N
Check for
Updates

DPS: Adaptive Power Management for Overprovisioned Systems

Jianru Ding
University of Chicago
Chicago, USA
jrding@uchicago.edu

ABSTRACT

Maximizing performance under a power budget is essential for
HPC systems and has inspired the development of many power
management frameworks. These can be broadly characterized into
two groups: model-based and stateless. Model-based frameworks
use machine learning to achieve good performance under a power
budget but are highly dependent on the quality of the learned model
and the data used to train it. Stateless frameworks are more robust
and require no training, but are generally lower performance. In
this paper, we propose a new framework that does not require a
model, but does track a small amount of state in the form of recent
power dynamics. We implement this idea and test it on a public
cloud running both Spark and HPC jobs. We find when total power
demand is low, our framework achieves equivalent performance to
prior work, but when power demand is high it achieves mean 8%
performance improvement (with no reliance on a learned model).

KEYWORDS

power-efficient design and power-management strategies, resource
management, job scheduling, system interoperations and energy-
aware techniques for large-scale systems

ACM Reference Format:

Jianru Ding and Henry Hoffmann. 2023. DPS: Adaptive Power Manage-
ment for Overprovisioned Systems. In The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC °23), Novem-
ber 12-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3581784.3607091

1 INTRODUCTION

As the scale of distributed systems increases, power becomes the
bottleneck of the system design. The US Department of Energy
(DoE)’s goal for Exascale Computing is to operate in a power enve-
lope of 20-30 MW [30]. Overprovisioning—building a system which
is capable of drawing power over its budget and then limiting in-
dividual nodes to respect the budget—has thus been proposed to
increase scale while respecting a power budget [33]. To support this
goal, modern processors include power-capping hardware. Since
the Sandy Bridge architecture, Intel processors have supported the
RAPL (Running Average Power Limit) interface, which takes a pro-
cessor power limit and meets it by automatically managing voltage
and frequency [6].

@O0

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

SC ’23, November 12-17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0109-2/23/11.
https://doi.org/10.1145/3581784.3607091

Henry Hoffmann
University of Chicago
Chicago, USA
hankhoffmann@cs.uchicago.edu

In real systems, it is rare that all machines operate at full power.
For example, cloud servers typically operate between 10 to 50%
utilization [3]. Thus, unused power budget on low-power machines
to be migrated to those operating at their power caps to increase
performance. This creates the need for a power management system
that assigns the cluster-wide power budget dynamically based on
power usage such that system performance is maximized.

Prior work proposes three broad categories of power managers:

e Constant allocation systems assign an equal power bud-
get to each node. This approach is simple to implement and
clearly respects the cluster-wide power budget. However, it
is rarely optimal as it cannot shift power dynamically based
on demand.

e Model-based systems use machine learning or similar ap-
proaches [29, 50, 55] to construct models that capture the re-
lationship between measurable system behavior and power-
performance tradeoffs. These systems then use their models
to find performance-optimal power assignments and can
dynamically adapt to changes in the operating conditions or
workload. But such models require a huge amount of data
to train, which creates a non-negligible deployment over-
head to migrate such systems to new architectures. They
can also be brittle and subject to failure if the system enters
an operating regime that is not captured in the training data
[46].

e Model-free stateless systems (later referred to as stateless
systems) use no model, and in fact, keep no knowledge or
reference to past operations. Instead, they make decisions
based solely on instantaneous power consumption, shift-
ing unused power from nodes operating below their caps,
to nodes operating at their cap. This model-free approach
works because it is assumed that nodes operating at their
cap can achieve good performance with more power and
nodes operating below their cap will not be hurt if their cap
is lowered. A well-known example of the stateless system
is the power management plugin of SLURM (later referred
to solely as SLURM) which is currently world-widely de-
ployed on many supercomputers and distributed systems
[51]. Such systems are lightweight and ready to operate once
configured. They are also robust to different scenarios as they
make decisions based solely on current power usage. How-
ever, lacking a model, they do not have the means to predict
future power states and thus have limited ability to optimize
power allocations.

To illustrate the differences between these approaches (and ulti-
mately argue for a new approach), Figure 1 compares 4 different
power management systems (rows 2 to 5) operating on a two-node
(depicted in solid bars) overprovisioned system over 5 timesteps
(shown on x-axis). The caps assigned at each timestep are depicted

SC ’23, November 12-17, 2023, Denver, CO, USA

Node 0 power I Node 1 power 3 Cap
Power increase in order
‘Infinite Budget (Impratical) .
- - | | | | | I

“Constant (Ineffecient)

i] 9 r-rlrl-l =

=5

of oo . .

R
ﬁll

“Perfect Model-based (Ideal) -] —

alete?
s tatats

L R A Ewn!
el fatdl IO

v

il\
:Fll

“Stateless (Potential pitfalls) [i

Dpeieerber

B - e e e
2] 1 1 1
DPS N
HRER H BE BE
57 15 P 1 .
S 1A O 1 I 2 1
TO T1 T2 T3 T4

Time Step

Figure 1: Motivational Example: power management systems

in dotted frames. In this example, both nodes will eventually exe-
cute at the maximum power (as shown in the top row with infinite
budget); however, Node 0 increases its power 2 timesteps before
Node 1 (shown on the first row). The constant allocation (row 2)
wastes part of the budget at T2 and T3 but evenly distributes power
at T4. A Perfect Model-based system and a stateless system fully
utilize the budget through time T3. At T4, a perfect model-based
system reassigns part of Node 0’s budget to Node 1, but a stateless
system sees both nodes operating at their power caps and continues
with this disproportionate power allocation, starving node 1. This
raises the question of whether there is a practically realizable power
management system that can arrive at the same place as a perfect
model-based system while looking only at power data.

In fact, this paper argues that there is an important, yet unex-
plored, middle ground between model-based systems and stateless
model-free systems. Specifically, power dynamics—changes in power
usage over time—reveal a great deal of information that can be used
to allocate power budgets in a distributed system without reliance
on complicated models. Consider again the example in Figure 1.
From time T1 to T3, node 1’s power increases and it is likely that
it will need more power in the future. By tracking these changes,
power can be redistributed based on the system’s dynamics, without
reliance on a complicated model.

Based on these observations, we present the Dynamic Power
Scheduler (DPS), a model-free stateful power manager for overpro-
visioned systems that improves performance while maintaining a
cluster-level power limit. Inheriting the low-overhead advantage
of the model-free stateless approaches, DPS assumes no a priori

Jianru Ding and Henry Hoffmann

knowledge of application workloads and monitors only power data.
DPS decides the power cap for each node by first using a stateless
approach and then updates this initial power distribution using
power dynamics, which include an estimate of each node’s first de-
rivative of power and its frequency of power changes. These power
dynamics are then converted into a priority that modifies the initial
power distribution to ensure that nodes that either (1) need power
now or (2) will likely need power in the near future get that power.
DPS also uses power dynamics to ensure that when power usage
fluctuates too quickly to benefit from active management, it never
produces worse performance than a constant allocation.

Figure 1 includes DPS as the last row. DPS makes the same
decision as the stateless system until T2. When the power needs
exceed the power budget at T3, different from the stateless system,
DPS detects the increasing trend of Node 1’s power and adjusts the
caps to the anticipated power need. Then at T4, it is able to continue
assigning balanced caps just as a perfect model-based system does.

