vertex in
{v : v =3 1}. This process is illustrated in Fig. 2. We start by copying
and translating our cycle 1,13, 25,37,49, 61, 1 by multiples a3 =9,
so that we have a cycle cover on {v:v =3 1}. The translates give
us a cycle cover consisting of four cycles:

1+ ras, 13+ ras, 25+ raz, 37+ ra3, 49+ Aa3, 61+ Aas, 1+ Aas
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Fig. 2. Example of the iterative process for Proposition 2.2 when n =72 and going
from C({12,24}) to C({12,24,9}). We begin with a cycle visiting every vertex in
{v:v =1, 1} using just length-12 edges and “translate” by multiples of 9 it to form
a cycle cover on {v:v =3 1} (top pane). We then use circulant symmetry to patch
these cycles together (middle and bottom pane), yielding a cycle visiting every ver-
tex in {v:v =3 1} (bottom pane). Edges with matching numbers of arrowheads
“wrap around” and are connected to each other.

for 0 < A <3, as shown in the top pane of Fig. 2.

Next, we use circulant symmetry to merge these cycles into one
cycle on {v:1<v <72,v=31}. To merge the first two cycles, we
pick an edge (here, {1, 13}) in the first cycle, delete it and its trans-
late {1 + a3, 13 + a3} = {10, 22} in the second cycle, then add the
length-az edges {1,10} and {13,22}. We then continue patching
in successive cycles, picking an edge in the second cycle, delet-
ing it and its translate in the third cycle, adding length-as edges
to merge the third cycle in, and repeating again to merge in the
fourth cycle. The end result of this process is shown in the bottom
pane of Fig. 2, yielding a cycle visiting every vertex in {v:v =3 1}.
Since gcd(n, aq, az, as, ag) =1, the final s =4 step of the algorithm
would take our cycle 1, 61,49, ...,70,10, 1, “copy and translate” it
by multiples a4 to get a cycle cover on {1, ..., 72}, and merge these
together by deleting pairs of an edge and its translate, then patch-
ing them together with length-ay4 edges.

Proof (sketch). The proof of Proposition 2.2 proceeds as in Ex-
ample 2.3: We begin with a cycle visiting every vertex in {v :
V =gcdna;) 1} attained by starting at vertex 1 and following
length-a; edges until we return: 1,1 + aj,1 + 2aq,...,1 +

(m - l)al,l. Then we proceed iteratively from s =2 to

s =t. At each step, we “grow” our cycle visiting every ver-
tex in {v :V =gdn,a,...a,_1) 1} to a cycle visiting every vertex
in {v:V=gdma,...a;_1,a5) 1}. Note that if ged(n,ar,...,a5_1) =
gcd(n,aq, ...,as—1,as), then these two vertex sets are the same,
so we can move on to the next value of s without having to do
anything (as in the s =2 step in Example 2.3).

Otherwise, say that our cycle on {v:V =gcdm,ay,....a;q) 1} 1S
V1, V2, .oy Vijged(nar,....as_1)» V1. We translate this by multiples of as
to get a cycle cover of {v:1=<V <n,V=gqdmgq;...a,) 1} In particu-
lar, our cycle cover consists of the gcd(n, aq, ...,as—1)/ gcd(n, aq, ...,
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as—1,0s) cycles vi + Ads, vo + Adg, ..., Vn/ged(n.ay,...as_1) T Ads, V1 +
Argag, for 0 < A < (ged(n,aq, ...,as—1)/ged(n, aq, ..., as—1,as)) — 1.
We merge the cycles together one-at-a-time, first picking some
edge {v1,vy} in the original cycle, deleting it and its translate
{vq1 +as, v + as}, and patching them together with two length-as
edges: {vi1,v1 +as} and {v, vy + as}. This patches together the
cycle with A =0 and A =1, and we repeat: from A =2 to
(gcd(n, aq, ...,as—1)/ ged(n, aq, ..., as—1,as)) —1, we set j=1+((A+
1) mod 2), delete {v; + (A — 1)as, vj41 + (A — 1)as} and its trans-
late {vj + Ads, vji1 + Aas}, and add {vj + (A — 1)as, vj + Aas} and
{vjt+1+ (A — Das, vj41 + Aag}). Here, j alternates the pairs of edges
we delete (e.g. in the s =3 case of Example 2.3, we deleted trans-
lates of {1, 13} in our first and third merge, and of {13, 25} in our
second merge).

