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ABSTRACT

The increasing prevalence of multiplex networks has spurred a criti-
cal need to take into account potential dependencies across different
layers, especially when the goal is community detection, which is
a fundamental learning task in network analysis. We propose a full
Bayesian mixture model for community detection in both single-
layer and multi-layer networks. A key feature of our model is the
joint modeling of the nodal attributes that often come with the net-
work data as a spatial process over the latent space. In addition,
our model for multi-layer networks allows layers to have different
strengths of dependency in the unique latent position structure and
assumes that the probability of a relation between two actors (in a
layer) depends on the distances between their latent positions (mul-
tiplied by a layer-specific factor) and the difference between their
nodal attributes. Under our prior specifications, the actors’ positions
in the latent space arise from a finite mixture of Gaussian distribu-
tions, each corresponding to a cluster. Simulatedexamples show that
ourmodel outperforms existing benchmarkmodels and exhibits sig-
nificantly greater robustness when handling datasets with missing
values. The model is also applied to a real-world three-layer network
of employees in a law firm.
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1. Introduction

Network data conveniently describes the relationships between actors in complex sys-

tems [31,45] and is ubiquitous in many statistical applications, including onance [7,21],

social science [14], criminology [8,43], biology [1], epidemiology [55], and computer sci-

ence [57], among others. Understanding the relationships between actors can aid domain

experts. For instance, in epidemiology, people in a certain area can be portrayed in a con-

tact network that can be studied to detect infectious disease outbreaks [55]. In criminology,

communications between terrorists form a terrorist network, helping intelligence agencies

to better counter terrorism [8].

Many models have been developed for the inference of networks over the past decades

(e.g.[16,18]), among which the broad class of latent space models is one of the most widely
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used (see, e.g.[53] for an exhaustive review). Suppose the network under study hasN actors,

then under latent space models, there areN independent and identically distributed (i.i.d.)

latent variables z1, . . . , zN , one for each actor. Under a mild exchangeability assumption in

[25], results in [3,29] show that edge variables yi,j, where i, j ∈ {1, . . . ,N}, depend on latent

variables through a symmetric function γ (zi, zj) that is meant to capture any pattern in the

network beyond any known covariate information.

Many well-known models fall into the category of latent space models, which can be

distinguished between two cases depending onwhether latent variables are discrete or con-

tinuous [42]. For instance, stochastic block models [46,58] – hereafter SBM – are special

cases of latent space models with discrete latent variables zi ∈ {1, 2, . . . ,K}. When latent

variables are assumed to be continuous, another approach using latent variables is the class

of latent position models (LPM) [28] which our model in the paper is built upon. In its

basic formulation, LPMs model the edge variables yi,j as conditionally independent given

the distance between latent variables γ (zi, zj) = −‖zi − zj‖, which naturally accounts for

transitivity efects through the latent space (typically a Euclidean K-dimensional space for

a predetermined K) where zi lives. Later on, Handcock et al. [24] proposed an extension

on LPM, namely the latent position cluster model (LPCM), by imposing a Gaussian mix-

ture prior on the latent positions to perform clustering tasks. Krivitsky et al. [34] further

extended LPCMby adding the random sender and receiver efects [26].Other formulations

of γ (·, ·) can be found in [5,26,27,44,52], among others.

Besides edge information of a network, extra information like node and edge attributes

and diferent types of edges are often available, and should ideally be leveraged for infer-

ence. Typical ways to incorporate attributes in a network model include: (1) modeling the

network as a function of the attributes (see, e.g.[26,28]); (2) modeling the attributes as a

function of the network [23]; (3) jointlymodeling the network and attributes [10,17,30,39].

We consider taking the jointmodeling approach similar to the social network spatialmodel

(SNSM) proposed in Ciminelli et al. [10]. Denote the continuous nodal attribute for actor

i as xi, SNSM assumes that edges yi,j are conditionally independent given ‖zi − zj‖ and

‖xi − xj‖, and models nodal attributes as a spatial process over the latent space. Note that

joint modeling does not require the network or the attributes to be fully observed as the

orst two approaches do, hence one could predict missing network and attribute data (if

there is any). In addition, it improves model otting by capturing the dependence structure

between latent variables and the attributes (when such dependency exists), as we will see

in Section 3.

We propose a full hierarchical Bayesian model that builds on SNSM. But instead of

using a Gaussian distribution as the prior for latent, we impose a Gaussian mixture prior

so that our model could capture the group structure in the network. Detecting communi-

ties or clusters among actors in the network is an important task in network analysis and

has spurred the development of many models and algorithms, among which the SBM has

motivated an active line of research that deals with community detection (see, e.g.[37] for

a review). However, SBM sufers from poor model otting when many actors fall between

clusters [28] as we will see in the simulation studies. We will compare our model with an

SBM that incorporates covariates as oxed efects (i.e. model the edge variables as a function

of latent classes and covariates [38]), and we call this model a covariate-assisted stochastic

block model (CSBM). We will show that our model presents improved model otting while

producing similar clustering results as CSBM.
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We also propose an extension of our model to multi-layer network settings. Multi-layer

networks can generally be categorized into two cases: cross-sectional networks that have

diferent types of connections (e.g.social networks of friendship, coworker-ship, etc.) and

time-varying networks where the same type of connections are measured over time (e.g.a

trade network that changes over time). We consider a type of cross-sectional multi-layer

network where each layer has a common set of actors. Substantial work has been done on

latent space models for cross-sectional multi-layer networks that take a Bayesian approach

(see, e.g.[11,12,15,22,40,51,54,56]). In extending our model to the multiple networks set-

ting, we adopt the approach in [54] in a parsimonious way, where latent positions are

assumed to be the same for all layers, but the strength of borrowing such latent structure

information is allowed to be diferent across diferent layers. Note that, the original model

in [54] assumed diferent latent positions for diferent layers and had an additional hier-

archy on the hyperparameters. D9Angelo et al. [12] adopted a similar approach where the

authors also assume the same latent positions across all layers and their model is capable of

clustering assignments by using a Dirichlet process mixture on latent positions instead of

a onite Gaussian mixture prior. However, their model does not take into account attribute

information. We propose a model for attributed network data sets that jointly models the

network and attributes and performs clustering tasks. The focus of the work is to see how

joint modeling improves network estimation and clustering accuracy.

