THEME ARTICLE: TOP PICKS FROM THE 2023 COMPUTER

ARCHITECTURE CONFERENCES

End-to-End Cloud Application Cloning
With Ditto

Mingyu Liang ., Cornell University, Ithaca, NY, 14853, USA

Yu Gan®, Google, Mountain View, CA, 94043, USA
Yueying Li, Cornell University, Ithaca, NY, 14853, USA

Carlos Torres and Abhishek Dhanotia ., Meta, Cambridge, MA, 02140, USA

Mahesh Ketkar ., Intel, Portland, OR, 97229, USA

Christina Delimitrou ®, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

The lack of publicly available cloud services has been a recurring problem in architecture
and systems. Although open source benchmarks exist, they do not capture the
complexity of cloud services. Application cloning is a promising approach, however, prior
work is limited to CPU-/cache-centric, single-node services. We present Ditto, a
framework for cloning end-to-end cloud applications and monolithic and microservices
that captures input-output and network activity as well as kernel operations, in addition
to application logic. Ditto takes a hierarchical approach to application cloning,
capturing the dependency graph across services, recreating each tier’s control/dataflow,
and generating system calls and assembly that mimics individual applications. Ditto
does not reveal the logic of the original application, facilitating publicly sharing clones of
production services. We show that across a diverse set of applications, Ditto accurately
captures their resource characteristics as well as their performance metrics, is portable
across platforms, and facilitates a wide range of studies.

C loud computing now hosts a large fraction of
the world’s computations, ranging from machine
learning workloads to latency-critical interactive
services.! Understanding these applications is impera-
tive to correctly design the systems that populate future
cloud infrastructures.

Directly executing real-world applications using
representative workloads provides the most accu-
rate insights into their behavior. However, due to
factors such as privacy and intellectual property (IP)
concerns, such applications and workloads often
remain inaccessible to researchers. To address this
challenge, alternative methodologies have been pro-
posed. These can be broadly classified into three

0272-1732 © 2024 |EEE

Digital Object Identifier 10.1109/MM.2024.3419067

Date of publication 1 July 2024; date of current version
14 August 2024.

categories: open source benchmarks,* simulation
and trace replay,® and application performance clon-
ing with synthetic benchmarks.®

Each of these approaches presents inherent trade-
offs. Open source benchmarks, although flexible, often
fail to mirror the complexity and evolving nature of
production cloud deployments. Simulation and trace
replay provide greater realism, but lack flexibility; the
results are constrained by the original system configu-
ration under which the trace was captured. Synthetic
benchmarks seek a balance by modeling key aspects
of the target application while retaining adaptability.
However, existing techniques for synthetic benchmark
cloning focus largely on CPU-centric, single-tier, user-
level applications.®

When evaluating cloud workloads, focusing solely
on CPU-centric microarchitectural events provides an
incomplete picture. Cloud services inherently dedicate
significant resources to networking and operating

Authorized ficefised use limited to: MIT. Downfpadgidieadine dm2025ath 53 ik UF6dem IEEE Xplore. Restrictionglapplpugust 2024

https://orcid.org/0000-0002-1973-2557
https://orcid.org/0000-0003-2697-9950
https://orcid.org/0000-0002-5916-9383
https://orcid.org/0000-0002-8884-5010
https://orcid.org/0000-0001-7779-4134

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

system (OS)-level operations. Moreover, their distrib-
uted nature, composed of interdependent compo-
nents, demands that cloning efforts capture this
complex, multitier behavior. Additionally, an assembly-
level focus on metrics like instructions per cycle (IPC),
cache miss rate, and dependency distance neglects
the crucial higher-level performance indicators that
cloud services prioritize, such as average and tail
latency.

Our article on Ditto,® presented at the 2023 ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
addresses these limitations. Ditto is an application
cloning framework designed for the cloud era. It
automatically reproduces an end-to-end application
structure as well as key performance characteristics
of distributed services, from monolithic applications
to complex microservice topologies. In particular,
Ditto transcends traditional cloning limitations by
mirroring behavior across the entire system stack:
hardware, input-output (I/O), networking, and OS.
More importantly, Ditto does not reveal any code or
high-level functionality of the original application,
which motivates researchers to share and study realis-
tic cloud application clones without compromising
sensitive data or IP.

Ditto employs several key techniques for transpar-
ently cloning application topologies. First, it leverages
distributed tracing tools to capture cross-service
dependency graphs. Second, it reconstructs internal
service control and dataflow using thread and network
I/O modeling. Finally, Ditto generates appropriate sys-
tem calls and user-space assembly code to replicate
both on-CPU and off-CPU behavior. The application
cloning process is entirely automated. Ditto’s method-
ology can be adapted to different platforms, deploy-
ments, and application configurations, such as load
and thread pools, without requiring retraining, ensuring
that synthetic applications closely mirror their produc-
tion counterparts.

Ditto is beneficial to hardware vendors, cloud pro-
viders, and researchers. Hardware vendors can obtain
synthetic versions of production applications to test
new platforms, cloud providers can specify perfor-
mance and/or resource specifications to hardware
vendors using the synthetic workloads, and research-
ers can use representative end-to-end cloud services
without the need for production code access. Ditto is
open source software.?

