THEME ARTICLE: THE PAST, PRESENT, AND FUTURE OF
WAREHOUSE-SCALE COMPUTING

Tales of the Tail: Past and Future

Christina Delimitrou ®, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Michael Marty ‘, Google, Inc., Madison, WI, 53706, USA

Tail latency has been the defining performance metric for interactive services since the
inception of cloud computing. Although various hardware and software techniques have
been employed to improve tail latency for these applications, recent trends across the
cloud system stack require revisiting them. Over the past few years, cloud hardware has
become increasingly heterogeneous, and cloud software has been dominated by event-

driven modular programming frameworks, as well as the proliferation of artificial
intelligence. To guarantee tail latency in this new landscape, several system advances
are required. In this paper, we first review what tail latency means for cloud services, the
key innovations that improved it in the past, the trends that require revisiting them, as
well as the innovations that will be required for tail latency constraints to be met in the

next generation of warehouse-scale computers.

puter (WSC) 10 years ago, they would see a number

of coarse-grained, large, and complex applications
running on mostly homogeneous, commodity hard-
ware, not unlike a scaled-out, more powerful version of
your local desktop machine. A similar snapshot today
would reveal a very different story.

While general-purpose computing still plays a fun-
damental role in the cloud, warehouse-scale systems
today are much less homogeneous than they used to
be. They also rely much less on readily available com-
modity equipment, which is how the cloud initially
achieved its cost-efficiency benefits. Instead, the end
of Moore's Law has prompted much more creative,
specialized, and heterogeneous solutions in cloud
hardware, whether these target specific application
classes or system-level tasks."®® Despite the obvious
performance and power benefits specialization offers,
it also comes with an overhead in terms of manage-
ment complexity. This is essential when it comes to
WSCs because, unlike traditional enterprise comput-
ing, they rely on many fewer people to manage sys-
tems of much larger scales.

The software side of the WSC equation reveals a
similar story of increased complexity. While traditional

I f one took a snapshot of a warehouse-scale com-

0272-1732 © 2024 |EEE

Digital Object Identifier 10.1109/MM.2024.3413649

Date of publication 19 June 2024; date of current version
14 October 2024.

cloud applications were built as monolithic, standalone
services, the emergence of modular, fine-grained pro-
gramming frameworks like microservices and server-
less, means that cloud applications today consist of
complex topologies with hundreds if not thousands of
components. When correctly applied, this program-
ming model can offer benefits in productivity and
deployment speed, but, as with hardware heterogene-
ity, it also contributes to increased operational com-
plexity. Furthermore, these applications frameworks
have emerged as a way to facilitate the deployment of
complex applications, not as a way to improve their per-
formance, and often experience performance unpre-
dictability or resource inefficiencies.>® Beyond modular
application architectures, the increased demand for
powerful and interactive generative machine learning
(ML) models has also drastically changed the ability of
cloud providers to satisfy an application’s performance
objectives.

In this increasingly complex environment, meeting
the tail latency guarantees that many cloud services
have come to expect is ever more challenging. Tail
latency, referring to a high percentile of the slowest
user requests, is inherently a more challenging perfor-
mance metric to satisfy than throughput (the number
of operations executed per unit of time) or average
request latency. This is both because it depends on the
worst performing requests, and because of the request
fanout that most cloud services employ,> meaning that

September/Avidhotizaddoensed use limited to: MAU Bleydendgdipe JemE0S @35 A2 1SA#AWTC from IEEE Xplores ERestrictions apply.


https://orcid.org/0000-0001-7779-4134
https://orcid.org/0009-0006-1364-8596

even a small number of slow machines and services
can impact a large fraction of the overall load.

Tail latency being a key performance metric is also
another point that differentiates cloud systems from
high-performance computing or supercomputing. In
the latter, applications are less interactive, and the per-
formance metric of interest is typically throughput in
instructions or tasks, as well as an entire job's execu-
tion time (though tail latency can indirectly impact
throughput).

Finally, while previously a large fraction of cloud
cycles went toward batch computation, e.g., data ana-
lytics, with modular event-driven programming frame-
works and interactive ML becoming more prevalent, a
larger fraction of CPU cycles has shifted toward low-
latency computation. Therefore, it is important to revisit
what optimizing for tail latency means in WSCs today.

