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A B S T R A C T

Continual lifelong learning is an machine learning framework inspired by human learning, where learners are
trained to continuously acquire new knowledge in a sequential manner. However, the non-stationary nature
of streaming training data poses a significant challenge known as catastrophic forgetting, which refers to the
rapid forgetting of previously learned knowledge when new tasks are introduced. While some approaches,
such as experience replay (ER), have been proposed to mitigate this issue, their performance remains limited,
particularly in the class-incremental scenario which is considered natural and highly challenging. In this
paper, we present a novel algorithm, called adaptive-experience replay (AdaER), to address the challenge
of continual lifelong learning. AdaER consists of two stages: memory replay and memory update. In the
memory replay stage, AdaER introduces a contextually-cued memory recall (C-CMR) strategy, which selectively
replays memories that are most conflicting with the current input data in terms of both data and task.
Additionally, AdaER incorporates an entropy-balanced reservoir sampling (E-BRS) strategy to enhance the
performance of the memory buffer by maximizing information entropy. To evaluate the effectiveness of AdaER,
we conduct experiments on established supervised continual lifelong learning benchmarks, specifically focusing
on class-incremental learning scenarios. The results demonstrate that AdaER outperforms existing continual
lifelong learning baselines, highlighting its efficacy in mitigating catastrophic forgetting and improving learning
performance.
1. Introduction

State-of-the-art machine learning (ML) approaches have achieved
remarkable performance in various tasks as image classification [1],
istributed optimization [2,3], and security [4]. However, when trained
ith new tasks from non-stationary distributions, these models tend to
apidly forget previously learned information, a phenomenon known
s ‘‘catastrophic forgetting’’ [5,6]. In contrast, human brains possess
he ability to learn different concepts and perform conflicting tasks in
lifelong sequential manner, which is a desirable characteristic for
rtificial intelligent systems. As a result, there has been a growing
nterest in the field of continual lifelong learning [7,8], aiming to
rain artificial learners with non-stationary streaming training data,
emporally correlated inputs, and minimal supervision.
One commonly used approach to address catastrophic forgetting

s the utilization of previously trained experience through ‘‘memory
eplay’’, which involves rehearsing the memory of previously learned
asks along with new incoming tasks to reactivate relevant knowledge

∗ Corresponding author.
E-mail address: btang1@wpi.edu (B. Tang).

in the learning model, promoting knowledge consolidation [9,10].
Replay-based methods can be categorized into two groups based on
how previous memories are used: (i) Experience replay, which stores
raw training examples in a limited memory buffer [11]. (ii) Gener-
ative replay, which trains a separate generative model to generate
synthetic samples for previously learned tasks [12]. Recent research
has enhanced experience replay methodologies through diverse ap-
proaches. Specifically, [13] introduces a model-free 𝜆-policy iteration
using reinforcement learning techniques. [14] advances experience re-
play by focusing on interactions among distributed agents in a dynamic
game setting. Furthermore, [15] showcases a Hamiltonian-driven adap-
tive dynamic programming strategy, emphasizing greater efficiency in
experience replay.

Although there have been debates about the utilization of seen
experiences in replay-based methods, recent studies suggest that these
settings are necessary, especially in more challenging continual learn-
ing scenarios [16]. For instance, existing approaches struggle with
the class-incremental (class-IL) scenario, where the learner needs to
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Fig. 1. Split-MNIST: continual lifelong learning example.
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perform all learned tasks independently, as opposed to the simpler task-
incremental (task-IL) problem where the learner makes decisions for a
single task. The class-IL scenario, being more realistic and challenging,
has gained popularity in recent years. In this context, the superiority of
replay-based methods, such as experience replay (ER) [17], is evident
compared to other approaches, especially in the class-IL scenario. Typ-
ically, ER and related methods involve two main stages: update and
replay, which determine how unseen data is added to memory and
which samples should be replayed, respectively. However, current ER
methods have faced criticism for their random sampling strategies in
both memory update and replay, and addressing this challenge remains
an open problem in the field [18].

To overcome these limitations, we propose a novel continual learn-
ing algorithm called Adaptive Experience Replay (AdaER), which aims
to enhance the efficiency of existing experience replay (ER) based
approaches. In the replay stage, AdaER introduces the Contextually-
Cued Memory Recall (C-CMR) method, which selects memories for
replay based on contextual cues instead of random sampling. These con-
textual cues are derived from the most interfering examples (i.e., data-
conflicting) and the associated forgetting tasks (i.e., task-conflicting)
in the memory buffer. For example, as depicted in Fig. 1, when the
learner encounters the fourth task, which involves classifying the digits
6 and 7, it is most prone to forgetting its previously acquired capability
to classify digit 1 from task 1. This is primarily because the digit 7
shares significant similarities with digit 1, thereby affecting the model’s
retention. In such a scenario, replaying memories associated with digit
1 can effectively mitigate this forgetting. Concurrently, revisiting the
learned classification boundaries for digit 1 in task 1 can also influence
the model’s performance on that task. Therefore, it would be advanta-
geous to simultaneously replay memories related to digit 0 from task 1
to maintain a balanced learning landscape.

Additionally, to enhance the strategy for updating the memory
buffer, AdaER introduces an innovative technique known as Entropy-
Balanced Reservoir Sampling (E-BRS). This method is designed to
optimize the information entropy within the replay memory buffer,
thereby ensuring a more effective and balanced memory update strat-
egy. In real-world scenarios, sequential streaming training data often
exhibit imbalanced distributions, posing an additional challenge in
continual learning. For example, the number of training examples for
minority classes in the memory buffer may be limited, exacerbating
the forgetting issue. The E-BRS method provides a balanced memory
updating strategy that mitigates the bias caused by imbalanced training
data. The contributions of this work can be summarized as follows:

• We propose the AdaER algorithm, a novel two-stages approach to
overcome obstacles in ER-based continual lifelong learning.

• For the replay stage of AdaER, we introduce the C–CMR method,
which selects memories for replay based on contextual cues re-
lated to interference and task performance. To further refine the
update stage, AdaER reformulates the memory updating strategy
via the E-BRS method, which optimizes the memory buffer’s
efficacy through the amplification of information entropy.

• Through extensive experiments on multiple benchmarks, the re-
sults demonstrate that AdaER outperforms existing continual life-
long learning baselines. For example, AdaER achieves 74.0%
testing accuracy at the Split-FMNIST benchmark, 6.3% higher
2

than ER. F
The rest of this paper is organized as follows: the recent studies of
continual lifelong learning are summarized in Section 2. The problem
tatement and some preliminaries are given in Section 3. The proposed
daER algorithm with C–CMR replay and E-BRS update methods is
emonstrated in detail in Section 4. Moreover, A comprehensive ex-
eriment study is presented in Section 5, followed by a conclusion in
Section 6.