#https://github.com/Mingyu-Liang/Ditto

Application cloning for cloud services is challenging
due to the complexity and heterogeneity of the imple-
mentation and the various platforms on which they
can be deployed. Different services can have entirely
different bottlenecks across different systems stacks,
ranging from hardware to the application layer. For
example, key-value stores (KVS) require high single-
core performance and memory bandwidth to retrieve
a large number of data under a strict latency service-
level objective, while databases are usually bottle-
necked by disk 1/O bandwidth. Therefore, it is impor-
tant to consider the performance breakdown across
the system stack to accurately clone the performance
of end-to-end cloud services.

Figure 1 demonstrates an abstract view of a generic
system stack for a single cloud server.” The perfor-
mance of an application is determined by factors that
range from the application code and inputs to the envi-
ronment that it is running on, including containeriza-
tion technology, the hypervisor, server platforms, and
any co-located applications. In the next section, we
briefly describe why these factors matter.

IN PARTICULAR, DITTO TRANSCENDS
TRADITIONAL CLONING LIMITATIONS
BY MIRRORING BEHAVIOR ACROSS
THE ENTIRE SYSTEM STACK:
HARDWARE, INPUT-OUTPUT, NET-
WORKING, AND OS.

Application Inputs

The behavior and performance of cloud applications
are significantly impacted by the service configuration
and input load, with the latter going through well-
documented fluctuations.” The application’s configura-
tion, although it changes less frequently than load, can
substantially alter the execution flow of an application
and impact performance. For instance, configuring
a smaller in-memory cache for a database can
cause more disk 1/O accesses, significantly increas-
ing latency.

Application Codebase and Binary

The application and its linked libraries are intrinsic to
its performance, regardless of the platform on which it
is deployed. Modifications in the application code can
alter the control and dataflow of a service, its memory
access patterns, and its resource bottlenecks. This is

July/Augustrtimsized licensed use limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xploreg fResitietions apply.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

Microservices

\
\
\
| Microservice Topology | 12 // Main function of worker A
L |2 void worker_a_main(req_id) {
’ Single-tier 1|3 // Syscalls)
Application 114 int fd = open(file, O_RDONLY);
1 // Main thread \\ 115 int size = read(fd, buffer, BUFFER_SIZE);
2 void main_loop() { I/ g close(fd);
2 Whi;iﬁ!igfgh{isten fd, events, MAX_EVENTS, -1); Application Skeleton I |8 /7 Assembly blocks
- — ’ ’ - r T ’]
5 int socket_fd = accept(listen_fd, addr, len); | Thread Model | |Network Modell | 9 __asm__ _ volatile__ (
6 init_worker_thread_a(socket_fd); * * 1 10 e
7 ¥ E)i
8 } icati
9 ' Agllieation By — 13 // Block for data_size = i & inst_size = j
10 // Worker thread type A : Instruction Mix ig —asm_ givoéitnj;187 (
11 void worker_a_loop() { | xor r9, ro\n
12 while (!conn_closed) { I Branch Behavior ig ::-glaoci_égé:\n"R/éEénqef loop
13 1 it ket_fd ts, MAX_EVENTS, -1); I add <X_REG>, <R_REG>\n
14 ?ggd(ggi;eis?g,ebaffér?VSEF;{ER SIZE); i I Data Memory 18 "sub <R_REG>, DWORD PTR [rl0 + <OFFSET>]\n"
T Y Access Pattern " "
15 // Handler to be generated in next step ,‘ System Call %g “mgb ?\f:{(llRDO‘:‘(I)':ér;‘?_RJr[:g;};t\;ﬁ?»nptr hasin
16 worker_a_main(req_id); | Instruction Memory " ! " nd
17 dispatch_to_worker_b(req_id); h Access Pattern 21 "t_QSt réd, <BIT_MA§K>\H
18 wait_worker_b(); | 22 jz .COND_BR_F00\n
19 sendmsg(socket_fd, buffer, BUFFER_SIZE); | Data Dependency ;31 o, <LOOP COUNTo
"cmp r9, < >\n"
%? } ,' |_C/C++ level _| Assembly level | 25 "jlp.BL(’JCK I\
22] v v \ 36)i
23 // Worker thread type B ! = - \ 7
24 void worker_b_loop() { " | Fine Tuning | \ gg _asm__ __volatile__ (
25 e \ -
26 } ‘130);
Syntheti 31 3
Synthetic ynthetic
Application

FIGURE 1. General system stack for cloud applications.® The dashed boxes are optional layers for virtualization.

especially true for new cloud programming frame-
works, like microservices and serverless, where serv-
ices are updated on a daily basis.

Deployment Environment

Containers and Virtual Machines

Cloud services are often deployed with containers
and/or virtual machines. These add different levels of
performance overheads, primarily due to the extra I/Os
and network layers.® Unlike prior work, Ditto faithfully
clones the 1/O behaviors of the cloud services, and
thus, the synthetic applications generated by Ditto can
be affected by virtualization the same way as the origi-
nal services.