In the following sections, we first review prior
approaches to meet tail latency constraints in the first
generation of warehouse-scale systems, ranging from
hardware to application-level techniques. We then dis-
cuss the recent hardware and software trends in the
cloud, which require these techniques to be revisited,
and conclude with the main design and management
considerations we believe cloud engineers should
focus on to meet tail latency moving forward.

Given the importance in meeting the tail latency objec-
tives of cloud services, there is a rich set of prior pro-
posals that span the entire system stack, from hardware
techniques to operating systems and networking, and
all the way to cluster management and application
design. We briefly review these techniques next.

Hardware

High tail latency is the result of many factors, including
resource contention, deep system stacks, load fluctua-
tion, and other sources of queue buildup.

One approach that prior work has used to reduce
tail latency is through careful resource isolation and par-
titioning. This applies primarily to general-purpose, mul-
titenant systems and extends to all shared resources,
including the compute, power, cache capacity, memory
and network bandwidth, and storage input-output. For
example, by setting the CPU frequency such that the
tail latency meets its quality of service (QoS) with mini-
mum slack, the system achieves its performance objec-
tives, without wasting unnecessary power.

Similarly, by partitioning shared resources across
latency-critical applications or latency-critical and

THE PAST, PRESENT, AND FUTURE OF WAREHOUSE-SCALE COMPUTING

low-priority batch applications, systems ensure that
tail latency is met, sometimes at the expense of the
best-effort, low-priority workloads. Many different fla-
vors exist for these systems, including inferring the cor-
relation between tail latency and resources, predicting
load fluctuations, and leveraging feedback-based con-
trollers, analytical techniques, empirical profiling-based
systems, or ML-based approaches.

Hardware acceleration, in addition to better raw
performance, is also a way to improve tail latency by
eliminating latency variability. The large number of
levels-of-indirection in modern system stacks contrib-
utes to tail latency because of the many places where
queues can build up in hardware and software. Hard-
ware acceleration typically removes some of these
layers, reducing the sources of unpredictable perfor-
mance. Many systems proposing hardware accelerator,
e.g., for websearch' or ML training,® show that in addi-
tion to better absolute performance, performance pre-
dictability also improves considerably. In other cases,
special-purpose hardware is provisioned for the worst-
case workload (such as the line rate of a network inter-
face) at a more reasonable cost compared to similar
provisioning with general-purpose hardware.

Operating Systems (OSs) and Network
Stack
OSs contribute to tail latency, especially for applications
operating at hundreds of microseconds or single milli-
second granularities. OSs were historically designed for
longer running workloads, and hence their scheduling
algorithms are not tailored to low-latency cloud services.
Additionally, most operating systems are designed with
compatibility in mind, allowing users to run arbitrary
workloads. Prior work has addressed the first of these
issues by designing custom schedulers that prioritize
latency-critical events over batch workloads, or
bypassing the operating system kernel altogether
when possible. Additionally, recent work has enabled
microsecond-level thread scheduling as well as
hardware-assisted user-level interrupts, which enable
fast thread preemption and rescheduling and are
especially beneficial to low-latency cloud services. The
issue of compatibility is often addressed by slimming
down cloud OSs to only the functionality required for the
hosted applications as opposed to code related to e.g.,
external devices and peripherals. OS images hosted in
production cloud infrastructures are often much smaller
compared to general purpose OSs, helping not only with
performance overheads, but with cache locality as well.
Similarly to operating systems, the traditional net-
working stack adds considerable performance overheads,

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 21:00:44 UTC from IEEE Xplore. Restfigtionsapflyctober 2024



THE PAST, PRESENT, AND FUTURE OF WAREHOUSE-SCALE COMPUTING

especially in terms of tail latency due to the multiple
locations where queueing can build up, e.g., at the phys-
ical, protocol, and Remote Procedure Call (RPC) layers.
Prior work has addressed networking overhead through
hardware acceleration, which executes packet process-
ing directly in hardware, by dedicating a number of CPU
cores to packet processing alone, or by implementing
dataplane operating systems for networking that mini-
mize data copying, fragmented request execution, and
the need for extensive request batching. Similarly, rate
limiting, load shedding, or backpressure elimination
techniques greatly improve tail latency, allowing cloud
systems to increase their utilization without sacrificing
performance.

