
Foundations and Trends® in Optimization

AltGDmin: Alternating GD and
Minimization for Partly-decoupled

(Federated) Optimization

Suggested Citation: Namrata Vaswani (2025), “AltGDmin: Alternating GD and Mini-
mization for Partly-decoupled (Federated) Optimization”, Foundations and Trends® in
Optimization: Vol. 8, No. 4, pp 333–414. DOI: 10.1561/2400000051.

Namrata Vaswani
Iowa State University
namrata@iastate.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

1 Introduction 335
1.1 Partly Decoupled Optimization Examples 337

I Existing Optimization Solutions and AltGDmin 342

2 Commonly Used Optimization Algorithms 343
2.1 The Optimization Problem and its Federated Version . . . 343
2.2 Gradient Descent (GD) 344
2.3 Block Coordinate Descent and Alternating Minimization

(AltMin) . 345
2.4 Non-linear Least Squares (NLLS) 347
2.5 Algorithm Initialization 347

3 AltGDmin for Partly Decoupled Optimization Problems 349
3.1 Partly-decoupled Optimization: Precise Definition 349
3.2 Alternating GD and Minimization (AltGDmin) 350

II AltGDmin for Partly-decoupled Low Rank (LR) Recovery
Problems: Algorithms and Guarantees 354

4 AltGDmin for Three LR Matrix Recovery Problems 355
4.1 Notation . 355
4.2 LRCS, LRPR, and LRMC Problems 355
4.3 Federation . 358
4.4 AltGDmin for LRCS: Algorithm and Guarantees 358
4.5 AltGDmin for LRPR: Algorithm and Guarantees 363
4.6 AltGDmin for LRMC: Algorithm and Guarantees 365

III AltGDmin Analysis – Overall Proof Technique and Details
for LR Problems 369

5 General Proof Approach for any Problem 370

6 AltGDmin for LR Problems: Overall Proof Ideas 373
6.1 AltGDmin for any LR Matrix Recovery Problem 374
6.2 Proof Approach: Clean and Noise-free Case 374
6.3 Proof Approach: Noisy Gradient Approach to Deal with

Nonlinear or Noisy or Attack-prone Cases 378

7 AltGDmin for LR Problems: Proof Details 380
7.1 Key Results Used . 380
7.2 Analyzing the Initialization Step 381
7.3 Clean Noise-free Case . 383
7.4 Nonlinear or Noisy or Attack-prone or Outlier Corrupted

Settings . 386

8 Linear Algebra and Random Matrix Theory Preliminaries 389
8.1 Linear Algebra: Maximum and Minimum Singular Value and

the Induced 2-norm . 389
8.2 Linear Algebra: Wedin and Davis-Kahan sin Θ Theorems . 390
8.3 Probability Results: Markov’s Inequality and its Use to Prove

Concentration Bounds . 391
8.4 Probability Results: Chernoff Bounding Idea 392

8.5 Probability Results: Bounds on Sums of Independent Scalar
r.v.s (Scalar Concentration Bounds) 393

8.6 Probability Results: Epsilon Netting Argument Used for
Extending Union Bound to Uncountable but Compact Sets 394

8.7 Probability Results: Bounding Sums of Independent Matrix
r.v.s (Matrix Concentration Bounds) 395

IV Open Questions: AltGDmin and Generalized-AltGDmin for
Other Partly-decoupled Problems 398

9 Open Questions 399
9.1 Guarantees for a General Optimization Problem 399
9.2 Generalized AltGDmin . 399
9.3 Robust PCA and Extensions: A Partly Decoupled Example

Problem for Generalized AltGDmin 400
9.4 Partly Decoupled Tensor LR: Tensor LR Slicewise Sensing . 401
9.5 Partly Decoupled Not-differentiable Problems 403

Appendix 406

References 409

AltGDmin: Alternating GD and
Minimization for Partly-decoupled
(Federated) Optimization
Namrata Vaswani

Iowa State University, USA; namrata@iastate.edu

ABSTRACT

This monograph describes a novel optimization solution
framework, called alternating gradient descent (GD) and
minimization (AltGDmin), that is useful for many problems
for which alternating minimization (AltMin) is a popular
solution. AltMin is a special case of the block coordinate
descent algorithm that is useful for problems in which min-
imization w.r.t one subset of variables keeping the other
fixed is closed form or otherwise reliably solved. Denote
the two blocks/subsets of the optimization variables Z by
Zslow, Zfast, i.e., Z = {Zslow, Zfast}. AltGDmin is often a
faster solution than AltMin for any problem for which (i)
the minimization over one set of variables, Zfast, is much
quicker than that over the other set, Zslow; and (ii) the cost
function is differentiable w.r.t. Zslow. Often, the reason for
one minimization to be quicker is that the problem is “decou-
pled” for Zfast and each of the decoupled problems is quick
to solve. This decoupling is also what makes AltGDmin
communication-efficient for federated settings.

Important examples where this assumption holds include
(a) low rank column-wise compressive sensing (LRCS), low

Namrata Vaswani (2025), “AltGDmin: Alternating GD and Minimization for Partly-
decoupled (Federated) Optimization”, Foundations and Trends® in Optimization:
Vol. 8, No. 4, pp 333–414. DOI: 10.1561/2400000051.
©2025 N. Vaswani

334

rank matrix completion (LRMC), (b) their outlier-corrupted
extensions such as robust PCA, robust LRCS and robust
LRMC; (c) phase retrieval and its sparse and low-rank model
based extensions; (d) tensor extensions of many of these
problems such as tensor LRCS and tensor completion; and
(e) many partly discrete problems where GD does not apply
– such as clustering, unlabeled sensing, and mixed linear
regression. LRCS finds important applications in multi-task
representation learning and few shot learning, federated
sketching, and accelerated dynamic MRI. LRMC and robust
PCA find important applications in recommender systems,
computer vision and video analytics.

1
Introduction

This monograph describes a novel algorithmic framework, called Alter-
nating Gradient Descent (GD) and Minimization or AltGDmin for short,
that is useful for optimization problems that are “partly decoupled” [37].
Consider the optimization problem minZ f(Z). This is partly-decoupled
if we can split the set of optimization variables Z into two blocks,
Z = {Zslow, Zfast}, so that the minimization over Zfast, keeping Zslow

fixed, is decoupled. This means that it can be solved by solving many
smaller-dimensional, and hence much faster, minimization problems
over disjoint subsets of Zfast. That over Zslow, keeping Zfast fixed, may
or may not be decoupled. We provide examples below and define this
mathematically in Section 3.1.

For problems for which one of the two minimizations is decoupled,
and hence fast, while the other is not, AltGDmin often provides a much
faster solution than the well-known Alternating Minimization (AltMin)
[7, 19] approach. Even if both problems are decoupled, AltGDmin
still often has a communication-efficiency advantage over AltMin when
used in distributed or federated settings. This is the case when the
data is distributed across the nodes in such a way that the decoupled
minimization over a subset of Zfast also depends on the subset of data
available at a node; so this can be solved locally.

335

336 Introduction

Federated learning is a setting in which multiple distributed nodes or
entities or clients collaborate to solve a machine learning (ML) problem
and where different subsets of the data are acquired at the different nodes.
Each node can only communicate with a central server or service provider
that we refer to as “center” in this monograph. Communication-efficiency
is a key concern with all distributed algorithms, including federated ones.
Privacy is another key concern in federated learning. Both concerns
dictate that the data observed or measured at each node/client be stored
locally and not be shared with the center. Summaries of it can be shared
with the center. The center typically aggregates the received summaries
and broadcasts the aggregate to all the nodes [29]. In this monograph,
“privacy” only means the following: the nodes’ raw data cannot be shared
with the center and the algorithm should be such that the center cannot
reconstruct the entire unknown true signal (vector/matrix/tensor).

One of the challenges in federated learning is developing algorithms
that are resilient to adversarial attacks on the nodes; resilience to Byzan-
tine attacks is especially critical. An important challenge in distributed
computing settings (data is available centrally, but is distributed to
nodes, e.g., over the cloud, to parallelize and hence speed up the comput-
ing) is to have algorithms that are resilient to stragglers (some worker
nodes occasionally slowing down or failing) [45, 49]. As will become
clear in this monograph, the design of both attack resilient and straggler
resilient modifications of AltGDmin is also efficient. One example of
Byzantine attack resilient AltGDmin is studied in [46].

Monograph organization. This monograph begins by giving some
examples of partly decoupled optimization problems and their appli-
cations below. In Section 2, we provide a short overview of some of
the popular optimization algorithms - gradient descent (GD), block
coordinate descent and AltMin, and nonlinear least squares – and when
these work well. All these are iterative algorithms that need an initial-
ization. We describe common initialization approaches as well. Then, in
Section 3, we precisely define a partly decoupled problem and develop
and discuss the AltGDmin algorithmic framework. In the second part
of this monograph, in Section 4, we provide the AltGDmin algorithm
details, including initialization, for three important LR matrix recovery

1.1. Partly Decoupled Optimization Examples 337

problems - LR column-wise sensing, LR phase retrieval and LR matrix
completion. We also state and discuss the theoretical sample and itera-
tion complexity guarantees that we can prove for these problems. The
iteration complexity helps provide total computational and communi-
cation complexity bounds. The third part of this monograph discusses
proof techniques. We first provide the general proof approach that can
be used to analyze the AltGDmin in Section 5 and then describe the
key ideas for LR problems in Section 6. Details are in Section 7. Pre-
liminaries used in these proofs are provided and explained in Section 8.
This section provides a short overview of the most useful linear algebra
and random matrix theory topics from [53] and [16]. In the last part
of this monograph, Section 9 describes open questions including other
problems where AltGDmin or its generalization may be useful.

1.1 Partly Decoupled Optimization Examples

We provide a few examples of partly decoupled problems.

Low rank column-wise compressive sensing (LRCS). This
problem involves recovering an n × q rank-r matrix X∗, with r �
min(n, q), from column-wise undersampled (compressive) measurements,
yk := Akx∗

k , k ∈ [q]. The matrices Ak are dense (non-sparse) matrices
that are known. Each yk is an m-length vector with m < n. Let
Y := [y1, y2, . . . , yq] denote the observed data matrix. We can solve
this problem by considering the squared loss function. It then becomes
a problem of finding a matrix X of rank at most r that minimizes∑q

k=1 ‖yk − Akxk‖2
2. Suppose that r or an upper bound on it is known.

This problem can be converted into an unconstrained, and smaller
dimensional, one by factorizing X as X = UB, where U and B are
matrices with r columns and rows respectively. Thus, the goal is to
solve

arg min
U ,B

f(U , B) := arg min
U ,B

q∑
k=1

‖yk − AkUbk‖2
2. (1.1)

Notice that bk appears only in the k-th term of the above summation.
Thus, if we needed to minimize over B, while keeping U fixed, the

338 Introduction

problem decouples column-wise. The opposite is not true. We refer to
such a problem as a partly decoupled problem.

In solving the above problem iteratively, there can be numerical
issues because UB = URR−1B for any r × r invertible matrix R.
The norm of U could keep increasing over iterations while that of
B decreases or vice versa. To prevent this, either the cost function
is modified to include a norm balancing term, e.g., as in [56], or one
orthonormalizes the estimate of U after each update.

Three important practical applications where the LRCS problem
occurs include (i) federated sketching [3, 17, 22, 23, 44, 48, 55], (ii)
accelerated (undersampled) dynamic MRI with the low rank (LR) model
on the image sequence, and (iii) multi-task linear representation learning
to enable few shot learning [18, 20, 46, 50]. In fact, some works refer
to the LRCS problem as multi-task representation learning. (iv) The
LRCS problem also occurs in for parameter estimation in multi-task
linear bandits [33].

Low rank phase retrieval (LRPR). This is the phaseless extension
of LRCS [37, 39, 40] but it was studied in detail before LRCS was
studied. This involves solving

arg min
U ,B

f(U , B) := arg min
U ,B

q∑
k=1

‖yk − |AkUbk|‖2
2 (1.2)

where |.| computes the absolute value of each vector entry. LRPR finds
applications in dynamic Fourier ptychography [26, 27].

LR matrix completion (LRMC). In this case, the cost function is
partly decoupled w.r.t. both U and B (keeping the other fixed). This
involves recovering a LR matrix from a subset of its observed entries.
Letting Ω denote the set of observed matrix entries, and letting PΩ
denote the linear projection operator that returns a matrix of size n × q

with the unobserved entries set to zero, this can be expressed as a
problem of learning X∗ from Y := PΩ(X∗). Letting the unknown X

as X = UB as above, the optimization problem to solve now becomes:

1.1. Partly Decoupled Optimization Examples 339

arg min
U ,B

f(U , B) := ‖Y − PΩ(X∗)‖2
F

=
q∑

k=1
‖yk − PΩk

(Ubk)‖2
2

=
n∑

j=1
‖yj − PΩj (uj�B)‖2

2 (1.3)

with B = [b1, b2, . . . , bk, . . . bq], U� = [u1, u2, . . . , uj , . . . , un], Ωk :=
{j : (j, k) ∈ Ω} and Ωj := {k : (j, k) ∈ Ω}. Notice that the above
problem is decoupled over B for a given U , and vice-versa. LRMC finds
important applications in recommender systems’ design, survey data
analysis, and video inpainting [11]. LRMC also finds applications in
parameter estimation for reinforcement learning, in particular for filling
in the missing entries of its state transition probability matrix.

Other partly-decoupled examples. Other examples of partly decou-
pled problems include non-negative matrix factorization, sparse PCA,
robust PCA and extensions (robust LRCS and robust LRMC), tensor
LR slice-wise sensing and its robust extension, and LR tensor com-
pletion; and certain partly discrete problems – clustering, shuffled or
unlabeled sensing, and mixed linear regression. We describe these in
Section 9.

1.1.1 Detailed Description of Some Applications

Why the LR model? Medical image sequences change slowly over
time and hence these are well modeled as forming a low-rank matrix with
each column of the matrix being one vectorized image [5, 34]. The same
is often also true for similar sets of natural images and videos [12, 36].
The matrix of user ratings of different products, e.g., movies, is modeled
as a LR matrix under the commonly used hypothesis that the ratings are
explained by much fewer factors than the number of users, q, or products,
n [11]. In fact, many large matrices are well modeled as being LR [51];
these model any image sequence or product ratings or survey dataset,
in which most of the differences between the different images or ratings
or survey data, q, are explained by only a small number r of factors.

340 Introduction

MRI. In MRI, which is used in medicine for cross-sectional imaging
of human organs, after some pre-processing, the acquired data can be
modeled as the 2D discrete Fourier transform (FT) of the cross-section
being imaged. This is acquired one FT coefficient (or one row or line of
coefficients) at a time [9, 35]. The choice of the sampled coefficients can
be random or it may be specified by carefully designed trajectories. The
goal is to reconstruct the image of the cross-section from this acquired
data. If we can reconstruct accurately from fewer samples, it means that
the acquisition can be speeded up. This is especially useful for dynamic
MRI because it can improve the temporal resolution for imaging the
changes over time, e.g. the beating heart. Accelerated dynamic MRI
involves doing this to recover a sequence of q images, x∗

k, k ∈ [q], say,
of the beating heart or of brain function as brain neurons respond
to a stimuli, or of the vocal tract (larynx) as a person speaks, from
undersampled DFT measurements yk, k ∈ [q]. Here x∗

k is a vectorized
image. The matrices Ak are the partial Fourier matrices represented by
the 2D DFT (or sometimes the FT in case of radial sampling) computed
at the specified frequencies.

Multi-task learning. Multi-task representation learning refers to the
problem of jointly estimating the model parameters for a set of related
tasks. This is typically done by learning a common lower-dimensional
“representation” for all of their feature vectors. This learned representa-
tion can then be used for solving the meta-learning or learning-to-learn
problem: learning model parameters in a data-scarce environment. This
strategy is referred to as “few-shot” learning. In recent work [20], a very
interesting low-dimensional linear representation was introduced and
the corresponding low rank matrix learning optimization problem was
defined. This linear case will be solved if we can solve (1.1). Simply said,
this can be understood as a problem of jointly learning the coefficients’
for q related linear regression problems, each with their own dataset Ak,
and with the regression vectors x∗

k being correlated (so that low rank is
a good model on the matrix formed by these vectors, X∗). Once the
“common representation” (the column span subspace matrix U) can be
estimated, we can solve a new linear regression problem that is related

1.1. Partly Decoupled Optimization Examples 341

(correlated) with these hold ones by only learning a new r-dimensional
vector bk for it.