OS Kernel

Cloud applications are especially dependent on OS
performance, given that they spend a large fraction of
their execution at the kernel level for interrupt han-
dling, 1/0 requests, memory management, task sched-
uling, and so on.? Prior work on application cloning has
focused mostly on user-level application logic; cloud
services that overlook kernel operations leads to very
different performance characteristics compared to the
original application.

CPU Memory Subsystem

The CPU’s memory subsystem is a dominant factor in
cloud application performance, even for services that
spend significant time processing network requests.
We follow the top-down analysis methodology in

Yasin' to identify the key CPU performance metrics
that impact the overall IPC, and reproduce them in syn-
thetic applications.

Hardware Devices

Services interact with hardware devices, including disks,
and network interface cards through system calls. In
cloud services specifically, peripherals can dominate
performance, especially when they experience long
queueing delays. We mainly consider the impact of
storage and network devices in our study as many
cloud services involve 1/O and network operations.
Ditto can be extended to clone the behavior of other
devices, such as GPUs and hardware accelerators,
which we defer to future work.

Multitenancy

Multitenancy improves data center utilization by deploying
multiple services on the same node. Applications share
resources, including CPU cores, last level cache (LLC), and
memory, disk I/O, and network bandwidth.'® Resource
contention can degrade performance and should be
accounted for in the application cloning process.

Ditto is an application cloning framework for both
single-tier and microservice applications. It generates
services that faithfully reproduce the performance,
resource profile, and thread-level control/dataflow of
the original workload, decoupling representative

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xplore. Restrictionslapplpugust 2024

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

system studies from access to the source code or
binary of production cloud services.
Ditto adheres to the following design principles:

» End-to-end system stack modeling: Cloud serv-
ices often contain a large fraction of kernel-
space operations for network and disk 1/0O.
Ditto captures the inputs, remote procedure
call (RPC) dependency graph, application binary,
OS kernel, CPU, memory, disk, networks, and
resource interference.

» Portability: Ditto uses platform-independent fea-

tures to ensure that generated services are porta-

ble across platforms without reprofiling. Synthetic
applications also faithfully adjust to load and con-
figuration changes, such as queries per second

(QPS), and scaling, because of the fine-grained

network and thread modeling.

Abstraction: Ditto does not disclose the imple-

mentation of the original application, exposing only

the skeleton and postprocessed performance char-
acteristics to the synthetic benchmark user. It
replaces the skeleton of an application with a tem-
plate, refills the body with artificial instructions and
their operands, and abstracts the memory access
patterns away to avoid side-channel attacks.

Application-specific characteristics, including user-

space function calls, memory accesses, and appli-

cation inputs, are also concealed. Thus, the
synthetic workload can be publicly shared, without

-

a user reverse engineering the implementation of
the original service.

» Automation: Ditto automates the profiling and
generation process. It entirely relies on static
and dynamic profiling of the original application
to generate a benchmark. Users are not required
to have expertise in the implementation of a ser-
vice to use the framework.

Figure 2 shows an overview of Ditto's profiling
and generation process. If the target service con-
sists of a set of microservices, Ditto first learns their
RPC dependency graph, using distributed tracing.
This graph is then used to generate the application
programming interfaces among the different syn-
thetic microservices. Next, Ditto analyzes the thread
and networking model, e.g., single- or multithreaded,
and synchronous or asynchronous, respectively,
using kernel-level profiling, and builds the skeleton
of each service. The application skeleton contains
empty handlers that are filled with appropriate func-
tionality in the next step. The handlers can either be
triggered upon receiving requests for worker
threads, or by a timer for background threads.

To generate the synthetic application body, Ditto
instruments the application binary using kernel- and
user-space profilers for different subsystems. Finally,
Ditto uses the deviation in performance metrics
between original and synthetic application to fine-tune
the generator. The eventual synthetic service can serve

1.0 o 1.0

0.5 0.7 o 0.3

@ ©® ®

}

CONOU A WN R

12
13
14
15
16

// Main thread
void main_loop() {

while (!stop) {
epoll_wait(listen_fd, events, MAX_EVENTS, -1);
int socket_fd = accept(listen_fd, addr, len);
init_worker_thread_a(socket_fd);

10 // Worker thread type A
11 void worker_a_loop() {

while (!conn_closed) {

epoll_wait(socket_fd, events, MAX_EVENTS, -1);

read(socket_fd, buffer, BUFFER_SIZE);
// Handler to be generated in next step
worker_a_main(req_id);
dispatch_to_worker_b(req_id);
wait_worker_b();

sendmsg(socket_fd, buffer, BUFFER_SIZE);

\ Microservices
\

| Microservice Topology |

’
4 Single-tier 1
N Application II

Application Skeleton]
[Thread Model | [Network Model | |

v v ’

Application Body

Instruction Mix

Branch Behavior

Data Memory
Access Pattern

System Call

Instruction Memory
Access Pattern

Data Dependency

FIGURE 2. Overview of Ditto’s synthetic benchmark-generation process.