2. Related work

2.1. Continual learning approaches

2.1.1. Memory replay
Replay-based methods draw inspiration from the relationship be-

tween the mammalian hippocampus and neocortex in neuroscience,
aiming to replicate the interleaving of current training tasks and previ-
ously learned memories. This interplay between real episodic memories
and generalized experiences offers valuable insights into knowledge
consolidation. Early examples of this concept include the use of a dual-
memory learning system in [19] to mitigate forgetting. More recent
approaches, such as the modified self-organizing map (SOM) with
short-term memory (STM) in [20], have been developed as part of
incremental learning frameworks.

Taking inspiration from the generative role of the hippocampus,
[12] proposed a dual-model architecture consisting of a generative
model and a continual learning solver, enabling the sampling and
interleaving of trained examples, known as Generative Replay (GR).
Gradient Episodic Memory (GEM) [21] stores a subset of seen examples
as episodic memory that has a positive impact on previous tasks, while
Averaged GEM (A-GEM) [11] improves the computational and memory
efficiency of GEM through an averaging mechanism. Experience Replay
(ER) [17] uses reservoir sampling [22] to update the memory buffer,
thereby approximating the data distribution. Works such as [18] have
further improved the memory update and replay processes to enhance
performance, and FoCL [23] focuses on the feature space regulariza-
tion instead of parameter space. [24] provides a multi-criteria subset
selection strategy to overcome the unstable problem of ER. Other ML
topics as Meta-learning [25] and segmentation [26] have also been
pplied to replay-based continual learning approaches. Despite being
emory-intensive, replay-based methods have generally shown high
erformance.

.1.2. Other continual learning approaches
Apart from memory replay-based approaches, other categories of

ontinual learning approaches include regularization methods and dy-
amic architecture methods. While our focus in this paper is on mem-
ry replay-based approaches, we briefly discuss these other categories
elow.
Regularization methods aim to mitigate forgetting by retraining the

ifelong learning model while balancing the knowledge of previous
asks and the current task. Learning without Forgetting (LwF) [27]
chieves this by distilling knowledge from a large model to a smaller
odel, ensuring that the predictions for the current task align with
hose of previously learned tasks. Elastic Weight Consolidation (EWC)
7] identifies important weights for previously seen examples using

isher Information and restricts their changes through quadratic terms
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in the loss function. Synaptic Intelligence (SI) [28] penalizes parame-
ters in the model’s objective function in an unequal manner based on
gradient information, identifying influential parameters. ISYANA [29]
considers the relationship between tasks and the model, as well as
the relationship between different concepts. [30] adopts variational
auto-encoders to achieve exemplar-free continual lifelong learning.
Regularization approaches are known for their ability to continually
learn new tasks without storing seen examples or expanding the model’s
architecture. However, the trade-off in the loss function can lead to
complex performance dynamics between seen and new tasks, especially
when the task boundaries are unknown.

Dynamic architecture approaches modify the model’s architecture
to accommodate new tasks by adding new neural resources. Some
works, such as [31], adopt a linear growth of the number of models
in response to new tasks. Progressive Neural Networks (PNN) [32] pre-
serves the previously trained network and allocates new sub-networks
with fixed capacity to learn new information. Dynamically expanding
network (DEN) [33] incrementally increases the number of trainable
parameters to adapt to new examples, providing an online method for
expanding network capacity. Dynamic architecture approaches offer
the advantage of preserving knowledge of seen tasks with fixed model
parameters. However, they face challenges in preventing parameter
growth from becoming too rapid, which could lead to complexity and
resource demands. Additionally, selecting appropriate parameters to
target the test task is a significant challenge in these approaches.

2.2. Three scenarios of continual learning

The evaluation of continual lifelong learning approaches can be
challenging due to differences in experimental protocols and access
to task identity during testing. To facilitate meaningful comparisons,
recent work by [16] has introduced three standardized evaluation
scenarios of increasing difficulty for continual lifelong learning. These
scenarios have been adopted by several subsequent studies [34].

We illustrate these scenarios using the popular continual learning
enchmark, split MNIST [28], where the ten handwritten digits are
earned sequentially in multiple tasks with limited classes, as shown in
ig. 1. The first scenario is task-incremental learning (task-IL), which is
the easiest scenario where the learner always knows the target learning
task. The second scenario is domain-IL [16,35], where the model is
trained on tasks from different domains but with the same labels. For
example, the learner needs to remember whether the testing digits
come from the previous seen MNIST domain or the new learned hand-
crafted digits from other domains. The most challenging scenario is
class-IL, where the learner is required to distinguish all previously seen
classes without knowing the task identity. Recent reports [36] indicate
that the class-IL scenario is more realistic and poses a greater challenge
for incrementally learning new classes. In this paper, we specifically
focus on enhancing the performance of memory replay-based continual
learning approaches in the class-IL scenario.

3. Problem statement

In conventional machine learning, the goal is to train a model 𝑓
with parameters 𝜃 to predict outcomes of a stationary dataset  , where
the training sample {𝒙, 𝑦} ∈  that:

𝜃∗ = argmin
𝜃

E(𝒙,𝑦)∼[𝑙(𝑓𝜃(𝐱), 𝑦)], (1)

where 𝑙(⋅, ⋅) is the loss function that denotes the empirical risk of 𝑓𝜃 over
. However, in continual lifelong learning, the learning environment
is typically non-static. We  divided into 𝑇 tasks, which is indexed
as 𝑡 ∼ 𝑡, 𝑡 ∈ [1,… , 𝑇 ]. Particularly, when learning the 𝑡th task, the
classifier has no access to the previous tasks. We denote the distribution
of previously seen training examples in  = { ,… , } as (𝐱 , 𝑦 ) ∼
3

𝑠 1 𝑡−1 𝑠 𝑠 c
Fig. 2. System diagram of AdaER: an adaptive experience replay algorithm with the
developed contextually-cued memory recall (C-CMR) method for the replay stage and
the entropy-balanced reservoir sampling (E-BRS) strategy for the update stage: (1) the
continual learner encounters the new task; (2) AdaER performs memory forgetting
degree analysis; (3) AdaER uses C–CMR method to select memories for replay, learned
with the new task inputs for model update; (4) the E-BRS method is applied to update
the memory buffer with the forgetting analysis in parallel.