Deployment and Resource Management
Cloud deployment and cluster management can dramat-
ically impact an interactive application’s tail latency. This
is because cluster managers determine what type of
machines an application will run on, how multitenancy is
managed, and how many resources each task is allo-
cated. Incorrectly managing any of these scheduling
aspects can greatly degrade not only tail latency but
average performance as well.

For this reason, there is a wide spectrum of pro-
posals to improve tail latency at the cluster manage-
ment level. For example, techniques like hedged and
tied requests? sacrifice some resource efficiency for
performance by scheduling and in some cases execut-
ing the same request on two different machines and
using the results of the best-performing copy. Simi-
larly, managing background activities, such as garbage
collection and log compaction can avoid negatively
impacting a high-priority service's latency. Along the
same lines, selectively replicating frequently accessed
data more than less-frequently accessed partitions
can avoid load imbalance across machines. Finally, the
cluster manager can place underperforming machines
“on probation” until their performance recovers is an
effective way to avoid increasing tail latency because
of a small number of slow servers.

In addition to these techniques, a lot of prior work
has proposed more automated approaches for cluster
management that determine a latency-critical applica-
tion's resource needs better than what a user can do.
The motivation behind this approach is that users tend
to be overly conservative, often trading off reduced
resource usage for better performance because of the
difficulty in precisely determining the resource needs
of their applications. Automating this process removes
this burden from the user and allows the system to
learn an application’s resource requirements based on

its similarities with the large corpus of applications the
system has previously seen.

Finally, there is a line of work that focuses on
reducing the overheads of deployment and cluster
management. This can be done through more scalable,
distributed scheduler designs that reduce scheduling
latency without compromising scheduling quality, as
well as reducing overheads associated with deploy-
ment, such as container instantiation. The latter is
especially relevant in the case of serverless program-
ming frameworks, where cold start overheads, i.e., the
time required to set up a container when a new task
arrives, account for a significant part of the tasks'
overall execution. Optimizing these overheads is done
by anticipating task arrivals, checkpointing container
images in memory, or accelerating the decompression
of container image snapshots using hardware support.

Application Design

Finally, the design of a cloud application itself can
greatly impact its tail latency. From the choice of pro-
gramming language, threading model, service granular-
ity, communication framework, logic implementation,
down to the tuning of operations like garbage collec-
tion, all these design choices impact performance.
Prior work has addressed several of these issues. For
example, systems like uTune provide a runtime that
automatically selects the right threading model for a
service mesh that allows an application to achieve its
tail latency requirements. Similarly, other proposals
automatically tune the many parameters of communi-
cation frameworks like HTTPS and RPC, sequence gar-
bage collection in distributed services in a way that
minimizes its latency impact, and leverage program
synthesis to automatically select the right granularity
for a complex service mesh that balances modularity
with communication overheads.

As both low-latency ML interference and modular
programming frameworks like microservices are becom-
ing more widespread, these techniques will need to be
revisited for their unique requirements.

Cloud Hardware

WSCs started out as scaled-out versions of enterprise
computing, relying almost entirely on commodity,
general-purpose equipment, and, as a result, achieving
much better cost efficiency compared to high perfor-
mance computing or supercomputers. The use of
general-purpose infrastructure meant that programma-
bility, even for nonexpert users, was easier, lowering the

SeptemberAbithetizadliognsed use limited to: MIT. Downloaded on June 05,2025 at 21:00:44 UTC from IEEE Xploreg iResifietions apply.



bar of entry to cloud computing. It also simplified other
aspects of management including scheduling, capacity
planning, and orchestration since all servers could be
simplistically assumed to have equal capabilities.

Even in this first phase of the cloud, homogeneity
was relative. The facility of a WSC is provisioned for 10
to 15 years, while the individual servers will only last
five to six years, either upgraded to a later generation
or replaced due to failures. Additionally, servers within
the same WSC are provisioned for different applica-
tions, some optimizing for compute, while others opti-
mize for storage or network resources. This means that
at any point in time a WSC will have several different
server platforms, achieving significantly different tail
latencies for the same application.”