Federated sketching. For the vast amounts of data acquired on
smartphones/other devices, there is a need to compress/sketch it before
it can be stored or transmitted. The term “sketch” refers to a compres-
sion approach, where the compression end is very inexpensive [3, 17,
22, 23, 44, 48, 55]. A common approach to sketching, that is especially
efficient in distributed settings, is to multiply each vectorized image
by a different independent m × n random matrix (typically random
Gaussian or Rademacher matrix) with m < n, and to store or transmit
this sketch.

Part I

Existing Optimization
Solutions and AltGDmin

2
Commonly Used Optimization Algorithms

2.1 The Optimization Problem and its Federated Version

Our goal is to solve
arg min

Z
f(Z; D)

Here D is the available data.

Federation. We assume that there are a total of γ distributed nodes,
and that disjoint subsets of data are observed / sensed / measured
at the different nodes. We use D� to denote the subset of the data
available at node �. Thus ∪γ

�=1D� = D is all the available data and D�s
are disjoint. We assume that f(Z; D) is a sum of γ functions, each of
which depends on a subset of the data D�, i.e., that

f(Z; D) =
γ∑

�=1
f�(Z; D�)

In the partly decoupled problems that we study, f� is a function of only
a subset of Z, e.g., in LRCS, f� depends only on U , bk. We clarify this
later.

343

344 Commonly Used Optimization Algorithms

2.2 Gradient Descent (GD)

The simplest, and most popular, class of solutions for solving an un-
constrained (convex or non-convex) optimization problem is gradient
descent (GD) [6, 13] and its modifications, the most common being
various versions of stochastic GD. GD starts with an initial guess and
attempts to move little steps in the direction opposite to that of the
gradient of the cost function at the previous iterate. Pseudo-code for
simple GD is as follows.

• Initialize Z to Ẑ.

• Run the following steps T times, or until a stopping criterion is
reached.

1. Update Z by one GD step: Ẑ ← Ẑ − η∇Zf(Ẑ; D). Here η is
the GD step size, also often referred to as the learning rate.

The stopping criterion usually involves checking if ‖∇Zf(Ẑ)‖/||Ẑ||
is small enough.

• Federated setting: At each algorithm iteration, each node � com-
putes the partial gradient ∇Zf�(Ẑ; D�) and sends it to center,
which computes ∇f =

∑
� ∇f� and the GD update.

For strongly convex cost functions, GD provably converges to the
unique global minimizer of f(Z) starting from any initial guess. For
convex functions, one can prove that it converges to a global minimizer
(there are multiple global minimizers in this case). For non-convex
functions, convergence to a global minimizer cannot be guaranteed. One
can only show that GD will converge to a stationary point of the cost
function under mild assumptions. All the above results require that the
GD step size is small enough [6].

In signal processing and machine learning, the goal is to learn the
“true solution” which is one of many local minimizers of the specified cost
function. Henceforth, we refer to this as the “desired minimizer”. For
certain classes of non-convex cost functions that are “nice”, such as those
that arise in phase retrieval [10, 15] or in various LR matrix recovery

2.3. Block Coordinate Descent and Alternating Minimization 345

problems, one can prove results of the following flavor. If the available
number of data samples is large enough, if the step size is small enough,
and if the initialization is within a certain sized window of the desired
minimizer, then, the GD estimate will converge to the desired minimizer,
with high probability (w.h.p.), e.g., see [10, 15, 56]. Such results are
also non-asymptotic and provide an order-wise bound on the iteration
complexity (number of iterations needed by the algorithm to get within
ε normalized distance of the desired minimizer). However, in some cases,
such results require a very small step size, e.g., for phase retrieval in
[10]. This, in turn, means that GD has high iteration complexity. In
other cases, such as for LRCS, it is not possible to show that a GD
algorithm converges at all [37].

2.3 Block Coordinate Descent and Alternating Minimization (Alt-
Min)

Coordinate descent involves minimizing over one scalar optimization
variable at a time, keeping others fixed, and repeating this sequentially
for all variables. Block Coordinate Descent or BCD involves doing
this for blocks (subsets) of variables, instead of one variable at a time.
AltMin is a popular special case of BCD that splits the variables into
two blocks Z = {Zslow, Zfast}. This is extensively used and studied
theoretically because of its simplicity [7, 19]. It solves arg minZ f(Z) =
arg min{Zslow,Zfast} f(Zslow, Zfast) using an iterative algorithm that
starts with initializing Zslow, and then alternatively updates Zfast and
Zslow using minimization over one of them keeping the other fixed. The
following is pseudo-code for AltMin.

• Initialize Zslow to ˆZslow.

• Alternate between the following two steps T times (or until a
stopping criterion is reached).

1. Update Zfast keeping Zslow fixed: ˆZfast ← minZfast
f(ˆZslow, Zfast)

2. Update Zslow keeping Zfast fixed: ˆZslow ← minZslow
f(Zslow, ˆZfast)

• Federated setting: This is not easy and has to be considered on a
problem-specific basis. For most problems it is not efficient.

346 Commonly Used Optimization Algorithms

BCD is a generalization of this algorithm to the case when Z needs to
be split into more than two subsets for the individual optimizations to
be closed form or otherwise reliably solvable.

AltMin works well, and often can be shown to provably converge,
for problems in which the two minimizations can either be solved in
closed form, or involve use of a provably convergent algorithm. Bilinear
problems, such as the LRCS and LRMC problems described earlier,
are classic examples of settings in which each of the minimization
problems is a Least Squares (LS) problem, and hence, has a closed
form solution [40, 41]. LRPR [40] is an example problem in which one
minimization is LS while the other is a standard phase retrieval problem,
with many provably correct iterative algorithms, e.g., [15]. A second
class of problems where AltMin is used, while GD is not even applicable,
is those for which the cost function is not differentiable w.r.t. some of
the variables. Clustering is one example of such a problem; the k-means
clustering algorithm is an AltMin solution.

As explained above in Section 2.2, for some of the problems for
which both AltMin and GD are applicable, either GD cannot be shown
to converge or it requires a very small step size to provably converge,
making its iteration complexity too high. For certain classes of “nice”
problems such as the LR problems described earlier, when initialized
carefully, AltMin makes more progress towards the minimizer in each
iteration, and hence converges faster: it can be shown to have an
iteration complexity that depends logarithmically on the final error
level. However, typically, AltMin is much slower per iteration than GD.
An exception is problems in which both the minimization problems of
AltMin are decoupled and hence very fast.

Moreover, a federated or distributed modification of AltMin is almost
never efficient. This is the case even when both minimizations are
decoupled like for LRMC. The reason is one of the minimization steps
will require using data from multiple nodes. This will either require use
of multiple GD iterations to solve the minimization problem (slow and
communication-inefficient) or it will require all nodes to send their raw
data to the center which distributes it (communication-inefficient and
not private either).

2.4. Non-linear Least Squares (NLLS) 347

2.4 Non-linear Least Squares (NLLS)

The Non-linear Least Squares (NLLS) approach was originally developed
within the telecommunications literature for frequency estimation and
related problems (all low-dimensional problems) [30]. This also splits Z

into two blocks, Z = {Zslow, Zfast} and solves problems in which, for
any value of Zslow, the minimization over Zfast is an over-determined
least squares (LS) problem. For such problems, the NLLS approach
substitutes a closed form expression for ˆZfast in terms of Zslow into
the original cost function. It then minimizes the new cost function over
Zslow using GD or one of its modifications such as the Newton method.
To be precise, it uses GD (or Newton’s method or any solver) to solve

min
Zslow

f(Zslow, ˆZfast(Zslow))

where ˆZfast(Zslow) = arg minZfast
f(Zslow, Zfast) is the closed form for

the LS solution for Zfast in terms of Zslow.
NLLS is easy to use for problems for which it is easy to compute the

gradient of f̃(Zslow) := f(Zslow, ˆZfast(Zslow)) w.r.t. Zslow. However,
for problems like LRCS, the new cost function is f̃(U) :=

∑
k ‖yk −

AkU(AkU)†yk‖2, with M † := (M�M)−1M�. The gradient of this
new cost function does not have a simple expression. Moreover, it is
expensive to compute, and it makes the algorithm too complicated to
analyze theoretically. To our knowledge, guarantees do not exist for
NLLS.

2.5 Algorithm Initialization

All iterative algorithms require an initialization. If the cost function is
strongly convex, it has a unique minimizer. In this case, any initialization
will work. For all other cases, the solution that an iterative algorithm
converges to depends on the initialization.

There are a few possible ways that an algorithm can be initialized.
The most common approach is random initialization. In this case, one
runs the entire algorithm with multiple random initializations and stores
the final cost function value for each. The output corresponding to the
initialization that results in the smallest final cost is then chosen.

348 Commonly Used Optimization Algorithms

In some other settings, some prior knowledge about Zslow is available
and that is used as the initialization. For example, in multi-modal
imaging, an approximate image estimate may be available from one
source and that can serve as an initialization.

For a large number of structured signal (vector, matrix, or tensor)
recovery problems and for phase retrieval problems, one can come up
with a carefully designed spectral initialization: one computes the top,
or top few, singular vectors of an appropriately defined matrix, that is
such that the top singular vector(s) of its expected value are equal to,
or close to, the unknown quantity of interest, or to a part of it.

3
AltGDmin for Partly Decoupled Optimization

Problems

We first precisely define a partly decoupled problem and then develop
the AltGDmin framework.

3.1 Partly-decoupled Optimization: Precise Definition

Consider an optimization problem arg minZ f(Z). Suppose, as before,
that Z can be split into two blocks Z = {Zslow, Zfast}, such that
optimization over one keeping the other fixed can be correctly solved
(has a closed form or provably correct iterative solution). We say this
problem is partly decoupled (is decoupled for Zfast) if

f(Z; D) := f(Zslow, Zfast; D) =
γ∑

�=1
f�(Zslow, (Zfast)�; D�)

with (Zfast)� being disjoint subsets of the variable set Zfast, e.g., in
case of the LR problems described earlier, these are different columns
of the matrix B.

Thus, partial decoupling implies that the minimization over Zfast

(keeping Zslow fixed at its previous value, denoted ˆZslow) can be solved
by solving γ smaller dimensional optimization problems, i.e.,

349

350 AltGDmin for Partly Decoupled Optimization Problems

min
Zfast

f(ˆZslow, Zfast; D) =
γ∑

�=1
min

(Zfast)�

f�(ˆZslow, (Zfast)�; D�)

The computation cost of most optimization problems is more than linear,
and hence, the γ smaller dimensional problems are quicker to solve, than
one problem that jointly optimizes over all of Zfast. Moreover, notice
that the minimization over (Zfast)� only depends on the data subset
D�. Thus, if all of D� is available at a node, then the minimization over
(Zfast)� can be solved locally at the node itself.

Remark 3.1. It is possible that there are partly decoupled optimization
problems for which the cost function is not just a sum of simpler cost
functions, but is some other composite function. We attempt to define
this most general case in Appendix A.

3.2 Alternating GD and Minimization (AltGDmin)

For partly decoupled problems, in recent work [37], we introduced the
following Alternating GD and Minimization (AltGDmin) algorithmic
framework.

• Initialize Zslow to ˆZslow. Approaches discussed in Section 2.5 can
be used.

• Alternate between the following two steps T times, or until a
stopping criterion is reached.

1. Update Zfast by minimization: ˆZfast ← minZfast
f(ˆZslow, Zfast).

Because of the decoupling, this simplifies to

(ˆZfast)� ← arg min
(Zfast)�

f�(ˆZslow, (Zfast)�) for all � ∈ [γ]

(a) Federated setting: Each node � solves the above problem
locally. No data exchange needed.

2. Update Zslow by GD:

ˆZslow ← Ẑa − η
γ∑

�=1
∇Zslow

f�(Zslow, (Zfast)�; D�)

Here η is the GD step size.

3.2. Alternating GD and Minimization (AltGDmin) 351

(a) Federated setting: Each node � computes the partial
gradient ∇Zslow

f�(ˆZslow, (ˆZfast)�; D�) and sends it to
the center, which computes ∇f =

∑
� ∇f� and the GD

update.

Time complexity per iteration: centralized. The time cost of
gradient computation w.r.t. Zslow is much lower than that of solving
a full minimization w.r.t. it. In addition, if the time cost of solving
minZfast

f(ˆZslow, Zfast) is comparable to that of computing the gradient
w.r.t. Zslow, then, per iteration, AltGDmin is as fast as GD, and much
faster than AltMin. This is the case for the LRCS problem, for example.

Communication complexity. If the data is federated as assumed
earlier (data subset D� is at node �), then one can develop an efficient
distributed federated implementation that is also more communication-
efficient per iteration than AltMin, and comparable to GD. Node �

updates (Zfast)� locally and computes its partial gradient which it
shares with the center. The center needs to only sum these, implement
GD (just a subtraction), and (if needed) process the final output, e.g.,
orthonormalize the columns of Zslow = U in case of LR recovery
problems. This step is quick, of order nr2 since U is an n × r matrix.

Iteration complexity and sample complexity. It is often possible
to also prove that the AltGDmin iteration complexity is only slightly
worse than that of AltMin and much better than that of GD; and this
is true under sample complexity lower bounds that comparable to what
AltMin or GD need. The reason is the minimization over Zfast in each
iteration helps ensure sufficient error decay with iteration, even with
using a constant GD step size. For example, we have proved this for
LRCS, LRPR, and LRMC; see Section 4 and Table 4.1. This claim
treats the matrix condition number as a numerical constant. We should
mention here that, the GD algorithm for U , B, referred to as Factorized
GD (FactGD), does not provably converge for LRCS or LRPR; the
reasons are explained in Section 4. Hence we do not have a bound on its
iteration complexity. FactGD does converge for LRMC but its iteration
complexity is r times worse than that of AltGDmin or AltMin.

352 AltGDmin for Partly Decoupled Optimization Problems

Overall computation and communication complexity and sam-
ple complexity. As explained above, for many partly decoupled prob-
lems, one can prove that AltGDmin is as fast per iteration as GD,
while having iteration complexity that is almost as good as that of
AltMin with a sample complexity bound that is comparable to that of
AltMin. This makes it one of the fastest algorithms in terms of total
time complexity. In terms of communication cost, its per iteration cost
is usually comparable to that of GD, while its iteration complexity is
better, making it the most communication efficient.

As an example, for LRCS, AltGDmin is much faster and much more
communication-efficient than AltMin. This is true both in terms of order-
wise complexity and practically in numerical experiments. For LRMC,
which is partly decoupled for both Zfast and for Zslow, all of AltGDmin,
AltMin and GD have similar order-wise time complexity. However
communication-complexity of AltGDmin is the best. Consequently, in
numerical simulations on federated AWS nodes, AltGDmin is overall
the fastest algorithm for large problems; see [2].

Non-differentiable cost functions. Another useful feature of Alt-
GDmin is that it even applies for settings for which the cost function is
not differentiable w.r.t. the decoupled set of variables. Some examples
include clustering and unlabeled/shuffled sensing. We describe these in
Section 9.5.

Byzantine-resilient or straggler-resilient modifications. Fed-
erated algorithms are often vulnerable to attacks by adversaries. One
of the most difficult set of attacks to deal with is Byzantine attacks.
Because AltGDmin involves exactly one round of partial gradients ex-
change per iteration, designing Byzantine resilient modifications for
AltGDmin is easy to do and the resulting algorithm retains its efficiency
properties. In recent work [46], we developed a Byzantine-resilient Alt-
GDmin solution for federated LRCS. We postpone the discussion of
these modifications to a later review.

In distributed computing, resilience to straggling nodes is an impor-
tant practical requirement. Straggler resilient GD using the “gradient
coding” approach has been extensively studied [45, 49]. These approaches
are directly applicable also for AltGDmin.

Part II

AltGDmin for
Partly-decoupled Low Rank
(LR) Recovery Problems:

Algorithms and Guarantees

4
AltGDmin for Three LR Matrix Recovery

Problems

4.1 Notation

We use ‖.‖F to denote the Frobenius norm, ‖.‖ without a subscript to
denote the (induced) l2 norm, � to denote matrix or vector transpose,
and M † := (M�M)−1M�. For a tall matrix M , QR(M) orthonor-
malizes M . We use diag(v) to create a diagonal matrix with entries
given by entries of vector v. For two n × r matrices U1, U2 that have
orthonormal columns, we use

SubsDist2(U1, U2) :=‖(I − U1U�
1)U2‖,

SubsDistF (U1, U2) :=‖(I − U1U�
1)U2‖F

as two measures of Subspace Distance (SD). Clearly, SubsDistF ≤√
rSubsDist2.

We reuse the letters c, C to denote different numerical constants in
each use with the convention that c < 1 and C ≥ 1.