In the language of Proposition 2.2, we have thus shown that
C{{aq, ...,a;}) is Hamiltonian whenever G = 1; whenever G > 1,
length ai,ay,..., and a; edges will never allow us to leave the
component {v:v =g 1} and the graph is not Hamiltonian (and is,
in fact, disconnected). However, our algorithm will terminate with

a cycle on {1 +AGmodn: 0<A< % — } which can readily be

translated to a cycle on {i +AGmodn: 0<A< % — ]} by adding
i — 1 to each vertex in the cycle. O

3. Circulant TSP and primes

That circulant TSP can be solved in polynomial-time whenever
n is prime follows from Proposition 2.2 immediately: Let ¢ denote
the length of a cheapest edge in an input to circulant TSP (i.e. ¢, =
min{cy, c2, ...,CL%J}). Then by Proposition 2.2, the graph C({¢}) is
Hamiltonian, and starting at vertex 1 and following edges of length
£ until you return to vertex 1 yields a minimum-cost Hamiltonian
cycle of cost n x c,. This result was first shown in the 70’s [10], but
since then, no other results relating the complexity of circulant TSP
to the factorization of n have been shown.

Our first result extends these connections and shows that, when
n is a prime-squared, it is also easy to determine the cost of the
circulant TSP solution. In this case, the cost of an optimal solution
depends on up to two edge-lengths: the cheapest edge-length ¢,
and (if ¢ is not relatively prime to n), the cheapest edge-length
that is relatively prime to n. Note that, if n = p? for a prime p, the
only edge-lengths that are not relatively prime to n are those that
are multiples of p. lLe., for 1 <i < |n/2],

p, 1iisamultiple of p,
1, else.

gcd(i,n) = {

Theorem 3.1. Let n = p where p > 3 is a prime. Let £ denote the
length of a cheapest edge in an input to circulant TSP (ie. ¢, =
min{cq, 2, ...,CL%J}). Let S={ci:1<i< L%j,gcd(n, i) = 1} denote
the set of edge-lengths relatively prime to n, and let s denote the length
of a cheapest edge in that set (i.e. cs = min{S}). A minimum-cost Hamil-
tonian cycle costs (n — p) x cg + p X Cs.

Note that if ¢, = ¢ (e.g., if gcd(¢,n) = 1), then the circulant
graph C({¢}) is Hamiltonian and (n — p) x ¢ + p x ¢s = ncy. Other-
wise, by Proposition 2.2, C{{¢}) has n/gcd(n, p) =n/p = p compo-
nents, each of which has p vertices (and all vertices in a compo-
nent will be congruent mod p). We adopt a convention for plotting
C({¢,s}) in terms of these components, shown in Fig. 3: we start
by drawing the first component of C({¢}), consisting of all ver-
tices congruent to 1 mod p, connected by length-¢ edges in a cycle
that “wraps around” vertically. Then we translate this component
by s, plotting all vertices congruent to (1 + s) mod p in the next
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Fig. 3. Convention for plotting C({¢,s}) when n =25, ¢ =10, and s = 9. Length-¢
edges are vertical (and in black) and length-s edges are horizontal (and in red). (For
interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

column, arranged so that horizontally adjacent vertices are con-
nected by length-s edges. We repeat this process, forming a grid,
until we reach the component consisting of all vertices congruent
to (14 (p — 1)s) mod p in the rightmost column. The vertices in
this last column are then connected back to vertices in the first
column by length-s edges (i.e. 1+ (p — 1)s+s=p 1, so a length-s
edge from a vertex in the last column wraps back around to a ver-
tex in the first column). However, these length-s edges between
the last and first column do not necessarily wrap around to the
same row. See Fig. 3, for instance, and see [15] for more general
results on the structure of circulant graphs.

Before proving Theorem 3.1, we need one basic fact about linear
congruences. See, e.g., Theorem 57 of [16].

Proposition 3.2. The linear congruence

ax=p b

has a solution x if and only if gcd(a, n) divides b. Moreover, there are
exactly gcd(a, n) solutions which take the form

n

A———, A
Yo+ gcd(a, n)

=0,1,...,gcd(an) —1

forsome 0 < xg < m.