Figure 1 shows the impact that server heterogene-
ity has on tail latency. The figure shows the distribu-
tion of request latencies for thousands of web-serving
tasks running on NGINX. Each violin plot shows the
latency distribution for a different server platform. All
platforms are general purpose, two-socket, CPU-based
servers and have an equal amount of compute, mem-
ory, and network resources. Despite this, the architec-
tural implementation and configuration of each server
has a significant impact on request latency, especially
when looking at the tail (denoted with a star in each
violin plot). In addition to tail latency, the shape of the
latency distribution varies significantly, with some
servers achieving higher, but more consistent latency,
while others lowering the mean but experiencing a lon-
ger tail in the distribution.

Figure 2 shows a similar experiment, while also incor-
porating request fanout. Now, each web-serving request
is broadcast to N servers for further processing, where N

Impact of Hardware Heterogeneity (No Fanout)

50
—_ *
1]
*
Eao u
a 1
S |
30 * I
3 |
%20 1 I
g *
g 1
(0] )
« 10 v .

Platform1 Platform2 Platform3 Platform4 Platform5
Server Platforms
FIGURE 1. Latency distribution for webserving tasks running
on five different server platforms. Each violin plot shows the
probability density function of latency, the white dot shows
the median, the black bars show the 25th and 75th percen-
tiles, and the star shows the 99th percentile of latency.

THE PAST, PRESENT, AND FUTURE OF WAREHOUSE-SCALE COMPUTING

Impact of Hardware Heterogeneity (Fanout)

=50 ¥
Q *
£ * ¥
>401
o)
c
3 1
T 30 * i . o
=
820 1 I |
=} 1
=3 o |
Q
o 101
1:2 1:4 1:8 1:16 1:32

Downstream Fanout

FIGURE 2. Latency distribution of webserving requests as the
downstream request fanout increases. Each plot shows the
PDF of latency, the white dot shows the median, the black
bars show the 25th and 75th percentiles, and the star shows
the 99th percentile of latency.

is the downstream fanout. Once all the individual child
requests return, the parent request aggregates their
result and returns it to the client. Requests are sched-
uled on machines using a simple random load balancer
that does not account for platform heterogeneity.
As fanout increases, the probability that some child
requests will be placed on a slower server also
increases. Given that the aggregator needs to wait for
all child requests to return before sending the response
to the user, even a single slow child request can dra-
matically increase the end-to-end latency, especially
when looking at high latency percentiles.” Therefore,
heterogeneity becomes more critical for applications
with multiple tiers and request fanout.

This implicit heterogeneity has become much more
definite with the recent advances in hardware accelera-
tion for cloud services. Driven by the slowdown of scaling
in process technology, many cloud providers have turned
to special-purpose architectures, either built internally®
or by third parties, such as Intel's recent In-Memory
Analytics Accelerator engine for memory compression.
Hardware acceleration falls under two categories: accel-
eration for specific application classes, such as deep
learning® and acceleration for system-level tasks like
networking® or garbage collection,'® which account for a
large fraction of CPU cycles in the cloud.”

While hardware acceleration complicates cloud man-
agement and programmability, it is beneficial to tail
latency for a few reasons. First, by implementing logic
directly in hardware, the number of layers of indirection of
the system stack is reduced, and with it, a lot of perfor-
mance variability they contribute to.° Second, by offload-
ing computation to specialized hardware, the compute
and memory pressure on the CPU is reduced. As a result,

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 21:00:44 UTC from IEEE Xplore. Restfigtionsapflyctober 2024



THE PAST, PRESENT, AND FUTURE OF WAREHOUSE-SCALE COMPUTING

contention between different processes, which contrib-
utes to destructive resource interference, also becomes
more manageable. Key in the latter is the way accelera-
tors are connected to the host CPU. Recent cache-
coherent interfaces, like Compute Express Link, signifi-
cantly reduce CPU-driven data transfers to and from the
accelerator, by offloading data transfer to the hardware
coherence protocol. Third, accelerators can potentially
reduce queue buildup by provisioning for worst-case
load. To this end, a lot of prior work has shown that
hardware accelerators do not only improve raw perfor-
mance but performance predictability as well."®
Hardware acceleration becomes a problem for tail
latency when accelerators are either scarce, of differ-
ent generations or configurations, or of varied capabili-
ties in general. In that case, prioritizing which tasks can
leverage acceleration introduces performance variabil-
ity, especially in applications with high request fanout.
Moreover, the state of the art for finer-grained schedul-
ing and sharing of accelerators is behind that of CPUs.