4.2 LRCS, LRPR, and LRMC Problems

In all three problems, the goal is to recover an n × q rank-r matrix
X∗ = [x∗

1, x∗
2, . . . , x∗

q], with r � min(n, q), from different types of

354

4.2. LRCS, LRPR, and LRMC Problems 355

under-sampled linear or element-wise nonlinear functions of it. Let
X∗ SVD= U∗Σ∗V ∗ := U∗B∗ denote its reduced (rank r) SVD, and
κ := σ∗

max/σ∗
min the condition number of Σ∗. We let B∗ := Σ∗V ∗.

4.2.1 LRCS Problem

The goal is to recover an n × q, rank-r, matrix X∗ = [x∗
1, x∗

2, . . . , x∗
q]

from independent linear projections of it, i.e., from

yk := Akx∗
k, k ∈ [q] (4.1)

where each yk is an m-length vector, with m < n, [q] := {1, 2, . . . , q},
and the measurement/sketching matrices Ak are mutually independent
and known. For obtaining theoretical guarantees, each Ak is assumed
to be random-Gaussian: each entry of it is independent and identically
distributed (i.i.d.) standard Gaussian.

Since no measurement yki is a global function of the entire matrix,
X∗, we need the following assumption to make our problem well-posed
(allow for correct interpolation across columns). This assumption is a
subset of the “incoherence assumption” introduced for correctly solving
the LR matrix completion problem [11, 31, 41].

Assumption 4.1 (μ-incoherence of right singular vectors). Assume that
‖b∗

k‖2 ≤ μ2rσ∗
max

2/q for a numerical constant μ.

4.2.2 LRPR Problem

In LRPR, which is a generalization of LRCS, the goal is to recover X∗

from undersampled phaseless linear projections of its columns, i.e., from
zk := |yk|, k ∈ [q]. Here |.| of a vector takes the magnitude of each ele-
ment of the vector. If the vector is real-valued, then this just means that
the sign is not measured. In case of Fourier ptychography, yk are complex-
valued and in that case, one takes the absolute value of each complex
number entry. LRPR also needs Assumption 4.1 for the same reason.

4.2.3 LRMC Problem

LRMC involves recovering an n×q rank-r matrix X∗ = [x∗
1, x∗

2, . . . , x∗
q]

from a subset of its entries. Entry j of column k, denoted X∗
jk, is

observed, independently of all other observations, with probability p.

356 AltGDmin for Three LR Matrix Recovery Problems

Let ξjk
iid
∼ Bernoulli(p) for j ∈ [n], k ∈ [q]. Then, the set of observed

entries, denoted by Ω, is

Ω := {(j, k) : ξjk = 1}
By setting the unobserved entries to zero, the observed data matrix
Y ∈ �n×q can be defined as

Yjk :=

⎧⎨
⎩X∗

jk if (j, k) ∈ Ω,

0 otherwise.
or, equivalently, Y := X∗

Ω (4.2)

Here and below, MΩ refers to the matrix M with all entries whose
indices are not in the set Ω are zeroed out; while the rest of the entries
remain unchanged.

We use Ωk := {j ∈ [n] | ξjk = 1} to denote the set of indices of the
observed entries in column k. To easily explain the AltGDmin algorithm
idea, we define a diagonal 1-0 matrix Sk ∈ �n×n as

Sk := diag([ξjk, j ∈ [n]])

With this, our goal is to learn X∗ from

yk := Skx∗
k, k ∈ [q]

Remark 4.1. In the above, we let the matrix Sk be an n × n diagonal
matrix with entries being 1 or 0, only for ease of notation. It contains
a lot of zero entries. The expected number of nonzero rows (diagonal
entries only) in Sk is pn.

We need the following assumption on the singular vectors of X∗; this
is a way to guarantee that the rows and columns of X∗ are dense (non-
sparse) [11, 31, 41]. This helps ensure that one can correctly interpolate
(fill in) the missing entries even with observing only a few entries of
each row or column.

Assumption 4.2 (μ-incoherence of singular vectors of X∗). Assume
row norm bounds on U∗: maxj∈[n] ‖u∗j‖ ≤ μ

√
r/n, and column norm

bounds on V ∗: maxk∈[q] ‖v∗
k‖ ≤ μ

√
r/q. Since B∗ = Σ∗V ∗, this implies

that ‖b∗
k‖ ≤ μ

√
r/qσ∗

max.

4.3. Federation 357

4.3 Federation

We assume that there are a total of γ nodes, with γ ≤ q and each node
has access to a different subset of the columns of the observed data
matrix Y and the corresponding matrices Ak (or enough information to
define them). This type of federation where the columns are distributed
is often referred to as “vertical federation”. In case of LRCS, Y is m × q.
In case of LRMC, Y is n × q with a lot of zero entries. All nodes can
only communicate with a central node or “center”.

We use S� to denote the subset of columns of Y available at node �.
The sets S� form a partition of [q]. i.e., they are mutually disjoint and
∪γ

�=1S� = [q]. Thus, the data at node �,

D� = {yk, Ak, k ∈ S�}
To keep notation simple, we assume q is a multiple of γ and that
|S�| = q/γ. Our discussion of complexities assumes γ � q and treats
γ as a numerical constant. Thus order |Ω|/γ is equal to order |Ω| with
|Ω| ≥ (n + q)r (the number of samples needs to be larger than the
number of unknowns in rank r matrix).

For LRCS with Ak being random Gaussian, the storage (or com-
munication in case of distributed computing) required is significant, it
is mnq/γ per node. For LRMC, Sk is fully specified by just the set
observed indices ∪k∈S�

Ωk. This is much cheaper to store or transmit
with a cost of only |Ω|/γ. The same is true for the LRCS problem for
the MRI application where Ak is a partial Fourier matrix; in this case
only the observed frequency locations need to be stored or transmitted.

4.4 AltGDmin for LRCS: Algorithm and Guarantees

AltGDmin for LRCS was introduced and studied in parallel works [18,
37, 50] and follow-up work [52]. In [37, 52], we referred to the problem
as LR column-wise compressive sensing (LRCS), while [18, 50] referred
to the same problem as multi-task linear representation learning. The
initialization introduced in [37, 52] is the best one (needs fewer samples
for a certain accuracy level). The best sample complexity guarantee for
AltGDmin is the one proved in our recent work [52].

358 AltGDmin for Three LR Matrix Recovery Problems

4.4.1 AltGDmin-LRCS Algorithm

We first summarize the algorithm and then explain each step. Our
development follows [37, 52]. AltGDmin for the LRCS problem involves
minimizing f(U , B) :=

∑q
k=1 ‖yk − Ubk‖2 over U , B. Clearly, this

is decoupled for columns of B (with holding U fixed). Thus, we use
Zslow ≡ U , Zfast ≡ B. It proceeds as follows.

1. Spectral initialization: We initialize U by computing the top r

singular vectors of the following matrix

X0 :=
∑

k

A�
k yk,trnce

�
k , yk,trnc := trunc(yk, α)

Here α := C̃
∑

k ‖yk‖2/mq with C̃ := 9κ2μ2, and the function
trunc truncates (zeroes out) all entries of the vector yk with
magnitude greater than

√
α, i.e., for all j ∈ [n], trunc(y, α)j =

(y)j�|yj |≤√
α, with � being the indicator function.

2. At each iteration, update B and U as follows:

(a) Minimization for B: keeping U fixed, update B by solving
minB f(U , B). Due to the form of the LRCS model, this min-
imization decouples across columns, making it a cheap least
squares problem of recovering q different r length vectors. It
is solved as bk = (AkU)†yk for each k ∈ [q].

(b) GD for U : keeping B fixed, update U by a GD step, fol-
lowed by orthonormalizing its columns: U+ = QR(U −
η∇U f(U , B)). Here QR(.) orthonormalizes the columns of
its input.

Computation cost. The use of minimization to update B at each
iteration is what helps ensure that we can show exponential error decay
with a constant step size. At the same time, due to the column-wise
decoupled nature of LRCS, the time complexity for this step is only
as much as that of computing one gradient w.r.t. U . Both steps need

4.4. AltGDmin for LRCS: Algorithm and Guarantees 359

time1 of order mqnr. This is only r times more than “linear time” (time
needed to read the algorithm inputs, here yk, Ak’s). To our knowledge,
r-times linear-time is the best known time complexity for any algorithm
for any LR matrix recovery problem. Moreover, due to the use of the
X = UB factorization, AltGDmin is also communication-efficient. Each
node needs to only send nr scalars (gradients w.r.t U) at each iteration.

Understanding the initialization step. To understand the initial-
ization step, note the following. It can be shown that E[X0] = X∗D(α)
where D(α) is a diagonal q × q matrix with σmin(D) ≥ 0.9 with high
probability (w.h.p.) [37, 52]. Thus, E[X0] is a rank r matrix with
column-span equal to that of U∗ (or X∗). Furthermore, it is easy to
see that

X0 =
q∑

k=1

m∑
i=1

aki(a�
kix

∗
k)�(a�

ki
x∗

k
)2≤α

Using concentration bounds and linear algebra results,2 it can be shown
that, w.h.p., X0 is a good approximation of its expected value and
hence, in terms of subspace distance, U0 is a good approximation of
U∗ (column span of X∗).

Sample-splitting is assumed, i.e., each new update of U and B uses
a new independent set of measurements and measurement matrices,
yk, Ak.

4.4.2 Federated Implementation

Consider the GDmin steps. Update of bks and xks is done locally
at the node that stores the corresponding yk. For gradient w.r.t. U

computation, the partial sums over k ∈ S� are computed at node � and
1The LS step time is max(q ·mnr, q ·mr2) = mqnr (maximum of the time needed

for computing AkU for all k, and that for obtaining bk for all k) while the GD step
time is max(q · mnr, nr2) = mqnr (maximum of the time needed for computing the
gradient w.r.t. U , and time for the QR step).

2Using sub-exponential Bernstein inequality to lower and upper bound α; and
using the sub-Gaussian Hoeffding inequality and an easy epsilon-net argument [53]
to bound ‖X0 −E[X0]‖, one can argue that, w.h.p., X0 is close to its expected value
if mq is large enough. This, along with using the Wedin sin θ theorem [16], and lower
bounding the smallest entry of D(α), helps bound subspace distance (SD) between
U0 and U∗.

360 AltGDmin for Three LR Matrix Recovery Problems

transmitted to the center which adds all the partial sums to obtain
∇U f(U , B). GD step and QR are done at the center. The updated U

is then broadcast to all the nodes for use in the next iteration. The
per node time complexity is thus mnrq� at each iteration. The center
only performs additions and a QR decomposition, which is an order
nr2 operation, in each iteration. The communication cost is order nr

per node per iteration.
The initialization step can be federated by using the Power Method

[24, 25] to compute the top r eigenvectors of X0X0�. Power method
starts with a random initialization and runs the iteration Û0 ←
QR(X0X0�Û0). Any power method guarantee, e.g. [25], can be used to
guarantee that its output is within a subspace distance δ0 to the span
of the top r singular vectors of X0 within order log(1/δ0) iterations.
The communication complexity is thus just nr per node per iteration.
The number of iterations needed is only order log r because U0 only
needs to be order 1/r accurate.

Communication cost. The total communication cost is order
max(nr log r, nr · T) where T is the total number AltGDmin iterations
needed to achieve ε accuracy. We show below that T = Cκ2 log(1/ε)
suffices. For accurate solutions ε < exp(−r) and hence the total com-
munication cost is order nrT = κ2nr log(1/ε).

Privacy. Observe from above that the information shared with the
center is not sufficient to recover X∗ centrally. It is only sufficient to
estimate span(U∗). The recovery of the columns of B, b∗

k, is done locally
at the node where the corresponding yk is stored, thus ensuring privacy.

4.4.3 Theoretical Guarantees

We provide below the best known guarantee for LRCS; this is taken
from [52]. We state the noise-free case result here for simplicity. Let m0
denote the total number of samples per column needed for initialization
and let m1 denote this number for each GDmin iteration. Then, the
total sample complexity per column is m = m0 + m1T . Our guarantee
given next provides the required minimum value of m.

4.4. AltGDmin for LRCS: Algorithm and Guarantees 361

Theorem 4.1 (AltGDmin-LRCS [52]). Assume that Assumption 4.1
holds. Set η = 0.4/mσ∗

max
2 and T = Cκ2 log(1/ε). If

mq ≥ Cκ4μ2(n + q)r(κ4r + log(1/ε))

and m ≥ C max(log n, log q, r) log(1/ε), then, with probability (w.p.) at
least 1 − n−10,

SubsDist2(U , U∗) ≤ ε and ‖xk − x∗
k‖ ≤ ε‖x∗

k‖ for all k ∈ [q].

The time complexity is mqnr · T = mqnr · κ2 log(1/ε). The communica-
tion complexity is nr · T = nr · κ2 log(1/ε) per node.

Remark 4.2. More generally, for any η = cη/(mσ∗
max

2) with cη ≤ 0.8,
one can show that SubsDist2(U+, U∗) ≤ (1 − ccη

κ2)SubsDist2(U , U∗). In
short, the above result applies, with only changes to numerical constants.

4.4.4 Discussion

Existing approaches for LRCS include the AltMin solution studied in
our work on LR phase retrieval (LRCS is a special case of LRPR) [38,
39, 40] and the convex relaxation studied in [48]. For reasons explained
in detail in [37], for LRCS, there does not seem to be a way to guarantee
convergence of either of the GD algorithms that have been studied for
LRMC and robust PCA – Factorized GD (FactGD) and Projected GD
(PGD) [28, 56]. Factorized GD is GD for U , B for the cost function
f(U , B) + λ‖U�U − BB�‖F (the second term is a norm balancing
term). PGD is GD for X, with each GD step followed by projection onto
the set of rank r matrices (by SVD). The reason is: to show convergence,
we need to bound the norm of the gradient w.r.t. U or X of f(U , B) or
f(X), and show that it decays with iterations, under the desired roughly
nr2 sample complexity. To obtain this bound, one needs a tight bound
on the column-wise recovery error maxk ‖xk − x∗

k‖. This is not possible
to get for either FactGD or PGD because, for both, the estimates of xk

are coupled (PGD) or coupled given U (FactGD).3

3Consider FactGD. The gradient w.r.t U of f(U , B) is
∑q

k=1 A�
k Ak(x∗ − xk)b�

k .
To bound the norm of its deviation from its expected value, we need a small enough
bound on the sub-exponential norm of each summand [53, Chap 2]; this requires a

362 AltGDmin for Three LR Matrix Recovery Problems

AltGDmin is the fastest and most communication-efficient compared
to both of AltMin and convex relaxtion. Convex relaxation (mixed norm
minimization) is known to be much slower. Its time complexity is not
discussed in the monograph, however, it is well known that solvers for
convex programs are much slower when compared to direct iterative
algorithms: they either require number of iterations proportional to
1/

√
ε or the per-iteration cost has cubic dependence on the problem

size, here (nr)3. AltMin is also slower than AltGDmin, both in terms
of theoretical complexity and experimentally, because, for updating
both U and B, it requires solving a minimization problem keeping
the other variable fixed. The minimization step for U is the slow one.
The same is true for its communication cost. The minimization step
for updating U needs to use multiple GD iterations instead of just
one in case of AltGDmin, or it needs to share matrices of size nr × nr

(even more inefficient). This is why both the time and communication
cost of AltMin depend on log2(1/ε) instead of just log(1/ε) is case of
AltGDmin.

4.5 AltGDmin for LRPR: Algorithm and Guarantees

To explain the ideas simply here, we consider the real-valued case. This
means we do need to worry about complex conjugation. The phaseless
measurements zk can be rewritten as

zk = diag(c∗
k)yk = diag(c∗

k)AkU∗b∗
k

where c∗
k is a vector of signs/phases of yk and diag converts this into a

diagonal matrix. Thus, the cost function to minimize now becomes

f(U , B, {ck, k ∈ [q]}) :=
q∑

k=1
‖zk − diag(ck)AkUbk‖2

small enough bound on the column-wise error maxk ‖xk − x∗
k‖, here xk = Ubk. It is

not possible to get a tight bound on this quantity for FactGD because its estimates of
the different bks are coupled, due to the gradient term coming from the second norm
balancing term. Consider PGD. The gradient w.r.t. X is

∑q

k=1 A�
k Ak(x∗ − xk);

bounding it again requires a bound on maxk ‖xk −x∗
k‖. The estimates xk are coupled

for different k because of the rank r projection step.