The remainder of the paper is organized as follows. Section 2 contains general back-

ground on the spatial process and introduces the proposed model (in both single- and

multi-layer network settings) which we call the latent position joint mixture model

(LPJMM) in the rest of the paper. In addition, prior speciocation, identioable problem, and

inference will also be discussed in this section. Several simulation studies are conducted

in Section 3, where LPJMM is compared with LPCM, SNSM and CSBM in single-layer

settings. We will see that LPJMM outperforms these benchmark models under diferent

scenarios, especially when networks have missing edges. The multi-layer model is also

evaluated under a two-layer network scenario. Section 4 illustrates how to use the proposed

model to provide insights from a given network and the model is applied to a real-world

multi-layer network data set. Finally, we conclude with some discussion in Section 5.

2. Models

We orst review the LPM introduced in [28], and then build upon it with a spatial process

as in [10] to allow for joint modeling of the network and the nodal attributes, and with a

onite Gaussian mixture distribution for latent positions to allow for clustering.

Consider a binary single-layer network with N actors. Denote its adjacency matrix as

Y = (yi,j) ∈ {0, 1}N×N , where yi,j = 1 if actors i and j are connected, and yi,j = 0 if they are

not connected. Suppose the network data comes with a one-dimensional nodal attribute xi
for each actor, and denote the covariate as x = (xi) ∈ R

N . The LPMassumes that each actor

i has an observed latent position zi in aK-dimensional Euclidean latent space, the so-called

latent space, for some K ∈ N. Let z = (zi) ∈ R
N×K , then LPMmodels yi,j as conditionally

independent given distances between nodal attributes as well as distances between latent

positions via logistic regression. But instead of the logistic link, we use the probit link in our

model. The analysis of probit regressionmodels can often be facilitated by a Gibbs sampler

constructed using the data augmentation approach that introduces latent variables with
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truncated normal distributions [2]. (See also [54] for a discussion on the choice of link

functions.) Speciocally, for i, j ∈ {1, . . . ,N} and i �= j,

yi,j | z, x, a, b, θ
ind
∼ Ber

(

�(a + b|xi − xj| − θ‖zi − zj‖)
)

, (1)

where a, b ∈ R and θ ∈ R
+, Ber(p) is a Bernoulli distribution that takes value 1 with some

probability p, ‖ · ‖ is the Euclidean norm on R
K and �(·) is the cumulative distribu-

tion function of the standard normal distribution. Note that we impose a factor θ for the

distance between latent positions, which is diferent from [28,34]. Although θ is uniden-

tioable in single-layer networks, it plays a non-trivial role in multi-layer network settings

(introduced in Section 2.1). We defer a detailed discussion of θ to Section 2.4.

To allow for joint modeling of the network and nodal attributes, we model the nodal

attributes as a spatial process over the latent space R
K . Hence, nodal attributes are treated

as random variables indexed by their latent positions, and the distance between these ran-

dom variables is found by the distance between their corresponding positions. As in [10],

we specify the spatial process as a Gaussian process that is stationary with mean β and

isotropic (see [6] for deonitions). In this case, the process is completely deoned by its

covariance function γ (d), where d is the distance between two random variables in the

Gaussian process. In particular, we specify γ (d) with an exponential kernel, that is,

γ (d) =

{

τ 2 + σ 2, if d = 0;

σ 2 exp(−φd), if d > 0,

where τ ≥ 0, σ > 0 and φ > 0. It is well-known that such a covariance structure is valid,

i.e. the covariance matrix for any onite collection of random variables in the process is

positive deonite [6]. Let Mz = (mij) ∈ R
N×N where mij = exp(−φ‖zi − zj‖) and denote

IN as theN-dimensional identity matrix, then the Gaussian process of the nodal attributes

is constructed as follows,

x | z,β , σ , τ ,φ ∼ NN(β111N , σ
2M(z,φ) + τ 2IN), (2)

where Nd is a d-dimensional multivariate normal distribution for some dimension d ∈

{2, 3, . . . }, and 111N is an N-dimensional vector with all 1s.

We then impose a Gaussian mixture distribution on latent positions, which allows us to

cluster actors into diferent groups. Suppose there are H < ∞ predetermined number of

components in the Gaussian mixture distribution, then

zi | ωωω,μμμ,κκκ
i.i.d.
∼

H
∑

h=1

ωhNK(μh, κ
2
h IK), (3)

where ωωω = {ω1, . . . ,ωH}, μμμ = {μ1, . . . ,μH}, κκκ = {κ1, . . . , κH}. Note that μh is a K-

dimensional mean vector where h ∈ {1, . . . ,H}, and ωh is the probability that an actor

belongs to the hth group such that ωh ∈ (0, 1) and
∑H

h=1 ωh = 1.

In single-layer network settings, the model is given by Equations (1) and (3). Under our

model, nodal attributes of two actors whose latent positions are close are more likely to

be similar according to the exponential covariance structure. If b < 0 (b>0), actors with

similar attributes are more (less) likely to be connected. When b = 0, nodal attributes do

not afect the distribution of the network directly (but it still has an indirect impact on the

network through latent positions by Equation (2)).
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Figure 1. DAG representation of the LPJMM in multi-layer settings.

2.1. An extension tomulti-layer networks

Our model can also be extended to multi-layer network settings in the following way. Sup-

pose we have L layers Y1, . . . ,YL in the network, where all layers are deoned over the same

set of actors. We assume the same latent positions z for all layers but allow the strength

of borrowing such latent structure information to be diferent by imposing layer-specioc

factors θ� for � ∈ {1, . . . , L}. Our model in multi-layer settings is then presented as follows

yi,j,� | z, x, a�, b�, θ�
ind
∼ Ber

(

�(a� + b�|xi − xj| − θ�‖zi − zj‖)
)

, (4)

x | z,β , σ , τ ,φ ∼ NN(β111N , σ
2M(z,φ) + τ 2IN), (5)

zi | ωωω,μμμ,κκκ
i.i.d.
∼

H
∑

h=1

ωhNK(μh, κ
2
h IK), (6)

where yi,j,� is the edge variable between actors i and j in layer �, and a�, b� and θ� are

layer-specioc parameters. Note that Equations (5) and (6) are the same as Equations (2)

and (3). Figure 1 shows a directed acyclic graph (DAG) representation of the model given

by Equations (4) and (6).
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2.2. Prior speciocation