𝑠, where the objective of a ML learner to achieve Eq. (1) can be
escribed as:
∗ = argmin

𝜃
(𝑡 + 𝑠), (2)

here the first part 𝑡 = E(𝐱𝑡 ,𝑦𝑡)∼𝑡
[𝑙(𝑓𝜃(𝐱𝑡), 𝑦𝑡)] requires the learner to

apidly learn the current task, and the second part 𝑠 = E(𝐱𝑠 ,𝑦𝑠)∼𝑠
𝑙(𝑓𝜃(𝐱𝑠), 𝑦𝑠)] denotes the requirement of not forgetting the previous
nowledge. Without the integration of 𝑠, a typical ML learner will
uffer from the catastrophic forgetting issue [6], e.g., due to the lack
f stability in neural networks [7]. The requirement of minimizing
oth 𝑡 and 𝑠 is also known as the stability-plasticity dilemma in
xisting studies [21]. To better present this challenge, we summarize
he following wide accepted assumptions in replay based continual
earning researches [17,18] as follows: (i) The space of memory 
s finite, which means only a subset of the experiences can be stored.
ii) The frequency of replaying experience is set to be the same as
he frequency of learning new task batches. Meanwhile, the rehearsal
f learned memory will impact the ability of learning new tasks. To
alance the stability-plasticity dilemma, the size of replay buffer  is
imited to be close to the size of training batch and much smaller than
. (iii) All the tasks are assumed to be equally important.
To address this challenge, there have been several existing ap-

roaches in recent years, among which one popular method is known
s experience replay (ER) [17]. The central feature of ER is to leverage
memory storage  ∼ 𝑚 for previously seen training samples,
here  = {(𝐱1, 𝑦1),… , (𝐱𝑚, 𝑦𝑚)} and || = 𝑀 . Obviously, it is not
ealistic to either store every seen training samples in or replay each
xample in at every current learning step. Typically, given a limited
ize of memory, the mechanism of ER could be summarized into the
ollowing two steps: (i). Memory update:  is updated when it learns
ore tasks, followed by a reservoir sampling method [22]. (ii). Memory
eplay: during the training of the current task 𝑡, a batch of examples
𝑚 = {𝐱𝑚, 𝑦𝑚} are randomly sampled from  that is interleaved with
he current batch 𝑡 to improve the stability of the learner. Specifically,
uring the learning of task 𝑡, ER approach addresses the objective in
q. (2) as 𝜃 = argmin𝜃(𝑡 + 𝑚), where 𝑚 = E(𝐱𝑚 ,𝑦𝑚)∼𝑚

[𝑙(𝑓𝜃(𝐱𝑚), 𝑦𝑚)].
However, the performance of ER is affected by the distribution dis-
repancy between the replayed batch 𝑚 and the previously seen data
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Fig. 3. Illustration of the developed C–CMR method: the most contextually-cued memories  are replayed to mitigate the forgetting with the combination of example-interfered
buffer 𝑒 and task-associated buffer 𝑡.
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𝑠, which becomes more pronounced as memory resources become lim-
ited. Additionally, random reservoir sampling used for memory update
can lead to imbalanced datasets, exacerbating the issue of catastrophic
forgetting, especially for classes with fewer training examples.

To address these limitations, our proposed algorithm focuses on
improving both memory replay and update. We aim to mitigate the
distribution discrepancy between 𝑚 and 𝑠 and alleviate the imbal-
ance issue in real-world scenarios. By addressing these challenges, we
aim to enhance the performance of ER-based continual lifelong learning
approaches.

4. Methods

In this section, we present our novel continual lifelong learning
algorithm, called Adaptive Experience Replay (AdaER). The structure
of AdaER is depicted in Fig. 2, and it addresses the limitations of
existing experience replay (ER) methods by enhancing both the replay
and update stages. In AdaER, the memory tuples in  store not only
the previously seen training data, but also the corresponding task IDs.
Each memory content in is denoted as 𝐱𝑚, 𝑦𝑚, 𝑡𝑚, where 𝐱𝑚 represents
the input sample, 𝑦𝑚 denotes the corresponding label, and 𝑡𝑚 indicates
he task ID.
To improve the replay stage, AdaER introduces a Contextually-Cued
emory Recall (C-CMR) method (Section 4.1). C–CMR determines
hich memories should be replayed based on contextual cues, consider-
ng the interference caused by the data-conflicting and task-conflicting
xamples in the memory buffer. The goal is to select the most relevant
emories for effective knowledge consolidation.
For the update stage, AdaER enhances the memory updating strat-

gy by maximizing the corresponding information entropy. This strat-
gy is known as Entropy-Balanced Reservoir Sampling (E-BRS) (Sec-
ion 4.2). By maximizing the information entropy, AdaER mitigates the
mbalanced distribution issue that can arise in real-world scenarios,
eading to improved performance and reduced forgetting.
The detailed design and implementation of AdaER are provided in

he subsequent sections, which include the C–CMR method and the
-BRS strategy. These advancements aim to enhance the efficiency
nd effectiveness of ER-based continual lifelong learning methods,
4

ddressing the challenges associated with memory replay and update. o
.1. Contextually-cued memory recall

In the C–CMR method, we illustrate its functionality using a con-
inuous animal classification scenario depicted in Fig. 3. The goal
f C–CMR is to select appropriate memory examples for the seen
nimal classes. To achieve this, C–CMR employs two buffers: the
xample-interfered buffer 𝑒 and the task-associated buffer 𝑡. These
uffers help determine the relevant memories from both the data-
onflicting and task-conflicting perspectives. The selected memories are
hen stored in the contextually-cued buffer .
First, the C–CMR identifies the most interfered samples based on

ata conflicts and stores them in 𝑒. These data-conflicting samples
rovide valuable information for knowledge consolidation. Simulta-
eously, C–CMR investigates the forgetting of associated tasks stored
n 𝑒 and identifies the task-related samples. These task-conflicting
amples are then stored in 𝑡. By considering both data conflicts and
ask conflicts, C–CMR leverages the information from both buffers, 𝑒
nd 𝑡, to create the contextually-cued buffer .
The contextually-cued buffer  contains selected memory exam-

les that are relevant for effective knowledge consolidation. By com-
ining the information from the example-interfered buffer and the
ask-associated buffer, C–CMR ensures that the replayed memories
re contextually appropriate and contribute to mitigating catastrophic
orgetting in continual lifelong learning scenarios.

.1.1. Example-interfered buffer
To identify memory examples that conflict with the current learning

ask, C–CMR introduces a virtual classifier 𝑓 ′
𝜃 , which is trained on the

urrent batch 𝑡 without any memory replay. This approach is inspired
y previous work [18] and addresses the stability-plasticity dilemma
n lifelong learning. The learning of 𝑓 ′

𝜃 at the 𝑡th task is formulated
s a one-step stochastic gradient descent (SGD) optimization problem,
here the model parameters 𝜃′ are updated using the gradients com-
uted on 𝑡 with a learning rate 𝛼. The update is performed according
o the following equation:
′ = 𝜃 − 𝛼∇𝜃𝑙(𝑓𝜃 ;𝑡), (3)

here ∇𝜃𝑙(⋅) represents the gradient of the loss function 𝑙(⋅) with respect
o the model parameters 𝜃. By updating 𝜃 using the gradients calculated

′
n the current batch, the virtual classifier 𝑓𝜃 is obtained.



