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ABSTRACT ARTICLE HISTORY

The increasing prevalence of multiplex networks has spurred a criti- Received 29 October 2023
cal need to take into account potential dependencies across different Accepted 24 October 2024
layers, especially when the goal is community detection, which is KEYWORDS

a fundamental learning task in network analysis. We propose a full Community detection; latent

Bayesian mixture model for community detection in both single- position model; mixture
layer and multi-layer networks. A key feature of our model is the model; missing data; spatial
joint modeling of the nodal attributes that often come with the net- process; multiplex network

work data as a spatial process over the latent space. In addition,
our model for multi-layer networks allows layers to have different
strengths of dependency in the unique latent position structure and
assumes that the probability of a relation between two actors (in a
layer) depends on the distances between their latent positions (mul-
tiplied by a layer-specific factor) and the difference between their
nodal attributes. Under our prior specifications, the actors’ positions
in the latent space arise from a finite mixture of Gaussian distribu-
tions, each corresponding to a cluster. Simulated examples show that
our model outperforms existing benchmark models and exhibits sig-
nificantly greater robustness when handling datasets with missing
values. The model is also applied to a real-world three-layer network
of employees in a law firm.

1. Introduction

Network data conveniently describes the relationships between actors in complex sys-
tems [31,45] and is ubiquitous in many statistical applications, including finance [7,21],
social science [14], criminology [8,43], biology [1], epidemiology [55], and computer sci-
ence [57], among others. Understanding the relationships between actors can aid domain
experts. For instance, in epidemiology, people in a certain area can be portrayed in a con-
tact network that can be studied to detect infectious disease outbreaks [55]. In criminology,
communications between terrorists form a terrorist network, helping intelligence agencies
to better counter terrorism [8].

Many models have been developed for the inference of networks over the past decades
(e.g.[16,18]), among which the broad class of latent space models is one of the most widely
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used (see, e.g.[53] for an exhaustive review). Suppose the network under study has N actors,
then under latent space models, there are N independent and identically distributed (i.i.d.)
latent variables zj, . . . , 2N, one for each actor. Under a mild exchangeability assumption in
[25], results in [3,29] show that edge variables y; ;, where i,j € {1,..., N}, depend on latent
variables through a symmetric function y (z;, z;) that is meant to capture any pattern in the
network beyond any known covariate information.

Many well-known models fall into the category of latent space models, which can be
distinguished between two cases depending on whether latent variables are discrete or con-
tinuous [42]. For instance, stochastic block models [46,58] — hereafter SBM - are special
cases of latent space models with discrete latent variables z; € {1,2,...,K}. When latent
variables are assumed to be continuous, another approach using latent variables is the class
of latent position models (LPM) [28] which our model in the paper is built upon. In its
basic formulation, LPMs model the edge variables y;; as conditionally independent given
the distance between latent variables y (z;, zj) = —||z; — z;j||, which naturally accounts for
transitivity effects through the latent space (typically a Euclidean K-dimensional space for
a predetermined K) where z; lives. Later on, Handcock et al. [24] proposed an extension
on LPM, namely the latent position cluster model (LPCM), by imposing a Gaussian mix-
ture prior on the latent positions to perform clustering tasks. Krivitsky et al. [34] further
extended LPCM by adding the random sender and receiver effects [26]. Other formulations
of y (-, -) can be found in [5,26,27,44,52], among others.

Besides edge information of a network, extra information like node and edge attributes
and different types of edges are often available, and should ideally be leveraged for infer-
ence. Typical ways to incorporate attributes in a network model include: (1) modeling the
network as a function of the attributes (see, e.g.[26,28]); (2) modeling the attributes as a
function of the network [23]; (3) jointly modeling the network and attributes [10,17,30,39].
We consider taking the joint modeling approach similar to the social network spatial model
(SNSM) proposed in Ciminelli et al. [10]. Denote the continuous nodal attribute for actor
i as x;, SNSM assumes that edges y;; are conditionally independent given ||z; — z;j|| and
llxi — xjll, and models nodal attributes as a spatial process over the latent space. Note that
joint modeling does not require the network or the attributes to be fully observed as the
first two approaches do, hence one could predict missing network and attribute data (if
there is any). In addition, it improves model fitting by capturing the dependence structure
between latent variables and the attributes (when such dependency exists), as we will see
in Section 3.

We propose a full hierarchical Bayesian model that builds on SNSM. But instead of
using a Gaussian distribution as the prior for latent, we impose a Gaussian mixture prior
so that our model could capture the group structure in the network. Detecting communi-
ties or clusters among actors in the network is an important task in network analysis and
has spurred the development of many models and algorithms, among which the SBM has
motivated an active line of research that deals with community detection (see, e.g.[37] for
a review). However, SBM suffers from poor model fitting when many actors fall between
clusters [28] as we will see in the simulation studies. We will compare our model with an
SBM that incorporates covariates as fixed effects (i.e. model the edge variables as a function
of latent classes and covariates [38]), and we call this model a covariate-assisted stochastic
block model (CSBM). We will show that our model presents improved model fitting while
producing similar clustering results as CSBM.
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We also propose an extension of our model to multi-layer network settings. Multi-layer
networks can generally be categorized into two cases: cross-sectional networks that have
different types of connections (e.g.social networks of friendship, coworker-ship, etc.) and
time-varying networks where the same type of connections are measured over time (e.g.a
trade network that changes over time). We consider a type of cross-sectional multi-layer
network where each layer has a common set of actors. Substantial work has been done on
latent space models for cross-sectional multi-layer networks that take a Bayesian approach
(see, e.g.[11,12,15,22,40,51,54,56]). In extending our model to the multiple networks set-
ting, we adopt the approach in [54] in a parsimonious way, where latent positions are
assumed to be the same for all layers, but the strength of borrowing such latent structure
information is allowed to be different across different layers. Note that, the original model
in [54] assumed different latent positions for different layers and had an additional hier-
archy on the hyperparameters. D’Angelo et al. [12] adopted a similar approach where the
authors also assume the same latent positions across all layers and their model is capable of
clustering assignments by using a Dirichlet process mixture on latent positions instead of
a finite Gaussian mixture prior. However, their model does not take into account attribute
information. We propose a model for attributed network data sets that jointly models the
network and attributes and performs clustering tasks. The focus of the work is to see how
joint modeling improves network estimation and clustering accuracy.