We take a Bayesian approach to estimate the model parameters. Without loss of generality,

a Bayesian version of the model given by Equations (4) to (6) is formed by placing prior

distributions on the unknown parameters a�, b�, θ�, β , σ , τ , φ,ωωω,μμμh, κh, for � = {1, . . . , L}

and h = {1, . . . ,H}. In the model we consider, these parameters are assumed a priori inde-

pendent. For parameters in the probit regression tier as specioed by Equation (4), their

priors are specioed as follows:

a�
i.i.d.
∼ N(ma, ν

2
a), b�

i.i.d.
∼ N(mb, ν

2
b), θ�

i.i.d.
∼ Gamma(λ1, λ2),

for � ∈ {1, . . . , L}. The priors for the parameters in the spatial process tier as given in

Equation (5) are given as follows:

β ∼ N(0, ν2β), σ 2 ∼ InvG(η1, η2), τ 2 ∼ InvG(ξ1, ξ2), φ ∼ U(u1, u2).

Finally, we put the following priors on the rest of the parameters:

ωωω ∼ Dir(α), μh
i.i.d.
∼ NK(mμ, ν

2
μIK), κ2

h

i.i.d.
∼ InvG(γ1, γ2).

Note that, ma, νa, mb, νb, λ1, λ2, νβ , η1, η2, ξ1, ξ2, u1, u2, α, mμ, νμ, γ1 and γ2 are user-

specioed hyperparameters, and Gamma(·, ·), InvG(·, ·), U(·, ·), Dir(·) represents Gamma,

Inverse-Gamma, uniform, and Dirichlet distributions respectively.

2.3. Posterior distribution andmodel estimation

As is standard in Bayesian estimation of mixture models (see, e.g.[13]), we deone a new

variable gi that serves as themissing data of groupmembership of actor iwhose distribution

depends on ωωω. In particular, gi = h if actor i belongs to the h-th group. The joint density

of (zi, gi) givenωωω,μμμ and κκκ is then given by

H
∏

h=1

⎧

⎪

«

⎪

¬

ωh
1

√

2πκ2
h

exp

(

−
1

2κ2
h

‖zi − μh‖
2

)

«

⎪

¬

⎪

­

I{gi=h}

,

where the indicator function I{gi=h} = 1 if gi = h, and I{gi=h} = 0 otherwise. Let g =

(gi)
N
i=1 be the group membership for all actors and L(·) be the law of a random variable.

Then the posterior distribution of z, g and the parameters (whose priors are specioed in

Section 2.2) is given by

�(z, g, a1, . . . , aL, b1, . . . , bL, θ1, . . . , θL,β , τ
2, σ 2,φ,ωωω,μμμ,κκκ | Y1, . . . ,YL, x)

∝

{

L
∏

�=1

L(Y� | z, x, a�, b�, θ�)

}

L(x | z, σ , τ ,φ)L(z, g | ωωω,μμμ,κκκ)

×

{

L
∏

�=1

L(a�)L(b�)L(θ�)

}

L(β)L(σ 2)L(τ 2)L(φ)L(ωωω)L(μμμ)L(κκκ).
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Note that the dimension of the posterior distribution has dimension NK + N + 3L +

3H + 4 and the corresponding posterior density is presented as follows,

π(z, g, a1, . . . , aL, b1, . . . , bL, θ1, . . . , θL,β , τ
2, σ 2,φ,ωωω,μμμ,κκκ | Y1, . . . ,YL, x)

∝

⎧

⎪

⎪

«

⎪

⎪

¬

N
∏

i,j=1
i �=j

L
∏

�=1

[

�(a� + b�|xi − xj| − θ�‖zi − zj‖)
]yi,j,�

×
[

1 − �(a� + b�|xi − xj| − θ�‖zi − zj‖)
]1−yi,j,�

«

⎪

⎪

¬

⎪

⎪

­

× |σ 2M(z,φ) + τ 2IN |−
1
2 exp

(

−
1

2
(x − β1)ᵀ

(

σ 2M(z,φ) + τ 2IN
)−1

(x − β1)

)

×

N
∏

i=1

H
∏

h=1

⎧

⎪

«

⎪

¬

ωh
√

κ2
h

exp

(

−
1

2κ2
h

‖zi − μh‖
2

)

«

⎪

¬

⎪

­

I{gi=h}

× exp

(

1

2ν2a

L
∑

�=1

(a� − ma)
2 +

1

2ν2b

L
∑

�=1

(b� − mb)
2

)

L
∏

�=1

θ
λ1−1
� exp(−λ2θ�)

× exp

(

β2

2ν2β

)

(σ 2)−η1−1(τ 2)−ξ1−1 exp

(

−
η2

σ 2
−

ξ2

τ 2

)

I{φ∈[u1,u2]}

×

H
∏

h=1

{

ω
αh−1
h I{

∑H
h=1 ωh=1} exp

(

−
1

2ν2μ
‖μh − mμ‖2

)

(κ2
h)

−γ1−1 exp

(

−
γ2

κ2
h

)}

.

2.4. Inference and identioability of parameters

Note that the posterior distribution is highly intractable, hence we must resort to Markov

chain Monte Carlo (MCMC) methods for inferences on model parameters. A Markov

chain of the parameters is generated via the program 8Just Another Gibbs Sampler9 (JAGS)

which is implemented in R [48] using the rjags package [47].

Several parameters are not identioable in ourmodel. Firstly, due to factors θ� and φ, and

the fact that latent positions are incorporated in the posterior only through their distances,

the posterior is, therefore, invariant to θ�s and φ, and is invariant to scaling, renection,

rotation, and translation of the latent positions z. (Note that, [28,34] did not have θ�s,

hence their posterior is not invariant to the scaling of latent positions.) Although θ�s are

not identioable and do not afect the model otting, their ratios θ�1/θ�2 still provide valid

information on layer9s relative strength of borrowing information from the latent space in

multi-layer settings.