// Main function of worker A
void worker_a_main(req_id) {
// Syscalls
int fd = open(file, O_RDONLY);
int size = read(fd, buffer, BUFFER_SIZE);
close(fd);

// Assembly blocks
__asm__ __volatile__ (

);

// Block for data_size = i & inst_size = j
_asm__ __volatile__ (
"xor r9, ro\n"
".BLOCK_I_J:\n" // Inner loop
"add <X_REG>, <R_REG>\n"
"sub <R_REG>, DWORD PTR [r1@ + <OFFSET>]\n"
"mul QWORD PTR[r1@ + <OFFSET>]\n"
"mov rll, QWORD PTR [rl11]\n" // Ptr chasing
"test r8d, <BIT_MASK>\n"
"jz .COND_BR_FO0\n"

"emp r9, <LOOP_COUNT>\n"

%? N } |_C/C++level | | Assemblylevel _ | 25 "jl .BLOCK_I_J\n"
22 v v V|26)
23 // Worker thread type B - - |27
24 void worker_b_loop() { | Fine Tuning | \\ %g __asm__ _ volatile__ (
oy 0);
7 Synthetic N\ Synthetic 31}
Microservices Application

July/Augustrtimsized licensed use limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xploreg fResitietions apply.

37

as a performance and resource proxy for the original
service.

Microservice Topology

A topology of microservices is a directed acyclic graph,
where the nodes are microservices and the edges indi-
cate the dataflow between dependent tiers. Ditto lever-
ages the distributed tracing frameworks present in
most production deployments to collect traces of end-
to-end requests. The performance overhead is negligible
if the traces are sampled properly. It then automatically
extracts the dependency graph between microservices
and uses it as input to the skeleton generator.

Application Skeleton

We define the application skeleton as the network and
thread models of an application, which determine how
it handles remote service communication, and how
tasks are assigned to different threads, respectively.
The application skeleton is a critical design choice for
cloud services that face tight latency constraints as it
directly impacts their performance and scalability.

The network model defines the mechanisms
through which an application interacts with other serv-
ices. An application can operate as a client, server, or a
combination of the two. Client-side services often
employ either synchronous or asynchronous communi-
cation paradigms. On the server side, network models
typically include blocking, nonblocking, and 1/0 multi-
plexing. Ditto uses SystemTap to profile the network
model by probing kernel-space functions and data
structures. It then chooses one out of several network
models that combine the different design choices
described earlier to match the profiled network
configurations.

Cloud services frequently leverage multithreading
to facilitate asynchronous 1/O operations and enable
parallel processing. To characterize these threading
patterns, Ditto utilizes SystemTap to conduct a call
stack analysis. This provides insights into the function-
ality, lifecycles, and invocation points of threads within
a target application. Threads are subsequently clus-
tered based on these shared characteristics. During
the generation of synthetic counterparts, Ditto emu-
lates the observed threading behavior via a set of
threads that is dedicated to executing synthetic code
that is designed to mirror the profiled application's
behavior.

Application Body
The application body corresponds to the workload-
specific work, consisting of kernel-space functions, via

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

system calls and user-level functions. Although assembly-
level profiling for kernel-space functions is unnecessary
because they can be cloned by imitating the system
calls themselves, it is critical to clone user-space func-
tions at the assembly level to capture the low-level
usage of CPU resources.

To replicate kernel-space performance, Ditto
profiles system calls, excluding those that are
focused on network handling and process manage-
ment that are explicitly modeled in the previous
step. Using SystemTap, Ditto captures the distribu-
tion of these system calls, including counts and
arguments, to precisely characterize kernel-level
behavior. These data inform the generation of syn-
thetic applications that mirror the original system’s
kernel-space patterns.

At the user level, Ditto analyzes the factors that
significantly impact application on-CPU performance.
These factors include instruction mix, memory access
patterns (data and instruction), branch behavior, and
data dependencies."? To collect platform-independent
metrics, Ditto employs a suite of tools including System-
Tap, Intel Software Development Emulator (SDE), and
Valgrind. These data guide the generation of synthetic
applications using carefully crafted inline assembly
code, which exhibits similar user-level on-CPU perfor-
mance characteristics without disclosing the original
code’s functionality. The use of platform-independent
metrics ensures that Ditto-generated synthetic applica-
tions can be ported to other platforms without the need
for additional profiling.

THE APPLICATION SKELETON IS A
CRITICAL DESIGN CHOICE FOR
CLOUD SERVICES THAT FACE TIGHT
LATENCY CONSTRAINTS AS IT
DIRECTLY IMPACTS THEIR
PERFORMANCE AND SCALABILITY.

Fine-Tuning

Finally, Ditto implements fine-tuning to counterbalance
the impact of the instrumentation tools themselves.
Ditto iteratively runs the synthetic application, com-
putes the errors between target and synthetic services,
adjusts the inputs to the generator accordingly, and
regenerates the synthetic application. Although there
are many knobs to tune, most of them are orthogonal
with each other. As relationships between knobs and
performance are locally linear, we use a feedback-
based heuristic to tune the knobs.

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xplore. Restrictionslapplpugust 2024

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

Implementation

Ditto is implemented primarily in Python and C in approxi-
mately 16,000 lines of code. It supports C/C++ applica-
tions, the Apache Thrift and gRPC RPC frameworks, and
x86 instruction set architectures (ISAs), which are com-
monly used in cloud environments. It can be extended to
more languages, frameworks, and ISAs by leveraging
compatible profiling tools. Ditto can generate applica-
tions that run on a single machine, or containerized
microservices that run distributed in a server cluster,
using Docker Swarm or Kubernetes. Although the run-
time profilers and emulators, including SystemTap, Intel
SDE, and Valgrind, can introduce overheads to the original
application during profiling, this overhead occurs only
once and does not affect the accuracy of the platform-
independent features collected during profiling.