Neurocomputing 572 (2024) 127204X. Li et al.
Fig. 4. Task-associated interference-transfer relationship with a three-task continual learning scenario, where Task 3 is interfered to Class 1 of Task 2 and transferred to Class 2
of Task 2.
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The motivation behind using 𝑓 ′
𝜃 is to assess the forgetting degree

of each memory example with respect to the current learning task.
Different memory examples exhibit varying degrees of forgetting, with
some being transferable to the new task and others interfering or being
forgotten. By comparing the performance of 𝑓 ′

𝜃 and the original model
𝑓𝜃 on the memory examples, C–CMR quantifies the forgetting degree of
each example, enabling the selection of conflicting memory examples
for further analysis and handling. To quantize the forgetting degree of
each memory example, we introduce a score vector 𝐬 with a criterion,
calculating 𝑠(𝑚) for the 𝑚th memory sample as:

𝑠(𝑚) = 𝑙(𝑓𝜃′ (𝐱𝑚), 𝑦𝑚) − 𝑙(𝑓𝜃(𝐱𝑚), 𝑦𝑚), (4)

where 𝐬 ∈ R𝑀×1. Note that when the value of 𝑠(𝑚) is higher, the
𝑚th memory example is considered with a higher degree of forgetting
against the learning of 𝑡. As a result, C–CMR develops the example-
interfered buffer 𝑒 by choosing the top-𝑝 interfered memories instead
of randomly sampling from , where 𝑝 = |𝑒|.

4.1.2. Task-associated buffer
Although the example-interfered buffer 𝑒 captures the most rep-

resentative forgotten examples from a data-conflicting perspective, it
does not consider the relationship between transfer and interference
among the learned tasks. This relationship is illustrated in a three-
task continual learning example shown in Fig. 4. The objective in this
scenario is to find the optimal model 𝜃⋆ with the training task order
from task 1 to task 3, which lies in the shown overlapping region.
However, we can notice a surprising observation that the forgetting
impacts from task 3 to the two classes of task 2 are different: (1)
Class 1 of task 2 is situated outside the intersection of tasks 2 and
3. Consequently, it faces a heightened risk of interference and is more
prone to forgetting. (2) Conversely, Class 2 of task 2 is nestled within
the confines of the task 3 regions, suggesting a favorable transfer
of knowledge. Given the framework of the example-interfered buffer,
memory related to class 1 of task 2 emerges as a prime candidate for
inclusion in 𝑒. This is attributed to its pronounced distance from 𝜃⋆,
5

leading to a magnified 𝑠(𝑚) value.
However, repeatedly revisiting 𝑒 might inadvertently skew the
model away from the optimal 𝜃⋆. This deviation could engender inter-
ference, potentially compromising the performance of task 2 due to the
excessive rehearsal of class 1. To achieve the balance, it is imperative to
sample not just the most forgotten examples but also their counterparts
with the same task, like class 2 from task 2. With this objective in
mind, the C–CMR introduces the task-associated buffer, 𝑡. This buffer
lays particular emphasis on classes whose vulnerability is not solely
determined by the established forgetfulness metric, 𝐬.

We denote the task IDs in 𝑒 as 𝑗 = [1,… , 𝑡𝑒], where 1 ≤ 𝑡𝑒 < 𝑝.
If the number of 𝑗th task samples captured in 𝑒 as 𝑝𝑗 , 𝑡 capture the
number of training memories from the other classes in the task 𝑗 as:

𝑞𝑗 = |𝑡| ×
𝑝𝑗
𝑝
, (5)

where |𝑡| + 𝑝 = ||. Note that the obtained 𝑞𝑗 can be viewed as a
eighted factor of the 𝑗th task in 𝑡: when task 𝑗 is more interfered
ith during the continual learning process, the chances of its training
amples being selected into 𝑒 is higher, whose data distribution needs
o pay more attention for offset correction.

.1.3. Contextually-cued recall

To address the challenge of transfer and interference in memory
eplay, our proposed C–CMR method combines both the example-
nterfered buffer 𝑒 and the task-associated buffer 𝑡 for replay. The
inal replay buffer obtained in C–CMR is denoted as  = 𝑒 +𝑡. The
memory replay process of C–CMR is summarized in Algorithm 1.

Meanwhile, we provide the convergence analysis of the proposed
AdaER in Algorithm 1, based on two well-accepted assumptions in the
field of continual lifelong learning [37]: (1) For any task t, the loss
objective 𝑙𝑡(𝑓𝜃) is 𝐿-smooth with a constant 𝐿 > 0. (2) The variance of
each learning task and 𝑡+𝑠 are all upper bounded by a corresponding
constant. For clarity, we formulate the model update process in the
provided C–CMR method as:

𝜃 = 𝜃 − 𝛼 ∇ 𝑙(𝑓 ; ) − 𝛼 ∇ 𝑙(𝑓 ; ) − 𝛼 ∇ 𝑙(𝑓 ; ), (6)
1 𝜃 𝜃 𝑡 2 𝜃 𝜃 𝑒 3 𝜃 𝜃 𝑡
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Algorithm 1 C-CMR: A Contextually-Cued Memory Recall Approach for
Continual Lifelong Learning
1: Input Initialized 𝑓𝜃 , Memory , learning rate 𝛼.
2: Variables 𝐬 ∶ The forgetting degree vector for each memory
exemplar in ; 𝑒: the example-interfered buffer with the most
representative forgotten examples; 𝑡: the memory exemplar buffer
from the most forgotten tasks; : the total reply buffer with size
|| = |𝑒| + |𝑡|.

3: for 𝑡 = 1 ∶ 𝑇 do
4: Batch 𝑡 for task 𝑡 is drawn from 𝑡.
5: 𝜃′ = 𝜃 − 𝛼∇𝜃𝑙(𝑓𝜃 ;𝑡) as introduced from Eq. (3).
6: if replay is true then
7: Develop 𝐬 from 𝜃′ and 𝜃 as in Eq. (4).
8: Search the most interfered examples (𝐱𝑚, 𝑦𝑚) with highest

values of 𝑠(𝑚) into 𝑒.
9: Develop 𝑡, where for the 𝑗-th task, the number of examples

𝑞𝑗 follows Eq. (5).
0:  = 𝑒 +𝑡.
11: 𝜃 = 𝜃−𝛼∇𝜃𝑙(𝑓𝜃 ; (+𝑡)). ⇒ Update continual learner 𝜃 with

the training of both current task batch and replay batch.
12: end if
13: end for
14: Memory update  as introduced in Algorithm 2.

where 𝛼1 = |𝑡|

|𝑡+|

, 𝛼2 = |𝑒|

|𝑒+|

, and 𝛼3 = |𝑡|

|𝑡+|

. Note that the latter

two terms of loss function from C–CMR are still bounded by the learned
task objective, which proves that the proposed AdaER algorithm follows
the same convergence rule of the Experience Replay algorithm [17,37].
Specifically, in this paper, to ensure that the continual learner can learn
the current task while replaying memories, we set the size of  and 𝑡
to be the same. To further investigate the contributions of 𝑒 and 𝑡
in C–CMR, we introduce a new hyperparameter 𝜏 = |𝑒|∕(|𝑒 +𝑡|),
and its impact is studied in detail in Section 5.