We implement DPS and test it on an 11-node Linux/x86 server
cluster with the machine learning workloads in the HiBench bench-
mark suite [20] and an HPC benchmark suite, the NAS Parallel
Benchmarks (NPB) [2]. The Spark applications demonstrate distinct
phases in power changes while the HPC applications continuously
require high power. Machine learning applications are implemented
and executed in Apache Spark, and categorized into two groups
based on the application’s power usage. We test in three experimen-
tal setups where two clusters are run in parallel to reflect a real-
world cloud service utility. In the first setup where mid-power Spark
applications are paired with low-power Spark applications, our re-
sults show that DPS achieves similar mean performance to prior
stateless systems, but with a maximum improvement in application
performance of up to 17.5%. In the second setup where high-power
and mid-power Spark workloads are paired together, DPS outper-
forms the power-management plugin in the wide-used resource
manager, SLURM by a mean 5.4%. In the third setup where Spark
applications are paired with NPB applications, DPS out-performs
SLURM, by a mean 8.0% and up to 21.3%.

We acknowledge that a highly constrained set of application
workloads (and inputs) could benefit from 1-time training in a
model-based approach, which, however, bares a non-negligible
overhead beyond such a constrained scenario, as we believe HPC
(and cloud) workloads are becoming increasingly diverse and dy-
namic. On the contrary, DPS can be deployed on any cloud system,
including commercial cloud systems like elastic clouds. DPS can
also be deployed in systems where the applications are black-boxes
where Model-based systems are essentially unable to operate.

To our best knowledge, this paper proposes the first model-free
stateful power manager and makes the following contributions:

o Developing a model-free stateful power management system
to maximize performance under a power cap. The state is
simply the recent power usage changes, which we refer to
as power dynamics.

e Proposing a new methodology for designing power manage-
ment systems based only on recent power behavior.

e Making all scripts, code, and data available as open source,
so others can test or extend these results.

DPS: Adaptive Power Management for Overprovisioned Systems

2 RELATED WORK

Power and energy have become first-order concerns for computer
system design. Therefore, power management has been proposed
at both node and cluster-level. We first briefly cover node-level
designs before reviewing cluster-level solutions (the topic of this
paper). Cluster-level solutions, of course, require some node-level
support [4]. Several OS projects add support for node-level power
monitoring and energy allocation [11, 17, 21, 36, 41, 42, 44, 48, 52].
Several studies profile applications or hardware-level metrics to
improve energy efficiency [16, 31]. To support setting power limits,
Intel’s SandyBridge and later processors provide power manage-
ment in hardware [6]. RAPL provides an interface for specifying a
power limit and then keeps the processor at or below that limit.

As we enter the exascale era, the United States Department
of Energy (DoE) is anticipating a cluster-level power envelope
of 10s of Megawatts (MW)[30]. In this scenario, it is anticipated
that large-scale systems for supercomputing and datacenters will
be overprovisioned; that is, it will not be possible to power each
server at its TDP (Thermal Design Power) while still respecting
the cluster-level budget. For example, prior work proposes improv-
ing performance for HPC systems by overprovisioning and using
RAPL to set node-level power limits below TDP [33]. In industry,
Google has deployed overprovisioned systems worldwide for sev-
eral years [37]. The overprovisioned system has become a practical
and critical approach to addressing tight cluster-level power limits
in current and future cloud clusters. As introduced in Section 1,
prior works on cluster-level power management systems can be
generally separated into three categories and this section covers
each.

2.1 Constant Allocation Systems

Some early works in cluster-level power management explore con-
stant allocation systems that set a static power cap for each node
in the system [12, 35]. Patki et al. [33] first explored application
scalability in a strictly overprovisioned system with a constant al-
location system using RAPL to set node-level power limits. Sarood
et al. [40] extended this system to include power limits on DRAM.
Constant allocation systems assure cluster-level power limits and
are easy to implement (given RAPL’s hardware support), but using
the same peak power limit for all nodes leads to sub-optimal appli-
cation performance, as nodes with compute-heavy workloads run
at the limits, and other nodes run below their limits, making poor
use of the available power.

2.2 Model-based Systems

Researchers quickly realized the limits of constant allocation and
turned to solutions that dynamically allocate power. A prominent
class of model-based systems uses machine learning to make deci-
sions on how to set node-level caps to meet cluster-wide budgets.
For example, Lee et al. [26] models I/O behavior to dynamically
adjust per-node power budgets by shifting power from I/O bound
nodes to compute bound ones. The idea of power management via
a workload characterization model has been studied within various
types of services, including online data-intensive services [29], par-
allel workloads [19], non-interactive workloads [10], visualization

SC ’23, November 12-17, 2023, Denver, CO, USA

workloads [5], and microservices [18]. Several works build job per-
formance models to manage an isolated component or coordinate
multiple components [13, 14, 25, 27, 39]. Machine learning models
are also widely studied for power management. The PowerShift
project models coupled applications offline to make power cap de-
cisions based on its model’s predictions [54]. The PoDD project
upgrades this idea by building machine learning models online
[55]. The PANN project uses neural networks to dynamically al-
locate power in overprovisioned systems [50]. Some other works
build feedback-based models to improve power efficiency. Wang
et al. [47] establishes a feedback control framework to improve
power efficiency with DVFS. Several feedback-based systems are
proposed to adaptively apply power capping and maximize per-
formance [15, 28, 45, 53]. Model-based systems generally achieve
near-optimal performance under the assumption that their models
have sufficient training data. Once trained, their optimality (and
sometimes even ability to meet the power budgets) is dependent
on the assumption that runtime workloads are drawn from the
same distribution as their training data. If the architecture or work-
loads change significantly from this training set, the models will
no longer maximize performance, and in some cases might fail to
maintain the power budget.

2.3 Stateless Model-free Systems

Stateless model-free systems eliminate the dependence on a well-
trained model. SLURM is a widely used cluster job and resource
management system that incorporates a power management plu-
gin. SLURM’s power management system is a stateless system that
maintains a cluster-wide power limit by setting node-level power
caps using only the current power measurements [51]. A frame-
work based on SLURM provides safe hardware overprovisioning on
a 965-node cluster at Kyushu University [38]. The Argo project in-
corporates a conclave-node two-level stateless power management
system [7-9, 34]. The Fukagu supercomputer incorporates a core
retention mode to turn off idle nodes based on current processes
and improve energy efficiency [24]. These systems demonstrate
the practical benefits of approaches that eschew models. However,
stateless model-free systems make power assignments using only
current power usage, forcing a greedy optimization strategy. They
lack the ability to predict future power usage and escape local
optima, providing sub-optimal performance, especially when work-
loads transition through phases of high- and low-power needs.

To the best of our knowledge, only model-free systems are de-
ployed in production clusters. As of June 2022, SLURM is the default
resource and job manager for 5 supercomputers in the top 10 of the
Top 500 list, including Frontier, LUMI, Sunway TaihuLight, Perl-
mutter, and Tianhe-2A [1]. Fukagu still remains as the second top
supercomputer in the world. Therefore this paper takes the position
that a power management system that can be applied in real-world
systems should not rely on a model that introduces a high deploy-
ment cost and a reliance on well-calibrated training data. Thus, this
paper explores a model-free power management system that can
escape local optima by incorporating power dynamics.