Proof (of Theorem 3.1). If gcd(¢,n) = 1, then starting at vertex 1
and following edges of length ¢ yields a Hamiltonian cycle of cost
n x c¢; (and since any Hamiltonian cycle must use n edges all of
which cost at least ¢, this is optimal).

Otherwise, C{{¢}) has p components and any Hamiltonian cycle
must cost at least (n — p) x ¢, + p X ¢s: Such a cycle must use
at least p edges of cost at least cs, as all edges cheaper than cg
stay within components of C({¢}), and at least p other edges are
needed to connect these components in a cycle.

Thus it suffices to show that a Hamiltonian cycle using (n — p)
length-¢ edges and p length-s edges exists. Note that such a cycle
will use exactly one length-s edge between each pair of adjacent
columns (adjacent in the sense of our drawing convention from
Fig. 3), and then one final length-s edge wrapping from the last
column to the first. We will first construct a Hamiltonian path,
starting at vertex 1 and traversing through the columns one-at-
a-time. In doing so, the Hamiltonian path will use (p — 1) edges
of length s (one between the first and second column, one be-
tween the second and third, .., and one between the (p — 1)th
and pth). We will traverse the columns so that the Hamiltonian
path ends at vertex 1 —s. Then, we can extend it to a Hamiltonian
cycle by taking a final length-s edge to vertex 1. In constructing
the Hamiltonian path, the only choice we have is how we traverse
each column: moving “up” (i.e. from vertex v to (v —£) mod n) or
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?

Fig.4. One possible sequence of up- and down-moves with the final vertex visited in
each column marked in red (left). All possible final vertices marked in each column
when n = 72 (right).

“down” (i.e. from vertex v to (v +£) mod n). We need to show that
we can choose a sequence of “up” and “down” columns so that the
last vertex visited in the final column is 1 —s.

The intuition for this process is shown in Fig. 4, which first
shows an example sequence of “ups” and “downs” where we tra-
verse down in the first four columns and then up in the last three.
Note that, each time we go down in a column, the final vertex
visited in that column is one row above where we entered that
column (modulo the number of rows); each time we go up, the
final vertex visited in that column is one row below where we en-
tered that column (modulo the number of rows). The red vertices
trace out the last vertex visited in each column. On the right of
Fig. 4, we trace out (in red) the final vertices we can reach in a
column by any sequence of ups and downs: there are two red ver-
tices in the first column (based on whether we go up or down),
then three red vertices in the second column (corresponding to
going down twice, going down once and up once, or going up
twice), and so on. We see that we can choose a sequence of ups
and downs to reach every vertex in the last column: no matter
what row 1 — s is in, we will be able to reach it.

More formally, suppose that vertex 1 — s is in row r, with 0 <
r < p (indexing the top row as row 0). We need to show that,
regardless of r, we can choose a sequence of ups and downs to
end our Hamiltonian path at the vertex in row r of the last column
(i.e., at 1—s). If we choose to go down k times and up p —k times,
we end in row ((—k) + (p — k)) mod p. It thus suffices to show
that we can choose k, with 0 <k < p, such that p — 2k =, r. That
is, 2k =p p —r. Since p # 2, we have that gcd(2,p) =1 and by
Proposition 3.2, there is a unique solution 0 <k < p. This value of
k gives rise to a Hamiltonian path from 1 to 1 — s using exactly
p — 1 edges of length-s; taking one final length-s edge from 1 —s
to 1 yields the desired Hamiltonian cycle. 0O

Algorithmically, note that we can find the row r of 1 —s by
solving the following congruence for r:

1—s=p(p—1)xs+rxL.

We can then solve 2k =, p —r to attain the desired value of k; both
congruences can be solved using the extended Euclidean algorithm
in 0(log?(n)) time. See, for example, Theorem 4.4 in [30].

4. The two-class TSP

One particularly well-studied variant of symmetric TSP is the
(1, 2)-TSP, where all edges have cost 1 or 2 (these instances are
not necessarily circulant). This variant is NP-hard and is a special
case of the more general metric TSP, but better approximation al-
gorithms are known for the (1,2)—TSP than for the metric TSP
(see, e.g., [1,3,18,26]).
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1 2 — 3 g
| | | |
V2 vy +1 vy +2 vo+g—1
| | | |
V3 vy+1 vy +2 vi+g—1
\ \ \ \
\ \ \ \
Vn/g)-1 Vayg-1+1 Vn/g)-1+2 Vi/g-1+8—1

Vnjg ———— Vpyg +1 Vg +2—

Vng+8—1

Fig. 5. Extending a Hamiltonian path on one component of C(S) to a Hamiltonian
path on all vertices in the proof of Theorem 4.1 when g is even. When g is odd,
the Hamiltonian path ends at vn/g +g — 1.