4.5. AltGDmin for LRPR: Algorithm and Guarantees 363

Clearly this problem is again decoupled with Zslow = U and Zfast =
{ck, bk, k ∈ [q]}. Notice also that when U is fixed, solving for {bk, ck} is a
standard r-dimensional PR problem with many fast and provably correct
solutions, e.g., [10, 15]. The cost of r-dimensional PR is order mr log(1/ε)
and the cost of computing AkU is mnr, per column. Thus, the total
cost of standard PR for all columns is just q max(mnr, mr log(1/ε)).
Typically the first term dominates. Gradient computation cost is still
mnrq. Thus the total cost of AltGDmin iterations is mqnr · T with T

bounded in the result below.
The initialization in this case also needs to be different. We initialize

U by computing the top r singular vectors of [40]

M =
∑

k

A�
k zk,truncz

�
k,truncAk

with the truncation done exactly as explained above for LRCS (trunca-
tion only uses magnitudes of observations). We can prove the following
[37].

Theorem 4.2 (AltGDmin-LRPR [37]). Assume that Assumption 4.1
holds. Set η = 0.4/mσ∗

max
2 and T = Cκ2 log(1/ε). If

mq ≥ Cκ6μ2(n + q)r2(κ4r + log(1/ε))

and m ≥ C max(log n, log q, r) log(1/ε), then, the conclusions of Theo-
rem 4.1 hold with SubsDist2 replaced by SubsDistF . The time complex-
ity is mqnr · T = max(mqnr, mqr log(1/ε)) · κ2 log(1/ε). The communi-
cation complexity is nr · T = nr · κ2 log(1/ε) per node.

Remark 4.3. We can use any η = cη/(mσ∗
max

2) with cη ≤ 0.8, see
Remark 4.2.

Notice that the only change in the above result compared to LRCS is
an extra factor of r in the sample complexity. This trend is well-known
from other work on structured phase retrieval [8, 39, 40]. The rest of
the discussion is the same as in case of LRCS. AltGDmin is much
faster than AltMin. FactGD or PGD do not provably converge for the
same reasons. The proof strategy for this case involves interpreting the
gradient w.r.t. U as a noisy version of the LRCS case. The overall idea
for handling this case is provided in Section 6.3.

364 AltGDmin for Three LR Matrix Recovery Problems

4.6 AltGDmin for LRMC: Algorithm and Guarantees

AltGDmin for LRMC was studied in [2]. There are two differences
between LRMC and LRCS. The first is that LRMC measurements
are row-wise and column-wise local while those for LRCS are global
functions of each column. This is why LRMC needs incoherence of
left and right singular vectors of X∗, and needs to prove this for each
estimate X = UB at each iteration. LRCS needs this only for right
singular vectors. The second is that the measurements are bounded and
this is why the initialization does not need a truncation step.

The goal is to minimize

min
B̌, Ǔ : Ǔ�Ǔ=I

f(Ǔ , B̌), f(Ǔ , B̌) := ‖(Y − ǓB̌)Ω‖2
F (4.3)

As before, we impose the orthornormal columns constraint on Ǔ as one
way to ensure that the norm of U does not keep increasing or decreasing
continuously with algorithm iterations, while that of B decreases or
increases.

As explained earlier in (1.3), this cost function is partly decoupled
for B as well as for U . This means that we could pick either of the two
to serve as Zfast; the choice depends on how the data is federated. In
fact, since the LRMC problem is symmetric w.r.t. rows and columns, one
can always assume vertical federation as stated earlier and, if needed,
transpose the matrices to satisfy the assumption.

Conceptually, the only difference for the AltGDmin algorithm in this
case is in the initialization step. However, its efficient implementation
requires some careful work. The analysis to derive the theoretical guar-
antees needs significant extra work as well. Most importantly, it requires
showing incoherence of U at each iteration including the initialization.
For the iterations, this can be proved; we explain the main in ideas in
Section 6 and 7. For the initialization of U , we need to ensure this by
construction. We do this by adapting the idea of [56]. We first compute
the top r singular vectors of Y ; denote the matrix formed by these
singular vectors by U00. We then project U00 onto the space of row
incoherent matrices, U := {Ǔ : ‖ǔj‖ ≤ μ

√
r/n} to obtain ΠU (U00). We

finally obtain U0 by orthonormalizing it by QR. Here,

4.6. AltGDmin for LRMC: Algorithm and Guarantees 365

[ΠU (M)]j = mj · min
(

1,
μ

√
r/n

‖mj‖

)
, for all j ∈ [n] (4.4)

In words, if a row of M has �2 norm that is more than the threshold
μ

√
r/n, then one renormalizes the row so that its norm equals the

threshold. If the norm is less than this threshold, then we do not
change it. Clearly this is an order nr time operation. In summary,
U0 := QR(ΠU(U00)) with U00 being the top r left singular vectors of
Y .

The rest of the AltGDmin algorithm is conceptually similar to that
for LRCS, we use Zslow = U and Zfast = B. However, its efficient
implementation is very different and hence, so is its time and com-
munication complexity. Briefly, the reason is that Sk is just a row
selection matrix. Thus, for example, SkU is actually implemented by
sub-selecting the rows of U and not by matrix multiplication. A lot
of other steps use similar ideas for efficient implementation. We sum-
marize the complexities in Table 4.1. We can prove the following for
AltGDmin-LRMC

Theorem 4.3 (AltGDmin-LRMC [2]). Pick an ε < 1. Assume that As-
sumption 4.2 holds, and that, entries of X∗ are observed indepen-
dently of other entries with probability p. Set η = 0.5/(pσ∗

max
2) and

T = Cκ2 log(1/ε). If nqp > Cκ6μ2 max(n, q)r2 log max(n, q) log(1/ε),
then, with probability (w.p.) at least 1 − 4T/ min(n, q)3,

SubsDistF (U (T), U∗) ≤ ε and ‖X(T) − X∗‖F ≤ ε‖X∗‖. (4.5)

The total per-node computation complexity of federated AltGDmin is
Cκ2 log(1/ε) · max(n, |Ω|)r2 · 1

γ and its total per-node communication
complexity is Cκ2 log(1/ε) · nr.

Observe that nq · p = E[|Ω|], i.e., it is the expected value of the
sample complexity. We often just use the phrase “sample complexity”
when referring to it in our writing.

Remark 4.4. More generally, we can use any η = cη/(pσ∗
max

2) with
cη ≤ 0.8; see Remark 4.2.

366 AltGDmin for Three LR Matrix Recovery Problems

Table 4.1: Comparing AltGDmin with AltMin and GD (FactGD) for recover-
ing an n × q rank r matrix from a subset of m linear projections of its columns
(LRCS), m phaseless linear projections (LRPR), or from a subset of its en-
tries, when each entry is observed with probability p independent of all others
(LRMC). γ is the total number of federated nodes. Ω is the set of observed en-
tries for LRMC. The table assumes n ≈ q, γ is a numerical constant, κ, μ are nu-
merical constants, max(log(1/ε), r) = log(1/ε), and |Ω| ≥ nr (necessary). Here
Communic Comp = T · max(Communic.(node), Communic.(center)). Simi-
larly for the computation cost.

LRCS Computation Communic. Sample Resilient
Complexity Complexity Complexity Modific

AltGDmin [52] m q
γ nr · log(1/ε) nr log(1/ε) nr max(r, log(1/ε)) Efficient

GD (FactGD) m q
γ nr · T nr · T (cannot bound) Efficient

(cannot bound T)
AltMin [40] m q

γ nr · log2(1/ε) nr log2(1/ε) nr2 log(1/ε) Not Efficient

Convex [48] mqnr · min(1√
ε
, n3r3) nr

ε4 Not Efficient
(mixed norm min)

LRPR Computation Communic. Sample Resilient
Complexity Complexity Complexity Modific

AltGDmin [37] max(m q
γ nr, m q

γ r log(1/ε)) · log(1/ε) nr log(1/ε) nr2 max(r, log(1/ε)) Efficient

GD (FactGD) m q
γ nr · T nr · T (cannot bound) Efficient

(cannot bound T)
AltMin [40] m q

γ nr · log2(1/ε) nr log2(1/ε) nr2 log(1/ε) Not

LRMC Computation Communic. Sample Resilient
Complexity Complexity Complexity Modific

AltGDmin [2] |Ω|
γ r2 log(1

ε) nr log(1
ε) nr2 log n log(1

ε) Efficient

GD (FactGD) [56, 57] |Ω|
γ r2 log(1

ε) nr2 log(1
ε) nr2 log n Efficient

AltMin [41] |Ω|
γ r log2(1

ε) nr log2(1
ε) nr4.5 log n log(1

ε) Not
(use GD for updating U)
AltMin [2, 41] |Ω|

γ r2 log(1
ε) |Ω|

γ log(1
ε) nr2 log n log(1

ε) Not
(use closed form for updating U)
Convex [11] |Ω|r · min(1√

ε
, n3r3) n1.2r log2 n

(nuclear norm min) Not

4.6.1 Discussion

Recall that for LRCS, AltGDmin is much faster than AltMin because
the minimization step w.r.t. U is coupled and hence expensive. However,
in case of LRMC, the recovery problem is decoupled for both U and
for B. Consequently, AltMin is the fastest centralized solution and
order-wise (ignoring dependence on κ, μ), all of AltMin, AltGDmin
and FactGD are equally fast. PGD is much slower. In a federated

4.6. AltGDmin for LRMC: Algorithm and Guarantees 367

setting, when considering communication cost, AltGDmin is the most
communication efficient compared with both AltMin and GD (FactGD).
Compared with FactGD, AltGDmin iteration complexity is better by a
factor of r. Compared with AltMin, its per-iteration cost is lower. It
requires sharing just the gradient w.r.t. U , which is at most nr entries,
in each iteration. AltMin, on the other hand, requires sharing all the
observed entries and this has a communication cost of order |Ω| > nr.
The required |Ω| is order nr2 at least (see sample complexity). We
provide a summary of comparisons of guarantees for both LRCS and
LRMC in Table 4.1.

Part III

AltGDmin Analysis –
Overall Proof Technique

and Details for LR
Problems

5
General Proof Approach for any Problem

The following approach generalizes the ideas used for LRCS [52] and
the other LR problems. Let NormDista be the relevant measure of
normalized distance for Zslow and NormDistb for Zfast. The distance
metric used can be different for Zslow and Zfast, e.g., for the LR matrix
recovery problems discussed above, we used the subspace distance for
Zslow, and normalized Euclidean norm distance for Zfast. The following
is the overall approach that can be considered to analyze AltGDmin
for solving a problem. This generalizes the ideas used for the above
guarantees for LRCS and LRMC.

• Analyze the initialization step to try to show that NormDista(ˆZslow,

Zslow
∗) ≤ δ0 with a certain probability.

– Typically, the initialization is a spectral initialization for
which existing approaches (if any) can be used.

– In many cases, δ0 being a small numerical constant suffices.
For certain problems, it may even be possible to prove results
with random initialization; in this case, δ0 is very close to 1.

• At iteration t, suppose that we are given an estimate ˆZslow satis-
fying NormDista(ˆZslow, Zslow

∗) ≤ δt−1 with δt−1 “small enough”.

369

370 General Proof Approach for any Problem

– Analyze the minimization step to show that NormDistb(ˆZfast,

Zfast
∗) � δt−1 with a certain probability.

∗ This analysis will typically be the easier one, because
this step is often a well studied problem, e.g., in case of
LRCS or LRMC, it is the standard least squares (LS)
problem. For LRPR, it is a standard phase retrieval
problem.

– Analyze the GD step to try to show that, for the updated
Zslow estimate, ˆZslow

+, NormDista(ˆZslow
+

, Zslow
∗) ≤ δt :=

c1(η, δ0, ε1)δt−1 with a certain probability. This bound would
hold under an upper bound on the step size η and the ini-
tialization error δ0.

We set δ0, η and ε1 to ensure that c1(η, δ0, ε1) ≤ c for a c < 1 (expo-
nential error decay). If we can set η to be a constant (w.r.t. n, q, r), it
will help guarantee that the iteration complexity grows logarithmically
with 1/ε (fast convergence). All the above steps should hold with a
certain probability that depends on the problem dimensions (n, q, r in
case of LR problems), sample complexity (m or np in case of LRCS and
LRMC), and the values of δ0 and ε1. We use our values of δ0 and ε1
to find a lower bound on the sample complexity in terms of n, q, r and
κ, μ, in order to guarantee that all the above steps hold with a high
enough probability.

Sample-splitting is assumed across iterations in order to make the
analysis easier (a common technique for analyzing iterative algorithms
that we learned about in [41] and follow-up works). This helps guarantee
that the estimates ˆZslow, ˆZfast used in a given step are independent
of the data used in that step. Using this assumption, (i) the expected
value of terms can be computed more easily; and (ii) the summands in a
given term are independent conditioned on past data making it possible
to bound the deviation from the expected value using concentration
bounds for sums of independent random variables/vectors/matrices
[53].

In the AltGDmin analysis, analyzing the GD step is the most
challenging part. The reason is AltGDmin is not a GD or projected
GD algorithm (both of which are well studied) for any variable(s). This

371

means that the gradient at Zslow = Zslow
∗, ∇Zslow

f(Zslow
∗, Zfast) is

not zero.
We emphasise here that because one of the steps in AltGDmin is a

minimization step, there does not seem to be a way to prove guarantees
without sample-splitting. All guarantees for AltMin require sample
splitting [40, 41, 42]. On the other hand, for GD / factorized GD, it is
possible to prove guarantees without sample splitting as done in [15,
56].

6
AltGDmin for LR Problems: Overall Proof Ideas

In this section, we explain the main ideas that can be used for analyzing
AltGDmin for solving an LR recovery problem. We begin below by
specifying AltGDmin for any LR problem. Next in Section 6.2, we
provide the main ideas for analyzing the noise-free attack-free linear
measurements problems - LRCS and LRMC. In Section 6.3, we explain
how to analyze the noisy, attack-resilient or nonlinear measurement
settings. More details for both sections are provided in Section 7. The
mathematical tools used in this analysis (linear algebra, probability
and random matrix theory ideas) are summarized in Section 8. Many
of these are from [16] and [53] and include: (i) singular value bounds,
(ii) results such as the Davis-Kahan or the Wedin sin Θ theorem, that
can be used to obtain a deterministic bound the subspace distance
between the estimate of the column-span of the unknown LR matrix
X∗ and the true one [16]; and (iii) matrix concentration bounds (or
scalar ones combined with an appropriate epsilon-net argument) such
as sub-Gaussian Hoeffding, sub-exponential Bernstein or the matrix
Bernstein inequality [53]. In addition some basic linear algebra tricks
are needed as well.

372

6.1. AltGDmin for any LR Matrix Recovery Problem 373

6.1 AltGDmin for any LR Matrix Recovery Problem

Consider the problem of recovering X = UB from Y := A(UB) where
A is a linear operator. We consider the squared loss function

f(U , B) := ν‖Y − A(UB)‖2
F

where ν is a quantity that does not depend on U , B and that is used
to normalize the loss function so that

E[∇U f(U , B)] = (X − X∗)B�, X := UB

when U , B are independent of the data {Y , A}. For example, for LRCS,
with Ak containing i.i.d. standard Gaussian entries, ν = 1/m; while for
LRMC, ν = 1/p.

The AltGDmin algorithm proceeds as follows.

• Initialize U : use a carefully designed spectral initialization ap-
proach to get U0

• Repeat the following for all t = 1 to T :

1. Update B by minimization: obtain

Bt := arg min
B

f(Ut−1, B)

(this statement assumes that the minimizer is unique and
this fact is proved in the algorithm analysis). This step is
efficient if it decouples column-wise, as in the case of LRCS,
LRPR and LRMC.

2. Update U by GD followed by orthnormalization:

Ut := QR(Ut−1 − η∇U f(U , Bt))

• Sample splitting is assumed as noted earlier.

6.2 Proof Approach: Clean and Noise-free Case

To explain the main ideas of our proof approach, we use the simplest
setting: noise-free and attack-free LRCS and LRMC. Depending on the

374 AltGDmin for LR Problems: Overall Proof Ideas

problem, we use SubsDist2 or SubsDistF . For any problem, SubsDistF

can be used. For attack-free LRCS, use of SubsDist2 gives in a better
result (sample complexity lower by a factor of r). When SubsDist2 is
used, all the norms below are ‖.‖. When SubsDistF is used, all the
numerator term norms are ‖.‖F .