SC ’23, November 12-17, 2023, Denver, CO, USA

3 POWER MANAGEMENT WITH DYNAMICS

Overprovisioned systems must divide a cluster-wide power budget
among individual nodes. We refer to the maximum power that a
node could draw as its power demand. Generally, meeting a node’s
power demand will result in higher performance; compute-bound
nodes tend to have high power demands, while memory- and IO-
bound nodes tend to have lower demands. So, a power manager
should meet a node’s demands whenever possible. However, some-
times there is not sufficient budget to meet all nodes’ demands simul-
taneously. In this case we would like to ensure each node is equally
penalized so the power budget is fairly distributed according to
demands. We note that this is a novel definition of fairness—instead
of evenly distributing power among units, we seek to distribute
power proportional to each node’s demands. In other words, we
define fairness based on a node’s power demand rather than its
absolute power.

Although it is difficult to quantify how much a single node’s
power demand is capped at a certain time, we can define a more
general term of how a node’s power demand is satisfied throughout
the lifetime of a workload, as the node’s satisfaction. Equation 1
shows the definition of satisfaction of Node n. Then we can further
define the fairness of allocating the power budget to two nodes. As
shown in Equation 2, the fairness of Node i and j is unity minus the
absolute difference between the satisfaction of i and j. The fairness
is between 0 and 1, and the higher the fairness is, the two nodes are
getting closer percentages of the power budget they demand. As will
be discussed later in section 6, a higher fairness will generally result
in a higher harmonic mean performance of different workloads.

average power under current cap

1)

satis faction(n) =
average power under no cap

fairness(i, j) = 1 — |satisfaction(i) — satis faction(j)| (2)

While conceptually simple, meeting power demands fairly is
challenging in practice for two reasons: (1) the true demand cannot
be measured directly as the system might be capped and (2) the
demands vary dynamically, so even once the demand is known at
some point, it is not clear what it will be in the future. Because
different machines may support different power management scales
(cores, sockets, or nodes), in the following text we refer to each part
of a machine that supports power capping individually as a unit.

3.1 Fluctuating Power Demands

Power demand is continually changing. At any time, a unit’s power
demand depends on its application workload and even different
phases within an application. Figure 2 shows three Apache Spark
applications—LDA, Bayes, and LR—and their power over time, exe-
cuted separately without power limit. We refer to the power con-
sumption that an application would exhibit without a cap as its
power demand. From the figures we summarize three observations
about these applications’ power dynamics; i.e., their changes in
power demand over time.

e Power phase duration is diverse. Applications put dif-

ferent computing loads on the system at different times, re-
sulting in power phases. In Figure 2a, LDA has a long phase

Jianru Ding and Henry Hoffmann

< 150 o

100

Power (W

50

0 50 100 150 200 250

(a) LDA: High changing speed and low frequency Time (s)

150

100

50 A N
T T T T T
50 100

150 200 250
(b) Bayes: Versitle rates of change and frequencies

Power (W)

Time (s)

150 o

100

Power (W)

50

0 50 100 150 200 250

(c) LR: High rates of change and high frequency "¢ ¥

Figure 2: Power phases for different applications.

ranging from second 0 to 125. Figure 2c shows LR has many
phases shorter than 10 seconds, for example from second 140
to 149. Figure 2b shows phase durations in between these
extremes, but each phase has a different length. One longer
duration ranges from second 50 to 75, but a shorter one lasts
only 13 seconds, from second 235 to 248.

e Peak power at each phase is diverse. In Figure 2b, Bayes’s
peak power is different for different phases. For example,
from second 50 to 75, power increases to 165W, but from
second 175 to 192, the peak power is only 110W.

o The first derivative of power is diverse. When power
changes, its first derivative also differs based on the current
computing loads. In Figure 2a, power increases from 20W
to 160W in 3 seconds starting from second 3, but decreases
slowly from 160W to 70W in 20 seconds starting from second
97. In Figure 2b, changing speeds are different in different
phases: from second 50 to 75, power both increases and
decreases quickly, but from second 195 to 225, power both
increases and decreases slowly.

3.2 Power Management Challenges

Under a system-wide power budget, the power dynamics observed
above lead to two power management challenges:

e Matching the power demands and the budget through
application phases. To respect all units’ demands fairly,
the power management system should not over or under
allocate the budget to any unit. Under-allocating limits that
unit’s performance, while over-allocating means less budget
is available for other units. Yet the diversity in both peak
power and power derivatives makes it hard to match the
allocation to demands fairly.

¢ Handling high-frequency power changes. Power man-
agement decisions take time. But the diverse power phase
duration can be too short for the system to react. For exam-
ple, in Figure 2c the periods of high and low power usage

DPS: Adaptive Power Management for Overprovisioned Systems

Table 1: Terminology.

Variable ‘ Description

t Timestep t
T; Time at ¢
dT The granularity of timesteps
E; Energy consumption till ¢
Py Power consumption at ¢
% Derivative at ¢
E:(P) Estimated power at ¢
Ct Power cap at ¢

are very short and the power manager must determine if it
can reallocate power fast enough to improve performance. If
it cannot, there is a risk that overall performance is worse as
the system reacts too slowly, providing extra power just as
the application transitions to a low-power phase and taking
power just as it transitions to high power.

3.3 Power Dynamics

A key observation in this work is that power changes with inertia;
power changes are locally predictable, meaning we can estimate
near-future power changes from recent power history. We define
the components in the power history that are useful for this estima-
tion as power dynamics and identify two key components: the first
derivative and the frequency. Relevant symbols and terminology
are included in Table 1.

The estimation of the first derivative is as defined in equation 3.
It indicates the direction and magnitude of power changes. If it is
positive, power is increasing, and vice versa. The absolute value of
the first derivative indicates the speed of change. Though it does
not allow us to predict the exact power consumption, it implies the
direction that the power is most likely to go. If power is increasing
quickly, power will likely either increase or stay high in the near
term. Similarly, if power is decreasing quickly, we can predict the
unit will not need more power budget in the near term.

Py —Pig
dT

But such prediction can be wrong when the frequency change
is high. Therefore the frequency is another important element in
the power dynamics. The frequency is inferred from the number
of power peaks in the recent past. The frequency may be too fast
for the power management system to keep up with. In this case,
it is important to know the reaction speed of the power manager,
and have a separate power allocation mechanism that handles the
case when the power change frequency is faster than the power
management system’s reaction.

ary = (3

4 DPS DESIGN

DPS is a model-free stateful power manager. It builds off of prior
stateless approaches, but distinguishes itself by taking power dy-
namics into consideration and attaching a priority to each power-
allocation unit based on the observed dynamics.

SC ’23, November 12-17, 2023, Denver, CO, USA

| Temporary Cap Allocation Result
Module
Power C_ap . Caps
Kal Readjusting
?ilTearn Priority Module
D Modul
— odule

Estimated
Power History
Queue

Figure 3: DPS control system design

4.1 Design Principles

DPS has two fundamental design goals: overhead minimization
and performance maximization. Overhead includes both operation
and deployment. The operating overhead is the cost of making
decisions, including data collection, signal transition, power cap
setting, etc. The deployment overhead is the preparation cost for
the system to operate, for model-based systems, this can be large. In
summary, the goals of low overhead (deployment and operational)
and high performance lead to the following design principles:

e Minimum load on applications. The system should have
minimal impact on application performance, including the
cost of monitoring and setting power, communication, etc.