Cloud Deployment

While ML training is increasingly using specialized hard-
ware, elsewhere we see a continued shift of workloads
from dedicated hardware to shared cloud computing
infrastructure. This includes organizations moving from
on-premise hardware to the cloud, including multicloud
deployments, as well as web providers (such as Google)
that increasingly eschew dedicated machines for latency-
sensitive workloads and instead rely on improvements to
cluster operating systems like Borg to reduce some sour-
ces of interference-based tail latency and to leverage
tail-tolerance techniques. Multitenancy is essential, as it
significantly increases datacenter utilization, which has
traditionally remained low for latency-critical workloads.
Given that most of the cost of building and operating a
WSC goes toward populating it with servers, keeping
those servers highly utilized is imperative.

Finally services themselves are increasingly
“multitenant” to reduce the overheads of static resource
provisioning (i.e., virtual machines for each user or data-
base) and to provide the serverless illusion to users. One
technique uses emerging functions-as-a-service (FaaS)
infrastructure, which essentially relies on the infrastruc-
ture provider to implement fine-grained resource man-
agement and scheduling. Other services implement
their own fine-grained mechanisms, such as Dremel and
BigQuery.

While multitenancy is beneficial to resource effi-
ciency, it can be detrimental to performance. Applica-
tions sharing resources can interfere with each other,
hurting each other's tail latency. A lot of prior work has

Impact of Multi-Tenancy

- *
£ 40

0 *

$ 30

9

©

-

o |
g20 I

2 * I
(0] - |

CC]_O "

Not Multitenant ~ Multitenant Multitenant+Fanout
Deployment Model

FIGURE 3. Latency distribution under different deployment
scenarios. From left to right, we show a nonmultitenant set-
ting, a multitenant cluster, and a multitenant cluster with
request fanout. Each violin plot shows the probability density
function of latency, the white dot shows the median, the black
bars show the 25th and 75th percentiles, and the star shows

the 99th percentile of latency.

focused on scheduling and resource isolation techni-
ques to mitigate some of these overheads.

Figure 3 shows the impact of multitenancy on the
latency distribution of the same web-serving tasks we
previously discussed. The leftmost plot shows the dis-
tribution of request latency in a dedicated cluster,
where requests are not sharing resources. The second
plot shows the latency distribution when in the same
cluster there are additional application running. While
the web-serving tasks are receiving the same resour-
ces as before, their performance is worse, due to inter-
ference. Finally, the rightmost plot shows the latency
distribution when the multitenant deployment is host-
ing the web-serving requests with fanout. In this case,
the impact of interference is more pronounced, as
even a small number of slow requests can impact a
large fraction of the workload.

Cloud Applications

On the workload front, perhaps the largest emerging
workload is the training and serving of increasingly
powerful ML models. Earlier approaches to scaling up
training to thousands of CPUs relied on asynchronous
stochastic gradient descent® where workers updated
a set of parameter servers without synchronization
between training steps. Modern approaches to train-
ing, performed on GPUs and tensor processing units,
update parameters synchronously on each training
step essentially requiring a global barrier. Global bar-
riers are at odds with tail tolerance, and techniques
such as backup workers can substantially increase
cost for ML training workloads. For this demanding

SeptemberAbithetizadliognsed use limited to: MIT. Downloaded on June 05,2025 at 21:00:44 UTC from IEEE Xploreg iResifietions apply.



workload, we see novel hardware techniques, such as
optical-circuit switching® to improve performance and
reduce the impacts of sharing-induced latency, as well
as emerging hybrid approaches between asynchro-
nous and synchronous parameter updates for large-
scale training.

In addition to the emergence of generative artificial
intelligence, the last few years have seen a fairly drastic
change in how cloud applications are designed. In
place of conventional monolithic designs, where the
entire service's functionality would be included in a
single codebase, compiling down to a single binary,
complex topologies of multitier applications have
emerged.® Serverless compute and event-driven micro-
services are the two driving frameworks at the fore-
front of this trend.