Let U be the estimate at the t-th iteration. Define

gk := U�x∗
k, k ∈ [q], and G := U�X∗,

PU∗,⊥ := I − U∗U∗�,

gradU := ∇U f(U , B)
δt := SubsDist(U , U∗) = ‖PU∗,⊥U‖ (6.1)

Under the sample-splitting assumption, it can be shown that

E[gradU] = E[∇U f(U , B)] = (X − X∗)B� (6.2)

Recall the Projected GD step for U :

Ũ+= U − ηgradU and Ũ+ QR= U+R+ (6.3)

Since U+ = Ũ+(R+)−1 and since ‖(R+)−1‖ = 1/σmin(R+) =
1/σmin(Ũ+), thus, SubsDist(U+, U∗) = ‖PU∗,⊥U+‖ can be bounded
as

δt+1 := SubsDist(U+, U∗)

≤ ‖PU∗,⊥Ũ+‖
σmin(Ũ+)

≤ ‖PU∗,⊥Ũ+‖
σmin(U) − η‖gradU‖

=
‖PU∗,⊥Ũ+‖

1 − η‖gradU‖
This follows by Weyl’s inequality and σmin(U) = 1. Consider the numer-
ator. Using (6.3), adding/subtracting ηE[gradU], and using (6.2) which
implies that PU∗,⊥E[gradU] = PU∗,⊥(X − X∗)B� = PU∗,⊥XB� =
PU∗,⊥UBB�, we get

PU∗,⊥Ũ+ = PU∗,⊥U − ηPU∗,⊥UBB� + ηPU∗,⊥((E[gradU] − gradU))
= PU∗,⊥U(I − ηBB�) + ηPU∗,⊥(E[gradU] − gradU)

6.2. Proof Approach: Clean and Noise-free Case 375

Thus, using (6.1),

SubsDist(U+, U∗) =
‖PU∗,⊥U(I − ηBB�) + ηPU∗,⊥(E[gradU] − gradU)‖

1 − η‖E[gradU] + gradU − E[gradU]‖

≤ ‖PU∗,⊥U‖ · ‖I − ηBB�‖ + η‖E[gradU] − gradU‖
1 − η‖E[gradU]‖ − η‖E[gradU] − gradU‖

Notice that
λmin(I − ηBB�) = 1 − η‖B‖2.

Thus, if η < 0.9/‖B‖2, then 1 − η‖B‖2 > 0.1 > 0, i.e., the matrix
(I − ηBB�) is positive semi-definite (p.s.d.). This means that

‖I − ηBB�‖ = λmax(I − ηBB�) = 1 − ησr(B)2

Thus, if η ≤ 0.9/‖B‖2, then

δt+1 := SubsDist(U+, U∗)

≤ ‖PU∗,⊥Ũ+‖
1 − η‖gradU‖

=
‖PU∗,⊥U(I − ηBB�) + ηPU∗,⊥(E[gradU] − gradU)‖

1 − η‖E[gradU] + gradU − E[gradU]‖
≤ ‖PU∗,⊥U‖ · ‖I − ηBB�‖ + η‖E[gradU] − gradU‖

1 − η‖E[gradU]‖ − η‖E[gradU] − gradU‖
≤ δt(1 − ησr(B)2) + η‖E[gradU] − gradU‖

1 − η‖E[gradU]‖ − η‖E[gradU] − gradU‖

=
δt

(
1 − η

(
σr(B)2 − ‖E[gradU]−gradU‖

δt

))
1 − η‖E[gradU]‖ − η‖E[gradU] − gradU‖

= δt

(
1 − η

(
σr(B)2 − ‖E[gradU] − gradU‖

δt

))

(1 + 2η‖E[gradU]‖ + 2η‖E[gradU] − gradU‖)

≤ δt

(
1 − η

(
σr(B)2 − ‖E[gradU] − gradU‖

δt

− 2‖E[gradU]‖ − 2‖E[gradU] − gradU‖))

≤ δt

(
1 − η

(
σr(B)2 − 3

‖E[gradU] − gradU‖
δt

− 2‖E[gradU]‖
))
(6.4)

376 AltGDmin for LR Problems: Overall Proof Ideas

using (1−x)−1 ≤ (1+2x) for x < 0.5; (1−z)(1+2x) = 1−z+2x−2xz <

1 − z + 2x = 1 − (z − 2x); and δt < 0.5 (this allows us to replace
‖E[gradU]−gradU‖

δt
+ 2‖E[gradU] − gradU‖ by 3 times the first term).

The next step is to upper bound the expected gradient norm
‖E[gradU]‖ and the gradient deviation norm ‖E[gradU] − gradU‖ and
to lower bound σr(B). We need tight enough bounds in order to be
able to show that for η small enough,

δt+1 ≤ (1 − c1/κ2)δt

To bound the terms, we use matrix concentration bounds from Section
8 and the incoherence assumptions on B∗ (LRCS) or on B∗ and U∗

(LRMC). The overall approach is as follows. We provide more details in
Section 7. At each iteration,

• The first step is to analyze the minimization step to bound ‖B −
G‖: for LRCS, we can bound maxk ‖bk − gk‖ and use it to bound
‖B − G‖; for LRMC, we can only bound the matrix error.

– This is used to bound ‖X − X∗‖ using triangle inequality

– The above is used to upper bound σmax(B) and lower bound
σr(B) using tricks from Section 8.

• We use the minimization step bounds to bound ‖E[gradU]‖ ≤
‖X − X∗‖σmax(B).

• We bound ‖E[gradU] − gradU‖ using matrix concentration in-
equalities from Section 8 and the minimization step bounds.

• Most above results also use incoherence of B (for LRCS) and of
B and of U (for LRMC), which needs to be proved.

– Incoherence of B is easy to show.

– Incoherence of U for LRMC requires an inductive argument
and a concentration bound on maxj ‖e�

j (gradU−E[gradU])‖.
We need a bound on it that contains a factor of

√
r/n; but

it need not contain a factor of δt.

We provide details of the above steps in Section 7.

6.3. Proof Approach: Noisy Gradient Approach 377

6.3 Proof Approach: Noisy Gradient Approach to Deal with Non-
linear or Noisy or Attack-prone Cases

Above we explained the proof strategy for the simple noise-free case.
Here, we explain how to modify it to deal with various modifications
of the basic LRCS or LRMC problems. One simple example where
this occurs is the LR phase retrieval (LRPR) problem which is the
phaseless measurements’ generalization of LRCS. A second example is
noise-corrupted LRCS or LRMC. A third setting is dealing with attacks,
such as the Byzantine attack, by malicious nodes. The algorithm itself
may remain the same (noisy case) or may change (LRPR or attack
setting).

In all the above cases, the gradient expression will be different in the
GD step to update U . To bound SubsDist(U+, U∗), we need to define
and bound an extra term that we refer to as Err for “Error term”. Let

Err := gradUcln − gradU

where gradUcln is the gradient from the noise-free case section that
satisfies

E[gradUcln] = (X − X∗)B�

We proceed exactly as in the noise-free case, with the following modifica-
tion: we add/subtract E[gradUcln] = (X −X∗)B� and we add/subtract
gradUcln. This gives the following: if η ≤ 0.9/‖B‖2, then

δt+1 := SubsDist(U+, U∗)

≤ ‖PU∗,⊥Ũ+‖
1 − η‖gradU‖

= ‖PU∗,⊥U(I − ηBB�) + ηPU∗,⊥(E[gradUcln] − gradUcln) + ηPU∗,⊥Err‖
1 − η‖gradU − gradUcln + gradUcln − E[gradUcln] − E[gradUcln]‖

≤ ‖PU∗,⊥U‖ · ‖I − ηBB�‖ + η‖E[gradUcln] − gradUcln‖ + η‖Err‖
1 − η‖E[gradUcln]‖ − η‖E[gradUcln] − gradUcln‖ − η‖Err‖

≤ δt(1 − ησr(B)2) + η‖E[gradUcln] − gradUcln‖ + η‖Err‖
1 − η‖E[gradUcln]‖ − η‖E[gradUcln] − gradUcln‖ − η‖Err‖ (6.5)

Using (1 − x)−1 ≤ (1 + 2x) for x < 0.5; (1 − z)(1 + 2x) < 1 − (z − 2x);
δt < 0.5; and using ‖E[gradUcln]‖ < 1, ‖E[gradUcln] − gradUcln‖ < 1,
and ‖Err‖ < 1,

378 AltGDmin for LR Problems: Overall Proof Ideas

δt+1 := SubsDist(U+, U∗)

≤ δt(1 − ησr(B)2) + η‖E[gradUcln] − gradUcln‖ + η‖Err‖
1 − η‖E[gradUcln]‖ − η‖E[gradUcln] − gradUcln‖ − η‖Err‖

≤ δt(1 − η(σr(B)2 − η
‖E[gradUcln]−gradUcln‖

δt
)) + η‖Err‖

1 − η‖E[gradUcln]‖ − η‖E[gradUcln] − gradUcln‖ − η‖Err‖

≤ δt

(
1 − η(σr(B)2 − ‖E[gradUcln] − gradUcln‖

δt
)
)

(1 + 2η‖E[gradUcln]‖

+ 2η‖E[gradUcln] − gradUcln‖ + 2η‖Err‖)
+ η‖Err‖(1 + 2η‖E[gradUcln]‖ + 2η‖E[gradUcln] − gradUcln‖ + 2η‖Err‖)

≤ δt

(
1 − η(σr(B)2 − ‖E[gradUcln] − gradUcln‖

δt
− 2‖E[gradUcln]‖ − 2‖Err‖

)
+ η‖Err‖(1 + 2η‖E[gradUcln]‖ + 2η‖E[gradUcln] − gradUcln‖ + 2η‖Err‖)

(6.6)

The next steps are similar to those in the noise-free case. What
result we can finally prove depends on how small Err is.

1. If ‖Err‖ is of the same order as (or smaller than) the gradient
deviation term, then the noise-free case analysis extends without
much change. This requires ‖Err‖ to decay as cδt for a c < 1,
which can be shown for the LR phase retrieval problem.

2. If ‖Err‖ is not as small, but is of order δ0 or smaller, then the
final bound will contain two terms: the first decays with t, and
the second is a constant term that is of the order of maxt ‖Errt‖.

We provide details for both steps in Section 7.

7
AltGDmin for LR Problems: Proof Details

7.1 Key Results Used

By combining Theorem 8.8 given in Section 8 with the scalar sub-
exponential Bernstein or sub-Gaussian Hoeffding inequalities, we obtain
the following two results which have been widely used in the LR recovery
and phase retrieval literature. These study sums of rank-one matrices
which are outer products of specific types of random vectors (r.vec).
The last result below is the matrix Bernstein inequality.

Corollary 7.1 (Sum of rank-one matrices that are outer products of two
sub-Gaussian r.vecs.). Consider a sum of m zero-mean independent rank-
one n×r random matrices xiz

�
i with xi, zi being sub-Gaussian random

vectors with sub-Gaussian norms Kx,i, Kz,i respectively. For a t ≥ 0,

‖
m∑

i=1
xiz

�
i ‖ ≤ 1.4t

with probability at least

1 − exp
(

(log 17)(n + r) − c min
(

t2∑
i(Kx,i, Kz,i)2 ,

t

maxi(Kx,i, Kz,i)

))

379

380 AltGDmin for LR Problems: Proof Details

By combining Theorem 8.8 with the scalar sub-Gaussian Hoeffding
inequality, we conclude the following.

Corollary 7.2 (Sum of rank-one matrices that are outer products of a
sub-Gaussian r. vec. and a bounded r.vec.). Consider a sum of m zero-
mean independent rank-one n × r random matrices xiz

�
i with xi being

sub-Gaussian random vector with sub-Gaussian norms Kx,i and zi being
a bounded random vector with ‖zi‖ ≤ Li. Then, clearly, for any w, w′,
w�xiz

�
i w′ is a sub-Gaussian r.v. with sub-Gaussian norm Kx,iLi. Thus,

for a t ≥ 0,

‖
m∑

i=1
xiz

�
i ‖ ≤ 1.4t

with probability at least

1 − exp
(

(log 17)(n + r) − c
t2∑

i(Kx,iLi)2

)

For bounded matrices, the following matrix Bernstein result gives a
much tighter bound than what would be obtained by combining scalar
bounded Bernstein and Theorem 8.8. See Section 8 for details.

Theorem 7.3 (Matrix Bernstein). Let X1, X2, . . . Xm be independent,
zero-mean, n × r matrices with ‖Xi‖ ≤ L for all i = 1, 2, ...m. Define
the “variance parameter” of the sum

v := max
(

‖
∑

i

E[XiX
�
i]‖, ‖

∑
i

E[X�
i Xi]‖

)
.

Then,

‖
m∑

i=1
Xi‖ ≤ t

with probability at least

1 − 2 exp
(

log max(n, r) − c min
(

t2

v
,

t

L

))

7.2 Analyzing the Initialization Step

The following is the overall approach to analyze spectral initialization.

7.2. Analyzing the Initialization Step 381

LRCS initialization. Recall the LRCS initialization from Section 4.4.
It is not hard to show that

E[X0] = X∗D(α)

where D(α) is a diagonal q × q matrix with all non-zero entries and
that σmin(D) = mink(D)k,k ≥ 0.9 with high probability (w.h.p.) [37,
52]. Thus, E[X0] is a rank r matrix with column-span equal to that of
U∗ (or of X∗). Using Wedin sin θ theorem,

SubsDistF (U0, U∗) ≤
√

r‖X0 − E[X0]‖
σr(E[X0]) − 0 − ‖X0 − E[X0]‖

Using the bounds from Section 8.1, it is not hard to see that

σr(E[X0]) = σr(X∗D(α))
≥ σr(X∗)σmin(D(α)�)
= σ∗

minσmin(D(α))
≥ 0.9σ∗

min

To upper bound ‖X0 − E[X0]‖ observe that X0 can be rewritten as

X0 =
q∑

k=1

m∑
i=1

aki(a�
kix

∗
k)�(a�

ki
x∗

k
)2≤α

where aki is a an N (0, I) (standard Gaussian) vector). We first use
the sub-exponential Bernstein inequality to lower and upper bound α

by a constant times ‖X∗‖2
F /q w.h.p. Next, we use Corollary 7.2 (sub-

Gaussian Hoeffding inequality + epsilon-netting) to bound ‖X0−E[X0]‖
under a lower bound on the sample complexity mq. This, along with
using the Wedin sin θ theorem (Theorem 8.2) [16], and lower bounding
the smallest entry of D(α), helps bound the subspace distance between
U0 and U∗.

LRMC initialization. For LRMC, X0 = Y and it is easy to see
that E[Y] = X∗. Thus, we can again use Wedin and a different matrix
concentration bound (matrix Bernstein) to show that U00 is a good
subspace estimate of U∗. Analyzing the second step (projection onto

382 AltGDmin for LR Problems: Proof Details

row incoherent matrices) uses the fact that the set of row incoherent
matrices is convex, this argument is borrowed from [56]). Finally we
analyze the orthonormalization

7.3 Clean Noise-free Case

Recall equation (6.4) from the previous section. We make the following
assumption temporarily just to show the flow of our proof. Later, we
explain how to show that this assumption holds w.h.p. under just a
sample complexity lower bound and incoherence Assumption 4.1 or 4.2.
The final guarantee only needs to make assumptions on the true X∗ or
on Y (data).

Temporary Assumption 7.1. Suppose that

1. σr(B) ≥ 0.9σr(B∗) = 0.9σ∗
min

2. ‖E[gradU] − gradU‖ ≤ c1δtσ
∗
min

2 for a c1 < 0.2,

3. ‖E[gradU]‖ ≤ C2κ2δtσ
∗
min

2,

4. with δt such that c1 + (2C2κ2 + 2c1)δt < 0.1 for all t ≥ 0, and

5. η = cη/σ∗
max

2 with cη ≤ 0.9/(1.1σ∗
max

2), and

6. equation (6.2) holds.

We note here that the big C? numbered constant C2 can depend on r:
if SubsDist2 is used as the subspace distance measure then, C2 = C

√
r

while if SubsDistF is used then C2 = C.

Using (6.4) and the bounds from the above Temporary Assumption
7.1,

δt+1 := SubsDist(U+, U∗)

≤ δt

(
1 − η

(
0.9σ∗

min
2 − c1σ∗

min
2 − 2C2δtσ

∗
min

2 − 2c1δtσ
∗
min

2
))

≤ δt

(
1 − ησ∗

min
2

(
0.9 − c1 − (2C2κ2 + 2c1)δt

))
≤ δt(1 − η(0.9 − c1 − 0.1)σ∗

min
2)

= δt

(
1 − (0.8 − c1)

cη

κ2

)

7.3. Clean Noise-free Case 383

Proving the bounds of temporary assumption 7.1. We use the
matrix concentration bounds from Section 8 to bound the following
with high probability.