4.2. Entropy-balanced reservoir sampling

Meanwhile, the AdaER algorithm improves the memory update
stage of ER-based methods by introducing the entropy-balanced reser-
voir sampling (E-BRS) method. This method aims to increase the diver-
sity of training samples within the memory buffer  by maximizing
ts information entropy, which also addresses the issue of imbalanced
ata distribution.
In existing ER-based methods, random reservoir sampling is com-
only used to select which training examples are stored in the fixed-
ize memory buffer. The probability of each training exemplar being
epresented in reservoir sampling is 𝑀∕𝑁 , where 𝑁 is the number
of seen samples. However, when the continual learning data is imbal-
anced, with some classes having fewer samples stored in , the risk of
decreasing information entropy arises.

To address this, the E-BRS method encourages a balanced number
of training samples for each class. This is achieved by approximating
the information entropy through balancing the number of samples per
class in , as shown in Algorithm 2. This approximation reduces
the computational overhead compared to estimating the information
entropy using kernel functions. Additionally, E-BRS takes the criterion
score 𝑠(𝑚) obtained from C–CMR into consideration. In Line 7, E-BRS
finds the class 𝑦̃ with the largest number of examples. Then, the least
important memory examples in class 𝑦̃ is removed in Line 8, E-BRS
prevents the most forgotten memory example from being replaced. This
ensures that important information is retained in the memory buffer
during the update stage.
6

w

Algorithm 2 Development of 𝑀 in AdaER: E-BRS
1: Input: Data pair (𝐱, 𝑦) from 𝑡, memory buffer , seen examples

𝑁 .
2: if 𝑀 > 𝑁 then
3: [𝑁] ← (𝐱, 𝑦).
4: else
5: valid = RandInt([0, 𝑁]).
6: if valid ≤ 𝑀 then
7: 𝑦̃ = argmax𝑦 Count (𝑦 ∈ ): find the class 𝑦̃ with the largest

number of examples in .
8: 𝑚 = argmin𝑚(𝑠(𝑚)|𝑦𝑚 = 𝑦̃): remove the least important memory

example within 𝑦̃.
9: [𝑚] = (𝐱, 𝑦)
0: end if
1: end if
2: Updated memory buffer .

4.3. Discussions

In this paper, we propose the AdaER algorithm to improve the
efficiency of replay-based continual learning baselines. AdaER con-
sists of two stages: C–CMR and E-BRS, which address the limitations
of existing replay approaches from the replay and the update stage,
respectively. The C–CMR method provides guidance for the replay strat-
egy by considering both data-conflicting and task-conflicting examples.
It combines the example-interfered buffer 𝑒 and the task-associated
buffer𝑡 to determine which memories to replay. The goal is to address
catastrophic forgetting by replaying the most interfered memories. We
compare our C–CMR method with the existing maximally interfered
retrieval (MIR) approach and show that MIR fails in certain boundary
scenarios where 𝜏 = 1. We provide a detailed performance analysis of
AdaER and MIR in Section 5.

The E-BRS method improves the random reservoir sampling strategy
used in the memory buffer updating process. Instead of estimating
information entropy using kernel functions, we balance the number
of samples per class in . This simplification avoids computational
complexity concerns.

Note that to perform the memory forgetting degree analysis, the
proposed AdaER compares the gradient different in Eq. (4) between
he current model 𝑓𝜃 and the virtual model 𝑓𝜃′ , where 𝑓𝜃′ requires
dditional memory storage. However, as we observed, the extra mem-
ry size is typically much smaller than the model training, e.g., the
esNet-18 [38] in our experiments takes 7.5 GB for training, while
he size of the ‘‘State_dict’’ of 𝑓𝜃′ is no more than 100 MB, which is
egligible. Overall, AdaER combines the C–CMR and E-BRS methods
o enhance the replay-based continual learning process. We show that
daER outperforms existing baselines, including MIR, and provide
etailed performance analysis in Section 5.

. Experiments

1. Add results with multiple random seeds for robustness analysis,
ollowed by a paired t-test to show the significance of the results.
2. Show the results with more recent method (after 2020) and

ompare under mini-imagenet/tiny-imagenet settings //
3. Exploring additional ablation studies, such as assessing the im-

act of using individual components instead of both, as well as the
onsequences of utilizing a single reservoir type instead of both (Re
s. Rs),

.1. Experimental setup

To evaluate our proposed AdaER continual learning algorithm,

e compared it with recently proposed baselines under the class-IL
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Table 1
Numerical Details of introduced benchmarks in this paper. For each benchmark, 𝑁𝑡𝑎𝑠𝑘
s the number of tasks, 𝑁𝑐 denotes the number of classes per task, and 𝑁𝑡𝑟𝑎𝑖𝑛 represents
he training data size per each task respectively.
Dataset 𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑡𝑎𝑠𝑘 𝑁𝑐

Split-MNIST [39] 1000 5 2
Split-FMNIST [40,41] 1200 5 2
Split-CIFAR10 [42] 10,000 5 2
Split-CIFAR100 [42] 1000 50 2
Split-TinyImageNet [43] 10,000 10 20

continual learning settings over several supervised benchmarks in [16,
8]. Note that we develop our code on the opensource continual
earning platform.1 Meanwhile, we follow the source code2 to build up
he mainly compared MIR method.

.1.1. Benchmarks
In this work, we introduce a suite of benchmarks specifically tai-

ored for the field of continual lifelong learning. Detailed descriptions
f these benchmarks are provided in Table 1. We have selected split-
NIST, split-FMNIST, and split-CIFAR10 as cornerstone benchmarks
o serve as the primary basis for performance evaluation in contin-
al learning scenarios. Additionally, the split-CIFAR100 benchmark
s employed to investigate the efficacy of our proposed AdaER al-
orithm in handling tasks with extended sequences. Meanwhile, the
plit-TinyImageNet benchmark allows us to assess the comparative
erformance of various algorithms on more complex tasks, using paired
-tests for statistical significance analysis.