The remainder of the paper is organized as follows. Section 2 contains general back-
ground on the spatial process and introduces the proposed model (in both single- and
multi-layer network settings) which we call the latent position joint mixture model
(LPJMM) in the rest of the paper. In addition, prior specification, identifiable problem, and
inference will also be discussed in this section. Several simulation studies are conducted
in Section 3, where LPJMM is compared with LPCM, SNSM and CSBM in single-layer
settings. We will see that LPJMM outperforms these benchmark models under different
scenarios, especially when networks have missing edges. The multi-layer model is also
evaluated under a two-layer network scenario. Section 4 illustrates how to use the proposed
model to provide insights from a given network and the model is applied to a real-world
multi-layer network data set. Finally, we conclude with some discussion in Section 5.

2. Models

We first review the LPM introduced in [28], and then build upon it with a spatial process
as in [10] to allow for joint modeling of the network and the nodal attributes, and with a
finite Gaussian mixture distribution for latent positions to allow for clustering.

Consider a binary single-layer network with N actors. Denote its adjacency matrix as
Y = (yij) € {0, V>N where yij = lifactorsiand jare connected, and y;; = 0 if they are
not connected. Suppose the network data comes with a one-dimensional nodal attribute x;
for each actor, and denote the covariateasx = (x;) € RY. The LPM assumes that each actor
i has an observed latent position z; in a K-dimensional Euclidean latent space, the so-called
latent space, for some K € N. Letz = (z;) € RN*K then LPM models Yij as conditionally
independent given distances between nodal attributes as well as distances between latent
positions via logistic regression. But instead of the logistic link, we use the probit link in our
model. The analysis of probit regression models can often be facilitated by a Gibbs sampler
constructed using the data augmentation approach that introduces latent variables with
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truncated normal distributions [2]. (See also [54] for a discussion on the choice of link
functions.) Specifically, for i,j € {1,...,N}and i # j,

ind
yij | z.%x,a,b,0 X Ber ((I)(a + blx; — xj| — 0|z — zjll)), (1)

where a,b € Rand # € RY, Ber(p) is a Bernoulli distribution that takes value 1 with some
probability p, || - || is the Euclidean norm on RX and ®(.) is the cumulative distribu-
tion function of the standard normal distribution. Note that we impose a factor  for the
distance between latent positions, which is different from [28,34]. Although 6 is uniden-
tifiable in single-layer networks, it plays a non-trivial role in multi-layer network settings
(introduced in Section 2.1). We defer a detailed discussion of § to Section 2.4.

To allow for joint modeling of the network and nodal attributes, we model the nodal
attributes as a spatial process over the latent space RX. Hence, nodal attributes are treated
as random variables indexed by their latent positions, and the distance between these ran-
dom variables is found by the distance between their corresponding positions. As in [10],
we specify the spatial process as a Gaussian process that is stationary with mean £ and
isotropic (see [6] for definitions). In this case, the process is completely defined by its
covariance function y (d), where d is the distance between two random variables in the
Gaussian process. In particular, we specify y (d) with an exponential kernel, that is,

2 4+ o2, if d =0;
yd) =1, .
o”exp(—¢d), ifd> 0,

where 7 > 0,0 > 0and ¢ > 0. It is well-known that such a covariance structure is valid,
i.e. the covariance matrix for any finite collection of random variables in the process is
positive definite [6]. Let M, = (m;j) € RN*N where mjj = exp(—¢||z; — zj||) and denote
Iy as the N-dimensional identity matrix, then the Gaussian process of the nodal attributes
is constructed as follows,

x|z B,0,7,¢ ~ Nn(Bly,0°M(z, ¢) + °Iy), )

where Ny is a d-dimensional multivariate normal distribution for some dimension d €
{2,3,...}, and 1y is an N-dimensional vector with all 1s.

We then impose a Gaussian mixture distribution on latent positions, which allows us to
cluster actors into different groups. Suppose there are H < oo predetermined number of
components in the Gaussian mixture distribution, then

H
zil @ %S Nk kP Ix), (3)
h=1
where @ = {w;,...,0g}, 4 ={u1,...,ug}, kK ={k1,...,kg}. Note that uy is a K-
dimensional mean vector where h € {1,...,H}, and wy, is the probability that an actor
belongs to the hth group such that wy, € (0,1) and Zle wp = 1.

In single-layer network settings, the model is given by Equations (1) and (3). Under our
model, nodal attributes of two actors whose latent positions are close are more likely to
be similar according to the exponential covariance structure. If b < 0 (b> 0), actors with
similar attributes are more (less) likely to be connected. When b = 0, nodal attributes do
not affect the distribution of the network directly (but it still has an indirect impact on the
network through latent positions by Equation (2)).
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Figure 1. DAG representation of the LPJMM in multi-layer settings.