Despite being unidentioable, one can still make inferences on the latent positions and

ond a reasonable estimate for z through a post-process which we now describe. Similar

to the deonition in [28], we deone the equivalence class of z ∈ R
N×K , denoted as [z],
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to be the set of positions that are equivalent to z under scaling, renection, rotation, and

translation. Given a oxed reference position zref , a position z∗ is found in [z] such that

z∗ = arg minz′∈[z] tr(zref − z′)ᵀ(zref − z′), which is the so-called Procrustes transforma-

tion. In simulation studies, zref is naturally chosen to be the true latent position, while in

practical applications, we could use the last iteration of the Markov chain of latent posi-

tions as the reference. The Procrustes transformation is performed for each iteration of the

Markov chain of the latent positions {zn}, and an estimate for z is taken as the mean of the

Procrustes transformations of {zn}.

As occurs in Bayesian mixture models, the label-switching problem for the group

membership g is another source of non-identioability. That is, the posterior is invari-

ant under permutations of clustering labels. Many algorithms have been proposed to

obtain a single clustering estimate based on the MCMC sample of the group member-

ship {gn}, including an optimization method (which we call 8MaxPEAR9 hereafter) that

onds a clustering that maximizes posterior expected adjusted Rand index (ARI) [20],

an optimization method (8MinBinder9) that minimizes Binder9s loss function [35], and a

greedy algorithm (8GreedyEPL9) that aims to minimize the variation of information [50],

among others. These approaches may generate diferent clustering estimates, and to get

a better understanding of the model performance, all aforementioned algorithms (Max-

PEAR,MinBinder, and GreedyEPL) are used to assess the model. Estimates based on these

approaches are found using the packages GreedyEPL [49] and mcclust [19].

3. Simulation

Four network scenarios are considered in this section to evaluate ourmodel. The orst three

simulations consider single-layer networks generated from LPJMM, but the underlying

latent positions display varying degrees of clustering. In each of the three simulations,

LPJMM is compared with three other models designed only for single-layer networks,

namely LPCM in [24], SNSM in [10], and CSBM in [38]. Model assessments include

how well a model could recover the group membership and the latent position conogura-

tion, and a goodness-of-ot test using summaries of networks including density, transitivity,

and assortative coeocient based on the estimated group membership g (see [32] for def-

initions). Furthermore, LPJMM is also evaluated by how accurately it estimates certain

parameters. In the last simulation, we consider a two-layer network and the performance of

LPJMM could be further evaluated by the estimated ratio θ1/θ2, which renects diferences

in each layer9s dependency on the latent position structure.

LPJMM and SNSM are implemented using the rjags package, and LPCM and CSBM

are implemented using the latentnet [33] and sbm [9] packages respectively. Model

speciocations of these models can be found in Appendix 1.

3.1. A single-layer network

Consider a single-layer network (i.e. L = 1) with N = 100 actors generated as follows.

Firstly, generate latent positions z from a mixture of H = 5 multivariate normal distri-

butions, and then generate attributes x jointly from a multivariate normal distribution

with mean β1N = 0 and covariance matrix given by γ (·) in Section 2 where φ = 0.5,

τ 2 = 0.3, σ 2 = 1. Finally, the network data is generated according to Equation (1) with
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Figure 2. Left: A visualization of the network based on the true latent position and color indicates group
membership g. Right: Heatmap of the adjacency matrix (where actors are reordered according to g).

a = 5, b = −2, and θ = 2.72. See Figure 2 for a visualization of the simulated network.

The network with moderate density of 0.1531 shows strong transitivity and assortative

mixing with coeocients 0.5049 and 0.5512 respectively. Note that the clustering pattern in

the true latent space z is discernible with little overlap between diferent groups. Of course,

the estimation of z, hence g, will be more accurate when clusters are far away from each

other. On the other hand, whenmembers are thoroughly blended, the probabilities of con-

nections within clusters are comparable to those across clusters, making it more diocult

to estimate true group membership. We explore these two extreme scenarios (one with a

very distinctive clustering pattern and another with well-blendedmembers) in Sections 3.2

and 3.3.

As for the prior speciocations, we set ma = mb = 0, and ν2a = ν2b = 9 to allow a wide

range of values for a and b. Let θ ∼ Gamma(1, 1) so that θ has mean 1. An almost nat

prior is imposed on β by setting νβ = 104. The same uniform prior U(0, 1) as in [10] is

specioed for φ. We suggest the sum of the prior means of τ 2 and σ 2 to be on the same

scale as the sample variance of x, and here we use σ 2 ∼ InvG(2, 1) and τ 2 ∼ InvG(2, 1).

Let α = 1 so that the prior onωωω is a nat Dirichlet distribution. Following the heuristics in

[54], we specify μh
i.i.d.
∼ NK(0, 2/3IK) and κ2

h

i.i.d.
∼ InvG(3, 2/3) so that var(zij|gi) = 1.

Note that the latent space dimension K and the number of clustersH in the model need

to be prespecioed along with the priors. We take K to be the true dimensions of the latent

space (i.e. K = 2) since this facilitates model assessment by allowing visualizations of the

estimated latent positions. One could also use the Watanabe-Akaike Information Crite-

rion (WAIC) to select a K with the smallest WAIC as in [54]. However, WAIC and other

information criteria like the Deviance Information Criterion (DIC) do not help choose the

number of clusters H. A comparison of the model assessment for diferent specioed H is

given in Appendix 2. We noticed that model performances are signiocantly worse whenH

is chosen to be smaller than the truth. However, model performances are similar among

models whoseH is at least as large as the truth. Therefore, we suggest choosingH to be the
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Figure 3. (a): Color indicates the true groupmembershipg. (b)–(d): Color indicates the estimated group
memberships ĝ of LPJMM, LPCM and CSBM respectively. Positions of the points in all plots are true latent
positions z.

Table 1. ARI and numbers of estimated groups (in parentheses).

LPJMM LPCM CSBM

MaxPEAR 0.737 (5) 0.707 (4) –
MinBinder 0.712 (11) 0.748 (10) –
GreedyEPL 0.664 (4) 0.688 (4) –
Variational-EM – – 0.707 (6)

largest number of groups that one is willing to accept, and in this example, we chooseH to

be 5.

We then ot LPJMMusingMCMC sampling with 20,000 burn-in iterations and a further

10,000 iterations kept for posterior analysis. Before running the Markov chain, another

20,000 iterations for adaption was used to help the rjags package to choose the optimal

Markov chain sampler. TheMarkov chainmixes reasonably well and shows no signs of lack

of convergence (see Appendix 3 for the traceplot of the log-likelihood chain).