¢ No initial profiling or data-driven model building. A
model of any kind that involves profiling or training data will
dramatically increase overhead compared to a model-free
system. Instead of relying on such a pre-trained model to
predict the power demand, DPS incorporates power dynamics
to make decisions on power caps.

e Only power usage data is involved. Making decisions
based on any metric other than power usage requires addi-
tional operational and deployment overhead. DPS thus uses
only unit-level power consumption data.

e Ensures the same lower-bound performance as con-
stant allocation. For any power management system that
makes dynamic decisions, there is a risk that it may make
worse decisions than simply dividing the cluster-wide power
budget equally for each unit, resulting in a lower fairness
than what constant allocation guarantees. Indeed, prior work
can reduce performance compared to constant allocation
in certain scenarios (see Section 6). However, DPS ensures
the same lower-bound performance as constant allocation
because it incorporates power dynamics, so it knows when
power behavior will be poorly suited to dynamic reallocation
and it switches to a constant approach.

4.2 Hardware Support: RAPL in DPS

DPS interacts with the hardware in 2 ways, reading power usage
data and setting power caps. Both abilities are supported by Intel’s
RAPL system [6]. RAPL observes various low-level hardware events
and estimates energy consumption based on event counters. Still,
the accuracy of RAPL’s energy readings is shown to be high and
the overhead is low [23].

Although DPS uses RAPL to read power and set the power caps,
it is not tied to the RAPL interface. DPS only needs to interact with
the hardware in these two ways and it can be implemented with
any interface with these functionalities.

SC ’23, November 12-17, 2023, Denver, CO, USA

4.3 DPS Control System

DPS consists of a server on a central node and clients on each
computing node (similar to SLURM’s power management plugin).
Each client is responsible for reading power, setting caps, and com-
municating with the server for all the power capping units on the
node. The control system is excluded from the client to minimize
operating overhead. The server keeps a list of all the power cap-
ping units, including their current power caps, estimated power
histories, and priorities, which we will go into detail about later in
this section. The control system on the server, as shown in Figure 3,
consists of 4 modules and two important global data sets. At each
time step, the control system receives current power usage data
from all computing nodes. The stateless module takes in current
power and outputs a temporary cap allocation decision. The pri-
ority module takes in the power history and updates the priorities
attached to all units. Although RAPL has been verified by previous
work to deliver reliably high accuracy, noise exists in power usage
traces and we further assume pessimistically that RAPL bares cer-
tain measurement noise. Therefore we assume the exact power is
not known, but is a hidden variable that must be estimated from
these noisy measurements. To address such noisy measurements,
DPS incorporates a Kalman Filter that takes the (potentially noisy)
power measurements and updates the estimated power history,
which stores the recent power dynamics for each unit. This power
history is then fed into the priority module. The cap readjusting
module finally takes the priorities and the caps produced by the
stateless module and outputs the cap decisions, internally modify-
ing the caps set by the stateless system based on the priorities. The
control system then sends the new caps to all computing units. This
section introduces each individual module and how the control
system incorporates power dynamics to provide improved power
cap allocation compared to a stateless system, without requiring
any additional measurements or models.

4.3.1 Stateless Module. As indicated by the name, this module is
a stateless power management system, which takes in the current
power and decides the power caps only based on the current power.
This cap result serves as a temporary basis to be readjusted by the
cap resetting module. As shown in Algorithm 1, the stateless module
is a Multiplicative-Increase-Multiplicative-Decrease (MIMD) based
controller, inspired by SLURM’s power management system [51]. It
maintains two thresholds for increasing and decreasing the power
cap respectively, set at percentages of the current cap. If a unit’s
current power is below the decreasing threshold, its power cap will
be decreased by a percentage or to its current power. If the current
power of a unit is above the increasing threshold, its power cap will
be increased by a percentage or by what is left in the cluster-wide
budget. The cap-increasing loop is done in a random manner so
that no unit has priority in increasing the cap over others.

4.3.2 Kalman Filter. The Kalman Filter (KF) produces an estimation
of a joint probability distribution over a single measurement for
each time frame by taking unknown noise and variance as other
variables. We use the version of a 1-dimensional Kalman Filter in the
standard formulation that renders minimum computing loads while
providing reliable estimations [49]. More specifically in DPS, at each
time step, the KF module calculates the Kalman gain based on the

Jianru Ding and Henry Hoffmann

Algorithm 1: Stateless module

1 Function multp_inc_multp_dec(inc_threshold,
dec_threshold, inc_percentile, dec_percentile):

// power: list of current power consumption of all units

// cap: list of current power cap of all units

// set_flag: list of flags for all units of whether the
cap is changed

2 global power, cap, set_flag;

// Initialize set_flag to @

3 for u € units do
4 L set_flaglu] < 0 ;
// First loop: decrease caps
5 for u € units do
6 if power[u] <cap|u] = dec_threshold then
7 caplu] « max(power[u],
caplu] = dec_percentile) ;
8 set_flaglu] « 0;
// Second loop: increase caps in random order
9 avail_budget « total_budget - sum(cap);
10 for u € random(units) do
1 if power[u] > caplu] % inc_threshold then
12 tempt «— min(cap[u] = inc_percentile,
avail_budget);
13 caplu] « tempt;
14 avail_budget «— avail_budget — tempt;

estimation uncertainty, which is updated after each estimation, and
produces an estimation of current power. The estimation will be
pushed into the global estimated power history queue.

4.3.3 Priority Module. The priority module estimates the two prop-
erties of power dynamics, the frequency and the first derivative,
and attaches a priority of either high or low to each unit.

As shown in algorithm 2, the priority module keeps track of the
changing frequency of units’ power phases. At each time step, the
module first identifies the high-frequency units and attaches high
priorities to them. For those who have already been identified as
high-frequency units, the module checks both the number of promi-
nent peaks [32] and the standard deviation over the power history.
If the two measures are both below their thresholds, they are iden-
tified as low-frequency units. The additional check on the standard
deviation is because of the uncertainty in the power and the fixed
threshold in calculating the number of prominent peaks. Sometimes
the number of prominent peaks can fall below the threshold yet
power is still changing with high frequency, the standard deviation
identifies such scenarios.