2.1. An extension to multi-layer networks

Our model can also be extended to multi-layer network settings in the following way. Sup-
pose we have L layers Y1, . . ., Y in the network, where all layers are defined over the same
set of actors. We assume the same latent positions z for all layers but allow the strength
of borrowing such latent structure information to be different by imposing layer-specific

factors 0 for € € {1, ..., L}. Our model in multi-layer settings is then presented as follows
ind
Yije | 2% ag, b, 0p ~ Ber (®(ar + belxi — xj| — O¢llzi — 7)) » (4)
x|z B,0,7,¢ ~ Nn(Bln,0*M(z, ¢) + °Iy), (5)
.. d H
LLd.
zilo,pxe =" opNk (i kT, (6)
h=1

where y; ;¢ is the edge variable between actors i and j in layer ¢, and a¢, by and 0, are
layer-specific parameters. Note that Equations (5) and (6) are the same as Equations (2)
and (3). Figure 1 shows a directed acyclic graph (DAG) representation of the model given
by Equations (4) and (6).
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2.2. Prior specification

We take a Bayesian approach to estimate the model parameters. Without loss of generality,
a Bayesian version of the model given by Equations (4) to (6) is formed by placing prior
distributions on the unknown parameters ay, b, 0, f, 0,7, ¢, @, pp, kp, for £ = {1,...,L}
and h = {1, ..., H}. In the model we consider, these parameters are assumed a priori inde-
pendent. For parameters in the probit regression tier as specified by Equation (4), their
priors are specified as follows:

iid. iid. iid.
ag S N(ma,vg), be e N(mb,vg), 6y g Gamma(4i, 43),

for £ € {1,...,L}. The priors for the parameters in the spatial process tier as given in
Equation (5) are given as follows:

ﬁ ~ N(O> Vlzf)a 0-2 ~ InVG(’?l» 772)) Tz ~ InVG(é:l) 52)) ¢ ~ U(ul’ UZ)'

Finally, we put the following priors on the rest of the parameters:

iid. iid.
o ~ Dir(a), up R NK(mﬂ,vﬁIK), Klf g InvG(y1, 72)-

Note that, mg,, va, mp, vy, A1, A2, Vg, N1, M2, C15 $25 U1, U2, &, My, Ly, 1 and p; are user-
specified hyperparameters, and Gamma(:, -), InvG(:, -), U(-, ), Dir(-) represents Gamma,
Inverse-Gamma, uniform, and Dirichlet distributions respectively.

2.3. Posterior distribution and model estimation

As is standard in Bayesian estimation of mixture models (see, e.g.[13]), we define a new
variable g; that serves as the missing data of group membership of actor i whose distribution
depends on @. In particular, g; = h if actor i belongs to the h-th group. The joint density
of (zi, &) given @, u and « is then given by

Ligi=h)

H
TT 1 on———exp( =51z — nl?
h 2](:2 1 b

h=1 27rxfl h

where the indicator function Ijg,—py =1 if g; = h, and Ijg—p) = 0 otherwise. Let g =
(g, be the group membership for all actors and £(-) be the law of a random variable.
Then the posterior distribution of z, g and the parameters (whose priors are specified in
Section 2.2) is given by

H(z,g,al,...,aL,bl,...,bL,ﬁl,...,HL,ﬂ,rz,az,gb,w,y,x | Yy,..., Y, x)

L
x {Hﬁ(Yg | z,x,ag,bg,é'{;)} L(x|z,0,7,¢0)L(z,8| 0, u,K)
(=1

L
x {Hﬁ(awc(bf)c(ee)} LB)L*) L) L()L(@)L(p) L)

t=1
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Note that the dimension of the posterior distribution has dimension NK + N + 3L +
3H + 4 and the corresponding posterior density is presented as follows,

w(z,8a1,...,a1,b1,...,b1,01,. ..,QL,ﬁ,rz,az,¢,w,ﬂ,x | Yy,..., Y, x)

L

H H (D(le + bglx,- — le — (9[”;51. _ Zj”)])’i,j,i

1] 1[:1
1=y,
x [1 — ®(ag + belxi — xj| — O¢llzi — Z]”)] Vijil

X |02M(z,¢) + TZIN|_% exp (—%(x - DT (JZM(Z,¢) + TZIN)_I x— ﬂl))

N H ligi=h)
wy, 1 2
X ——=-exp| ———llzi — pall
EIE K7 P( 21 T
L L L
x LZ( - )2+—Zb —mp)* )]0/ " exp(—A200)
€xp 2 ar —mg 2 ¢ — My ¢ €Xp(—420¢
a =1 Vb =1 (=1
B2 - & — n &
><eXP(F (@)™ @)™ exp i) Lgelur,u]}
B

H
1 . V2
x H{wﬁh ISt o) X p( = g )(Kﬁ) : ICXP(—E)}-
h=1

2.4. Inference and identifiability of parameters

Note that the posterior distribution is highly intractable, hence we must resort to Markov
chain Monte Carlo (MCMC) methods for inferences on model parameters. A Markov
chain of the parameters is generated via the program ‘Just Another Gibbs Sampler’” (JAGS)
which is implemented in R [48] using the r jags package [47].

Several parameters are not identifiable in our model. Firstly, due to factors 6y and ¢, and
the fact that latent positions are incorporated in the posterior only through their distances,
the posterior is, therefore, invariant to f¢s and ¢, and is invariant to scaling, reflection,
rotation, and translation of the latent positions z. (Note that, [28,34] did not have &;s,
hence their posterior is not invariant to the scaling of latent positions.) Although ;s are
not identifiable and do not affect the model fitting, their ratios 8y, /6, still provide valid
information on layer’s relative strength of borrowing information from the latent space in
multi-layer settings.

Despite being unidentifiable, one can still make inferences on the latent positions and
find a reasonable estimate for z through a post-process which we now describe. Similar
to the definition in [28], we define the equivalence class of z € RN*K, denoted as [z],
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to be the set of positions that are equivalent to z under scaling, reflection, rotation, and
translation. Given a fixed reference position z,y, a position z, is found in [z] such that
Z, = arg ming ey tr(z,f — 7/ )T (Zref — z'), which is the so-called Procrustes transforma-
tion. In simulation studies, z is naturally chosen to be the true latent position, while in
practical applications, we could use the last iteration of the Markov chain of latent posi-
tions as the reference. The Procrustes transformation is performed for each iteration of the
Markov chain of the latent positions {z,}, and an estimate for z is taken as the mean of the
Procrustes transformations of {z,}.