To evaluate a model9s ability to recover the groupmembership, we orst ond estimates of

clustering using the optimization algorithms (i.e.MaxPEAR, MinBinder, and GreedyEPL)

mentioned in Section 2.4 and ond ARI for each clustering estimate. Note that clusters are

not deoned in SNSM, therefore we only compare the ARI between LPJMM, LPCM, and

CSBM. Since the sbm package takes a non-Bayesian approach that uses a Variational-EM

algorithm to ond a point estimator for the group membership g, optimization methods

like MaxPEAR are not necessary to analyze results from CSBM. Results in Table 1 suggest

that these three models have a similar ability to recover group membership g, with ARI

of LPJMM using the MaxPEAR and MinBinder algorithms being higher than ARI (0.707)

under the CSBMmodel. Although the highest ARI is given by LPCM using theMinBinder

method, the estimated number of groups is 10 which signiocantly exceeds the true number

of groups. Therefore, the overall best estimation in terms of both ARI and ĝ is given by

LPJMM. A visualization of the estimated clusters based on the true latent positions is given

in Figure 3. Also, notice that the MinBinder algorithm tends to overestimate the number

of clusters in the network in all models.

To further compare the ability to recover latent position conoguration between LPJMM

and LPCM, we ond an estimate of the latent positions ẑ using the method of Procrustes

transformation given in Section 2.4. Plots of ẑs of LPJMM and LPCM can be found in

Appendix 4, which suggest similar estimated conogurations of z.
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Figure 4. Boxplots of summary statistics for each model. Red dotted lines indicate the true values for
network characteristics respectively.

Table 2. Means of the summary statistics of the simulated networks for each model.

true value LPJMM LPCM SNSM CSBM

density 0.1531 0.1539 0.1530 0.1504 0.1499
transitivity 0.5049 0.5144 0.5467 0.4027 0.3776
assortativity 0.5512 0.5468 0.5475 0.4811 0.4954

Following [54], we assess if models have a good ot in the sense of good reproduction

of a variety of summary statistics. These statistics are calculated based on the networks

generated from the model estimations. For LPJMM and SNSM, networks are simulated

based on the parameters at every 10th iteration of the generated Markov chain. For LPCM

and CSBM, 1000 networks are simulated using their respective packages. Then for each

model, we calculate the density, transitivity, and assortative coeocient (if applicable) cal-

culated according to the true groupmembership for each simulated network. Boxplots and

the averages of these summary statistics are given in Figure 4 and Table 2 respectively. In

general, the summary statistics results are not too disparate for all four models. However,

LPJMM better captures these structural features of the network data, while LPCM tends to

overestimate transitivity in the network, and both SNSM and CSBM tend to underestimate

transitivity and assortativity in the network.

Remark 3.1: The readermaywonder (as did a referee) whether there would be collinearity

issues in Equation (1) due to the relationship between xi and zi given in Equation (2). Note

that in themodel speciocation, the nodal attributes vector ismodeled as aGaussian process,

where the covariance between xi and xj is given by σ 2 exp(−φ‖zi − zj‖). This renects our

assumption that xi and xj is likely to be more similar if they are closer in the latent space

(i.e. a smaller value of ‖zi − zj‖ will result in a larger value of covariance between xi and

xj). However, we let ‖zi − zj‖ afects |xi − xj| via the covariance matrix through a non-

linear exponential function so that the model can capture a great degree of variability in

the relationship between |xi − xj| and ‖zi − zj‖, thus ensuring a probabilistic relationship

between them. Therefore, we do not anticipate a linear relationship between ‖zi − zj‖ and

|xi − xj|. The correlation between ‖zi − zj‖ and |xi − xj| in this simulation study is found

to be 0.0555. Therefore collinearity is not a issue in the simulation study.

Two more extreme scenarios are also considered. In the orst scenario, assume all actors

take the same position in the latent space (i.e. ‖zi − zj‖ = 0 for all i, j). In this case, the

correlation between ‖zi − zj‖ and |xi − xj| is 0.1222. In another scenario, the correlation
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Figure 5. Network visualization and heatmap of the adjacency matrix.

Table 3. ARI and numbers of estimated groups (in parentheses).

LPJMM LPCM CSBM

MaxPEAR 0.956 (5) 0.918 (5) –
MinBinder 0.956 (5) 0.933 (6) –
GreedyEPL 0.938 (5) 0.918 (5) –
Variational-EM – – 0.900 (5)

coeocient is 0.2295 if distances between the ove clusters in the latent space are even further

from each other (as is the case in Section 3.2 below). In either case, the correlation between

‖zi − zj‖ and |xi − xj| is weak. We thus believe that collinearity should not be a problem

for the model.

3.2. A networkwithmissing edges

In this simulation scenario, a network with N = 100, H = 5 is generated, which shows

highly discernible clustering patterns (as shown in Figure 5). The model parameters used

to generate the network are given by a = 1, b = 3.5, θ = 1.25, φ = 0.3, τ 2 = 0.2, σ 2 = 1

and β = 0. Model speciocations are determined similarly as in Section 3.1. We will show

that LPJMM clearly outperforms other models when the network exhibits missing edges.

Table 3 shows that, when edge information is fully observed, all models can accurately

estimate the group membership (not considering SNSM), with LPJMM slightly outper-

forming the rest of the two models. Results from Table 4 are consistent with what we have

seen in Section 3.1, where LPJMM and LPCM can reproduce the summary statistics quite

close to the true values, while SNSM and CSBM tend to underestimate transitivity and

assortativity.

As the level of missing edges rises from 10% to 95%, the advantage of LPJMM becomes

more pronounced. To compare the models9 ability to recover group membership, we use

MaxPEAR to estimate g for LPJMM and LPCM. (The other two methods, MinBinder and
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Table 4. Means of the summary statistics.

true value LPJMM LPCM SNSM CSBM

density 0.1008 0.1011 0.1008 0.0956 0.0965
transitivity 0.4822 0.4775 0.5453 0.2758 0.3563
assortativity 0.8643 0.8510 0.8594 0.6540 0.7725

Figure 6. The upper left plot shows ARI as the percentage of the missing edges increases from 10% to
95%. In the rest of the three plots, the red horizontal dashed lines indicate the statistics summarized from
the fully observed network.