After attaching the priority according to the frequency, the mod-
ule estimates the first derivative for all units that are identified
as low frequency. Two thresholds are involved in classifying the
first derivative, one positive and one negative. If the first derivative
is above the positive threshold, a high priority is attached. If it is
below the negative threshold, a low priority is attached. If it is in
between, the unit’s current priority is not changed. The positive
threshold detects fast power increases, and the negative threshold
detects fast decreases. The reason behind using two thresholds is

DPS: Adaptive Power Management for Overprovisioned Systems

Algorithm 2: Priority Module

1 Function set_priority(inc_threshold, dec_threshold,
std_threshold, pp_threshold, direv_length):

// duration_history: list of duration of each power reading

// high_freq_flags: list of flags of whether the unit is
demonstrating high-frequency power changes

2 global power_history, duration_history,

high_freq_flags, priority_arr

3 for u € units do

4 pp_count «count_prominent_peaks(power_history[u],
inc_threshold)

5 if not high_freq_flags[u] then

6 if pp_count > pp_threshold then

7 high_freq_flags|u] < True

8 priority_arr{u] « True

9 continue

10 else

1 if pp_count < pp_threshold and

std(power_historyl[u]) < std_threshold then

12 high_freq_flags|u] « False

13 priority_arr[u] < False

14 continue

15 if not high_freq_flags[u] then

16 avg_direv «—

power_history|—-1]-power_history|—direv_length]
sum(duration_history[u][-direv_length:])

17 if avg_direv > inc_threshold then

18 priority_arr(u] « True

19 ‘ continue

20 if avg_direv < dec_threshold then

21 priority_arr[u] « False

22 | ‘ continue

Algorithm 3: Cap Readjusting Module: Restore

1 Function restore(inc_threshold):
2 global power, cap, set_flag

// Restore all caps to the initial cap if no unit is
consuming high power

3 restore_flag «— True

4 for u € units do

5 if power[u] > initial_cap * inc_threshold then
6 restore_flag «— False

7 L break

8 if restore_flag then

9 for u € units do

10 caplu] « initial_cap

1 L set_flaglu] < True

that after the power change, the unit’s priority should be kept un-
changed until the power changes again. For example, if a unit is set
as high-priority when its power increases, it should be considered
as high-priority until tasks are finished and power decreases.

SC ’23, November 12-17, 2023, Denver, CO, USA

4.3.4 Cap Readjusting Module. After the Stateless Module makes a
temporary cap allocation decision, some of the cluster-wide power
budget could be unassigned. The cap readjusting module allocates
this unassigned budget to all the high-priority units. If there is
no power budget left after the Stateless Module’s adjustment, this
module instead readjusts the caps of all the high-priority units
to force a relatively high fairness between all units and fix any
major unfairness due to the Stateless Module’s random ordering.
However, if there are no large loads in the whole system at all,
and every unit’s power demand is lower than the constant cap
(power budget evenly divided among all units), this module will
ignore all previous decisions and set each unit’s cap to the constant
cap. Such restoration makes sure there is headroom for any unit’s
incoming tasks. Therefore the Cap Readjusting Module is separated
into restoring and readjusting.

Algorithm 3 shows that the restoring part of this module checks
if the current power usage of each unit is under a threshold and
restores the cap of each unit if so. The boolean flag indicating
whether restoration is made is passed to the readjusting module.

As shown in algorithm 4, the readjusting part first checks the
boolean flag passed by the restoring part. If all caps are already re-
stored, this part will be skipped at once. If not, then it calculates the
remaining unassigned budget and readjusts the caps accordingly.

If there is some remaining unassigned budget, the module will
assign the budget to all high-priority units in a way that units
with lower caps currently will get allocated more additional budget.
Such an allocation decision is made considering two aspects. First,
high-priority units with lower caps will need more budget for them
to reach peak power compared to those with higher caps. Second,
if these units are increasing power in order, units with lower caps
will eventually be penalized harder if they are not allocated more
additional budget at this time step.

On the other hand, if there is no remaining unassigned bud-
get, the module will readjust the caps of all high-priority units
in case units increasing power in order but capped are not penal-
ized equally. The module leaves low-priority units unchanged and
equalizes the caps of all high-priority units. Such a decision not
only limits all high-priority units to the same power cap, but also
ensures that this power cap is no lower than the constant cap, be-
cause low-priority units cannot increase power and get allocated
with additional budgets before this time step. Therefore, the Cap
Readjusting Module ensures the same lower-bound performance
as the constant allocation.

4.4 Power Dynamics Address Challenges

DPS includes all necessary mechanisms to tackle the two power
management challenges identified in Section 3.2:

e Matching the power demands and the budget through
application phases. When a unit quickly increases power—
i.e., a large positive first derivative—it is identified as high
priority. By assigning extra power to such units, the Cap
Readjusting Module ensures that they always get a fair allo-
cation in anticipation of their future demands. When cluster-
wide power demand exceeds budget, the Cap Readjusting
Module restores all high-priority units’ power caps to the
same level. Since it is impossible for a model-free system to

SC ’23, November 12-17, 2023, Denver, CO, USA

Algorithm 4: Cap Readjusting Module: Readjust

1 Function readjust(restore_flag):
2 global power, cap, set_flag, priority

3 if restore_flag then return
4
5 avail_budget « total_budget - sum(cap)

6 if avail_budget > 0 then
// Assign all the rest budge if any left

7 high_priority_ratios < Dictionary()
8 for u € units do
9 if priority[u] then
10 L ‘ high_priority_ratios[u] < cap[u]
11 budget_high <sum(high_priority_ratios.values())
12 for u € priority[u].keys() do
13 high_priority_ratios[u] «
budget_high/high_priority_ratios[u]
14 total «sum(high_priority_ratios.values())
15 for u € priority[u].keys() do
16 caplu] « min(spec_max_cap,
avail_budget * high_priority_ratios[u]/total)
17 set_flaglu] « True
18 else
// Readjust all high-priority units
19 budget_high < 0
20 count_high < 0
21 for u € units do
22 if priority[u] then

23

budget_high « budget_high + cap[u]
count_high < count_high +1

24

25 readjusted_cap «— budget_high/count_high
26 for u € units do
27 if priority[u] then

29

28 caplu] « readjusted_cap
set_flaglu] « True

predict the exact fairness at any moment, DPS assumes that
all high-priority units demand the highest power possible.
While it does not guarantee that the maximum fairness is
achieved, it avoids the situation that a high-priority unit’s
power budget is aggressively stripped by another one, re-
sulting in low satisfaction for a high-priority unit, and forces
a relatively high instantaneous fairness.

¢ Handling high-frequency power changes. DPS identifies
high-frequency units as high priority. By assuming they are
in need of extra power, DPS assures their performance does
not suffer, even when it cannot react to the speed of their
phase changes. This approach guarantees the same lower-
bound performance as constant allocation, where prior work
(that does not account for these high-frequency changes)
can easily produce worse results than constant allocation (as
we will see in the evaluation section).

Jianru Ding and Henry Hoffmann

5 EXPERIMENTAL SETUP
5.1 Hardware Evaluation Platform

We use the Chameleon cloud [22]. Each experiment runs on a
Server node and ten client nodes. The client nodes include two
clusters. Each node is a dual-socket system running Ubuntu 18.04
(GNU/Linux 5.4) with 2 Intel(R) Xeon(R) Gold 6240 processors, 192
GB of RAM, and hyperthreads. Each socket has 24 cores/48 threads
and a 20 MB last-level cache. TurboBoost is turned on and the
CPU frequency governor is set in performance mode. The servers
support power capping at the granularity of sockets, with a Thermal
Dynamic Power (TDP) of 165W per socket. For all the experiments
in this paper, a cluster-wise 66.7% power limit is enforced.