As occurs in Bayesian mixture models, the label-switching problem for the group
membership g is another source of non-identifiability. That is, the posterior is invari-
ant under permutations of clustering labels. Many algorithms have been proposed to
obtain a single clustering estimate based on the MCMC sample of the group member-
ship {g,}, including an optimization method (which we call ‘MaxPEAR’ hereafter) that
finds a clustering that maximizes posterior expected adjusted Rand index (ARI) [20],
an optimization method (‘MinBinder’) that minimizes Binder’s loss function [35], and a
greedy algorithm (‘GreedyEPL’) that aims to minimize the variation of information [50],
among others. These approaches may generate different clustering estimates, and to get
a better understanding of the model performance, all aforementioned algorithms (Max-
PEAR, MinBinder, and GreedyEPL) are used to assess the model. Estimates based on these
approaches are found using the packages GreedyEPL [49] and mcclust [19].

3. Simulation

Four network scenarios are considered in this section to evaluate our model. The first three
simulations consider single-layer networks generated from LPJMM, but the underlying
latent positions display varying degrees of clustering. In each of the three simulations,
LPJMM is compared with three other models designed only for single-layer networks,
namely LPCM in [24], SNSM in [10], and CSBM in [38]. Model assessments include
how well a model could recover the group membership and the latent position configura-
tion, and a goodness-of-fit test using summaries of networks including density, transitivity,
and assortative coefficient based on the estimated group membership g (see [32] for def-
initions). Furthermore, LPJMM is also evaluated by how accurately it estimates certain
parameters. In the last simulation, we consider a two-layer network and the performance of
LPJMM could be further evaluated by the estimated ratio 6, /6,, which reflects differences
in each layer’s dependency on the latent position structure.

LPJMM and SNSM are implemented using the r jags package, and LPCM and CSBM
are implemented using the 1atentnet [33] and sbm [9] packages respectively. Model
specifications of these models can be found in Appendix 1.

3.1. Asingle-layer network

Consider a single-layer network (i.e. L = 1) with N = 100 actors generated as follows.
Firstly, generate latent positions z from a mixture of H = 5 multivariate normal distri-
butions, and then generate attributes x jointly from a multivariate normal distribution
with mean f1y = 0 and covariance matrix given by y () in Section 2 where ¢ = 0.5,
72 = 0.3, 02 = 1. Finally, the network data is generated according to Equation (1) with
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Figure 2. Left: A visualization of the network based on the true latent position and color indicates group
membership g. Right: Heatmap of the adjacency matrix (where actors are reordered according to g).

a=>5,b=—2,and § = 2.72. See Figure 2 for a visualization of the simulated network.
The network with moderate density of 0.1531 shows strong transitivity and assortative
mixing with coefficients 0.5049 and 0.5512 respectively. Note that the clustering pattern in
the true latent space z is discernible with little overlap between different groups. Of course,
the estimation of z, hence g, will be more accurate when clusters are far away from each
other. On the other hand, when members are thoroughly blended, the probabilities of con-
nections within clusters are comparable to those across clusters, making it more difficult
to estimate true group membership. We explore these two extreme scenarios (one with a
very distinctive clustering pattern and another with well-blended members) in Sections 3.2
and 3.3.

As for the prior specifications, we set m, = m;, = 0, and vﬁ = vlf = 9 to allow a wide
range of values for a and b. Let @ ~ Gamma(1, 1) so that 8 has mean 1. An almost flat
prior is imposed on S by setting vg = 10%. The same uniform prior U(0, 1) as in [10] is
specified for ¢. We suggest the sum of the prior means of 2 and o2 to be on the same
scale as the sample variance of x, and here we use 2 ~ InvG(2, 1) and 72 ~ InvG(2, 1).
Let o = 1 so that the prior on w is a flat Dirichlet distribution. Following the heuristics in

[54], we specify up, - Nk (0,2/3Ik) and xfl - InvG(3,2/3) so that var(z;|gi) = 1.
Note that the latent space dimension K and the number of clusters H in the model need
to be prespecified along with the priors. We take K to be the true dimensions of the latent
space (i.e. K = 2) since this facilitates model assessment by allowing visualizations of the
estimated latent positions. One could also use the Watanabe-Akaike Information Crite-
rion (WAIC) to select a K with the smallest WAIC as in [54]. However, WAIC and other
information criteria like the Deviance Information Criterion (DIC) do not help choose the
number of clusters H. A comparison of the model assessment for different specified H is
given in Appendix 2. We noticed that model performances are significantly worse when H
is chosen to be smaller than the truth. However, model performances are similar among
models whose H is at least as large as the truth. Therefore, we suggest choosing H to be the
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Figure 3. (a): Color indicates the true group membership g. (b)-(d): Color indicates the estimated group
memberships g of LPJMM, LPCM and CSBM respectively. Positions of the points in all plots are true latent
positions z.

Table 1. ARl and numbers of estimated groups (in parentheses).

LPJMM LPCM CSBM
MaxPEAR 0.737 (5) 0.707 (4) -
MinBinder 0.712(11) 0.748 (10) -
GreedyEPL 0.664 (4) 0.688 (4) -
Variational-EM - - 0.707 (6)

largest number of groups that one is willing to accept, and in this example, we choose H to
be 5.

We then fit LPJMM using MCMC sampling with 20,000 burn-in iterations and a further
10,000 iterations kept for posterior analysis. Before running the Markov chain, another
20,000 iterations for adaption was used to help the r jags package to choose the optimal
Markov chain sampler. The Markov chain mixes reasonably well and shows no signs of lack
of convergence (see Appendix 3 for the traceplot of the log-likelihood chain).

To evaluate a model’s ability to recover the group membership, we first find estimates of
clustering using the optimization algorithms (i.e. MaxPEAR, MinBinder, and GreedyEPL)
mentioned in Section 2.4 and find ARI for each clustering estimate. Note that clusters are
not defined in SNSM, therefore we only compare the ARI between LPJMM, LPCM, and
CSBM. Since the sbm package takes a non-Bayesian approach that uses a Variational-EM
algorithm to find a point estimator for the group membership g, optimization methods
like MaxPEAR are not necessary to analyze results from CSBM. Results in Table 1 suggest
that these three models have a similar ability to recover group membership g, with ARI
of LPJMM using the MaxPEAR and MinBinder algorithms being higher than ARI (0.707)
under the CSBM model. Although the highest ARI is given by LPCM using the MinBinder
method, the estimated number of groups is 10 which significantly exceeds the true number
of groups. Therefore, the overall best estimation in terms of both ARI and g is given by
LPJMM. A visualization of the estimated clusters based on the true latent positions is given
in Figure 3. Also, notice that the MinBinder algorithm tends to overestimate the number
of clusters in the network in all models.