GreedyEPL, will give a similar result.) We also compare the summary statistics under dif-

ferent levels of missingness. (Note that SNSM is excluded from the comparison since it

does not perform well even when data is complete.) The results are shown in Figure 6.

The upper left plot in Figure 6 reveals that LPCM closely matches LPJMM9s perfor-

mance when the missing data rate is below 60%. However, as the amount of missing data

increases, LPCM9s performance deteriorates rapidly. Additionally, the density estimation

from LPCM deviates signiocantly from the true density as the missing data proportion

rises.While CSBM9s performance in terms of ARI appears less afected by the missing data

rate, it struggles to recover all three summary statistics efectively. Consequently, when

dealing with missing data, LPJMM emerges as a considerably more robust approach.
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Figure 7. Network visualization and heatmap of the adjacency matrix.

Table 5. ARI and numbers of estimated groups (in parentheses).

LPJMM LPCM CSBM

MaxPEAR 0.072 (3) 0.083 (8) –
MinBinder 0.096 (25) 0.058 (25) –
GreedyEPL 0.000 (1) 0.067 (3) –
Variational-EM – – 0.075 (6)

Table 6. Means of the summary statistics.

true value LPJMM LPCM SNSM CSBM

density 0.1242 0.1246 0.1241 0.1213 0.1226
transitivity 0.5181 0.5286 0.5476 0.3875 0.3931
assortativity 0.0840 0.0787 0.0742 0.0715 0.0481

3.3. A network showing indiscernible clustering pattern

In this simulation scenario, we explore networks with well-blended groupmembers. These

networks do not show distinct clustering patterns in terms of the given groupmembership,

which makes such membership more nominal than structural.

Consider a network shown in Figure 7. This network does not display a distinct cluster-

ing pattern, as indicated in Figure 7, along with a low assortativity coeocient, which is less

than 0.1 (see Table 6).

The lack of clear clustering makes it challenging to discern group memberships, which

are minimally evident in the network data (see Table 5). However, the goodness-of-ot test

given in Table 6 suggests that these models are still useful in recovering the network struc-

ture. Again, the results are consistent with the previous goodness-of-ot tests, with LPJMM

slightly outperforming the other three models.



JOURNAL OF APPLIED STATISTICS 1527

Figure 8. (a): Points are plotted based on true latent position z and true groupmembershipg. (b): Points
are plotted using the estimated latent positions, and color represents the estimated groupmembership
using the MaxPEAR method.

Table 7. ARI and numbers of estimated groups (in parentheses).

MaxPEAR MinBinder GreedyEPL

ARI 0.748 (6) 0.753 (12) 0.662 (4)

Table 8. Means of the summary statistics.

density transitivity assortativity

truth mean truth mean truth mean

layer 1 0.1531 0.1535 0.5049 0.5088 0.5512 0.5466
layer 2 0.1024 0.1023 0.5477 0.5546 0.6923 0.6890

3.4. A two-layer network

Continue using the parameter setup in Section 3.1 and its generated network as the

orst layer, we generate a second layer of the network with a2 = 3, b2 = 1, θ2 = 4. As in

Section 3.1, we ot LPJMM with K = 2 and H = 5 and evaluate the model9s ability to

recover the group membership using ARI. The results are given in Table 7, which shows

similar clustering estimates as in Section 3.1 where only one layer is considered. The plot

of the estimated latent position conogurations is given in Figure 8(b), which visualizes the

model9s recovery of latent positions and group membership.

We also carry out the goodness-of-ot test and the result is given in Table 8, which shows

that LPJMMcaptures these structural features accurately, and the result for layer 1 is similar

to the result in Table 3.1.

Recall that θ1 and θ2 are of no direct interest since they are not identioable. However,

we are still interested in the ratio θ1/θ2 since it renects the relative strength of borrowing

information from the latent space of each layer. Although a� and b� are of no direct inter-

est, we pay attention to their signs, especially that of b� because diferent signs of b� have
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Table 9. Posterior means and 95% credible intervals.

true value posterior mean 95% credible interval

θ1/θ2 0.680 0.653 (0.579, 0.721)
a1 5 5.01 (4.719, 5.262)
a2 3 3.25 (2.976, 3.572)
b1 −2 −1.919 (−2.053,−1.766)
b2 1 1.058 (0.901, 1.252)
β 0 −0.047 (−1.027, 1.01 )

τ 2 0.3 0.409 (0.261, 0.592)

σ 2 1 0.642 (0.230, 1.684)

Figure 9. (a): Points are plotted based on true latent position z and true groupmembershipg. (b): Points
are plotted using the estimated latent positions, and color represents the estimated groupmembership
using the MaxPEAR method.

diferent interpretations of the efect of attributes as discussed in Section 2. We also assess

the model9s ability to estimate parameters β , τ 2, and σ 2 using posterior means and 95%

credible intervals. The results are given in Table 9. Overall, the performance of LPJMM in

recovering the true values of these model parameters is pretty well, except for τ 2 and σ 2.

Both LPJMMand SNSM tend to underestimate σ 2 and overestimate τ 2. That is, the covari-

ance of the attributes tends to be underestimated, and although τ 2 is slightly overestimated,

the variance of the attributes (τ 2 + σ 2) still tends to be underestimated.

3.5. A ove-layer network

In this section, we study a more complicated network by adding three more layers to the

network in Section 3.4 tomake it a ove-layer network, and use the samemodel speciocation

to assess the model ot of LPJMM. The results of the clustering estimates and the means of

summary statistics are given in Tables 10 and 11 respectively. The plot of the estimated

latent position conogurations is given in Figure 9(b).

Results of Table 10, assortativity estimates in Table 11 and Figure 9 indicate that as the

network data becomes more complex with additional layers, the model9s ability to identify
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Table 10. ARI and numbers of estimated groups (in parentheses).

MaxPEAR MinBinder GreedyEPL

ARI 0.6928 (5) 0.7011 (11) 0.6414 (4)

Table 11. Means of the summary statistics.

density transitivity assortativity

truth mean truth mean truth mean

layer 1 0.1531 0.1534 0.5049 0.5048 0.5512 0.5382
layer 2 0.1024 0.1024 0.5477 0.5430 0.6923 0.6727
layer 3 0.0648 0.0648 0.3661 0.4035 0.6977 0.7020
layer 4 0.0543 0.0541 0.3892 0.3565 0.6744 0.7060
layer 5 0.0169 0.0169 0.1421 0.1140 0.6930 0.7293

clustering patterns slightly declines, with the ARI decreasing by approximately 0.05 com-

pared to Table 7 in the two-layer network setting. However, the density and transitivity

estimates in Table 11 are similar to the results from Section 3.4.