To generate a clone, cloud providers need only
specify a representative input for their service. Ditto
automatically instruments the application at runtime,
collecting profiling statistics and feeding them to the
code generator, followed by the fine-tuning process.
Ditto does not require reprofiling if the input change
does not affect the application body, such as changes
in QPS or the number of connections. Inevitably, if a
new input exercises an entirely new code path or

NGINX
L1i

Memcached
L1i

MongoDB
L1i

Branch

Branch

Lid Branch

memory access pattern, this will need to be profiled to
create a new clone. We have been able to run binaries
synthesized by Ditto directly on hardware as well as on
execution-driven simulators, including gem5 and ZSim,
and trace-driven simulators like Ramulator.

Methodology

We evaluate Ditto across a diverse set of services,
including KVSs (Memcached and Redis), web servers
(NGINX), databases (MongoDB), and complex micro-
services (Social Network). To generate input loads for
different services, we employ tools like wrk2, YCSB,
tcpkali, and an open-loop variant of Mutated. For all
the synthetic applications, we use the same load gen-
erator as the original application.

Ditto is validated on a heterogeneous cluster, with
two types of servers. All the servers run x86 ISA, but dif-
fer in the CPU and memory architectures, and their
storage and network.

Validation

Validation on Varying Loads

Figure 3 shows the CPU, network, and disk perfor-
mance metrics, and latency for six applications under

Redis
L1i

TextService
L1i

SocialGraphService
L1i

Branch

Branch Branch

B Lid Lid
o
= IPC L2
2
o
- N
Net Bw LLC Disk BW Net BW Net BW
LLC Net BW LLC LLC
L1i L1i L1i L1i L1i
Branch Branch Branch
- Lid
g Lid Lid Lid
)
= 1PC IPC L2 IPC
o
T 2) L2
Net BW Net BW LLC Disk BW Net BW Net BW Net BW
LLC LLC Net BW LLC LLC LLC
. : 2 0.4 15 1.5
”E’ H
H 1.5|e 0.3 pe
: : :"“I!!:‘:z‘ s 10 ":3 1 . !
I H 1™ g = 0.2 LA g—:t::::..---
g i sHE=E" | osjgS e -+
=2 0.5 l't-'::j 0.1 e
- -
% 500 1000 % 20k a0k 0
0 7 2 Y 0 %2 %, o0 8 ¢, o0 S8 ¢, <
%%, %, %~ o % % “%,%, % %, %,
QPS QPS QPS QPS QPS QPS

m®= Actual === Synthetic —#— Actual avg —#— Synthetic avg —x*—

Actual p95 —x*— Synthetic p95 --®- Actual p99 --e-- Synthetic p99

FIGURE 3. CPU performance metrics (IPC, branch mispredictions, L1i, L1d, L2, and LLC miss rates), network bandwidth (net BW),
disk BW (MongoDB only), and service latency under varying load across six services. CPU metrics are normalized to each original
application’s metrics under low load. Net BW and disk BW are, by exception, normalized to each original application's BW under
current load because their magnitudes change significantly, and would obscure the figure's shape. avg: average.

July/Augusiptimsized licensed use limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xploreg (Restrietions apply. 39

different QPS on platform A. In addition to the four
single-tier applications, we also show the resource
characteristics for TextService and SocialGraphSer-
vice, two applications in Social Network, which are rep-
resentative of the other tiers of the service. All the
applications are generated using profiling data under a
single load configuration; Ditto has not profiled any
other load. We increase the load until the single-tier
application or bottleneck tier in the microservice topol-
ogy saturates in one or more resources (e.g., disk 1/O
for MongoDB, and a CPU for the other applications).

The top two rows show IPC; branch misprediction;
L1i (level 1i), L1d, L2, and LLC miss rates; and network
and disk 1/0 bandwidth under low and high load, with
the average errors across all the applications being
41%, 9.9%, 7.1%, 5.1%, 6.9%, 12.1%, 0.1%, and 0.1%,
respectively. This indicates that Ditto accurately clones
the overall hardware performance metrics. Memcached
and NGINX have low IPC under low load because of
high branch misprediction and L1i and L2 misses, while
SocialGraphService has high IPC due to fewer LLC
misses. At high load, Redis maintains metrics similar
to those observed under low load. In contrast, the five
other applications demonstrate varying degrees of
change in L2 misses, LLC misses, and branch mispre-
dictions. The results illustrate that applications can
have very different characteristics under different
loads, which are accurately captured by Ditto in their
synthetic counterparts. The network and disk band-
widths also conform to the original ones by faithfully
reproducing the system calls. We show only the disk
bandwidth for MongoDB as other services do not
involve disk 1/0. The bottom line plot shows the aver-
age, 95th, and 99th percentile latencies, which also
match the originals, with the p99 diverging at high load
due to the queueing behavior in the network stack at
saturation. As we use a close-loop workload generator
for MongoDB and Redis, which only allows one out-
standing request per connection, the latency does not
increase significantly at high load. Although the end-
to-end latency of Social Network increases at high
load, the latency of TextService and SocialGraphService
increases only slightly as they are not bottleneck tiers.