5.2 Data Analytics and HPC Benchmarks

We test 7 widely-used machine learning applications (written in
Apache Spark) from the HiBench Benchmark Suite [20], and 8
compute-intensive HPC benchmarks from the NAS Parallel Bench-
mark Suite (NPB) [2]. We also use 4 micro applications from the
HiBench Benchmark Suite that consume much less power. Spark
workload specs are listed in Table 2 and the NPB workload specs
are listed in Table 4. Spark workloads are labeled as mid-power if
the time portion above 110W is above 10%, and they are labeled
as high-power if more than 2/3 of the time power is above 110W.
Low-power workloads are executed with 1 Spark executor with
8 cores. The mid-power and high-power workloads are executed
with 48 Spark executors with 8 cores, taking up all cores (including
virtual cores) on the worker nodes. All NPB workloads are consid-
ered as high-power as over 99% of the time power is above 110W.
The thread setting for the NPB workloads is the maximum allowed.

To test the power manager’s ability to adapt to a wide range
of situations, we create several different workload profiles by co-
executing applications with differing power demands. Spark work-
loads have distinct power phases while NPB workloads consistently
consume high power. Therefore, we experiment with the following
three benchmark setups:

o Spark low utility: mid-power and high-power paired with
low-power workloads, representing total utility below 50%.

o Spark high utility: A high-power workload paired with
mid-power workloads, with average utility above 50%.

e Spark NPB: mid-power and high-power Spark workloads
paired with NPB workloads, representing high utility and
tight power demands.

In the first group we compare DPS to constant allocation, SLURM’s
power management plugin, and an oracle. In the second and third
group no low-power workloads are included, and the cluster-wide
power demands often exceed the power budget. Meanwhile, the
variation ins Spark makes the instantaneous power demand at a
specific time uncertain. Altogether, implementing an oracle in such
cases is extremely difficult. Therefore we only compare DPS to
constant allocation and the SLURM plugin in this group.

6 RESULTS AND EVALUATIONS

We report results for all scenarios described above. We compare a
number of power managers based on their harmonic mean perfor-
mance improvement over constant allocation. For reference, Tables

DPS: Adaptive Power Management for Overprovisioned Systems

Table 2: Spark benchmark workloads.

Workload | Data size | Duration | Power Type | Above 110W
Wordcount | 3.1 GB 44.36s low-power 0.18%
Sort 3135 MB | 38.48s low-power 0.10%
Terasort 3.0GB 54.53s low-power 0.07%
Repartition | 3.0 GB 44.92s low-power 0.20%
Kmeans 224.4 GB 1467.08s mid-power 47.58%
LDA 4.1 GB 1254.12s mid-power 51.54%
Linear 745.1 GB 928.36s mid-power 14.53%
LR 52.2 GB 499.37s mid-power 16.69%
Bayes 70.1 GB 342.18s mid-power 33.20%
RF 32.8 GB 415.71s mid-power 35.78%
GMM 8.6 GB 2432.43s high-power | 68.96%

Table 3: Spark benchmark computing Resources.

Power Type | # Executors | Cores per executor

low-power 1 8
mid-power 48 8
high-power 48 8

Table 4: NAS Parallel Benchmark applications.

Workload l Data size | Duration | Threads
BT (Block Tri-diagonal solver) 2471 GB | 3509.29s 144
CG (Conjugate Gradient) 21.8 GB 1839.00s 128
EP (Embarrassingly Parallel) 4TB 6019.07s 192
FT (Fourier Transform) 400.0 GB 152.83s 128
IS (Integer Sort) 128.0 GB | 416.80s 128
LU (Lower-Upper Gauss-Seidel) | 296.5 GB | 1895.89s 192
MG (Multi-Grid communication) | 400.0 GB 143.82s 128
SP (Scalar Penta-diagonal solver) | 494.2 GB 3563.23s 144

2 and 4 report the mean latency of each workload under the constant
allocation scheme (each socket gets 110 W power cap). Although
experiments with multiple power limits lower than the TDP can
provide a more comprehensive evaluation of DPS, multiple runs
of each benchmark workload are needed to diminish the perfor-
mance variance and the benchmark workloads are time-consuming.
We repeated at least 10 runs for each workload and spent over
1,000 hours collecting data for experiments with one power limit.
We note that in all cases (and for all power managers) the power
caps are respected. We therefore focus the evaluation solely on the
difference in performance.

6.1 Performance: Spark Low Utility Workloads

When a mid-power workload is paired with a low-power workload,
cluster-wide power demands rarely exceed the budget. As shown in
Figure 4, both DPS and the oracle improve over constant allocation
by 5% to 8% on average. The performance improvements differ
between workloads, though. DPS provides a maximum performance
improvement for GMM at 17.6%. SLURM also improves performance
for 5 workloads to a similar extent as DPS and the oracle, except for
Linear and LR, which both have high-frequency power phases. LR’s
performance is decreased by 4.0% with SLURM. The performance

SC ’23, November 12-17, 2023, Denver, CO, USA

difference between DPS and SLURM mainly results from DPS’s
ability to identify and handle these high-frequency changes.

For two workloads, LDA and GMM, the oracle doesn’t provide
maximum performance. In fact, the oracle doesn’t provide maxi-
mum performance at all times for any workload. The two reasons
behind this are first, cluster-wide power demands rarely exceed
the budget and DPS and SLURM are able to provide close-to-oracle
performance as long as they match power caps to power demands
fast enough, and second, the Spark workloads demonstrate such
variable performance between different runs under the same exe-
cution condition that the average performance of DPS and SLURM
may exceed that of the oracle.

6.2 Performance: Spark High Utility Workloads

When pairing mid-power and high-power Spark workloads, the
cluster-wide power demands often exceed the power budget. In
such cases, the performance reflects not only how fast the power
management system reacts to demand changes but how both work-
loads are penalized when the power budget is exceeded.

Figure 5 (a) shows the harmonic mean of each mid-power work-
load when it is paired with a high-power workload. DPS delivers
either the same performance or improvements up to 5.2% compared
to the constant allocation. SLURM penalizes all workloads except
GMM. For workloads with long power phases, Kmeans, LDA, and
RF, SLURM slows them down by from 8.9% to 14.3%. The workloads
with high frequencies, Linear and LR, are penalized by up to 7.7%.

Figure 5 (b) shows the harmonic mean of the performance of
each workload and its paired GMM executions. DPS improves the
mean performance of both workloads or ensures the lower-bound
performance all the time, but the mean performance of SLURM is
up to 8.1% below the constant allocation baseline. DPS outperforms
SLUM by up to 22.76% at maximum for LDA. While SLURM always
prioritizes power allocation to GMM and penalizes the other paired
workload, DPS makes sure both workloads are equally penalized.
By taking power from GMM and allocating it to the other workloads
when necessary, DPS improves performance for both workloads and
ensures the same lower-bound performance as constant allocation.

6.3 Performance: Spark & NPB Workloads

Spark workloads have phases but the NPB workloads always con-
sume high power. That is to say, when a Spark workload is paired
with an NPB workload, they compete for power budget whenever
the Spark workload is not idle. Therefore these performance results
reflect how well the managers balance a limited power budget.
The Spark NPB group runs Spark workloads on one cluster and
NPB workloads on another, including all exhaustive pairs of mid-
power and high-power Spark workloads and the NPB Workloads.
Among all the pairs, DPS always outperforms SLURM by a range
from 1.7% to 21.3%. Figure 6 (a) shows the result grouped by the
Spark workloads. For each workload in the figure, the two bars rep-
resent the harmonic mean performance gains of the paired work-
loads managed by DPS and SLURM respectively, normalized to the
constant allocation at 110W per socket. While performance differs
between different workloads, DPS improves the performance of
all the workloads. On the contrary, SLURM decreases the perfor-
mance of all workloads but Linear and LR. Since the data in the

SC ’23, November 12-17, 2023, Denver, CO, USA

Jianru Ding and Henry Hoffmann

DPS s Oracle SLURM

8 . 0.2
N S
= T 019 - -
3] N] B

Q
£Eg ol - — u [
=

T T T T T T T
Kmeans LDA Linear LR Bayes RF GMM Hmean

Figure 4: Hmean performance gain of the Spark low utility group normalized to under constant 110W cap.