In this simulation, we are using the same Markov chain length as in previous simula-

tions. However, it takes about 20 hours to generate the Markov chain, compared to about

8 hours for single-layer simulations. A computational complexity analysis of the running

time with respect to various layers, number of actors in the network and diferent model

speciocations (choice of K and H) can be found in Appendix 4. The slight decrease in the

model9s performance in recovering the clustering pattern might due to the model9s limi-

tations in handling more complex network scenarios. Alternatively, it could be due to the

ineociency and/or inadequacy of the Markov chain Monte Carlo algorithm in exploring

the posterior distribution, which becomesmore complex as the dimensions of the network

data increase (e.g.with the addition of more layers). To fully explore the model9s capabil-

ities, including the goodness-of-ot and the recovery of clustering patterns, future studies

could focus on developing a customized MCMC algorithm for the proposed model.

4. Real data analysis

In this section, we consider a three-layer network data set from a corporate law orm

from 1988–1991 in New England [36]. This network describes three types of relationships

(namely, networks of advice, friendship, and coworker contacts) between 71 lawyers in the

law orm. Several actor attributes are also collected: age, gender, seniority (years with the

orm), ooce (located in Boston, Hartford, or Providence), practice (litigation or corporate

law), law school the lawyers attended (Harvard or Yale, University of Connecticut, or other

universities) and status (partner or associate). A principal component analysis (PCA) is

performed on age and seniority attributes, and the orst principal component explains 89%

of the variance which is of no surprise since age and seniority are highly correlated with a

correlation coeocient being 0.78.We chose the orst principal component to be the attribute

x and letH = 8 since it is the largest number of clusters we expect in the network. Then the

model is otted to the network using the same prior andMarkov chain setup as in Section 3.

The study of the Lazega network in this paper is meant to ond out how the three types of

relations can be explained by the ondings deduced from themodel otting.We orst visualize
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Figure 10. Points in all plots are drawn based on the estimated latent positions z and are colored based
on their categories in gender, office, practice, law school, and status.

the estimated latent positions z colored by diferent categorical attributes (gender, ooce,

practice, law school, and status) in Figure 10. As we can see from these plots, the estimated

positions z are well separated by the ooce (especially ooces in Boston and Hartford) and

practice. Compare these plots with z colored byMaxPEAR andGreedyEPL estimated clus-

tering g in Figure 11, we can see that both estimated g roughly clusters lawyers into three

groups: lawyers in Hartford ooce, litigation lawyers in Boston or Providence ooces, and

corporate lawyers in Boston or Providence ooces.

Plots of adjacency matrices of the three layers (where lawyers are grouped by the Max-

PEAR estimate of g) and their corresponding networks are given in Figure 12, where we

could see that the coworker network shows themost estimated clustering pattern, while the

advice network presents the least of such pattern, which could also be seen from the relative

ratios of θ�s in Table 12. This means that lawyers from the same ooce and doing the same

practice are more likely to become coworkers and friends, but who they seek advice from

does not dependmuch on ooce locations and practices. Furthermore, we can deduce from

the posteriors of b� in Table 12 that these lawyers tend to seek advice from people of similar

age (or seniority) since the posterior estimate of b1 is negative. In contrast, lawyers of dif-

ferent ages (or seniority) aremore likely to become friends and coworkers. This conclusion

is in line with the assortativity coeocients found based on the nodal attributes (lawyer9s

age) given in Table 13.
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Figure 11. Points are plotted using the estimated latent positions and color indicates the estimated
group membership using MaxPEAR and GreedyEPL methods respectively.

Figure 12. Upper: Heatmaps of the adjacency matrices (where lawyers are reordered according to the
MaxPEAR estimate of g). Lower: A visualization of the three layers based on the estimated z and color
indicates the MaxPEAR estimate of g.

5. Discussion

This paper presents a latent positionmodel that extends LPCMand SNSM to jointlymodel

network data and the nodal attributes and perform model-based clustering. By jointly
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Table 12. Posterior means and 95% credible intervals.

posterior mean 95% credible interval

θ1/θ2 0.3229 (0.2352, 0.4152)
θ1/θ3 0.2035 (0.1479, 0.2606)
θ2/θ3 0.6319 (0.5536, 0.7198)
b1 −0.0986 (−0.1401,−0.0579)
b2 0.0708 (0.0263, 0.1137)
b3 0.133 (0.0854, 0.186)

Table 13. Assortativity coefficients based on lawyer’s age.

advice friendship coworker

assortativity 0.2536 −0.1107 −0.1224

modeling the network and the attributes, we can describe how the attributes change over

the network and explain how relations could be innuenced by attributes. LPJMM also pro-

vides an extension to multi-layer network settings on the assumption that all layers share

the same latent position structure but with diferent strengths of borrowing such latent

structure information. We applied our method to four simulated networks and found

LPJMM to give more satisfactory ots and is competitive in terms of goodness-of-ot and

group detection compared with SNSM, LPCM, and CSBM. In addition, the advantage

of LPJMM is more pronounced when there is missing data in the network and LPJMM

is shown to be much more robust than the other models. LPJMM is also applied to a

three-layer real network data set and we are able to draw reasonable conclusions from the

modeling results.

We have suggested choosing the number of groupsH to be the largest number of groups

that one is willing to accept in the network because we have found that varying the number

of groups has almost no impact on the model ot and prediction outcome as long as it is in

a reasonable range. One could also ot the CSBM to the network orst, and choose H based

on its estimated number of groups. One problem we have not addressed in the paper is

choosing the dimension of the latent space. This can be done by using Bayesian model

selection like WAIC as in [54].

Our model could be extended in several ways. Firstly, other extensions of our model to

multi-layer settings could be considered. For example, Sosa and Betancourt [54] assumed

conditionally independent layer-specioc latent positions, whereas MacDonald et al. [41]

assumed that the latent position of an actor in all layers is (d0 + d1)-dimensional, where

the orst d0 components of the latent position are the same across all layers, and only the

last d1 components are layer-specioc. Secondly, instead of assigning a user-specioed num-

ber of groups H to the model, we could learn the number of groups by using a Bayesian

nonparametric approachwith aDirichlet Process prior tomodel communitymemberships

(see, e.g.[4]).