Figure 4 shows the end-to-end latency of the origi-
nal and the synthetic Social Network when every indi-
vidual microservice is replaced with a synthetic one.
Both the end-to-end latency and saturation point
closely match across loads.

Validation on Varying Platforms

We validate the CPU, network, and disk performance
metrics, along with service latencies across different x86
platforms. Each application is initially profiled on

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

35. —a— Actual p50

. —=—Synth. p50 .;.3
» 307 =x%- Actual p95 R
E 25+ =% -Synth. p95 5 *
> --® - Actual p99 o -
9207 . Synth. p99 e 4 ,;:/"
o 15 z-
]
510

5

0 |) ! ! !

200 500 1000 1500 2000
QPS

FIGURE 4. End-to-end latency for the social network. synth:
synthetic.

platform A, with subsequent validations conducted on
platforms A and B (Table 1). Figure 5 shows that the syn-
thetic benchmarks react to platform changes in a way
similar to that of the original applications. More specifi-
cally, all six applications have different degrees of L2
cache miss increases on platforms B due to their smaller
L2 cache sizes. The applications running on platform B,
which is an older CPU generation, have consistently
lower IPC. The network and disk 1/0 bandwidths are
identical across platforms because the numbers of data
transferred are independent of the platform.

The bottom line plots how the latency on the two
platforms, where the synthetic always matches the origi-
nal. All the applications experience the highest latency
on platform B because it has the lowest IPC. The latency
of MongoDB is significantly lower on platform A because
it benefits from the low random access latency of

TABLE 1. Server platform specifications.

Platform A Platform B
CPU model Gold 6152 E5-2660 v3
Base frequency 2.1 GHz 2.6 GHz
CPU cores 22 10
CPU family Skylake Haswell
Sockets 2 2
L1i/Ld 32 KB/32 KB 32 KB/32 KB
L2 1 MB 256 KB
LLC 30.25 MB 25 MB
RAM 192 GB at 2666 128 GB at 2400
Disk 1-TB SSD 2-TB HDD
Network 10 Gbe 1 Gbe

RAM: random-access memory; SSD: solid-state drive; HDD: hard

disk drive.

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xplore. Restrictionslapplpugust 2024

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

Memcached NGINX MongoDB Redis TextService SocialGraphService
L1i L1i L1i L1i L1i
< Branch Branch |14 Branch Branch Branch
c Lid Lid Lid
é 1PC IPC L2 IPC IPC
S
©
a L2 N L2)
Net BW Net BW Disk BW Net BW Net BW
LLC LLC Net BW LLC
L1i L1i L1i L1i L1i L1i
Branch Branch Branch Branch Branch
o
e L Lid Lid Lid Lid
é 1PC IPC 1PC IPC IPC
k=] 3 2 6 5 6
2 w L2 o L @ L2 L2
Net BW Net BW Disk BW Net BW Net BW Net BW
LLC LLC Net BW LLC LLC LLC
0.3 0.6 20 0.15 6 0.8
@ . Rt 15 o 0.6
E 0.2 ",.“'-_o 0.4 ‘._,-: _____ . .‘.?) . -l 4 . .::::.:.:-;:-;
- Lot 4 B ===
0 o ° % 10 w7 0.4
g 01| =% 02| =77 7 0.05| p—"" 2 /
5 = = 5| | 02
— /‘ B
0 0 0 0 0 0
A B A B A B A B A B A B
Platform Platform Platform Platform Platform Platform

== Actual ==#== Synthetic —#— Actual avg —®— Synthetic avg —%— Actual p95 —%— Synthetic p95 --e-- Actual p99 --e-- Synthetic p99

FIGURE 5. CPU metrics (IPC, branch misprediction, L1i, L1d, L2, and LLC misses), net BW, disk BW (MongoDB only) and latencies

across platforms. CPU metrics are normalized to each original service on Platform A.

solid-state drives. In general, because the synthetic
applications react to platform changes the same way
as the original—without reprofiling—shows that Ditto
accurately captures critical, platform-independent fea-
tures that impact performance.

Case Study: CPU Core and Frequency
Scaling

Figure 6 shows the use of Ditto to evaluate power man-
agement in Memcached with CPU core and frequency
scaling. Each cell represents p99 latency under a given
number of cores and frequency. We set the quality of ser-
vice (QoS) as 1 ms, and the cells with marks mean that
the QoS cannot be satisfied for that configuration.
Memcached cannot meet the QoS at low frequency

>1ms
1ms

0.8ms
0.6ms
0.4ms
0.2ms

8 10121416
#Cores

6 8 10121416
#Cores

FIGURE 6. Ninety-ninth percentile latency of actual and syn-
thetic Memcached under varying CPU frequency core count.

even with the maximum number of cores, which prohib-
its aggressive power management. Synthetic Memc-
ached accurately captures the latency variation of
Memcached under different settings. This similarity indi-
cates that cloud providers can use synthetic applications
to determine whether power management is beneficial
for a service, without needing access its source code.