To further compare the ability to recover latent position configuration between LPJMM
and LPCM, we find an estimate of the latent positions z using the method of Procrustes
transformation given in Section 2.4. Plots of zs of LPJMM and LPCM can be found in
Appendix 4, which suggest similar estimated configurations of z.
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Figure 4. Boxplots of summary statistics for each model. Red dotted lines indicate the true values for
network characteristics respectively.

Table 2. Means of the summary statistics of the simulated networks for each model.

true value LPJMM LPCM SNSM CSBM
density 0.1531 0.1539 0.1530 0.1504 0.1499
transitivity 0.5049 0.5144 0.5467 0.4027 0.3776
assortativity 0.5512 0.5468 0.5475 0.4811 0.4954

Following [54], we assess if models have a good fit in the sense of good reproduction
of a variety of summary statistics. These statistics are calculated based on the networks
generated from the model estimations. For LPJMM and SNSM, networks are simulated
based on the parameters at every 10th iteration of the generated Markov chain. For LPCM
and CSBM, 1000 networks are simulated using their respective packages. Then for each
model, we calculate the density, transitivity, and assortative coeflicient (if applicable) cal-
culated according to the true group membership for each simulated network. Boxplots and
the averages of these summary statistics are given in Figure 4 and Table 2 respectively. In
general, the summary statistics results are not too disparate for all four models. However,
LPJMM better captures these structural features of the network data, while LPCM tends to
overestimate transitivity in the network, and both SNSM and CSBM tend to underestimate
transitivity and assortativity in the network.

Remark 3.1: The reader may wonder (as did a referee) whether there would be collinearity
issues in Equation (1) due to the relationship between x; and z; given in Equation (2). Note
that in the model specification, the nodal attributes vector is modeled as a Gaussian process,
where the covariance between x; and x; is given by o2 exp(—dllzi — zj|l). This reflects our
assumption that x; and x; is likely to be more similar if they are closer in the latent space
(i.e. a smaller value of [|z; — zj|| will result in a larger value of covariance between x; and
xj). However, we let ||z; — zj|| affects |x; — xj| via the covariance matrix through a non-
linear exponential function so that the model can capture a great degree of variability in
the relationship between |x; — xj| and ||z; — z;||, thus ensuring a probabilistic relationship
between them. Therefore, we do not anticipate a linear relationship between ||z; — z;|| and
|x; — xj|. The correlation between ||z; — zj|| and |x; — x;| in this simulation study is found
to be 0.0555. Therefore collinearity is not a issue in the simulation study.

Two more extreme scenarios are also considered. In the first scenario, assume all actors
take the same position in the latent space (i.e. ||z; — zj|| = 0 for all i, j). In this case, the
correlation between ||z; — zj|| and |x; — xj| is 0.1222. In another scenario, the correlation
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Figure 5. Network visualization and heatmap of the adjacency matrix.

Table 3. ARl and numbers of estimated groups (in parentheses).

LPJMM LPCM CSBM
MaxPEAR 0.956 (5) 0.918 (5) -
MinBinder 0.956 (5) 0.933 (6) -
GreedyEPL 0.938 (5) 0.918 (5) -
Variational-EM - - 0.900 (5)

coefficient is 0.2295 if distances between the five clusters in the latent space are even further
from each other (as is the case in Section 3.2 below). In either case, the correlation between
llzi — zjll and |x; — xj| is weak. We thus believe that collinearity should not be a problem
for the model.

3.2. A network with missing edges

In this simulation scenario, a network with N = 100, H = 5 is generated, which shows
highly discernible clustering patterns (as shown in Figure 5). The model parameters used
to generate the network are givenbya = 1, b = 3.5,0 = 1.25,¢¢ = 0.3, 72 = 02,02 =1
and § = 0. Model specifications are determined similarly as in Section 3.1. We will show
that LPJMM clearly outperforms other models when the network exhibits missing edges.

Table 3 shows that, when edge information is fully observed, all models can accurately
estimate the group membership (not considering SNSM), with LPJMM slightly outper-
forming the rest of the two models. Results from Table 4 are consistent with what we have
seen in Section 3.1, where LPJMM and LPCM can reproduce the summary statistics quite
close to the true values, while SNSM and CSBM tend to underestimate transitivity and
assortativity.

As the level of missing edges rises from 10% to 95%, the advantage of LPJMM becomes
more pronounced. To compare the models’ ability to recover group membership, we use
MaxPEAR to estimate g for LPJMM and LPCM. (The other two methods, MinBinder and



Table 4. Means of the summary statistics.
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true value LPJMM LPCM SNSM CSBM
density 0.1008 0.1011 0.1008 0.0956 0.0965
transitivity 0.4822 0.4775 0.5453 0.2758 0.3563
assortativity 0.8643 0.8510 0.8594 0.6540 0.7725
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Figure 6. The upper left plot shows ARI as the percentage of the missing edges increases from 10% to
95%. In the rest of the three plots, the red horizontal dashed lines indicate the statistics summarized from
the fully observed network.

GreedyEPL, will give a similar result.) We also compare the summary statistics under dif-
ferent levels of missingness. (Note that SNSM is excluded from the comparison since it
does not perform well even when data is complete.) The results are shown in Figure 6.
The upper left plot in Figure 6 reveals that LPCM closely matches LPJMM’s perfor-
mance when the missing data rate is below 60%. However, as the amount of missing data
increases, LPCM’s performance deteriorates rapidly. Additionally, the density estimation
from LPCM deviates significantly from the true density as the missing data proportion
rises. While CSBM’s performance in terms of ARI appears less affected by the missing data
rate, it struggles to recover all three summary statistics effectively. Consequently, when
dealing with missing data, LPJMM emerges as a considerably more robust approach.