Q.
] DPS SLURM
=
=)
oo 0.17
se
s 009
=0
§§ —0.1 1
2 o} Kmeans LDA Linear LR Bayes RF GMM Hmean
%g (a) Application's performance when paired with GMM
2o 0.1
Qo
&5
g 0.0 1
£
2 -01

Kmeans LDA Linear LR Bayes RF GMM Hmean
(b) Hmean performance of the application and its paired GMM

Figure 5: Normalized hmean performance gain of the Spark
high utility group.

o
S DPS SLURM
=
2
8 - 0.05 A
85 0.00-
é £2-0.05 -
o
=0 T T T T T T T T
2 5 kmeans Ida linear Ir bayes rf gmm Hmean
%8 (a) Hmean of paired applications across Spark applications
S
o
e 0.054
n ©
£ 0.00 4
£-0.05 A
o T T
o

bt (<] ep ft is lu mg sp Hmean
(b) Hmean of paired applications across NPB applications

Figure 6: Normalized hmean application performance gain
of the Spark NPB group.

figure represents the harmonic mean between the Spark workload
and NPB workloads, it shows that the performance improvement
of the NPB workloads and the performance decline of the Spark
workloads under SLURM leads to an overall performance drop. For
example, for the pair of GMM and EP, SLURM results in a 30.3%
performance decline for GMM and 27.8% performance increase
for EP, altogether resulting a harmonic mean 9.8% performance
decline. DPS, on the other hand, yields 3.9% and 5.2% performance
increases for GMM and EP respectively, and a harmonic mean 4.6%
performance improvement. DPS outperforms SLURM on Kmeans

by a max 12.4% and a min 1.9% on Linear, and an overall mean 8.0%.

1 DPS 1 SLURM

1.0
i o
T
£ o 3
E —
0.6 (¢]

Spark High Utility Spark NPB
Figure 7: Fairness of the two High-utility workload groups.

Figure 6 (b) shows the result grouped by the NPB workloads.
Similar to grouping by Spark workloads, DPS improves performance
for all NPB workloads, and SLURM decreases performance for all
workloads except LU. The performance speedup also varies among
NPB workloads. For short-duration NPB workloads, such as FT
and EP, when paired with long-duration Spark workloads, such
as Kmeans and GMM, multiple runs are in need to match one
run of the Spark workload. Although NPB workloads consistently
demand high power, the short period between workloads makes
each execution look like a power phase. Given a long range of time,
the short-duration NPB workloads do not always demand high
power. Therefore SLURM delivers better performance with short-
duration NPB workloads. In general, DPS outperforms SLURM by
a minimum of 4.9% on IS and a maximum 12.2% on SP.

6.4 Fairness Analysis

For the Spark Low Utility workloads, DPS, SLURM, and the oracle
achieve similar fairness, close to 1. This is because there is generally
sufficient power to cover all power demands. Yet for the Spark High
Utility workloads, DPS achieves a mean 0.97 fairness while SLURM
achieves only 0.75 mean fairness. Figure 7 shows the distribution of
the workload fairness under DPS and SLURM. More specifically for
each workload, DPS gets a fairness from 10.9% to 43.6% higher than
that of SLURM. For the Spark & NPB workloads, where fairness
has the most influence on the harmonic mean performance, DPS
and SLURM achieve a mean 0.96% and 0.71% fairness respectively.
Workload-wise, DPS always gets a higher fairness than SLURM,
from 0.2% to 77.5%. We observe a general positive correlation be-
tween fairness and harmonic mean performance.

6.5 Overhead Analysis

All above reported performance data is real measurements on sys-
tems running either DPS or SLURM. The performance data includes
the overhead of the power management systems themselves. DPS

DPS: Adaptive Power Management for Overprovisioned Systems

and SLURM are implemented using the same Internet communica-
tion protocol, while Constant Allocation and Oracle do not have
overhead since they do not change the power caps.

As discussed in section 4, DPS is designed with multiple mod-
ules among which is a stateless module. The stateless module has
theoretically the same overhead as SLURM. Apart from that, the
overhead of the other three modules also scales by a constant cost.
As DPS keeps a short range of estimated power history of each
socket, default 20 time steps, the power history can easily fit in the
last-level cache even scaled to tens of thousands of nodes, taking
up several megabytes. Therefore IO is not bottle-necking the turn-
around time of DPS and we observe that it incurs less than 0.5%
average CPU usage on the controller node with 10 client nodes. In
fact, we observe that communication using the BSD socket inter-
face takes up most of the turnaround time. The network latency is
of tens of microseconds. Scaling to 1,000 nodes would only incur
a several millisecond latency, which is little compared to a one-
second decision loop time. Since only 3 bytes are exchanged per
request with each node, scaling to even 1M nodes, requiring a net-
work traffic size of 3MB, would put a little burden on a network
bandwidth in GB/s. Such overhead is shared among all centralized
power management systems and consistent with SLURM and prior
work [43, 55]. Therefore we claim that DPS has negligibly more
operating overhead than SLURM, a stateless system, and the con-
troller could handle tens of thousands of nodes with no bottleneck
in computation or network.

Different from model-based systems, DPS is ready to operate
once deployed on a cluster. It needs at most the time of the range
of estimated power history to make desired decisions, which is
defaulted at 20 seconds. SLURM, on the other hand, sets power caps
based on instantaneous power, so it starts to operate functionally
as soon as deployed on a cluster. However, considering 20 seconds
are negligible compared to the lifetime of a cluster, we claim that
DPS has negligibly more deployment overhead than SLURM.

6.6 Summary of Key Results

DPS ensures the same lower-bound performance as the Constant
Allocation. In low-utility scenarios where cluster-wide power de-
mands rarely exceed the power budget, DPS yields similar perfor-
mance to SLURM and an oracle. In high-utility scenarios where
cluster-wide power demands often, or even always exceed the
power budget, DPS outperforms SLURM from 1.7% to 21.3%. Other
work on model-based approaches reports a range of 14% to 22%
improvement compared to SLURM [55]. DPS yields competitive
performance improvement without requiring a model.

7 CONCLUSION

This paper presents DPS, a model-free stateful power management
system that improves application performance in an overprovi-
sioned system. DPS contributes a new methodology for designing
a power management system by analyzing power dynamics. It ex-
plores a promising middle ground between prior work on model-
based systems, which require an expensive and error-prone model
but yields very high performance, and model-free stateless systems,
which make decisions based solely on instantaneous power usage.

SC ’23, November 12-17, 2023, Denver, CO, USA

We hope this inspires people to further explore the use of power dy-
namics and the temporal relationships residing in power usage data,
and achieve performance even closer to the model-based systems.