End-to-End Application Cloning

Ditto is the first framework to facilitate end-to-end
cloning of distributed cloud applications. Although
cloning has proven effective for microarchitectural
analysis, its broader impact on cloud systems has been
constrained due to the limitations of prior work when
trying to capture the application’s activity across the
full system stack.

This is essential for cloud services and has required a
carefully engineered tiered approach to ensure that cap-
turing this information does not result in an impractical,
hard-to-use framework. Additionally, Ditto is designed to
be modular, with each layer of the framework being eas-
ily replaceable to increase or decrease the detail of clon-
ing. For example, a user can easily replace the default
memory access generation layer with a memory access
replay tool, which would be more appropriate for data-
locality studies.

July/Augusiptimsized licensed use limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xploreg (Restrietions apply.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

42

Simplifying the “What-If” Simulation
Estimating how a change to an application’s design or
deployment will impact both its performance and
resource needs is both critical and challenging. Critical,
because it allows application developers and cloud
operators to evaluate whether that change will be ben-
eficial in the long term, and challenging, because with-
out direct, expensive experimentation, estimating the
impact of a change is very difficult, especially for com-
plex, multitier application topologies.

Frameworks like Ditto offer a powerful solution.
Consider a microservice provider who is evaluating a
shift from RPC-based communication to message pass-
ing. With Ditto, the provider can seamlessly swap one
communication framework for the other for rapid
assessment. This contrasts starkly with the significant
implementation effort that would be required to deploy
this change in a production environment.

Similarly, Ditto can easily assess the impact that
changing the application’s instruction mix, data, and
instruction footprint, or the number of data transfers
over the network would have on performance and
resource usage. This requires simply adjusting a few con-
figuration knobs in the cloning framework, and without
actually making these changes in the original application.

Finally, Ditto empowers developers to investigate
appropriate service granularities for their applications.
By manipulating the communication-to-computation
ratio for service tiers, developers can evaluate the per-
formance implications of making their tiers more or
less fine-grained, without the substantial overhead of
redesigning each application version. This is invaluable,
given the profound effect service granularity has on
end-to-end performance.*”

Enabling Realistic Cloud Studies
Without Access to Production Code
The scarcity of realistic cloud application benchmarks
presents a persistent challenge within the architecture
and system communities. Although open source bench-
marks offer value, they fall short of replicating the intri-
cate dynamics and scale of production-level services.
This lack of publicly available benchmarks extends
beyond academia, profoundly impacting industry prac-
tices. When cloud providers seek to acquire next-
generation servers, they are unable to share production
services with hardware vendors for benchmarking pur-
poses due to IP concerns. Consequently, they often rely
on legacy benchmarks like SPECCPU and SPECJBB,
which poorly reflect the nature of contemporary cloud
applications. Ditto addresses this limitation by enabling
cloud providers to generate end-to-end proxies of their

services. These proxies allow secure sharing with hard-
ware vendors without compromising IP.

In fact, in the short time since its publication, Ditto
has already been extensively used by hardware ven-
dors and cloud providers as an application cloning
framework for benchmarking next-generation servers.

We sincerely thank Ramesh lllikkal, Yangi Zhang, Nikita
Lazarev, Zhuangzhuang Zhou, Daniel Sanchez, and the
anonymous reviewers for their feedback on earlier ver-
sions of this manuscript. This work was supported in
part by a US. National Science Foundation CAREER
Award CCF-1846046, an Intel Research Award, Intel
Faculty Rising Star Award, a Sloan Research Fellow-
ship, Microsoft Research Fellowship, and a Facebook
Research Faculty Award.

—_

. L. Barroso and U. Hoelzle, The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. San Rafael, CA: MC
Publishers, 2009.

2. C. Delimitrou and C. Kozyrakis, “Quasar: Resource-
efficient and QoS-aware cluster management,” in
Proc. 19th Int. Conf. Archit. Support Program. Lang.
Operating Syst. (ASPLOS), Salt Lake City, UT, USA,
2014, pp. 127-144, doi: 10.1145/2644865.2541941.

3. W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An
updated performance comparison of virtual machines
and Linux containers,” in Proc. 2015 IEEE Int. Symp.
Perform. Anal. Syst. Softw. (ISPASS), Philadelphia, PA,
USA, 2015, pp. 171-172, doi: 10.1109/ISPASS.2015.
7095802.

4. Y. Gan et al,, "An open-source benchmark suite for
microservices and their hardware-software
implications for cloud and edge systems,” in Proc.
24th Int. Conf. Archit. Support Program. Lang.
Operating Syst. (ASPLOS), Apr. 2019, pp. 3-18, doi:
10.1145/3297858.3304013.

5. B. Gregg, Systems Performance: Enterprise and the
Cloud. London, U.K.: Pearson Education, 2014.

6. A. Joshi, L. Eeckhout, R. H. Bell, and L. John,
“Performance cloning: A technique for
disseminating proprietary applications as
benchmarks,” in Proc. IEEE Int. Symp. Workload
Characterization, 2006, pp. 105-115, doi: 10.1109/
IISWC.2006.302734.