In this section, we consider the (1,2)—TSP specialized to cir-
culant instances, the two-class circulant TSP: Here, the ¢; can take
on exactly two distinct values; without loss of generality, these
values are 1 (“cheap”) or 2 (“expensive”). That is, ¢; € {1, 2} for all
1<i<|5]. We show that two-class circulant TSP instances can be
efficiently solved.

Theorem 4.1. Consider an instance of the two-class circulant TSP where
S :={i : ¢c; = 1} denotes the set of cheap edge-lengths, and let g :=
gcd(n, S) denote the GCD of n and all edge-lengths in S. Then the op-
timal solution to this instance has cost:

n, g=1
n+g, g>1.

Proof. First, suppose that g = 1. Then by Proposition 2.2, the
graph C(S) is Hamiltonian, so Proposition 2.2 gives a Hamiltonian
cycle just using cost-1 edges.

Otherwise, g > 1, which implies that 1 ¢ S and the graph C(S)
has g components. Any Hamiltonian cycle must thus use at least
g expensive edges and hence cost at least n + g. To construct such
a Hamiltonian cycle, we start by building a path v{ =1, va,...vp/g
starting at vertex 1 and visiting all vertices in the component of
C(S) including vertex 1; this can be done using the algorithm in
Proposition 2.2 (obtaining a Hamiltonian cycle, say, on the sub-
graph consisting of {v:1<v #n,v =1} and deleting one of the
edges incident to vertex 1). We translate this Hamiltonian path to
the other components of C(S) by length-1 edges, obtaining Hamil-
tonian paths

vi+k va4k, . vye+k

for k=0,1,..., (g —1). We join these paths with length-1 edges as
in Fig. 5, adding the edges {vn g +k, vn/g +k + 1} for k odd and
{k,k + 1} for k even. This yields a Hamiltonian path from vertex 1
to either v{ 4+ (g — 1) =g (if g is even) or vy +(g—1) (if g is
odd). Note, however, that both are adjacent to 1 by a cost-2 edge:
otherwise, they would be in the same component of C(S). Thus,
we can extend this Hamiltonian path to a Hamiltonian cycle, and
we used exactly g cost-2 edges. O

5. Minimum-cost Eulerian tours

In our final section, we consider a problem related to the
two-stripe circulant TSP: finding an Eulerian, connected sub-
(multi)graph (including all vertices) of minimum cost on a two-
stripe circulant instance. That is, a minimum-cost tour visiting
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Fig. 6. Feasible Hamiltonian cycles when g is even (left) and odd (right), which are
optimal Eulerian tours when ¢; =c;j.

Fig. 7. Optimal Eulerian tour when c; = 0, depending on the row of the vertex (1 —
j) mod n within the last column.

every vertex, potentially repeating edges, on a two-stripe circulant
instance. Classic algorithms for the metric TSP (such as the double-
tree and Christofides-Serdyukov algorithm [8,29,31]) begin by
finding such a tour; our problem is equivalent to finding a Hamil-
tonian tour on the metric completion of a two-stripe circulant
TSP instance. Gerace and Irving [12] give a (4/3)-approximation
algorithm for general circulant TSP instances that are also met-
ric (and therefore for finding minimum-cost Eulerian, connected
sub-(multi)graphs on any circulant instance). Here, we show that
the ratio can be improved to (10/9) when considering a two-stripe
instance.

More specifically, consider a circulant instance with two finite
edge costs 0 <¢; <cj < oco. We assume that gcd(n, i, j) = 1: other-
wise, by Proposition 2.2, the graph C({i, j}) will not be connected.
Let g =gcd(n,i). If g =1, then the length-i edges form a Hamil-
tonian cycle, and form an optimal Eulerian tour of cost n x c;.
Otherwise, C({i}) consists of g components, and an Eulerian tour
costs at least (n — g) x ¢; + g x Cj.