.1.2. Baselines
We compare the proposed AdaER algorithm with the following

xisting baselines in recent literature: oEWC [45], SI [28], GEM [21],
GEM [11], iCaRL [46], ER [17], MIR [18], GSS, HAL [47], and

ER-ACE [48]. Moreover, we also evaluate the performance of the
following two different settings. Online: the learner is trained under
the continual learning setting by simply applying SGD optimizer. Joint:
all tasks are trained jointly as one complete dataset instead of in
a continual manner, which usually gives us an upper bound of the
learning performance of all tasks.

5.1.3. Training
To provide a fair comparison with existing baselines, we train all

the neural networks in this paper with the Stochastic Gradient Descent
(SGD) optimizer. Additionally, all compared benchmarks in the paper
are executed with the same computational resources. For MNIST and
FMNIST benchmarks, we use a two-layer MLP with 400 hidden nodes,
which follows the settings in [21,49]. For CIFAR-10 and CIFAR-100, we
use a standard Resnet-18 [38] which is introduced in [46]. Note that
for the replay-based methods, the batch size for 𝑡 and  are both set
to 20, and the memory buffer is set to 100 by default.

5.1.4. Metrics
In this paper, we measure the performance of continual learning

algorithms with the following four metrics, which are defined in the
literature [11,21]. Note that for the 𝑇 tasks in a continual learning
benchmark, we evaluate the test performance after learning each task.
As such, we conduct a result matrix 𝑅 ∈ R𝑇×𝑇 , where 𝑅𝑖,𝑗 denotes
the testing accuracy of the continual learner on task 𝑡𝑗 after learning
task 𝑡𝑖. Let 𝑏̄𝑖 be the testing accuracy for each task after the random
initialization of the learning model and 𝐹𝑖 be the best testing accuracy
for task 𝑡𝑖, the introduced four metrics are as follows.

1 {https://github.com/aimagelab/mammoth} [44].
2 {https://github.com/aimagelab/mammoth} [18].
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• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 ∶Acc = 1
𝑇
∑𝑇

𝑖=1 𝑅𝑇 ,𝑖.
• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞𝐅𝐨𝐫𝐠𝐞𝐭𝐭𝐢𝐧𝐠 ∶Forget = 1

𝑇−1
∑𝑇−1

𝑖=1 𝑅𝑇 ,𝑖 − 𝐹𝑖.
• 𝐁𝐚𝐜𝐤𝐰𝐚𝐫𝐝𝐓𝐫𝐚𝐧𝐬𝐟𝐞𝐫 ∶Bwt = 1

𝑇−1
∑𝑇−1

𝑖=1 𝑅𝑇 ,𝑖 − 𝑅𝑖,𝑖.
• 𝐅𝐨𝐫𝐰𝐚𝐫𝐝𝐓𝐫𝐚𝐧𝐬𝐟𝐞𝐫 ∶Fwt = 1

𝑇−1
∑𝑇−1

𝑖=1 𝑅𝑖,𝑖 − 𝑏̄𝑖.

pecifically, for Acc, BWT, and FWT metrics, the higher value indicates
etter continual learning performance, and the lower the better for the
orget metrics.

.2. Results

Performance analysis. Table 2 shows the performance of com-
ared continual learning baselines against three benchmarks, where
he results are averaged by three times of training with different
eeds, demonstrated with the four evaluation metrics. Note that for all
emory-based approaches, the size of the memory buffer is 100, and
he continual learner trains each incoming training batch only once
uring the learning process of each benchmark. We can notice that
he proposed AdaER algorithm achieves the best overall performance
gainst every compared method at each introduced evaluation metric.
Specifically, for split-MNIST and split-FMNIST, AdaER achieves

9.6% and 74.0% testing accuracy, which is 3.7% and 6.3% higher
han the ER method respectively. For the split-CIFAR10 benchmark,
daER obtains a positive backward transfer result as 4.4, while the
wt of ER is only −19.9. Additionally, compared to the MIR method,
he forgetting of the proposed AdaER for split-CIFAR10 is only 18.0,
hich is 28.0% lower. And for the forward transfer, we can notice
hat compared to GSS, the proposed AdaER achieves −6.78 on the
plit-FMNIST benchmark which is 69.5% higher.
Furthermore, we also notice several interesting phenomenons: (i)

hrough GEM obtains feasible performance on split-MNIST and split-
MNIST, it performs poorly on split-CIFAR10, which may indicate GEM
as limited ability against complex continual learning tasks; (ii) though
he averaged testing accuracy of GSS is very close to MIR method, it has
orse performance on backward transfer, especially on split-FMNIST
nd split-CIFAR10 benchmarks.
Impacts of memory capacity. We then study the importance of

he memory buffer size by evaluating the compared methods under
ifferent values of 𝑀 ∈ [50, 200]. Firstly, we investigate the perfor-
ance of compared baselines under different 𝑀 in terms of the testing
ccuracy, where the results are shown in Fig. 5. It can be noticed that as
increases, the performance of compared continual learning methods

ecomes better, and the testing accuracy of the proposed AdaER al-
orithm outperforms other baselines on all benchmarks. Furthermore,
n split-MNIST, the testing accuracy of GEM increases by 49.9% when
increases from 50 to 200, while only 2.5% in AdaER. This indicates

hat the proposed AdaER algorithm is more robust against the memory
apacity 𝑀 , compared to other existing continual learning approaches.
The results in Fig. 6 demonstrate the changes in backward transfer

erformance with different memory buffer sizes. Similar to the results
n Fig. 5, as the size of  increases, the proposed AdaER consistently
utperforms all compared continual learning baselines in terms of both
ackward transfer and robustness. For example, in split-CIFAR10, the
ackward transfer value of the proposed AdaER increases from −15.4
o 8.2, which outperforms other methods significantly.
Investigation of the first task. In Fig. 7, we study the change of

he testing accuracy of the first task in each benchmark throughout the
omplete continual learning process, i.e., how the forgetting evolves
ith more tasks being learned. The results show that compared to all
aselines, the proposed AdaER algorithm achieves the overall minimal
orgetting of the performance of the first task for each benchmark. For
xample, the first task accuracy of AdaER decreases 3%, 10.6% and
3.4% corresponding to split-MNIST, split-FMNIST, and split-CIFAR10,
hich is 61.5%, 35.8% and 40% better than the results of MIR method

n this work.

https://github.com/aimagelab/mammoth
https://github.com/optimass/Maximally_Interfered_Retrieval
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Table 2
Continual learning results for Split-MNIST, Split-FMNIST, and Split-CIFAR10. We report the mentioned four metrics: Acc (higher is better), Forget (lower is better), Bwt (higher is
better), and Fwt (higher is better). Note that the results are spitted into different categories via the horizontal lines: the auxiliary joint and online baseline, the regularization-based
methods, and the memory-based experience-replay baselines.
Method Split-MNIST Split-FMNIST Split-CIFAR10