1526 (&) ZJINETAL

Figure 7. Network visualization and heatmap of the adjacency matrix.

Table 5. ARl and numbers of estimated groups (in parentheses).

LPJMM LPCM CSBM
MaxPEAR 0.072 (3) 0.083 (8) -
MinBinder 0.096 (25) 0.058 (25) -
GreedyEPL 0.000 (1) 0.067 (3) -
Variational-EM - - 0.075 (6)

Table 6. Means of the summary statistics.

true value LPJMM LPCM SNSM CSBM
density 0.1242 0.1246 0.1241 0.1213 0.1226
transitivity 0.5181 0.5286 0.5476 0.3875 0.3931
assortativity 0.0840 0.0787 0.0742 0.0715 0.0481

3.3. A network showing indiscernible clustering pattern

In this simulation scenario, we explore networks with well-blended group members. These
networks do not show distinct clustering patterns in terms of the given group membership,
which makes such membership more nominal than structural.

Consider a network shown in Figure 7. This network does not display a distinct cluster-
ing pattern, as indicated in Figure 7, along with a low assortativity coeflicient, which is less
than 0.1 (see Table 6).

The lack of clear clustering makes it challenging to discern group memberships, which
are minimally evident in the network data (see Table 5). However, the goodness-of-fit test
given in Table 6 suggests that these models are still useful in recovering the network struc-
ture. Again, the results are consistent with the previous goodness-of-fit tests, with LPJMM
slightly outperforming the other three models.



JOURNAL OF APPLIED STATISTICS . 1527

[ ) ° )
[
. doo . el
[ J o [ ] [ ] .9
o %q:0 o ® % oy -
b og ¢ ° °
(a) Truth (b) Estimated z and g

Figure 8. (a): Points are plotted based on true latent position zand true group membership g. (b): Points
are plotted using the estimated latent positions, and color represents the estimated group membership
using the MaxPEAR method.

Table 7. ARl and numbers of estimated groups (in parentheses).

MaxPEAR MinBinder GreedyEPL
ARI 0.748 (6) 0.753(12) 0.662 (4)

Table 8. Means of the summary statistics.

density transitivity assortativity
truth mean truth mean truth mean
layer 1 0.1531 0.1535 0.5049 0.5088 0.5512 0.5466
layer 2 0.1024 0.1023 0.5477 0.5546 0.6923 0.6890

3.4. Atwo-layer network

Continue using the parameter setup in Section 3.1 and its generated network as the
first layer, we generate a second layer of the network with a; =3, b, =1, 6, = 4. As in
Section 3.1, we fit LPJMM with K = 2 and H = 5 and evaluate the model’s ability to
recover the group membership using ARI. The results are given in Table 7, which shows
similar clustering estimates as in Section 3.1 where only one layer is considered. The plot
of the estimated latent position configurations is given in Figure 8(b), which visualizes the
model’s recovery of latent positions and group membership.

We also carry out the goodness-of-fit test and the result is given in Table 8, which shows
that LPJMM captures these structural features accurately, and the result for layer 1 is similar
to the result in Table 3.1.

Recall that 6, and 6, are of no direct interest since they are not identifiable. However,
we are still interested in the ratio 6 /6, since it reflects the relative strength of borrowing
information from the latent space of each layer. Although a, and b, are of no direct inter-
est, we pay attention to their signs, especially that of b, because different signs of by have
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Table 9. Posterior means and 95% credible intervals.

true value posterior mean 95% credible interval
6h/6; 0.680 0.653 (0.579,0.721)
aj 5 5.01 (4.719, 5.262)
ap 3 3.25 (2.976,3.572)
b, -2 —-1.919 (—2.053, —1.766)
b, 1 1.058 (0.901, 1.252)
s 0 —0.047 (—1.027,1.01)
2 03 0.409 (0.261,0.592)
o 1 0.642 (0.230, 1.684)
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Figure 9. (a): Points are plotted based on true latent position zand true group membership g. (b): Points
are plotted using the estimated latent positions, and color represents the estimated group membership
using the MaxPEAR method.

different interpretations of the effect of attributes as discussed in Section 2. We also assess
the model’s ability to estimate parameters 8, 72, and o2 using posterior means and 95%
credible intervals. The results are given in Table 9. Overall, the performance of LPJMM in
recovering the true values of these model parameters is pretty well, except for 72 and o2,
Both LPJMM and SNSM tend to underestimate o % and overestimate 7 2. That is, the covari-
ance of the attributes tends to be underestimated, and although 7 is slightly overestimated,
the variance of the attributes (72 + ¢ 2) still tends to be underestimated.

3.5. Afive-layer network

In this section, we study a more complicated network by adding three more layers to the
network in Section 3.4 to make it a five-layer network, and use the same model specification
to assess the model fit of LPJMM. The results of the clustering estimates and the means of
summary statistics are given in Tables 10 and 11 respectively. The plot of the estimated
latent position configurations is given in Figure 9(b).

Results of Table 10, assortativity estimates in Table 11 and Figure 9 indicate that as the
network data becomes more complex with additional layers, the model’s ability to identify
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Table 10. ARI and numbers of estimated groups (in parentheses).

MaxPEAR MinBinder GreedyEPL
ARI 0.6928 (5) 0.7011(11) 0.6414 (4)

Table 11. Means of the summary statistics.

density transitivity assortativity
truth mean truth mean truth mean
layer 1 0.1531 0.1534 0.5049 0.5048 0.5512 0.5382
layer 2 0.1024 0.1024 0.5477 0.5430 0.6923 0.6727
layer 3 0.0648 0.0648 0.3661 0.4035 0.6977 0.7020
layer 4 0.0543 0.0541 0.3892 0.3565 0.6744 0.7060
layer 5 0.0169 0.0169 0.1421 0.1140 0.6930 0.7293

clustering patterns slightly declines, with the ARI decreasing by approximately 0.05 com-
pared to Table 7 in the two-layer network setting. However, the density and transitivity
estimates in Table 11 are similar to the results from Section 3.4.