While often used interchangeably, serverless and
microservices have some important differences. Serv-
erless is an event-driven deployment strategy that
simplifies cloud management, and is well suited for
intermittent, data parallel, and short-lived applications
with little state. It is prone to unpredictable perfor-
mance due to cold starts, communication, and control
plane overheads. Microservices, on the other hand,
when used moderately, promote modularity, develop-
ment productivity and elasticity. At the same time,
because different microservices run in their own con-
tainers, possibly on separate physical nodes, they also
contribute to increased network traffic, contention
from multitenancy, and backpressure from dependen-
cies between service tiers. All these implications are
especially detrimental to tail latency, as even a small
amount of network contention or queue build up can
significantly degrade QoS.°

Finally, the fact that a single service is replaced by
a complex graph of—in some cases—hundreds of
smaller, single-concerned services, means that the tail
latency requirements for each of these services are
going to be much stricter than for the original end-to-
end application.

Figure 4 shows the latency distribution of a social
network service implemented as a monolith and as
different graphs of microservices. In all cases, the
functionality of the service as far as the end user is
concerned is exactly the same. We compare three
different microservice topologies that use N/4, N/2,
and N microservices, with N being the most fine-
grained, to explore how service granularity impacts
tail latency. All service designs are driven by the
exact same traffic, and are running in a homoge-
neous, dedicated cluster, to avoid other sources of
performance unpredictability. While the monolithic
application has a higher mean latency than the

THE PAST, PRESENT, AND FUTURE OF WAREHOUSE-SCALE COMPUTING

Impact of Service Granularity

i *
- 1000
E
> 800+ %
[}
@
frt *
© 600 1
-
3
4 n
g_ 400 " I 1 I
[J] " ] 1
o
200+
Monolithic ~ N/4 Tiers N/2 Tiers N Tiers

Application Design

FIGURE 4. Latency distribution as the granularity of services
changes. The leftmost plot shows latency for a monolithic
social network application, and the next three plots show
latency for the same social network application implemented
as a graph of N/4, N/2, and N microservices. Each violin plot
shows the probability density function of latency, the white
dot shows the median, the black bars show the 25th and 75th
percentiles, and the star shows the 99th percentile of latency.
When moving from the monolithic application to microservi-
ces, the mean latency improves but the tail becomes progres-

sively worse.

microservice designs, its tail latency is better. This is
because it is subject to fewer levels of queueing com-
pared to microservices, where communication is over
the network. Increasing the number of tiers in the
microservice topology (making the granularity finer)
does not have a significant impact on mean latency
but significantly increases the tail. This is a similar find-
ing to what happens for high-fanout services. The
more tiers exist on the critical path, the higher the
chance that one of them will underperform and impact
the end-to-end latency. Note that this image would be
even worse for serverless, which is prone to warm-up
overheads and data transfers through remote storage
systems.

The techniques described in the “Guaranteeing Tail
Latency in Cloud 1.0" section were instrumental in
achieving the tail latency objectives of cloud services
so far. They are not, however, enough to bring us to the
next generation of warehouse-scale systems, given the
trends we just discussed.

We believe that the ability to meet tail latency con-
straints in the next cloud generation hinges on tackling
the following challenges.

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 21:00:44 UTC from IEEE Xplore. Restfigtionsapflyctober 2024



THE PAST, PRESENT, AND FUTURE OF WAREHOUSE-SCALE COMPUTING

Observability

Modern systems are deep stacks consisting of many
hardware and software layers. Each layer in this stack
introduces its own sources of unpredictable performance,
which make guaranteeing tail latency challenging.

Observability, i.e., the ability to reason about where
latency and latency variability are coming from in a com-
plex system is imperative to correctly diagnose perfor-
mance issues in cloud settings. Tracing and monitoring
systems already exist in WSCs, and usually capture both
low-level resource usage'' and high-level performance
metrics,’”” such as throughput and the breakdown of
latency across application tiers. When it comes to moni-
toring infrastructure that runs at cloud scale, there are
clear tradeoffs between the resolution of the information
captured and the overhead capturing this information
has on the system. For example, distributed tracing uses
aggressive sampling of requests to avoid degrading the
system’s performance and resource usage, and even
so, still runs into scalability bottlenecks for high-
fanout services. At the same time, latency unpredict-
ability is by its nature often attributed to short, bursty
events, which can be missed when the sparsity of trac-
ing data are high.