To motivate our result, consider two extremal cases. First, if
¢i = ¢j, then any Hamiltonian cycle is optimal. Fig. 6 sketches such
a Hamiltonian cycle, based on the parity of g. As in the drawing
convention from Fig. 3, we plot components of C({i}) as columns.
With this convention, “cheap” length-i edges are vertical and “ex-
pensive” length-j edges are horizontal. Conversely, if ¢; = 0, we can
frivolously use length-i (vertical) edges. We consider an Eulerian
tour as shown in Fig. 7: There will be some vertex (1 — j) mod n
in the last column (highlighted in blue) connected to vertex 1 by
a length-j edge. We follow a zig-zagging Hamiltonian path end-
ing at either the bottom or top vertex in that column, which has
n/g vertices in it. We then take extra length-i edges to reach
(1—j) mod n: either “wrapping around” (as in the left of Fig. 7) or
“turning around” the same column (as in the right), depending on
whichever uses fewer length-i edges. Since there are n/g length-i
edges in this column, one direction will use at most n/(2g) extra
length-i edges; when ¢; =0 these tours cost exactly g x cj, which
is optimal.

Our final result gives rise to a 10/9-approximation algorithm:
it shows that at least one of these extremal tours will always be
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within 10/9 of the minimum-cost Eulerian tour. To make the anal-
ysis more clean, we scale all edge costs by 1/c; (if ¢cj =0, then
ci =cj =0 and our tour from Fig. 6 is optimal) and define c := E—;
Then our cheaper edges cost 0 < c <1, and our expensive edges
cost 1. Thus our tours from Fig. 6 cost

m—-2(g-1D)c+2(g—-1.

Our tours from Fig. 7 use (n/g) — 1 length-i edges in each of the
g columns in the original Hamiltonian path, at most n/(2g) ad-
ditional length-i edges in the last column, and exactly g length-j
edges. All together, they thus cost at most

n n n
g(——l)c—i——c—l—g:(n—g—i——)c—i—g.
g 28 28

Theorem 5.1. Consider a two-stripe circulant input where gcd(n, i, j) =
1 and g :=gcd(n, i) > 1. At least one of the tours shown in Figs. 6 and 7
has cost within (10/9) of the minimum-cost Eulerian tour.

Proof. First we note that any Eulerian tour must use at least n
edges, and at least g of these must be length-j to fully connect
the components of C({i}) and return to vertex 1. Thus, any Eulerian
tour costs at least (n — g)c + g. Note also that this implies that, if
g =2, the Eulerian tours from Fig. 6 are optimal.

Hence, we assume that g > 3. We will benchmark each tour
against the lower bound, and thus want to show that

n—gc+g n—gc+g
Equivalently, that

.{(n—z(g—1)>c+2(g—1) (“—g+§—g)c+g} 10
min EE‘

mm{H(g—Z)(l—c)’ 25€ }597
n—gxc+g n—gc+g 9
or that
mnf €200 _fi¢ ) 1
n—gc+g m—gc+g) 9

Straightforward calculus shows that % is decreasing in ¢

for c € [0, 1] (and decreases from % to 0), while % is in-
creasing in ¢ for c¢ € [0, 1] (and increases from 0 to 1/(2g). Thus,

n
- in(e=va-o _ 2°¢
the worst-case value of min{ —piTe ' T—2)iTE
both arguments are equal: when

} occurs when

n
€&-20-0= 22"

See, for instance, Fig. 8.
Solving for c, we find

. 2g(g—2)
n+2g(g—-2)
Plugging in for ¢, we find that

o n _2g(g=2)
2g _ 2g n+2g(g—2)
— o 2g(g—2)
M=gc+ts -8 te

ng—2)
n+2g(g—2)

n—g) sty +g
_ n(g—2)
n—g)2g(g—2)+gn+2g(g—2)
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Fig. 8. Example of % (blue) and (nj% (red) when n=24 and g =3.
3 n(g—2)
2ng(g —2) —2g%(g —2) +gn+2g%(g —2)
__&-2
- 2g2-3g
Hence,
. {(g—le -0 3¢ } g-2
min , =5 .
n—gc+g (m—gc+g) 2g°—-3¢g

Finally, we note that ﬁ is decreasing in g for g > 3, and at

g=3, % =1/9. This completes our proof. O
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