In this simulation, we are using the same Markov chain length as in previous simula-
tions. However, it takes about 20 hours to generate the Markov chain, compared to about
8 hours for single-layer simulations. A computational complexity analysis of the running
time with respect to various layers, number of actors in the network and different model
specifications (choice of K and H) can be found in Appendix 4. The slight decrease in the
model’s performance in recovering the clustering pattern might due to the model’s limi-
tations in handling more complex network scenarios. Alternatively, it could be due to the
inefficiency and/or inadequacy of the Markov chain Monte Carlo algorithm in exploring
the posterior distribution, which becomes more complex as the dimensions of the network
data increase (e.g.with the addition of more layers). To fully explore the model’s capabil-
ities, including the goodness-of-fit and the recovery of clustering patterns, future studies
could focus on developing a customized MCMC algorithm for the proposed model.

4. Real data analysis

In this section, we consider a three-layer network data set from a corporate law firm
from 1988-1991 in New England [36]. This network describes three types of relationships
(namely, networks of advice, friendship, and coworker contacts) between 71 lawyers in the
law firm. Several actor attributes are also collected: age, gender, seniority (years with the
firm), office (located in Boston, Hartford, or Providence), practice (litigation or corporate
law), law school the lawyers attended (Harvard or Yale, University of Connecticut, or other
universities) and status (partner or associate). A principal component analysis (PCA) is
performed on age and seniority attributes, and the first principal component explains 89%
of the variance which is of no surprise since age and seniority are highly correlated with a
correlation coefficient being 0.78. We chose the first principal component to be the attribute
x and let H = 8 since it is the largest number of clusters we expect in the network. Then the
model is fitted to the network using the same prior and Markov chain setup as in Section 3.

The study of the Lazega network in this paper is meant to find out how the three types of
relations can be explained by the findings deduced from the model fitting. We first visualize
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Figure 10. Pointsin all plots are drawn based on the estimated latent positions z and are colored based
on their categories in gender, office, practice, law school, and status.

the estimated latent positions z colored by different categorical attributes (gender, office,
practice, law school, and status) in Figure 10. As we can see from these plots, the estimated
positions z are well separated by the office (especially offices in Boston and Hartford) and
practice. Compare these plots with z colored by MaxPEAR and GreedyEPL estimated clus-
tering g in Figure 11, we can see that both estimated g roughly clusters lawyers into three
groups: lawyers in Hartford office, litigation lawyers in Boston or Providence offices, and
corporate lawyers in Boston or Providence offices.

Plots of adjacency matrices of the three layers (where lawyers are grouped by the Max-
PEAR estimate of g) and their corresponding networks are given in Figure 12, where we
could see that the coworker network shows the most estimated clustering pattern, while the
advice network presents the least of such pattern, which could also be seen from the relative
ratios of f¢s in Table 12. This means that lawyers from the same office and doing the same
practice are more likely to become coworkers and friends, but who they seek advice from
does not depend much on office locations and practices. Furthermore, we can deduce from
the posteriors of b, in Table 12 that these lawyers tend to seek advice from people of similar
age (or seniority) since the posterior estimate of b; is negative. In contrast, lawyers of dif-
ferent ages (or seniority) are more likely to become friends and coworkers. This conclusion
is in line with the assortativity coefficients found based on the nodal attributes (lawyer’s
age) given in Table 13.
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Figure 11. Points are plotted using the estimated latent positions and color indicates the estimated
group membership using MaxPEAR and GreedyEPL methods respectively.
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Figure 12. Upper: Heatmaps of the adjacency matrices (where lawyers are reordered according to the
MaxPEAR estimate of g). Lower: A visualization of the three layers based on the estimated z and color
indicates the MaxPEAR estimate of g.

5. Discussion

This paper presents a latent position model that extends LPCM and SNSM to jointly model
network data and the nodal attributes and perform model-based clustering. By jointly



1532 (&) Z.JINETAL

Table 12. Posterior means and 95% credible intervals.

posterior mean 95% credible interval
6h /6, 0.3229 (0.2352,0.4152)
61/03 0.2035 (0.1479, 0.2606)
6,/05 0.6319 (0.5536,0.7198)
b, —0.0986 (—0.1401, —0.0579)
by 0.0708 (0.0263,0.1137)
b3 0.133 (0.0854, 0.186)

Table 13. Assortativity coefficients based on lawyer's age.

advice friendship coworker
assortativity 0.2536 —0.1107 —0.1224

modeling the network and the attributes, we can describe how the attributes change over
the network and explain how relations could be influenced by attributes. LPJMM also pro-
vides an extension to multi-layer network settings on the assumption that all layers share
the same latent position structure but with different strengths of borrowing such latent
structure information. We applied our method to four simulated networks and found
LPJMM to give more satisfactory fits and is competitive in terms of goodness-of-fit and
group detection compared with SNSM, LPCM, and CSBM. In addition, the advantage
of LPJMM is more pronounced when there is missing data in the network and LPJMM
is shown to be much more robust than the other models. LPJMM is also applied to a
three-layer real network data set and we are able to draw reasonable conclusions from the
modeling results.

We have suggested choosing the number of groups H to be the largest number of groups
that one is willing to accept in the network because we have found that varying the number
of groups has almost no impact on the model fit and prediction outcome as long as it is in
a reasonable range. One could also fit the CSBM to the network first, and choose H based
on its estimated number of groups. One problem we have not addressed in the paper is
choosing the dimension of the latent space. This can be done by using Bayesian model
selection like WAIC as in [54].