1. maxk ‖bk − gk‖ and use it to bound ‖B − G‖F (for LRCS) or
directly bound ‖B − G‖F (for LRMC)

2. ‖E[gradU] − gradU‖ (in case of LRCS) or ‖E[gradU] − gradU‖F

(for LRMC)

3. (SkU)�(SkU) and (SkU∗)�(SkU) (for LRMC)

4. and ‖e�
j (E[gradU] − gradU)‖ (for LRMC).

The LRCS proofs use Corollary 7.1 (sub-exponential Bernstein inequality
followed by the epsilon-net argument). The LRMC proofs use the
Theorem 7.3 (matrix Bernstein inequality).

The B − G bound assumes incoherence of U (in case of LRMC).
The gradient deviation ‖E[gradU] − gradU‖ bound assumes the B − G

bound and incoherence of B and of U (in case of LRMC). The bound
on ‖e�

j (E[gradU] − gradU)‖ (used to show incoherence of the updated
U+ in case of LRMC) uses incoherence of B.

• Bounding ‖E[gradU]‖ = C‖(X − X∗)B�‖ and σr(B). The
bound on ‖B − G‖ is used to upper bound ‖X − X∗‖ and
‖B‖ = σmax(B) and to lower bound σr(B). The first two bounds
are used to bound ‖E[gradU]‖ ≤ ‖X −X∗‖‖B‖. The σmax bound
is straightforward. The σmin bound follows using the bounds given
next; these follow using the preliminaries from Section 8.1.

σr(B) ≥ σr(G) − ‖B − G‖,

σr(G) = σmin(G�) = σmin(B∗�U∗�U) ≥ σ∗
minσmin(U∗�U)

σ2
min(U∗�U) = λmin(U�U∗U∗�U)

= λmin(U�(I − PU∗,⊥)U)
= λmin(I − U�PU∗,⊥U)
= λmin(I − U�P2

U∗,⊥U)
= 1 − ‖PU∗,⊥U‖2 = 1 − SubsDist(U∗, U)2

384 AltGDmin for LR Problems: Proof Details

• Showing Incoherence of updated B. LRCS only needs inco-
herence of B. LRMC needs that of both.

– Incoherence of bk (columns of B) for LRCS: Since we can
bound ‖bk−gk‖ for each k, the bound on ‖bk‖ follows directly
from this bound and the fact that ‖gk‖ ≤ ‖b∗

k‖.

– Incoherence of bk (columns of B) for LRMC: We use the
exact expression for updating bk and concentration bounds
on (SkU)�(SkU) and (SkU∗)�(SkU) to get a bound that
is a constant times ‖b∗

k‖.

• Showing Incoherence of updated U : only for LRMC. This
is shown in two steps:

– First we bound the deviation of the j-th row of gradU from
its expected value, maxj ‖e�

j (E[gradU] − gradU)‖. We need
a bound on it that contains a factor of

√
r/n; but it need

not contain a factor of δt. To get such a bound we use
|x − z| ≤ 2 max(|x|, |z|) and obtain a bound of the form
c4 max(‖e�

j U∗‖, ‖e�
j U‖)σ∗

max
2.

– Next, we use (6.3) and proceed in a fashion similar to (6.4)
to bound ‖e�

j Ũ+‖. We show that ‖e�
j Ũ+‖ ≤ (1 − (0.9 −

0.1)η)‖e�
j U‖ + ‖e�

j U∗‖ + c4 max(‖e�
j U∗‖, ‖e�

j U‖) followed
by simplifying this expression using the denominator expres-
sion. We can simplify this bound by using max(x, z) ≤ x + z.
We get ‖e�

j U+‖ ≤ (1 − c/κ2)‖e�
j U‖ + 2‖e�

j U∗‖.

Finally, recursively applying the above expression we get a bound
on ‖e�

j Ut‖ in terms of ‖e�
j U0‖ and ‖e�

j U∗‖ that does not grow
with t. We show that

‖e�
j Ut‖ ≤ (1 − c/κ2)t‖e�

j U0‖ +
t−1∑
τ=0

(1 − c/κ2)τ 2‖e�
j U∗‖

≤ ‖e�
j U0‖ + Cκ2‖e�

j U∗‖

• Ensuring (2C2κ2 + 2c1)δt < 0.1. Note from above that we are
showing exponential decay for δt with t. A corollary of this is that

7.4. Nonlinear, Noisy, Attack-prone or Outlier Corrupted Settings 385

δt < δ0. Thus, our bound on δt holds if δ0 satisfies the same bound,
i.e., if the initialization is good enough i.e. if δ0 < 0.1/(2C2κ2+2c1).
The proof approach given above shows exponential error decay and
hence δt+1 < δt < δ0 for each t. (We note here the above numbered
constants c1, C2 etc can depend on n, q, r, κ2. For example, in case
of LRMC, C2 =

√
r.)

7.4 Nonlinear or Noisy or Attack-prone or Outlier Corrupted Set-
tings

Using equation (6.5) from the previous section and Temporary Assump-
tion 7.1,

δt+1 := SubsDist(U+, U∗)

≤ δt(1 − η0.9σ∗
min

2) + ηc1δtσ
∗
min

2 + η‖Err‖
1 − ηC2κ2δtσ∗

min
2 − ηc1δtσ∗

min
2 − η‖Err‖

≤
δt

(
1 − cη

κ2 (0.9 − c1)
)

+ cη

κ2 ‖Err‖
1 − cη

κ2 (C2κ2 + c1)δt − cη

κ2 ‖Err‖ (7.1)

1. First, if we can show that the Err term is of the same order as
the gradient deviation term, i.e., both decay at the same rate as
δt w.h.p., under the desired sample complexity bound, i.e., if

‖Err‖ ≤ c4δtσ
∗
min

2, with a c4 < (0.9 − c1),

then, the old analysis applies without change. One can still show
exponential decay of δt with t. This is the case for example for
LRPR for which the Err term bound is taken from [40] since this
term also occurs when studying AltMin for LRPR.

This would also be the case for noisy LRCS or LRMC if one
assumes a small enough bound on the noise (noise to signal ratio
smaller than c times the final desired error ε).

2. If we want to obtain error bounds without making any assumptions
on the noise, then the Err term does not satisfy the above bound.
This is also the case for Byzantine-resilient AltGDmin for the

386 AltGDmin for LR Problems: Proof Details

vertically federated LRCS and (any) federated LRMC setting.
Both cases are instances of heterogeneous gradients. In these
cases, suppose a much looser bound on ‖Errt‖ holds: suppose that
it is of the order of the initial error δ0, i.e., suppose that

max
t

‖Errt‖ ≤ 0.1δ0σ∗
min

2

Substituting this bound only into the denominator term of (7.1)
(in the numerator we leave ‖Errt‖ as is, this allows for a tighter
bound in cases where the error is much smaller than its upper
bound)

δt+1 ≤ δt

(
1 − cη

κ2

(
0.9 − c1 − 0.1 − 2‖Err‖

σ∗
min

2

))

+
(

1 +
cη

κ2

(
0.1 +

2‖Err‖
σ∗

min
2

))
cη

σ∗
max

2 ‖Err‖

≤ δt

(
1 − cη

κ2

(
0.8 − c1 − 2‖Err‖

σ∗
min

2

))

+
(

1 +
cη

κ2

(
0.1 +

2‖Err‖
σ∗

min
2

))
cη

σ∗
max

2 ‖Err‖

≤ δt

(
1 − cη

κ2 (0.8 − c1 − 0.2δ0)
)

+
(

1 +
cη

κ2 (0.1 + 0.2δ0)
) cη

σ∗
max

2 ‖Err‖

Using the upper bound on δ0 from Assumption 7.1 (it assumes a
bound on δt for any t ≥ 0), we get

δt+1 ≤ δt

(
1 − cη

κ2 (0.8 − c1 − 0.02)
)

+ 1.12cη
‖Errt‖
σ∗

max
2 (7.2)

Using this inequality, and the bound on ‖Errt‖, we can argue that
δt ≤ δ0 for all t. To see this, suppose δt ≤ δ0. Using above, and
cη < 1, δt+1 ≤ δ0(1−0.78+c1)+0.112δ0 = (0.22+c1+0.112)δ0 < δ0
since c1 < 0.2. The recursion in (7.2) can be simplified to get

7.4. Nonlinear, Noisy, Attack-prone or Outlier Corrupted Settings 387

δt ≤
(

1 − cη

κ2 (0.78 − c1)
)t

δ0

+
t∑

τ=1

(
1 − cη

κ2 (0.78 − c1)
)t−τ

1.12cηκ2 ‖Errτ ‖
σ∗

min
2

≤
(

1 − cη

κ2 (0.78 − c1)
)t

δ0 +
1.12

cη(0.78 − c1)
κ4 max

τ∈[t]

‖Errτ ‖
σ∗

min
2

(7.3)

In summary, if all the bounds from the noise-free case holds and
if ‖Errt‖ ≤ 0.1δ0σ∗

min
2, then (7.3) holds.

8
Linear Algebra and Random Matrix Theory

Preliminaries

Most of the below review is taken from [53].

8.1 Linear Algebra: Maximum and Minimum Singular Value and
the Induced 2-norm

We denote the hyper-sphere in �n by Sn−1; thus Sn := {x ∈ �n : ‖x‖ =
1}.

For any matrix M of size n1 × n2,

‖M‖ = σmax(M)
= σ1(M) = max

x∈Sn2−1
‖Mx‖

= max
x∈Sn2−1,y∈Sn1−1

y�Mx

=
√

λmax(M�M)

If M is a symmetric matrix, then

‖M‖ = max
x∈Sn−1

|x�Mx|
For an n1 × n2 matrix M ,

σmin(M) := σn2(M) := min
x∈Sn2−1

‖Mx‖ =
√

λmin(M�M)

388

8.2. Linear Algebra: Wedin and Davis-Kahan sin Θ Theorems 389

i.e., it is the n2-the singular value. Thus, for a rectangular matrix,
σmin(M) �= σmin(M�) but σmax(M) = σmax(M�) and, more generally,

σi(M�) = σi(M)

Weyl’s inequality for singular values implies that

σi(M) − ‖A‖ ≤ σi(M + A) ≤ σi(M) + ‖A‖
For an n1 × n2 matrix M and an n2 × n3 matrix A, if A has rank n3,
then,

σmin(MA) = min
x∈Sn3−1

‖MAx‖ · ‖Ax‖
‖Ax‖

≥σmin(M) min
x∈Sn3−1

‖Ax‖

=σmin(M)σmin(A)

8.2 Linear Algebra: Wedin and Davis-Kahan sin Θ Theorems

The following results are used to bound the subspace distance between
the top r singular or eigen vectors of a matrix and its estimate.

Theorem 8.1 (Davis-Kahan for eigenvectors of symmetric matriaces). For
symmetric matrices S, Ŝ, let U , Û denote the matrices of their top r

eigenvectors respectively. Then.

SubsDist(U , Û) ≤ ‖S − Ŝ‖
λr(S) − λr+1(Ŝ)

≤ ‖S − Ŝ‖
λr(S) − λr+1(S) − ‖S − Ŝ‖

Also, let ui denote the i-th eigenvector. Then, we have the following
bound.

sin θ(ui, ûi) ≤ ‖S − Ŝ‖
minj
=i |λj(S) − λi(S)

Here sin θ(ui, ûi) =
√

1 − (uT
i ûi)2

Theorem 8.2 (Wedin sin Θ theorem for Frobenius norm subspace distance
[16, 54][Theorem 2.3.1).] For two n1 × n2 matrices M∗, M , let U∗, U

denote the matrices containing their top r left singular vectors and let
V ∗�, V � be the matrices of their top r right singular vectors (recall

390 Linear Algebra and Random Matrix Theory Preliminaries

from problem definition that we defined SVD with the right matrix
transposed). Let σ∗

r , σ∗
r+1 denote the r-th and (r + 1)-th singular values

of M∗. If ‖M − M∗‖ ≤ σ∗
r − σ∗

r+1, then

SubsDistF (U , U∗)

≤
√

2 max(‖(M − M∗)�U∗‖F , ‖(M − M∗)�V ∗�‖F)
σ∗

r − σ∗
r+1 − ‖M − M∗‖

SubsDist2(U , U∗)

≤
√

2 max(‖(M − M∗)�U∗‖, ‖(M − M∗)�V ∗�‖)
σ∗

r − σ∗
r+1 − ‖M − M∗‖

8.3 Probability Results: Markov’s Inequality and its Use to Prove
Concentration Bounds

All the concentration bounds stated below use the Markov inequality,
which itself is an easy application of the integral identity

Theorem 8.3 (Markov’s inequality). For a non-negative random variable
(r.v.) Z,

Pr(Z > s) ≤ E[Z]
s

This result forms the basis of the entire set of results on non-
asymptotic random scalar, vector, and matrix theory. We obtain the
Chebyshev inequality by applying Markov’s inequality to Z = |X − μ|
with μ = E[X]. For all the other inequalities we use the Chernoff
bounding technique explained below. This requires using an upper bound
on the moment generating function (MGF) of the r.v.’s. This, in turn,
requires assuming that the r.v.’s belong to a certain class of “nice enough”
probability distributions (bounded, sub-Gaussian, or sub-exponential).
With making one of these assumptions, the probability bound obtained
is much tighter (decays exponentially) than what Chebyshev provides.
However, the Chebyshev bound is the most general since it does not
assume any distribution on the r.v.s.

8.4. Probability Results: Chernoff Bounding Idea 391

8.4 Probability Results: Chernoff Bounding Idea

The MGF of a random variable (r.v.) X is defined as

MX(λ) := E[exp(λX)]

Chernoff bounding involves applying the Markov inequality to Z = etX

for any t ≥ 0. Notice etX is always non-negative.

Pr(X > s) = Pr(etX > ets) ≤ e−ts
E[etX] = e−tsMX(t)

Since this bound holds for all t ≥ 0, we can take a mint≥0 of the RHS
or we can substitute in any convenient value of t.

If S =
∑m

i=1 Xi with Xi’s independent, then MX(λ) =
∏

i MXi(λ).
The next step involves either using an exact expression for MGF or a
bound on the MGF for a class of distributions, e.g., Hoeffding’s lemma.
This is often followed by a scalar inequality such as 1 + x ≤ ex or using
cosh(x) ≤ ex2/2 (or other bounds) to simplify the expressions to try to
get a summation over i in the exponent.

Pr(S > s) = Pr(
∑

i

Xi > s)

= Pr(et
∑

i
Xi > ets)

≤e−ts
E[et

∑
i

Xi]

≤ min
λ≥0

e−λs
∏

i

MXi(λ)

The final step is to minimize over λ ≥ 0 by differentiating the expression
and setting it to zero, or picking a convenient value of λ ≥ 0 to substitute.

A similar approach is then used to bound Pr(
∑

i Xi < −s). The
only difference is we use Z = e−t

∑
i

Xi for t ≥ 0 and so,

Pr(S < −s) = Pr(
∑

i

Xi < −s)

= Pr(e−t
∑

i
Xi > e−t·(−s))

≤e−ts
E[e−t

∑
i

Xi]

≤ min
λ≥0

e−λs
∏

i

MXi(−λ)

392 Linear Algebra and Random Matrix Theory Preliminaries

Combine both of the above bounds to bound

Pr(|
∑

i

Xi| > s) = Pr(
∑

i

Xi > s) + Pr(
∑

i

Xi < −s)

8.5 Probability Results: Bounds on Sums of Independent Scalar
r.v.s (Scalar Concentration Bounds)

The results summarized below are taken from [53, Chap 2]. We state
these results for sums of zero mean r.v.s. However, usually these are
applied to show concentration of sums of nonzero mean r.v.s around
their means. Given a set of nonzero mean r.v.s Zi,

Xi = Zi − E[Zi]

is zero mean.
The first result below, Chebyshev inequality, requires no assumptions

on the r.v.s except that they have a finite second moment. But its
probability bound is also the weakest. The three results below it are for
sums of bounded, sub-Guassian, and sub-exponential r.v.s.

Theorem 8.4 (Chebyshev’s inequality). Let Xi, i = 1, 2, . . . , n be inde-
pendent r.v.s with E[X2

i] < ∞. Then,

Pr(|
∑

i

Xi| > t) ≤ 1
t2

∑
i

E[X2
i]

Theorem 8.5 (Bounded Bernstein inequality). Let Xi, i = 1, 2, . . . , n be
independent zero-mean bounded r.v.s with Pr(−Mi ≤ Xi ≤ Mi) = 1.
Let σ2

i := max(E[X2
i]). Then

Pr(|
∑

i

Xi)| ≥ t) ≤ 2 exp
(

− 0.5t2∑
i σ2

i + 0.33(maxiMi)t

)

Definition 8.1 (Sub-Gaussian and Sub-exponential r.v.). We say a r.v.
X is sub-Gaussian with sub-Guassian norm K if Pr(|X| > t) ≤
2 exp(−t2/K2). Equivalently, K = C supp≥1

1√
pE[|X|p]1/p.