Acc ↑ Forget ↓ Bwt ↑ Fwt ↑ Acc ↑ Forget ↓ Bwt ↑ Fwt ↑ Acc ↑ Forget ↓ Bwt ↑ Fwt ↑

Online 18.4 98.4 −78.4 N/A 20.0 98.0 −78.6 N/A 13.0 83.6 −66.8 N/A
Joint 94.0 N/A N/A N/A 83.2 N/A N/A N/A 63.6 N/A N/A N/A

oEWC 19.8 98.9 −98.7 −14.4 20.0 98.6 −98.7 −14.5 17.7 78.4 −58.3 −12.9
SI 19.4 99.2 −98.8 −13.4 19.9 98.7 98.8 −13.3 15.2 83.8 −72.8 −12.7

ER 86.4 11.6 −10.7 −7.07 69.6 23.6 −18.5 −6.89 34.0 39.0 −19.9 −12.5
GEM 76.7 22.9 −13.3 −22.9 66.7 30.2 −21.8 −17.2 24.3 63.5 −17.3 −18.9
A-GEM 38.7 67.1 −57.0 −14.7 32.8 65.8 −70.5 −12.8 19.3 74.5 −43.7 −12.6
iCaRL 70.3 14.7 −14.2 N/A 65.0 29.5 −18.9 N/A 33.1 50.0 −24.4 N/A
HAL 84.2 19.4 −12.4 −11.6 68.7 19.2 −19.2 −19.3 31.8 43.8 −33.7 −12.9
GSS 85.6 14.3 −8.9 −10.7 69.2 22.7 −16.5 −22.3 42.3 29.6 −21.7 −13.3
MIR 88.0 9.0 −8.9 −7.07 71.4 22.4 −16.9 −6.89 44.6 25.0 −0.8 −12.5
C-CMR 88.4 7.2 −6.6 −7.01 73.0 18.5 −14.6 −6.87 45.4 22.6 3.5 −12.5
E-BRS 88.6 7.0 −6.0 −7.01 72.9 21.2 −14.8 −6.88 45.2 24.2 2.6 −12.5
AdaER 𝟖𝟗.𝟔 𝟔.𝟔 −𝟓.𝟒 −𝟔.𝟗𝟎 𝟕𝟒.𝟎 𝟏𝟖.𝟎 −𝟏𝟑.𝟐 −𝟔.𝟕𝟖 𝟒𝟔.𝟐 𝟏𝟖.𝟎 𝟒.𝟒 −𝟏𝟐.𝟒
Fig. 5. The impact of different memory size over averaged testing accuracy.
Fig. 6. The impact of different memory size over backward transfer.
Fig. 7. The testing accuracy of the first task as other tasks are learned.
8
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In addition, we also notice that the evolution of the first task is not
onotonically decreasing. For example, the testing accuracy of AdaER
fter observing task 2 is significantly higher than task 1, which indicates
hat the proposed AdaER algorithm is with feasible transfer ability.
Study of long sequence task. We then test the performance of

he proposed AdaER algorithm on continual learning tasks with longer
equences. To achieve this, we conduct the split-CIFAR100 benchmark,
here the training data of 100 different labels are divided into 50
asks, 2 classes per each task. Note that this benchmark is extremely
9

H

hallenging in our experimental settings. As such, different from other
enchmarks that each training batch is seen by the learner only once
uring the learning process, we add the iterations per each batch to
for split-CIFAR100. The results in Fig. 8 show the performance of
ompared approaches against this benchmark, where the left one is the
veraged testing accuracy and the right one illustrates the evaluation
f testing accuracy of the first task.
It can be noticed from the results in Fig. 8(a) that GEM, iCaRL, and

AL methods perform poorly and the proposed AdaER outperforms ER,



Neurocomputing 572 (2024) 127204X. Li et al.

p
T
t
i
s
o
c
1

s
E

Fig. 10. Performance of the proposed AdaER algorithm under different settings of 𝜏. (a): the averaged testing accuracy for each benchmark; (b): the evolution of first task testing
accuracy on split-FMNIST; (c): the evolution of first task testing accuracy on split-CIFAR10.
r
d
e

d
A
f
t
0
v
p
e
o
𝜏

c
w
t
i
a
a

t
r
c
o
i

5

a
i
t
a
m
r
r

u

Table 3
Summary statistics and paired t-test results.
Method Mean±Std 𝑡-Statistic 𝑝-value

ER 17.52 ± 0.79 7.79 1.49e−05
MIR 17.58 ± 1.07 7.24 2.78e−05
ER-ACE 19.56 ± 0.77 5.31 3.41e−04

AdaER 𝟐𝟐.𝟎𝟗 ± 𝟏.𝟒𝟐 – –

GSS, and MIR baselines against split-CIFAR100. Compared to ER with
20.2% testing accuracy, our AdaER algorithm achieves 22.2% which is
9.9% higher. Additionally, the first task evolution results in Fig. 8(b)
also support our claims on GEM, iCaRL, and HAL methods, e.g., the
testing accuracy of the first task in the GEM method drops rapidly to
nearly zero after task 3. Specifically, while MIR and ER only have 33%
and 29% final testing accuracy of the first task, the AdaER achieves
45.4%, which is 37.6% and 56.6% higher correspondingly. Besides, we
can also notice that compared to ER, though the GSS method achieves
a higher final first task testing accuracy, the averaged testing accuracy
for every continual learning task in split-CIFAR100 is lower.

Study of large size task. We then evaluate the performance of the
roposed AdaER algorithm with a more challenging benchmark, Split-
inyImageNet, where the training data of 200 labels are split into 10
asks, 20 classes per each task without overlap. Specifically, the results
n Table 3 are performed with 11 repetitions with different random
eeds. In the context of this complex benchmark, the AdaER algorithm
utperforms other methods on the averaged accuracy. For example,
omparing to the ER method, which manages a mean accuracy of
7.52%, our AdaER achieves the best testing accuracy of 22.09%.
Meanwhile, the statistical validation through paired t-tests further

olidifies our observations. When compared to the second best method
R-ACE, the t-statistic is 5.31 and the 𝑝-value is 3.41 × 10−4, both
of which indicate a statistically significant difference in performance.
The same trend holds true when AdaER is compared with MIR and
ER, reinforcing the algorithm’s robustness and efficacy in continual
learning tasks, particularly with larger sequences (see Fig. 12).

Impacts of 𝜆. Then, we study the impact of imbalanced training
data partition on the proposed AdaER algorithm. Note that for better
evaluation, the performance of compared ER and MIR methods are also
introduced for comparison. We setup the imbalanced data partition
scenario on split-FMNIST and split-CIFAR10 benchmarks: for each task,
the number of training sample difference between class 1 and class 2
over class 2 is set to 𝜆.