LPJMM could also be extended to leverage multivariate covariates. So far, we have lim-

ited ourselves to modeling univariate nodal attributes that are approximately Gaussian.

For continuous nodal attributes with more than one dimension, we have used the orst

principal component from the principal component analysis. To take full advantage of

high-dimensional nodal attributes, one could use multivariate spatial process modeling

to replace Equation (2). Other extensions of more sophisticated spatial modeling include
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spatiotemporal modeling of attributes for time-varying networks, which would help to

describe changes in actors over time.
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Appendices

Appendix 1. Model specifications for SNSM, LPCM and CSBM

Note that the original SNSM in [10] uses the logit link. In order to make a fair comparison, we also
use the probit link in SNSM as in LPJMM. The model speciocation for SNSM used in this paper is
given as follows:

yi,j | z, x, a�, b�, θ�
ind
∼ Ber

(

�(a + b|xi − xj| − ‖zi − zj‖)
)

,

x | z,β , σ , τ ,φ ∼ NN(β111N , σ
2M(z,φ) + τ 2IN),

and the priors are set to be the same as the priors in LPJMM (if possible). To be specioc,

zi
i.i.d.
∼ N2(000, I2), β ∼ N(0, 104), σ 2 ∼ InvG(2, 1), τ 2 ∼ InvG(2, 1), φ ∼ U(0, 1),

and the priors on the parameters in the probit regression tier are given by:

a
i.i.d.
∼ N(0, 9), b

i.i.d.
∼ N(0, 9).

SNSM in this paper is implemented using JAGS.
The model speciocation for LPCM (see [24]) is given as the follows,

yi,j | z, x,β0,β1
ind
∼ Ber

(

logit(β
ᵀ

0 xi,j − β1‖zi − zj‖)
)

,
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zi | ωωω,μμμ,κκκ
i.i.d.
∼

5
∑

h=1

ωhN5(μh, κ
2
h IK),

and we use the default priors given in the latentnet package for prior speciocations.
We orst introduce several notations before presenting CSBM [38]. Suppose there are Q groups

in the network. Denote the N × Q group membership matrix as ZZZ = {Ziq}, and Ziq = 1 if actor i
belongs to group q, Ziq = 0 if otherwise. It is assumed that an actor can only belong to one group.
The model speciocation for CSBM is given as follows,

yi,j | Zi,Zj, x,β
ind
∼ Ber

(

logit(mqi ,qj + βᵀxi,j)
)

,

where Zi is the ith row of ZZZ, qi is the group membership for actor i and the group efectmqi ,qj ∈ R.

Appendix 2. Comparingmodel performances for different number of groups

Weconduct a comparison of LPJMMwith diferentH ∈ {3, 4, . . . , 9}using the data set in Section 3.1.
Table A1 presents ARI, and the results are similar for models that assume H to be equal to or larger
than the true number of groups (which is 5 in this example). However, ARI for all three estimates is
signiocantly smaller when the model assumesH to be smaller than 5. Also, notice that the estimated
number of groups increases withH. Visualizations of how ARI and the estimated number of groups
change over H are given in Figure A1.

The goodness-of-ot test outlined in Section 3 is also carried out here to compare the means of
several summary statistics, which are plotted in Figure A2. As we can see from the plots, the model9s

Figure A1. Left: ARI of the clustering estimates found by using the MaxPear, MinBinder, and GreedyEPL
methods. Right: Estimated number of groups using the three methods.

Table A1. ARI and the numbers of estimated groups (in parentheses).

H MaxPEAR MinBinder GreedyEPL

3 0.4067 (3) 0.4008 (5) 0.4321 (3)
4 0.4882 (3) 0.4977 (6 ) 0.6521 (4)
5 0.7374 (5) 0.7115 (11) 0.6635 (4)
6 0.7237 (6) 0.7442 (20) 0.7134 (4)
7 0.7449 (7) 0.6624 (25) 0.7313 (4)
8 0.7422 (8) 0.6674 (25) 0.7293 (8)
9 0.7056 (12) 0.7041 (25) 0.7043 (11)
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Figure A2. The means of summary statistics for different H.

ot is not afected by the choice of H even for H smaller than the actual number of clusters in the
network.

Appendix 3. Traceplots of log-likelihood

The traceplots of the log-likelihood (after thinning the Markov chain every 10 iterations) in
simulation studies and real applications in Sections 3 and 4 are given in Figure A3.

Figure A3. From left to right: traceplots of the log-likelihood from Sections 3.1, 3.4 and 4 respectively.

Appendix 4. Visualizations of results from LPJMM and LPCM

Visualizations of the estimated latent positions and estimated group membership in Section 3.1
using the MaxPEAR, MinBinder, and GreedyEPL methods under LPJMM and LPCM are shown
in Figures A4 and A5 respectively.

Figure A4. Points are plotted based on the estimated latent position z and three estimated group
memberships ĝ of LPJMM.



1538 Z. JIN ET AL.

Figure A5. Points are plotted based on estimated z and three estimated ĝ of LPCM.

Appendix 5. Computational complexity analysis

For all the Markov chains generated in this section, we utilize 20,000 iterations for adaption and
30,000 iterations for sampling the Markov chain. The running time under diferent model specio-
cations (diferent K (i.e. dimension of latent space), diferent H (i.e. number of clusters)), or when
network data has diferent sizes (either diferent number of layers or actors) are shown in Figure A6.

From subplots (a) and (b) of Figure A6, it is evident that varying model speciocations of K andH
does not afect the running time. Subplots (c) and (d) illustrate an exponential trend in the running
time as the number of actors or the number of layer increases.

Figure A6. Running time (in hours) of the algorithmusing therjagspackagewith 50000 iterations. (a)
network is one-layer with 100 actors, and the dimension of latent space (K) is chosen to be 2. (b) network
is one-layer with 100 actors and number of clusters (H) is chosen to be 5. (c) network is one-layer, and the
model chooses K = 2 andH = 5. (d) network has 100 actors, and themodel chooses K = 2 andH = 5.
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