We say a r.v. X is sub-exponential with sub-exponential norm K if
Pr(|X| > t) ≤ 2 exp(−t/K). Equivalently, K = C supp≥1

1
pE[|X|p]1/p.

8.6. Probability Results: Epsilon Netting Argument 393

Fact 8.1 (Product of sub-Gaussians is sub-exponential). For two sub-
Gaussian r.v.s X, Y with sub-Gaussian norms KX , KY , the r.v. Z :=
XY is sub-exponential with sub-exponential norm KXKY .

Theorem 8.6 (Sub-Gaussian Hoeffding inequality). Let X1, X2, . . . Xn be
independent zero-mean sub-Gaussian r.v.s with sub-Gaussian norm Ki.
Then, for every t ≥ 0,

Pr(|
∑

i

Xi| ≥ t) ≤ 2 exp
(

−c
t2∑
i K2

i

)

Theorem 8.7 (Sub-exponential Bernstein inequality). Let X1, X2, . . . Xn

be independent zero-mean sub-exponential r.v.s with sub-exponential
norm Ki. Then, for every t ≥ 0,

Pr(|
∑

i

Xi| ≥ t) ≤ 2 exp
(

−c min
(

t2∑
i K2

i

,
t

maxi Ki

))

8.6 Probability Results: Epsilon Netting Argument Used for Ex-
tending Union Bound to Uncountable but Compact Sets

The following discussion is taken from [53, Chap 4]. An “epsilon net” is
a finite set of points that is used to “cover” a compact set by balls of
radius ε. More precisely, it is a finite set of points that are such that any
point on the compact set is within an ε distance of some point in the
epsilon-net. We use the bounds on the size of the smallest epsilon-net
that covers a hyper-sphere to convert a scalar concentration bound
into a bound on the minimum and maximum singular values of a large
random matrix.

Definition 8.2 (Epsilon net on a sphere). We say Nε is an ε-net covering
Sn−1 in Euclidean distance if Nε ⊂ Sn−1 and if, for any x ∈ Sn−1, there
exists a x̄ ∈ Nε s.t. ‖x − x̄‖ ≤ ε.

It can be shown, using volume arguments [53], that there exists an
epsilon-net, Nε, covering Sn−1 whose cardinality can be bounded as

|Nε| ≤ (1 + 2/ε)n

394 Linear Algebra and Random Matrix Theory Preliminaries

Using this bound, the following result can be proved for obtaining a
high probability bound on the l2-norm of a matrix M with random
entries.

Theorem 8.8 (Bounding ‖M‖). For an n × r matrix M and fixed
vectors w, z with, w ∈ Sn and z ∈ Sr, suppose that

|w�Mz| ≤ b0 w.p. at least 1 − p0.

where b0 does not depend on w, z. Then,

‖M‖ ≤ 1.4b0 w.p. at least 1 − exp((log 17)(n + r)) · p0

Proof. Denote ε0-nets covering Sn−1 and Sr−1 by S̄n−1 and S̄r−1. Using
union bound, w.p. at least 1 − (1 + 2/ε0)n+rp0,

• maxw∈S̄n−1,z∈S̄r−1
|w�Mz| ≤ b0 and

• ‖M‖ := maxw∈Sn−1,z∈Sr−1 w�Mz ≤ maxw∈Sn−1,z∈Sr−1 |w�Mz| ≤
1

1−2ε0−ε2
0
b0.

The proof of the second item above follows that of Lemma 4.4.1 of [53].
Using ε0 = 1/8 gives the final conclusion.

8.7 Probability Results: Bounding Sums of Independent Matrix
r.v.s (Matrix Concentration Bounds)

By combining Theorem 8.8 given above with the scalar sub-exponential
Bernstein or sub-Gaussian Hoeffding inequalities, we obtain the following
two results which have been widely used in the LR recovery and phase
retrieval literature. These study sums of rank-one matrices which are
outer products of specific types of random vectors (r.vec). The last
result below is the matrix Bernstein inequality.

Corollary 8.9 (Sum of rank-one matrices that are outer products of two
sub-Gaussian r.vecs. (repeated from Section 7.1)). Consider a sum of
m zero-mean independent rank-one n × r random matrices xiz

�
i with

8.7. Probability Results: Bounding Sums 395

xi, zi being sub-Gaussian random vectors with sub-Gaussian norms
Kx,i, Kz,i respectively. For a t ≥ 0,

‖
m∑

i=1
xiz

�
i ‖ ≤ 1.4t

with probability at least

1 − exp
(

(log 17)(n + r) − c min
(

t2∑
i(Kx,i, Kz,i)2 ,

t

maxi(Kx,i, Kz,i)

))

By combining Theorem 8.8 with the scalar sub-Gaussian Hoeffding
inequality, we conclude the following.

Corollary 8.10 (Sum of rank-one matrices that are outer products of a
sub-Gaussian r. vec. and a bounded r.vec. (repeated from Section 7.1)).
Consider a sum of m zero-mean independent rank-one n × r random
matrices xiz

�
i with xi being sub-Gaussian random vector with sub-

Gaussian norms Kx,i and zi being a bounded random vector with
‖zi‖ ≤ Li. Then, clearly, for any w, w′, w�xiz

�
i w′ is a sub-Gaussian

r.v. with sub-Gassian norm Kx,iLi. Thus, for a t ≥ 0,

‖
m∑

i=1
xiz

�
i ‖ ≤ 1.4t

with probability at least

1 − exp
(

(log 17)(n + r) − c
t2∑

i(Kx,iLi)2

)

For bounded matrices, the following matrix Bernstein result gives a
much tighter bound than what would be obtained by combining scalar
bounded Bernstein and Theorem 8.8. See Section 8 for details.

Theorem 8.11 (Matrix Bernstein (repeated from Section 7.1)). Let
X1, X2, . . . Xm be independent, zero-mean, n×r matrices with ‖Xi‖ ≤
L for all i = 1, 2, ...m. Define the “variance parameter” of the sum

v := max
(

‖
∑

i

E[XiX
�
i]‖, ‖

∑
i

E[X�
i Xi]‖

)
.

396 Linear Algebra and Random Matrix Theory Preliminaries

Then,

‖
m∑

i=1
Xi‖ ≤ t

with probability at least

1 − 2 exp
(

log max(n, r) − c min
(

t2

v
,

t

L

))

We can also obtain a corollary for the bounded Bernstein inequality
by combining it with Theorem 8.8, but as we explain below, that is not
useful. It is not as tight as directly using the matrix Bernstein inequality.
We state this inequality as a remark next just to explain why it is not
useful and why the matrix Bernstein inequality should be used instead
for sums of bounded matrices.

Remark 8.1 (Sum of outer products of bounded random vectors (Not
Useful)). Consider a sum of m zero-mean independent bounded n × r

random matrices Xi with ‖Xi‖ ≤ Mi. Let σ2
i := E[‖Xi‖2] For a t ≥ 0,

‖
m∑

i=1
Xi‖ ≤ 1.4t

with probability at least

1 − exp
(

(log 17)(n + r) − c min
(

t2∑
i E[‖Xi‖2]

,
t

maxi‖Xi‖

))

The matrix Bernstein bound given in Theorem 8.11 is always better
than the result of the above Remark 8.1. The reason is that the positive
term in the exponent is max(n, r) in the above case and log max(n, r)
in matrix Bernstein. Consider the negative term in the exponent. L is
the same in both cases, but variance parameter v of matrix Bernstein
is upper bounded by the one used in the above remark.

Part IV

Open Questions: AltGDmin
and Generalized-AltGDmin
for Other Partly-decoupled

Problems

9
Open Questions

We describe open questions next.

9.1 Guarantees for a General Optimization Problem

An open question is: what assumptions do we need on an optimization
problem to show that AltGDmin for it will converge. And can we bound
its iteration complexity. Moreover, can we prove results similar to those
for GD for AltGDmin and under what assumptions. Finally, when can
these be extended to analyze Stochastic-AltGDmin which replaces the
GD step of AltGDmin by Stochastic GD.

9.2 Generalized AltGDmin

AltGDmin has been established to be a useful (faster, more commu-
nication-efficient, or both) modification of AltMin for certain partly
decoupled problems. Its overall idea is to replace the slower of the two
minimization steps of AltMin by a single GD step. For certain problems,
the natural split up of the unknown variable set consists of three or
more subsets, an example is robust PCA and extensions – robust matrix
completion and robust LRCS – described below. For these problems,

398

9.3. Robust PCA and Extensions 399

one can generalize the AltGDmin idea as follows. Consider the block
coordinate descent (BCD) algorithm which is a generalization of AltMin
for multiple blocls. Replace minimization for the slowest variable set in
BCD with GD. We explain the idea in detail below using robust PCA
as an example.

9.3 Robust PCA and Extensions: A Partly Decoupled Example
Problem for Generalized AltGDmin

The modern definition of Robust PCA [12, 14, 28, 43, 56] is the following:
recover a LR matrix X∗ = U∗B∗ and a sparse matrix S∗ from observed
data which is their sum, i.e., from

Y := U∗B∗ + S∗

This problem occurs in foreground background separation for videos as
well as in making sense of survey data with some outlier entries. Thus,
the optimization problem to be solved is

min
U ,B,S:U�U=I

f(U , B, S) :=
∑

k

‖yk − sk − Ubk‖2
2

In the above, clearly, Zslow = U and Zfast = {B, S}. The first approach
to try would be to use AltGDmin with this split-up. However, this
is a bad idea for two reasons. First there is no good approach to
jointly solve for B, S. Second, and more importantly, this approach is
ignoring the important fact that the sparse component is the one with
no bound on its entries’ magnitudes, hence it is the one that needs to
be initialized and updated first. The entries of U are bounded because
of the unit norm column constraint, while those of B are bounded
because of the incoherence assumption and bounded condition number.
Our recommended approach in this case is to consider the following
generalization of AltGDmin (Gen-AltGDmin).

• Initialize Ŝ and then Û : Initialize Ŝ using thresholding with
threshold proportional to α = σ∗

maxr/n. Obtain Û as the top r

singular vectors of X0 := Y − Ŝ

400 Open Questions

• Run T iterations that alternate between the following three steps:

– Obtain b̂k = U�(yk − Akŝk) for all k ∈ [q].

– Obtain ŝk by thresholding (yk − AkÛ b̂k) using a thresh-
old proportional to 0.5α, for all k ∈ [q] (α decreases with
iteration).

– Obtain Û by a GD step followed by orthonormalization.

An open question is when does the above algorithm work? Can we
bound its iteration complexity under a reasonable bound on the fraction
of outliers (sparse entries) in each row and column?

For Robust LRCS, the goal is to recover U∗B∗ from Y := AkU∗B∗+
AkS∗. The overall idea above will generalize. Thresholding will get re-
placed by solving a compressive sensing problem. Update of bk will solve
an LS problem. Robust LRMC would be handled similarly with some
changes because we can only hope to estimate the sparse component of
the observed entries.

9.4 Partly Decoupled Tensor LR: Tensor LR Slicewise Sensing

The goal is to learn / recover / estimate a (J + 1)-th order tensor from
provided data. The class of tensor problems that we focus on treats the
first J dimensions of the tensor differently than the last one [4]. This
is used to model tensor time or user sequences, e.g., multidimensional
image sequences, or multiple product ratings by users. For the dynamic
MRI and federated sketching problems, this models the fact that we
have time sequence of 2D or 3D (or higher-dimensional) images. If we
consider videos or single-slice dynamic MRI, then J = 2. If we consider
dynamic multi-slice MRI, then J = 3 and so on. For the recommender
systems one, this models the fact that we are trying to design a system
for J products and the last dimension is the different users. Thus for a
Netflix movie and shows recommendation system, we would use J = 2,
while if the products are movies, shows, and documentaries, we would
use J = 3 and so on. in case MRI data for different types of imaging
are combined.

9.4. Partly Decoupled Tensor LR: Tensor LR Slicewise Sensing 401

For a (J + 1)-th order tensor, Z, we use Zk to denote the k-th
frontal slice, e.g., if J = 2, then Zk = Z(:, :, k) is a matrix for each k.
There are many ways to define rank and the notion of LR for tensors;
we assume a Tucker LR model [32] on L, since it is the most relevant
model for our asymmetric setting. We define this next.

We need to learn a (J + 1)-th order tensors L of size n1 × n2 × · · · ×
nJ × q from data Y of size m1 × m2 × · · · × mJ × q that satisfy

Yk :=Ak(Lk + Ek) for all k ∈ [q] (9.1)
Lk=Bk ×1 U (1) ×2 U (2) ×3 · · · ×J U (J) for all k ∈ [q] (9.2)

when mj � min(nj , q), E is the modeling error or noise, L is an
unknown LR tensor with Tucker ranks r1, r2, . . . rJ , q with B being a
r1 × r2 · · · × rJ × q core tensor, U (j) being nj × rj matrices denoting the
subspace bases along the various dimensions. Here ×j denotes the j-th
mode product [32]. The function Ak(.) is a known dense linear function
or is element-wise nonlinear, e.g., in case of phase retrieval. To solve
the above problem, we need to minimize

f(U (j), j ∈ [J], B, S) :=
∑

k

‖Yk − Ak(Sk) − Ak(Bk ×1 U (1)

×2 U (2) ×3 · · · ×J U (J))‖2
F (9.3)

Notice that this problem is partly decoupled with Zslow = {U (j), j =
1, 2, . . . , J} being the coupled variables and Zfast = B being the decou-
pled one.

Special Case: 3D Tensor LRCS (LR Tensor Slice-wise Sensing).
We define below the simplest tensor LR extension of LRCS for a third
order tensor, thus J = 2. We studied this numerically in [4]. Our goal
is to learn a LR tensor L of size n1 × n2 × q from available third-order
tensor measurements Y of size m1 × m2 × q with m1 � n1, m2 � n2.
In this case some of the tensor models simplify as given next.

Yk=Lk ×1 Φk ×2 Ψk = ΦkLkΨ�
k , for all k ∈ [q],

Lk=Bk ×1 U ×2 V = UGkV � for all k ∈ [q]

The first equation above models a linear tensor function. In this J = 2
special case, it simplifies as a product of the three matrices. The same is

402 Open Questions

true for the LR model in this case. Here U is n1 × r1, and V is n2 × r2.
We need to solve minU ,V ,B: U�U=I,V �V =I f(U , V , B) :=

∑q
k=1 ‖Yk −

ΦkUGkV �Ψ�
k ‖2

F . This is clearly a partly decoupled problem with
Zslow = {U , V } and Zfast = B.

AltGDmin in this case proceeds as follows [4]. (1) We initialize using
a modification of our matrix case idea. Define the initial tensor L̂0
as follows: (L̂0)k = Φ�

k YkΨk, k ∈ [q]. We initialize U as the top r1
singular vectors of the unfolded matrix (L0)(1): this means unfold L0
along the first dimension to get a matrix of size n1 × n2q; and V as
the top r2 singular vectors of (L0)(2). (2) We alternatively update B
and {U , V } as follows. (a) Given {U , V }, update B by minimizing
the above cost function over it. Since this decouples, this step consists
of q inexpensive least squares (LS) problems. For this J = 2 special
case, these are obtained as Gk = (ΦkU)†Yk((ΨkV)†)� for each k ∈ [q].
Here M † := (M�M)−1M�. (b) Given B, we update {U , V } using
GD followed by projecting the output onto the space of matrices with
orthonormal columns. This is done using the QR decomposition. The
QR decomposition is very cheap, it is of order n1r2

1 and n2r2
2 respectively.

It can be easily derived that the time complexity of the above algorithm
is much lower than that of a matrix LRCS algorithm that vectorizes
the first J = 2 dimensions. The same is true for the communication
cost for a distributed implementation.

While the above algorithm converges numerically as shown in [4],
its theoretical analysis is an open question.