We first provide the averaged testing accuracy results of compared
methods in Fig. 9(a), where 𝜆 = 0.5. From the results, we can notice
that the proposed AdaER algorithm outperforms both MIR and ER
under the imbalanced scenario. Compared to the results in Table 2, all
three introduced methods have a significant testing accuracy decrease
against the split-CIFAR10 dataset. In this condition, we further evaluate
10

this performance decrease and find that the proposed AdaER achieves
minimal decline. The testing accuracy decline of AdaER is only 10.8%
while 14.8% on MIR and 14.3% on ER, which supports our claims in
Section 4.2.

Additionally, we investigate the performance changes of compared
baselines with 𝜆 ∈ [0.1, 0.9], of which the testing accuracy results
are shown in Fig. 9(b) for split-FMNIST and 9(c) for split-CIFAR10.
It can be noticed that as the value of 𝜆 increases, the performance of
each compared method decreases significantly. However, the proposed
AdaER algorithm also shows its robustness to the imbalanced data
partition. For example, in split-FMNIST, the testing accuracy decline
from 𝜆 = 0.9 to 0.1 is 6.2%, 9.0% and 9.6% for AdaER, MIR and ER
espectively. And for split-CIFAR10, though the performance of AdaER
rops faster than ER, it still outperforms ER over testing accuracy for
ach considered 𝜆.
Impacts of 𝜏. In this part, we evaluate the influence of the intro-

uced hyper-parameter 𝜏 ∈ (0, 1) on the performance of the proposed
daER algorithm. As illustrated in Section 4.1, 𝜏 denotes the weighted
actor of task-associated buffer 𝑡 and example-interfered buffer 𝑒
hat 𝜏 = 𝑝∕||. Particularly, when 𝜏 = 0.5, we consider 𝑞 is equal to
.5||. We first provide the averaged testing accuracy with different
alues of 𝜏 in Fig. 10(a), where the results show that when 𝜏 = 0.5, the
roposed AdaER algorithm achieves the best among other settings. For
xample, in split-FMNIST, when 𝜏 = 0.5, the averaged testing accuracy
f AdaER is 74.0%, which is 7.9% and 3.9% higher than 𝜏 = 0.1 and
= 0.9 respectively.
Additionally, we study the evolution of the first task testing ac-

uracy with different values of 𝜏 on split-FMNIST and split-CIFAR10,
hose corresponding results are shown in Figs. 10(b) and 10(c). Firstly,
he results also support that when 𝜏 = 0.5, the performance of AdaER
s the best. Specifically, for example, in split-CIFAR10, the final testing
ccuracy of the first task when 𝜏 = 0.5 is 60.8%, which is 47.6% higher
gainst 𝜏 = 0.1 and 9, 4% higher against 𝜏 = 0.9.
Note that when 𝜏 = 0.1 the AdaER algorithm is mainly impacted by

he example-interfered buffer 𝑒, while when 𝜏 = 0.9 the AdaER algo-
ithm is mainly impacted by the task-associated buffer 𝑡. Hence, we
an also obtain the observation that that compared to the performance
f 𝜏 = 0.1, the first task testing accuracy is more robust when 𝜏 = 0.9,
ndicating that 𝑒 is more powerful than 𝑡.

.3. Ablation study

In this part, we provide the ablation study of the proposed AdaER
lgorithm, where the two methods C–CMR and E-BRS are evaluated
ndependently. Particularly, we evaluate C–CMR via the proposed con-
extually cued recall method and the memory buffer is developed with
random reservoir sampling strategy. And for E-BRS we develop the
emory buffer with entropy-balanced reservoir sampling with the MIR
eplay strategy. Note that for better presentation, the experimental
esults of ER and MIR methods are also introduced for comparison.
Study of memory buffer size 𝑀 . We conduct the ablation study

nder the balanced training data partition setting as 𝜆 = 0. The
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Fig. 11. Ablation study of the proposed AdaER algorithm with the developed C–CMR and E-BRS methods: the performance of averaged testing accuracy as the increase of memory
buffer size 𝑀 .
Fig. 12. Ablation study of the proposed AdaER algorithm with the developed C–CMR and E-BRS methods over split-CIFAR100.
results of averaged testing accuracy for the compared methods under
different memory buffer sizes are shown in Fig. 11. From the results,
we can find that both C–CMR and E-BRS outperform MIR and ER at
each benchmark. Interestingly, the performance of E-BRS is slightly
better than C–CMR against split-MNIST while on the contrary against
split-FMNIST. Particularly, as shown in Table 2, when 𝑀 = 100, the
veraged testing accuracy of C–CMR and E-BRS are 45.4% and 45.2,
hich are 33.5% and 32.9% higher than the ER method.
11
6. Conclusions and future work

The catastrophic forgetting problem is a long-standing challenge in
the study of continual lifelong learning, especially in class-IL scenarios.
While recently developed experience replay approaches have shown
promising capability in mitigating this problem, their performance is
still limited by its weakness of randomly sampling strategies on both
the replay and update stages. As such, in this work, we propose the
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adaptive experience replay (AdaER) algorithm, which improves the two
stages of existing ER via two methods. For the replay stage, AdaER
provides a novel contextually-cued recall strategy, which considered
both the interfered examples and the associated tasks during continual
learning process that guides which of the memory examples should
be replayed. For the update stage, we develop entropy-balanced reser-
voir sampling (E-BRS), which improves the original reservoir sampling
strategy by maximizing the information entropy of the memory buffer.
The experimental results show that the proposed AdaER algorithm
outperforms existing approaches against class-IL continual learning.

The AdaER algorithm presented in this paper offers considerable
advancements in the catastrophic forgetting problem in Experience
Replay based class-IL lifelong learning scenario. We believe it can be
incorporated into existing machine learning models to enhance their
ability to retain and utilize knowledge from earlier learning stages,
thereby improving their overall performance and adaptability. Addi-
tionally, the contextually-cued recall strategy and entropy-balanced
reservoir sampling can offer significant improvements to the process
of continual machine learning model training.

There are several promising directions to explore in our future
work. Firstly, the implicit relationships between the example-interfered
buffer and the task-associated buffer could yield a more unified and
effective approach, as opposed to treating them as mutually exclusive
components in our current study. Secondly, although AdaER is cur-
rently tailored for class-IL continual learning, extending its efficacy
to other paradigms such as task-IL and domain-IL warrants systematic
evaluation. Thirdly, the entropy-balanced reservoir sampling strategy
introduced in the paper also opens the door for the development of
innovative entropy-centric strategies aimed at amplifying the computa-
tional efficiency of continual learning methodologies. Lastly, the study
of memory forgetting degree needs additional exploration, aiming to
reduce both computational burden and memory requirements, thereby
obviating the need for supplementary virtual models.
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