Our model could be extended in several ways. Firstly, other extensions of our model to
multi-layer settings could be considered. For example, Sosa and Betancourt [54] assumed
conditionally independent layer-specific latent positions, whereas MacDonald et al. [41]
assumed that the latent position of an actor in all layers is (dy + d;)-dimensional, where
the first dy components of the latent position are the same across all layers, and only the
last d; components are layer-specific. Secondly, instead of assigning a user-specified num-
ber of groups H to the model, we could learn the number of groups by using a Bayesian
nonparametric approach with a Dirichlet Process prior to model community memberships
(see, e.g.[4]).

LPJMM could also be extended to leverage multivariate covariates. So far, we have lim-
ited ourselves to modeling univariate nodal attributes that are approximately Gaussian.
For continuous nodal attributes with more than one dimension, we have used the first
principal component from the principal component analysis. To take full advantage of
high-dimensional nodal attributes, one could use multivariate spatial process modeling
to replace Equation (2). Other extensions of more sophisticated spatial modeling include
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spatiotemporal modeling of attributes for time-varying networks, which would help to
describe changes in actors over time.
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Appendices

Appendix 1. Model specifications for SNSM, LPCM and CSBM

Note that the original SNSM in [10] uses the logit link. In order to make a fair comparison, we also
use the probit link in SNSM as in LPJMM. The model specification for SNSM used in this paper is
given as follows:

ind
yij | 2% a, be, 0 = Ber (®(a + blx; — xj| — l|zi — 7)) ,
x|z p,0,7,¢ ~ Nn(Bln, 02 M(z, $) + 7°In),

and the priors are set to be the same as the priors in LPJMM (if possible). To be specific,

2 N 0,L), B ~NO,10°, 0% ~InwG21), 12 ~InG21), ¢~U@,1),

and the priors on the parameters in the probit regression tier are given by:

a HNw©0,9, b N©,9).

SNSM in this paper is implemented using JAGS.
The model specification for LPCM (see [24]) is given as the follows,

iy .
yij | 2% Bo, B ~ Ber (logit(BJ xij — Billzi — zil)) ,
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and we use the default priors given in the 1atentnet package for prior specifications.

We first introduce several notations before presenting CSBM [38]. Suppose there are Q groups
in the network. Denote the N x Q group membership matrix as Z = {Z;;}, and Z;; = 1 if actor i
belongs to group g, Z;; = 0 if otherwise. It is assumed that an actor can only belong to one group.
The model specification for CSBM is given as follows,

ind ‘
vij | Zi,Zj, %, X Ber (log1t(mqi,qj + [foiJ)) R

where Z; is the ith row of Z, g; is the group membership for actor i and the group effect mg, 5, € R.

Appendix 2. Comparing model performances for different number of groups

We conduct a comparison of LPJMM with different H € {3,4, . . ., 9} using the data set in Section 3.1.
Table A1 presents ARI, and the results are similar for models that assume H to be equal to or larger
than the true number of groups (which is 5 in this example). However, ARI for all three estimates is
significantly smaller when the model assumes H to be smaller than 5. Also, notice that the estimated
number of groups increases with H. Visualizations of how ARI and the estimated number of groups
change over H are given in Figure Al.

The goodness-of-fit test outlined in Section 3 is also carried out here to compare the means of
several summary statistics, which are plotted in Figure A2. As we can see from the plots, the model’s

. 08 - 25
[ PO ga— %
2 — ¢ t~, S 20 -
© . . =
& 0.6 2 15 -
g ¢ 2 10 - A
= 0/’/ = Q/‘
g 0477 2 5 1=
o= —¢—9¢—0
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Figure A1. Left: ARI of the clustering estimates found by using the MaxPear, MinBinder, and GreedyEPL
methods. Right: Estimated number of groups using the three methods.

Table A1. ARl and the numbers of estimated groups (in parentheses).

H MaxPEAR MinBinder GreedyEPL
3 0.4067 (3) 0.4008 (5) 0.4321(3)
4 0.4882 (3) 0.4977 (6) 0.6521 (4)
5 0.7374 (5) 0.7115(11) 0.6635 (4)
6 0.7237 (6) 0.7442 (20) 0.7134 (4)
7 0.7449 (7) 0.6624 (25) 0.7313(4)
8 0.7422 (8) 0.6674 (25) 0.7293 (8)
9 0.7056 (12) 0.7041 (25) 0.7043 (11)
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Figure A2. The means of summary statistics for different H.

fit is not affected by the choice of H even for H smaller than the actual number of clusters in the
network.

Appendix 3. Traceplots of log-likelihood

The traceplots of the log-likelihood (after thinning the Markov chain every 10 iterations) in
simulation studies and real applications in Sections 3 and 4 are given in Figure A3.
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Figure A3. From left to right: traceplots of the log-likelihood from Sections 3.1, 3.4 and 4 respectively.

Appendix 4. Visualizations of results from LPJMM and LPCM

Visualizations of the estimated latent positions and estimated group membership in Section 3.1
using the MaxPEAR, MinBinder, and GreedyEPL methods under LPJMM and LPCM are shown
in Figures A4 and A5 respectively.
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Figure A4. Points are plotted based on the estimated latent position z and three estimated group
memberships g of LPJMM.
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Figure A5. Points are plotted based on estimated z and three estimated g of LPCM.

Appendix 5. Computational complexity analysis

For all the Markov chains generated in this section, we utilize 20,000 iterations for adaption and
30,000 iterations for sampling the Markov chain. The running time under different model specifi-
cations (different K (i.e. dimension of latent space), different H (i.e. number of clusters)), or when
network data has different sizes (either different number of layers or actors) are shown in Figure A6.

From subplots (a) and (b) of Figure A6, it is evident that varying model specifications of K and H
does not affect the running time. Subplots (c) and (d) illustrate an exponential trend in the running
time as the number of actors or the number of layer increases.
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Figure A6. Running time (in hours) of the algorithm using the r jags package with 50000 iterations. (a)
network is one-layer with 100 actors, and the dimension of latent space (K) is chosen to be 2. (b) network
is one-layer with 100 actors and number of clusters (H) is chosen to be 5. (c) network is one-layer, and the

model chooses K = 2and H = 5. (d) network has 100 actors, and the model chooses K = 2and H = 5.
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