9.5 Partly Decoupled Not-differentiable Problems

Clustering. Data clustering is another set of problems where an
AltGDmin type approach can be very beneficial. We have data points
x∗

1, x∗
2, . . . , x∗

q that belong to one of ρ classes with ρ being a small
number. Each x∗

k is an n-length vector (or matrix/tensor) and n is
typically large. We do not know any of the class labels which we denote
by c∗

1, c∗
2, . . . c∗

q and would like to find them. We assume that each of the
ρ classes is represented by a “low-dimensional model”, Mj , j ∈ [ρ]. For
example, we could assume a Gaussian mixture model (GMM) where

9.5. Partly Decoupled Not-differentiable Problems 403

data points from class j occur with probability pj and have mean and a
covariance matrix μj and Cj respectively. Without any assumptions on
Cj , there are too many (n2ρ) unknowns. Often a diagonal assumption is
made but this may not be valid if different entries of x∗

k are correlated.
A milder assumption is to assume that each Cj is LR with rank r � n,
i.e., Cj

SVD= UjΣ∗
jU�

j with Uj being n × r.
Then AltGDmin with Zslow ≡ {pj , μj , Uj , Σ∗

j , j ∈ [ρ]} (model
parameters for all the classes) and Zfast ≡ {c∗

k, k ∈ [q]} (class labels)
will be faster than the traditional AltMin based solution (k-means
clustering).1

Maximum or mixed linear regression. This [21, 58] is another
problem that can be solved more efficiently using AltGDmin instead of
the AltMin algorithm [21]. This assumes that y = maxj∈[ρ] β∗

j
�x + w.

The goal is to learn the ρ regression vectors β∗
j , j ∈ [ρ] using training

data pairs {x∗
k, yk}, k ∈ [q] with q > ρn. Let c∗

k, k ∈ [q] denote the index
of the best model for the k-the training data pair. AltMin [21] alternates
between estimating c∗

ks given βj ’s (q decoupled scalar maximizations)
and vice versa: use the now labeled data to learn the βj ’s by solving an
LS problem. AltGDmin would replace this LS by a single GD step.

Unlabeled or shuffled sensing. This involves recovering x from
y := ΠAx when only y, A are given [1, 47]. Here x is the unknown
signal, and Π is an unknown m × m permutation matrix. This problem
occurs in simultaneous location and mapping for robots, multi-target
tracking, and record linkage. Polynomial time solutions for it are possible
with some assumptions on Π, e.g., Π is often assumed to be s-sparse:
i.e., only s or less of its rows are permuted. In this case, one common
solution is to initialize Π to I and use AltMin to update x and Π
alternatively. The update of x is a robust regression problem (LS with
sparse outliers), while that of updating Π is a well-studied discrete
optimization problem called linear assignment problem (LAP). AltMin
can be speeded up if we replace it by AltGDmin: instead of updating

1AltMin requires a full model parameters’ estimate at each iteration; this is
expensive when Cjs are not assumed to be diagonal.

404 Open Questions

x by fully solving the robust regression problem in each iteration, we
replace it by one GD step. Another assumption on Π is the s-local
assumption [1]. Under this assumption, the LAP would be decoupled
making it faster.

Appendix

A
Partly Decoupled Optimization Problem: Most

General Definition

Consider an optimization problem arg minZ g(Z). We say the problem
is decoupled if it can be solved by solving smaller dimensional problems
over disjoint subsets of Z. To define this precisely, observe that any
function g(Z) can be expressed as a composition of γ functions, for a
γ ≥ 1,

g(Z) = h(f1(Z), f2(Z), . . . fγ(Z)),

Here h(., ., ..) is a function of γ inputs. This is true always since we can
trivially let γ = 1, h(Z) = Z and f1(Z) = g(Z).

We say that the optimization problem is decoupled if, for a γ > 1,
Z can be split into γ disjoint subsets

Z = [Z1, Z2, . . . Zγ]

so that

arg min
Z

g(Z) =[arg min
Z1

f1(Z1), arg min
Z2

f2(Z2), . . . , arg min
Z�

f �(Z�),

. . . arg min
Zγ

fγ(Zγ))]

Observe that, in general, arg min is a set and the notation [S1, S2, . . . Sγ]
is short for their Cartesian product S1 × S2 × . . . Sγ . In words, the

406

407

set arg minZ f(Z) = {[Ẑ1, Ẑ2, . . . Ẑγ] : Ẑ1 ∈ arg minZ1 f1(Z1), Ẑ2 ∈
arg minZ2 f2(Z2), . . . , Ẑγ ∈ arg minZγ fγ(Zγ)}.

If g(Z) is strongly convex, then the arg min is one unique minimizer
Ẑ. In this case, the decoupled functions have a unique minimizer too
and arg minZ1 f1(Z1) returns Ẑ1 and so on, and Ẑ = [Ẑ1, Ẑ2, . . . , Ẑγ].
Data-decoupled means that the above holds and that ef �(Z�) depends
only on a disjoint subset D� of the data D. Let D = [D1, D2, . . . Dγ]. We
use a subscript to denote the data. Data-decoupled means that

arg min
Z

f(Z) =[arg min
Z1

f1
D1(Z1), arg min

Z2
f2

D2(Z2), . . . , arg min
Z�

f �
D�

(Z�),

. . . arg min
Zγ

fγ
Dγ

(Zγ))]

Most practical problems that are decoupled are often also data-decoup-
led. Henceforth we use the term “decoupled” to also mean data-decoupled.

Partly-decoupled is a term used for optimization problems for which
the unknown variable Z can be split into two parts, Z = {Zslow, Zfast},
so that the optimization over one keeping the other fixed is “easy”
(closed form, provably correct algorithm exists, or fast). Decoupled
and data-decoupled w.r.t. Zfast means that decoupling holds only for
minimization over Zfast. To be precise, let

Zfast = [(Zfast)1, (Zfast)2, . . . (Zfast)γ] and D = [D1, D2, . . . Dγ]

Then,

arg min
Zfast

f(Zslow, Zfast) =[arg min
(Zfast)1

f1
D1(Zslow, (Zfast)1), . . . ,

arg min
(Zfast)�

f �
D�

(Zslow, (Zfast)�),

. . . arg min
Zγ

fγ
Dγ

(Zslow, (Zfast)γ))]

All the examples of partly decoupled optimization problems that
we discuss in this work are those for which g(Z) = h(f1, f2, . . . fγ) =∑γ

�=1 f � is a sum of the γ functions f �. In this case, partly decoupled
problems means that

min
Zfast

f(Zslow, Zfast) =
∑

�

min
(Zfast)�

f �
D�

(Zslow, Zfast�)

References

[1] A. A. Abbasi, A. Tasissa, and S. Aeron, “R-local unlabeled sens-
ing: Improved algorithm and applications,” in IEEE Intl. Conf.
Acoustics, Speech, Sig. Proc. (ICASSP), pp. 5593–5597, 2022.

[2] A. A. Abbasi and N. Vaswani, “Efficient federated low rank matrix
completion,” IEEE Trans. Info. Th., 2025. url: https://ieeexplore.
ieee.org/document/10975055.

[3] F. P. Anaraki and S. Hughes, “Memory and computation efficient
pca via very sparse random projections,” pp. 1341–1349, 2014.

[4] S. Babu, S. Aviyente, and N. Vaswani, “Tensor low rank column-
wise compressive sensing for dynamic imaging,” in ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, pp. 1–5, 2023.

[5] S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank compres-
sive sensing for accelerated dynamic MRI,” IEEE Trans. Comput.
Imag., 2023.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[7] C. L. Byrne, “Alternating minimization and alternating projection
algorithms: A tutorial,” Journal of Optimization Theory and
Applications, vol. 156, no. 3, 2013, pp. 554–566.

408

References 409

[8] T. Cai, X. Li, and Z. Ma, “Optimal rates of convergence for noisy
sparse phase retrieval via thresholded wirtinger flow,” The Annals
of Statistics, vol. 44, no. 5, 2016, pp. 2221–2251.

[9] E. Candes and T. Tao, “Near optimal signal recovery from ran-
dom projections: Universal encoding strategies?” IEEE Trans. on
Information Theory, vol. 52(12), 2006, pp. 5406–5425.

[10] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via
wirtinger flow: Theory and algorithms,” IEEE Trans. Info. Th.,
vol. 61, no. 4, 2015, pp. 1985–2007.

[11] E. J. Candes and B. Recht, “Exact matrix completion via convex
optimization,” Found. of Comput. Math, no. 9, 2008, pp. 717–772.

[12] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal
component analysis?” J. ACM, vol. 58, no. 3, 2011.

[13] A.-L. Cauchy, “Méthode générale pour la résolution des systèmes
d’équations simultanées,” French, Comptes Rendus de l’Académie
des Sciences, vol. 25, 1847, pp. 536–538.

[14] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky,
“Rank-sparsity incoherence for matrix decomposition,” SIAM
Journal on Optimization, vol. 21, 2 2011.

[15] Y. Chen and E. Candes, “Solving random quadratic systems of
equations is nearly as easy as solving linear systems,” pp. 739–747,
2015.

[16] Y. Chen, Y. Chi, J. Fan, C. Ma, et al., “Spectral methods for
data science: A statistical perspective,” Foundations and Trends®

in Machine Learning, vol. 14, no. 5, 2021, pp. 566–806.
[17] Y. Chen, Y. Chi, and A. J. Goldsmith, “Exact and stable co-

variance estimation from quadratic sampling via convex program-
ming,” IEEE Transactions on Information Theory, vol. 61, no. 7,
2015, pp. 4034–4059.

[18] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in
International conference on machine learning, PMLR, pp. 2089–
2099, 2021.

[19] I. Csiszár, “Information geometry and alternating minimization
procedures,” Statistics and Decisions, Dedewicz, vol. 1, 1984,
pp. 205–237.

410 References

[20] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei, “Few-shot
learning via learning the representation, provably,” 2021.

[21] A. Ghosh, A. Pananjady, A. Guntuboyina, and K. Ramchan-
dran, “Max-affine regression: Parameter estimation for gaussian
designs,” IEEE Transactions on Information Theory, vol. 68, no. 3,
2021, pp. 1851–1885.

[22] A. C. Gilbert, J. Y. Park, and M. B. Wakin, “Sketched svd:
Recovering spectral features from compressive measurements,”
arXiv preprint arXiv:1211.0361, 2012.

[23] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin,
“One sketch for all: Fast algorithms for compressed sensing,” in
Proceedings of ACM Symposium on Theory of Computing (STOC),
pp. 237–246, 2007.

[24] G. H. Golub and C. F. Van Loan, “Matrix computations,” The
Johns Hopkins University Press, Baltimore, USA, 1989.

[25] M. Hardt and E. Price, “The noisy power method: A meta algo-
rithm with applications,” Advances in neural information process-
ing systems, vol. 27, 2014.

[26] J. Holloway, M. S. Asif, M. K. Sharma, N. Matsuda, R. Horstmeyer,
O. Cossairt, and A. Veeraraghavan, “Toward long-distance sub-
diffraction imaging using coherent camera arrays,” IEEE Trans
Comput Imaging, vol. 2, no. 3, 2016, pp. 251–265.

[27] G. Jagatap, Z. Chen, S. Nayer, C. Hegde, and N. Vaswani, “Sam-
ple efficient fourier ptychography for structured data,” IEEE
Transactions on Computational Imaging, vol. 6, 2019, pp. 344–
357.

[28] P. Jain and P. Netrapalli, “Fast exact matrix completion with finite
samples,” in Conference on Learning Theory, PMLR, pp. 1007–
1034, 2015.

[29] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et
al., “Advances and open problems in federated learning,” Foun-
dations and Trends® in Machine Learning, vol. 14, no. 1–2, 2021,
1–210.

[30] S. M. Kay, Fundamentals of statistical processing: Estimation
theory. 1993.

References 411

[31] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion
from a few entries,” IEEE transactions on information theory,
vol. 56, no. 6, 2010, pp. 2980–2998.

[32] T. G. Kolda and B. W. Bader, “Tensor decompositions and ap-
plications,” SIAM Review, vol. 51, no. 3, 2009, pp. 455–500. doi:
10.1137/07070111X.

[33] J. Lin, S. Moothedath, and N. Vaswani, “Fast and sample efficient
multi-task representation learning in stochastic contextual ban-
dits,” in International Conference on Machine Learning, PMLR,
pp. 30 227–30 251, 2024.

[34] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob, “Accelerated
dynamic mri exploiting sparsity and low-rank structure: Kt slr,”
IEEE Transactions on Medical Imaging, vol. 30, no. 5, 2011,
pp. 1042–1054.

[35] M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly, “K-t
sparse: High frame rate dynamic MRI exploiting spatio-temporal
sparsity,” in Conf. of International Society for Magnetic Reso-
nance in Medicine(ISMRM), Seattle, Washington, May 2006.

[36] P. Narayanamurthy and N. Vaswani, “Provable dynamic robust
pca or robust subspace tracking,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 3, 2018, pp. 1547–1577.

[37] S. Nayer and N. Vaswani, “Fast and sample-efficient federated
low rank matrix recovery from column-wise linear and quadratic
projections,” IEEE Trans. Info. Th., 2023.

[38] S. Nayer, P. Narayanamurthy, and N. Vaswani, “Phaseless PCA:
Low-rank matrix recovery from column-wise phaseless measure-
ments,” in International Conference on Machine Learning, PMLR,
pp. 4762–4770, 2019.

[39] S. Nayer, P. Narayanamurthy, and N. Vaswani, “Provable low
rank phase retrieval,” IEEE Transactions on Information Theory,
vol. 66, no. 9, 2020, pp. 5875–5903.

[40] S. Nayer and N. Vaswani, “Sample-efficient low rank phase re-
trieval,” IEEE Transactions on Information Theory, vol. 67, no. 12,
2021, pp. 8190–8206.

[41] P. Netrapalli, P. Jain, and S. Sanghavi, “Low-rank matrix com-
pletion using alternating minimization,” 2013.

412 References

[42] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using
alternating minimization,” in Neur. Info. Proc. Sys. (NeurIPS),
pp. 2796–2804, 2013.

[43] P. Netrapalli, U. N. Niranjan, S. Sanghavi, A. Anandkumar,
and P. Jain, “Non-convex robust pca,” in Neur. Info. Proc. Sys.
(NeurIPS), 2014.

[44] H. Qi and S. M. Hughes, “Invariance of principal components
under low-dimensional random projection of the data,” in 19th
IEEE International Conference on Image Processing, pp. 937–940,
2012.

[45] A. Ramamoorthy, R. Meng, and V. Girimaji, “Leveraging partial
stragglers within gradient coding,” Advances in Neural Informa-
tion Processing Systems, vol. 37, 2024, pp. 60 382–60 402.

[46] A. P. Singh and N. Vaswani, “Byzantine resilient and fast federated
few-shot learning,” in Forty-first International Conference on
Machine Learning, 2024.

[47] M. Slawski and E. Ben-David, “Linear regression with sparsely
permuted data,” Electronic Journal of Statistics, vol. 13, 2019,
pp. 1–36.

[48] R. S. Srinivasa, K. Lee, M. Junge, and J. Romberg, “Decentralized
sketching of low rank matrices,” pp. 10 101–10 110, 2019.

[49] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gra-
dient coding: Avoiding stragglers in distributed learning,” in Inter-
national Conference on Machine Learning, PMLR, pp. 3368–3376,
2017.

[50] K. K. Thekumparampil, P. Jain, P. Netrapalli, and S. Oh, “Sta-
tistically and computationally efficient linear meta-representation
learning,” Advances in Neural Information Processing Systems,
vol. 34, 2021, pp. 18 487–18 500.

[51] M. Udell and A. Townsend, “Why are big data matrices approxi-
mately low rank?” SIAM Journal on Mathematics of Data Science,
vol. 1, no. 1, 2019, pp. 144–160.

[52] N. Vaswani, “Efficient federated low rank matrix recovery via
alternating gd and minimization: A simple proof,” IEEE Trans.
Info. Th., 2024.

References 413

[53] R. Vershynin, High-dimensional probability: An introduction with
applications in data science, vol. 47. Cambridge university press,
2018.

[54] P.-Å. Wedin, “Perturbation bounds in connection with singular
value decomposition,” BIT Numerical Mathematics, vol. 12, no. 1,
1972, pp. 99–111.

[55] D. P. Woodruff et al., “Sketching as a tool for numerical lin-
ear algebra,” Foundations and Trends® in Theoretical Computer
Science, vol. 10, no. 1–2, 2014, pp. 1–157.

[56] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms
for robust pca via gradient descent,” in Neur. Info. Proc. Sys.
(NeurIPS), 2016.

[57] Q. Zheng and J. Lafferty, “Convergence analysis for rectangular
matrix completion using burer-monteiro factorization and gradient
descent,” arXiv preprint arXiv:1605.07051, 2016.

[58] K. Zhong, P. Jain, and I. S. Dhillon, “Mixed linear regression
with multiple components,” in Neur. Info. Proc. Sys. (NeurIPS),
vol. 29, 2016.