Moving forward, it will be critical to extend the visi-
bility of these systems into the sources of unpredict-
able latency across hardware and software without
sacrificing the scalability of the tracing itself. Not only
will this provide a better understanding on how differ-
ent layers of the system stack contribute to tail
latency, but it will also simplify performance debugging
efforts, whether empirical or automated.

The latter, i.e., using automation to parse complex
traces and diagnose performance issues without a
human in the loop, has already shown promising
results in the context of cloud systems, and will only
become more essential as their complexity continues
to grow. It will also be important to ensure that hard-
ware accelerators contain the necessary visibility met-
rics since adding them later might not be possible.

Shaving Overheads

A lot of the latency variability in systems today comes
from the many levels of indirection across the system
stack. For the past few decades this complexity was
sidestepped because the hardware continued to scale.
As Moore's Law slows down, that complexity can no
longer be ignored. Optimizing across layers, e.g., by
bypassing the OS kernel or networking stack, when-
ever possible has already been shown to be effective
for low-latency services. Further reducing these over-
heads through vertical design, microsecond-level

scheduling that is more tightly integrated with net-
working, more lightweight cluster management, and
specialization of the system stack will be essential to
meet tail latency constraints in the next generation of
cloud systems.

Specialization

Specialization to date has been primarily driven by the
compute and memory needs of a few dominating
applications, such as ML. While there is certainly value
in special-purpose systems for specific application
domains, a different type of specialization can help
with improving latency predictability.

Currently, CPUs are responsible for running, in addi-
tion to the threads serving application logic, threads
executing system-level tasks, such as networking, gar-
bage collection, memory copy, and so on. These tasks
have been shown to consume a large fraction of
warehouse-scale CPU cycles.” Moreover, CPUs are not
well-suited for this computation, are burdened with the
overhead of the OS and networking stack, and are
prone to introducing performance noise and interfer-
ence in low-latency applications.

Specialization that targets this type of computa-
tion, has the potential to not only improve raw perfor-
mance but reduce latency variability and free up CPU
resources for applications that can benefit from them.

Automation

Despite their scale and complexity, warehouse-scale
systems still use empirical techniques for many design
and management decisions, which require a high level
of human expertise. Given the trends we discussed in
this article, leveraging some degree of automation
across the system stack can provide a more scalable
and accurate alternative. It can also help organizations
deal with the longer-term support burden from needing
to maintain and support too many custom-tuned
systems.

Naturally, as with every application of automation,
especially ML, there is a question of explainability.
Namely, if it is hard for system engineers to get any
actionable insight from the model's output that can
help them improve the system's design or manage-
ment, the value of automation reduces. That is even
more the case when the model's answer is incorrect.
While this is certainly not an issue limited to applying
ML to systems problems, it can be a roadblock for its
adoption, given the service level objectives these appli-
cations must meet. Moving forward, focusing on
explainable or interpretable ML for systems will be key

SeptemberAbithetizadliognsed use limited to: MIT. Downloaded on June 05,2025 at 21:00:44 UTC from IEEE Xploreg iResifietions apply.



to harnessing the benefits that these techniques can
offer for the cloud.

Tail latency has been the defining performance met-
ric that interactive cloud services have had to meet
from the beginning of the cloud as a computing par-
adigm. In this article, we discussed how prior work
approached tail latency optimizations across the
system stack, what recent trends in cloud hardware,
deployment, and application design mean for tail
latency, as well as what are the main challenges sys-
tem architects will need to address to meet the tail
latency constraints of cloud applications in the next
generation of WSCs.

We dedicate this article to our late colleague, Luiz
André Barroso, who helped bring tail latency and
latency tolerance techniques to the forefront with the
“tail at scale” work? among his many other significant
contributions.

1. A. M. Caulfield et al., “A cloud-scale acceleration
architecture,” in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchit. (MICRO), Taipei, Taiwan, 2016,
pp. 1-13, doi: 10.1109/MICR0.2016.7783710.

