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Abstract—In this paper we explore neural-network based sur-
rogate models for simulating the response of nanophotonic power
splitters with arbitrary split ratios. In particular we investigate
the hypothesis that using internal fields as an intermediate
variable helps reduce the data requirements for network training.
We deploy the recently proposed U-Net and Fourier Neural
Operator (FNO) approaches to learn the relation between a
pixel-based input device geometry and the intermediate fields and
cascade them with another neural network to arrive at the modal
transmittance. We compare our finding against naive approaches
that directly learn the relation between the input device geometry
and transmittance, and find a six fold reduction in the training
root mean square error value. This research opens the route to
faster and more data efficient approaches to inverse design of
nanophotonic devices.

I. INTRODUCTION

To handle the complexity of designing nanophotonic in-
tegrated circuits, automated tools are becoming critical [1].
These tools significantly speed up the design process. Simu-
lation accuracy and computational time are the tradeoffs that
need to be navigated in the design process.

As devices become more sophisticated, full-wave simula-
tions, accurate as they are, become slow. Recent studies [2],
[3] used 3D finite difference time domain (FDTD) solvers
for the optimization of optical splitters, however, they took
72 and 120 hours, respectively, to achieve desired designs.
Thus, designing devices with specific performance metrics is
a growing research area that requires fast and accurate solvers.

We propose data-efficient, fast and accurate surrogate mod-
els based on deep-learning to simulate the performance of a
given device, with the goal of replacing conventional fullwave
solvers. We use information from intermediate variables, such
as fields in the domain, to understand the relationship between
design and the device’s modal transmittance response. This
ultra-fast solver can further aid in optimizing nanophotonic
devices. We present quantitative results that compare the
accuracy of the solver against conventional methods that learn
the modal transmittance directly from the device design.

II. METHODS

We generated the dataset using a commercial FDTD solver
(Lumerical) to train our forward surrogate model. In a proof-
of-concept test, we applied our methodology to simulate a 1 x2
nanophotonics splitter using the 2D FDTD numerical method.
We excite the fundamental TE mode at a single mode input
waveguide with the mode source that injects a user-defined
guided mode into the input waveguide. We then simulate the

979-8-3503-6990-8/24/$31.00 ©2024 IEEE 805

modal transmittance at both output ports at a randomly chosen
wavelength in the range 1.4 — 1.6 um. The simulation region
is divided into 64 x 64 pixels. The input, z € R4, contains
the permittivity of the pixel, which can either be silicon or
air. An element in the training set is generated by choosing
x at random, and simulating its modal transmittance at a
chosen wavelength. We also store the field information in
the simulation domain as part of the training-set entry. Fig. 1
shows an instance of the permittivity distribution of a sample
nanophotonic splitter, and the corresponding absolute value of
the magnetic field, H,, in the domain at the end of a 2D FDTD
simulation. Each end of the input and output waveguides of
the splitters are terminated by perfectly matched layers (PML)
to truncate the computational region.
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Fig. 1. (a) Sample 1 x 2 power splitter of size 2.6 x 2.6 um? tessellated
into 64 x 64 pixels, with waveguide widths equal to 250 nm, and (b) Field
distribution in the simulation domain.

Our surrogate model employs a cascade of two neural

networks:

1) The first network learns the relation between the permit-
tivity distribution and the absolute value of the magnetic
field. We explore two options for this learning: (i) a neu-
ral operator learning architecture, specifically the Fourier
Neural Operator (FNO) [4], or (ii) a convolutional neu-
ral network originally developed for biomedical image
segmentation, the U-Net [5].

2) The second network learns the relationship between the
absolute value of the fields and the modal transmittance
at the power splitter’s output port. We determine the
power transmitted in a mode using a calculation called
the mode overlap integral. This calculation informs us
about the amount of power that can move in the intended
mode from a specific input field.
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The cost function used to train FNO and CNN is:
LSy — o/l N1yl and £ SV (T — 7). respectively.
Here, y and y’ are the true and predicted value of magnetic
field, respectively, and 7; and 7T} are the true and predicted
values of the modal transmittance at a chosen wavelength.

III. NUMERICAL RESULTS

We train the neural networks and show the evolution of
the test rmse with dataset size for direct learning as well
as intermediate-variable based learning (Fig. 2(a)). As can
be seen, the approaches based on intermediate field variables
perform significantly better than using a direct approach,
featuring 6 times lower rmse at the maximum dataset size.

Next, in Fig. 2(b), we show results for the accuracy in
predicting the modal transmittance from the approaches un-
der consideration. As can be seen, the intermediate fields
approach gives significantly more accurate results than a direct
approach. For instance, in the direct approach, approximately
30% of the samples have error less than 1 % in transmittance,
whereas this number is 65% in the intermediate-variable case.
The corresponding field predictions for the FNO and U-
Net approaches are shown in Fig. 3, from where it can be
inferred that both networks are able to predict the fields in the
domain precisely. In Fig. 4, a scatter plot compares predicted
modal transmittances for both splitter output ports. Using a
dataset of 18k, our proposed method requires much less data
than the direct approach. We conjecture that this is because
although the relation between the input geometry and modal
transmittance is highly nonlinear, having the interior fields as
an intermediate variable helps ease this nonlinearity.
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Fig. 2. (a) Comparison of the test rmse plot for the three approaches for the
surrogate models to simulate nanophotonic splitters, (b) Histogram plot for
comparing the test error between different surrogate models at output port 1

IV. CONCLUSION

In this paper, we show that using fields as an intermediate
step in the learning approach helps drastically reduce the
dataset size required for neural network training. The FNO
is preferred over U-Net since the FNO learns the neural
operator and its architecture is independent of the input size.
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Fig. 3. (a) Comparison of the validation error curves for FNO and U-Net
networks, fields in the simuation domain: (b) true, (c) using FNO, and (d)
using [INet.
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Fig. 4. Comparison of modal transmittance using the proposed approach and
the direct approach at: (a) port 1, and (b) port 2.

While the results are promising, more research is required
to further reduce the modal transmittance error since it is
critical for incorporating surrogate models into inverse design
methodologies [6], which is the eventual goal of this work.
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