7. N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and

C. Delimitrou, “Dagger: Towards efficient RPCs in

cloud microservices with near-memory reconfigurable

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xplore. Restrictionslapplpugust 2024

http://dx.doi.org/10.1145/2644865.2541941
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1145/3297858.3304013
http://dx.doi.org/10.1109/IISWC.2006.302734
http://dx.doi.org/10.1109/IISWC.2006.302734

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

NICs,” IEEE Comput. Archit. Lett., vol. 19, no. 2,
pp. 134-138, Jul./Dec. 2020, doi: 10.1109/LCA.2020.
3020064.

8. M. Liang et al., “Mystique: Enabling accurate and
scalable generation of production Al benchmarks,” in
Proc. 50th Annu. Int. Symp. Comput. Archit., 2023, pp.
1-13, doi: 10.1145/3579371.3589072.

9. M. Liang et al., “Ditto: End-to-end application
cloning for networked cloud services,” in Proc. 28th
ACM Int. Conf. Archit. Support Program. Lang.
Operating Syst., 2023, vol. 2, pp. 222-236, doi:
10.1145/3575693.3575751.

10. D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource
efficiency at scale,” in Proc. 42nd Annu. Int. Symp.
Comput. Archit. (ISCA), Portland, OR, USA, 2015, pp.
450-462.

11. R. Panda and L. K. John, “Proxy benchmarks for
emerging big-data workloads,” in Proc. 26th Int. Conf.
Parallel Archit. Compilation Techn. (PACT), 2017, pp.
105-116, doi: 10.1109/PACT.2017.44.

12. A. Yasin, “A top-down method for performance
analysis and counters architecture,” in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw. (ISPASS), 2014, pp.
35-44, doi: 10.1109/ISPASS.2014.6844459.

MINGYU LIANG is a Ph.D. candidate in computer engineer-
ing at the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, 14853, USA. His research inter-
ests include computer architecture, cloud computing, and
new cloud programming models. Liang received his master's
degree in electrical and computer engineering from Cornell
University. He is a Student Member of IEEE and the Associa-
tion for Computing Machinery. Contact him at ml2585@
cornell.edu.

YU GAN is research engineer in computer science at Google,
Mountain View, CA, 94043, USA. His research interests
include the intersection of distributed systems and machine
learning. Gan received his Ph.D. degree in electrical and
computer engineering from Cornell University. He is a
member of the Association for Computing Machinery. Con-
tact him at yg397@cornell.edu.

YUEYING LI is a Ph.D. candidate in computer science at the
School of Computer Science, Cornell University, Ithaca, NY,
14853, USA. Her research interests include machine learning
systems, data center computing, and computer architecture.
Li received her master's degree in computer science from
Cornell University. She is a Student Member of IEEE and the
Association for Computing Machinery. Contact her at
yl3469@cornell.edu.

CARLOS TORRES is a staff performance engineer with
Meta's Co-Design team, Cambridge, MA, 02140, USA. His
research interests include workload characterization and
hardware/software optimizations for Meta's large-scale dis-
tributed services. Torres received his bachelor's degree in
computer engineering from the University of Puerto Rico.
Contact him at cltorres@meta.com.

ABHISHEK DHANOTIA is a technical leader at Meta,
Cambridge, MA, 02140, USA. His research interests include
system architecture and performance and efficiency of
Meta's Dhanotia
received his master's degree in computer engineering

next-generation compute platforms.
from the North Carolina State University. Contact him at
abhishekd@meta.com.

MAHESH KETKAR is a principal engineer and manager at
Intel, Portland, OR, 97229, USA. His research interests
include the development of performance analysis and opti-
mization technologies that span the microarchitecture to
system levels. Ketkar received his Ph.D. degree in electrical
engineering from the University of Minnesota. Contact him
at mahesh.c.ketkar@intel.com.

CHRISTINA DELIMITROU is an associate professor with
the Electrical Engineering and Computer Science Depart-
ment, Massachusetts Institute of Technology, Cambridge,
MA, 02139, USA. Her research interests include computer
architecture and distributed systems. Delimitrou received
her Ph.D. degree in electrical engineering from Stanford
University. She is a Member of IEEE and the Association
for Computing Machinery. Contact her at delimitrou@
csail.mit.edu.

July/Augustrtimsized licensed use limited to: MIT. Downloaded on June 05,2025 at 20:57:50 UTC from IEEE Xploreg fResitietions apply.

http://dx.doi.org/10.1109/LCA.2020.3020064
http://dx.doi.org/10.1109/LCA.2020.3020064
http://dx.doi.org/10.1145/3579371.3589072
http://dx.doi.org/10.1145/3575693.3575751
http://dx.doi.org/10.1109/PACT.2017.44
http://dx.doi.org/10.1109/ISPASS.2014.6844459
mailto:ml2585@cornell.edu
mailto:ml2585@cornell.edu
mailto:yg397@cornell.edu
mailto:yl3469@cornell.edu
mailto:cltorres@meta.com
mailto:abhishekd@meta.com
mailto:mahesh.c.ketkar@intel.com
mailto:delimitrou@csail.mit.edu
mailto:delimitrou@csail.mit.edu