2. J.Dean and L. A. Barroso, “The tail at scale,”
Commun. ACM, vol. 56, no. 2, pp. 74-80, 2013.

3. J.Dean et al,, “Large scale distributed deep
networks,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2012, pp. 1224-1231.

4. C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware
scheduling for heterogeneous datacenters,” in Proc.
18th Int. Conf. Archit. Supp. Program. Lang. Operating
Syst., Houston, TX, USA, 2013, pp. 77-88.

5. Y. Gan et al., “An open-source benchmark suite for
microservices and their hardware-software
implications for cloud and edge systems,” in Proc.
24th Int. Conf. Archit. Supp. Program. Lang. Operating
Syst., Apr. 2019, pp. 3-18.

6. N. Jouppi et al.,, “TPU v4: An optically reconfigurable
supercomputer for machine learning with hardware
support for embeddings,” in Proc. 50th Annu. Int.
Symp. Comput. Archit. (ISCA), 2023, pp. 1-14, doi:
10.1145/3579371.3589350.

THE PAST, PRESENT, AND FUTURE OF WAREHOUSE-SCALE COMPUTING

7. S.Kanev et al., “Profiling a warehouse-scale
computer,” in Proc. 42nd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2015, pp. 158-169, doi: 10.1145/
2749469.2750392.

8. N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C.
Delimitrou, “Dagger: Towards efficient RPCs in cloud
microservices with near-memory reconfigurable
NICs,” IEEE Comput. Archit. Lett., vol. 19, no. 2, pp.
134-138, Jul./Dec. 2020, doi: 10.1109/LCA.2020.
3020064.

9. C.E. Leiserson et al., “There's plenty of room at the
top: What will drive computer performance after
Moore's law?" Science, vol. 368, no. 6495,

p. eaam9744, 2020, doi: 10.1126/science.aam9744.

10. M. Maas, K. Asanovi¢, and J. Kubiatowicz,
“A hardware accelerator for tracing garbage
collection,” in Proc. ACM/IEEE 45th Annu. Int. Symp.
Comput. Archit. (ISCA), Los Angeles, CA, USA, 2018,
pp. 138-151, doi: 10.1109/ISCA.2018.00022.

1. G.Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and
R. Hundt, “Google-wide profiling: A continuous
profiling infrastructure for data centers,” IEEE Micro,
vol. 30, no. 4, pp. 65-79, Jul./Aug. 2010, doi: 10.1109/
MM.2010.68.

12. B. H. Sigelman et al., Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure. Google,
Inc., Tech. Rep. dapper-2010-1, 2010.

CHRISTINA DELIMITROU is an associate professor with the
Electrical Engineering and Computer Science Department,
Massachusetts Institute of Technology, Cambridge, MA,
02139, USA. Her research interests include computer archi-
tecture and distributed systems. Delimitrou received her
Ph.D. degree in electrical engineering from Stanford Univer-
sity. She is a Member of IEEE and ACM. Contact her at
delimitrou@csail.mit.edu.

MICHAEL MARTY is a principal engineer with Google,
Inc., Madison, WI, 53706, USA. His research interests
include datacenter platforms, host networking, data ana-
lytics systems, and enterprise artificial intelligence. Marty
received his Ph.D. degree in computer sciences from
the University of Wisconsin-Madison. Contact him at

mikemarty@google.com.

Authorizeg ligensigeise limited to: MIT. Downloaded on June 05,2025 at 21:00:44 UTC from IEEE Xplore. Restfigtionsapflyctober 2024


http://dx.doi.org/10.1109/MICRO.2016.7783710
http://dx.doi.org/10.1145/3579371.3589350
http://dx.doi.org/10.1145/2749469.2750392
http://dx.doi.org/10.1145/2749469.2750392
http://dx.doi.org/10.1109/LCA.2020.3020064
http://dx.doi.org/10.1109/LCA.2020.3020064
http://dx.doi.org/10.1126/science.aam9744
http://dx.doi.org/10.1109/ISCA.2018.00022
http://dx.doi.org/10.1109/MM.2010.68
http://dx.doi.org/10.1109/MM.2010.68
http://dx.doi.org/dapper-2010-1
mailto:delimitrou@csail.mit.edu
mailto:mikemarty@google.com

	19