8 ACKNOWLEDGEMENT

This work is supported by the the National Science Foundation
grant CCF-1822949, CCF-2119184, and CNS-1764039, and based
upon work supported by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Ac-
tivity (IARPA), through the Advanced Graphical Intelligence Log-
ical Computing Environment (AGILE) research program, under
Army Research Office (ARO) contract number W911NF22C0082.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the ODNI, IARPA, or the U.S. Government. We would like to
thank Ahsan Pervaiz, Yi Ding, and the reviewers for their insightful
guidance.

SC ’23, November 12-17, 2023, Denver, CO, USA

REFERENCES

(1]
(2]

[10]

[11

[12]

=
&

[14

[15

[16

[17

[18

[19

[20]

2022. Top 500 Supercomputing Site. https://top500.org/

David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,
and Maurice Yarrow. 1995. The NAS parallel benchmarks 2.0. Technical Report.
Technical Report NAS-95-020, NASA Ames Research Center.

Luiz André Barroso and Urs Hélzle. 2007. The Case for Energy-Proportional
Computing. Computer 40, 12 (2007), 33-37. https://doi.org/10.1109/MC.2007.443
R. Bianchini and R. Rajamony. 2004. Power and energy management for server
systems. Computer 37, 11 (2004), 68-76. https://doi.org/10.1109/MC.2004.217
Stephanie Brink, Matthew Larsen, Hank Childs, and Barry Rountree. 2021. Eval-
uating adaptive and predictive power management strategies for optimizing
visualization performance on supercomputers. Parallel Comput. 104-105 (2021),
102782. https://doi.org/10.1016/j.parco.2021.102782

Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian
Le. 2010. RAPL: Memory power estimation and capping. In 2010 ACM/IEEE
International Symposium on Low-Power Electronics and Design (ISLPED). 189-194.
https://doi.org/10.1145/1840845.1840883

Daniel Ellsworth, Tapasya Patki, Swann Perarnau, Sangmin Seo, Abdelhalim
Amer, Judicael Zounmevo, Rinku Gupta, Kazutomo Yoshii, Henry Hoffman, Allen
Malony, Martin Schulz, and Pete Beckman. 2016. Systemwide Power Management
with Argo. In 2016 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). 1118-1121. https://doi.org/10.1109/IPDPSW.2016.81
Daniel A. Ellsworth, Allen D. Malony, Barry Rountree, and Martin Schulz. 2015.
Dynamic power sharing for higher job throughput. In SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-11. https://doi.org/10.1145/2807591.2807643

Daniel A. Ellsworth, Allen D. Malony, Barry Rountree, and Martin Schulz. 2015.
POW: System-Wide Dynamic Reallocation of Limited Power in HPC. In Pro-
ceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing (Portland, Oregon, USA) (HPDC ’15). Association for Com-
puting Machinery, New York, NY, USA, 145-148. https://doi.org/10.1145/2749246.
2749277

Xixhou Feng, Rong Ge, and KW. Cameron. 2005. Power and energy profiling of
scientific applications on distributed systems. In 19th IEEE International Parallel
and Distributed Processing Symposium. 10 pp.—. https://doi.org/10.1109/IPDPS.
2005.346

Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. 2008. Quanto: Track-
ing Energy in Networked Embedded Systems. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (San Diego, Califor-
nia) (OSDI'08). USENIX Association, USA, 323-338.

R. Ge, Xizhou Feng, and KW. Cameron. 2005. Performance-constrained Dis-
tributed DVS Scheduling for Scientific Applications on Power-aware Clusters. In
SC °05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. 34-34.
https://doi.org/10.1109/SC.2005.57

Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette,
and Matthieu Hautreux. 2014. Energy Accounting and Control with SLURM
Resource and Job Management System. In Distributed Computing and Networking,
Mainak Chatterjee, Jian-nong Cao, Kishore Kothapalli, and Sergio Rajsbaum
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 96-118.

Neha Gholkar, Frank Mueller, and Barry Rountree. 2016. Power tuning HPC
jobs on power-constrained systems. In 2016 International Conference on Parallel
Architecture and Compilation Techniques (PACT). 179-190. https://doi.org/10.
1145/2967938.2967961

Neha Gholkar, Frank Mueller, Barry Rountree, and Aniruddha Marathe. 2018.
PShifter: Feedback-Based Dynamic Power Shifting within HPC Jobs for Perfor-
mance. In Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing (Tempe, Arizona) (HPDC ’18). Association for
Computing Machinery, New York, NY, USA, 106-117. https://doi.org/10.1145/
3208040.3208047

Henry Hoffmann. 2015. JouleGuard: Energy Guarantees for Approximate Ap-
plications. In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machinery, New
York, NY, USA, 198-214. https://doi.org/10.1145/2815400.2815403

Henry Hoffmann and Martina Maggio. 2014. PCP: A Generalized Approach to Op-
timizing Performance Under Power Constraints through Resource Management.
In 11th International Conference on Autonomic Computing, ICAC ’14, Philadel-
phia, PA, USA, June 18-20, 2014, Xiaoyun Zhu, Giuliano Casale, and Xiaohui
Gu (Eds.). USENIX Association, 241-247. https://www.usenix.org/conference/
icac14/technical-sessions/presentation/hoffman

Xiaofeng Hou, Chao Li, Jiacheng Liu, Lu Zhang, Yang Hu, and Minyi Guo. 2020.
ANT-Man: Towards Agile Power Management in the Microservice Era. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-14. https://doi.org/10.1109/SC41405.2020.00082

S. Huang and W. Feng. 2009. Energy-Efficient Cluster Computing via Accurate
Workload Characterization. In 2009 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid. 68-75. https://doi.org/10.1109/CCGRID.2009.88
Shengsheng Huang, Jie Huang, Yan Liu, and Jinquan Dai. 2012. HiBench : A

Representative and Comprehensive Hadoop Benchmark Suite.

[21

[22

[24

[25

[26

&
=

(28]

[29]

(30]

w
—

(32

[33

(35]

[36

@
=)

Jianru Ding and Henry Hoffmann

Connor Imes, Huazhe Zhang, Kevin Zhao, and Henry Hoffmann. 2019. CoPPer:
Soft Real-Time Application Performance Using Hardware Power Capping. In
2019 IEEE International Conference on Autonomic Computing, ICAC 2019, Umea,
Sweden, June 16-20, 2019. IEEE, 31-41. https://doi.org/10.1109/ICAC.2019.00015
Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, Frangois Halbah, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20). USENIX Association, 219-233. https://www.usenix.org/
conference/atc20/presentation/keahey

Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and
Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL for Power
Measurements. ACM Trans. Model. Perform. Eval. Comput. Syst. 3, 2, Article 9
(mar 2018), 26 pages. https://doi.org/10.1145/3177754

Yuetsu Kodama, Tetsuya Odajima, Eishi Arima, and Mitsuhisa Sato. 2020. Eval-
uation of Power Management Control on the Supercomputer Fugaku. In 2020
IEEE International Conference on Cluster Computing (CLUSTER). 484-493. https:
//doi.org/10.1109/CLUSTER49012.2020.00069

S Labasan, M Larsen, B Rountree, and H Childs. 2017. PaViz: A Power-Adaptive
Framework for Optimal Power and Performance of Scientific Visualization Algo-
rithms. (3 2017). https://www.osti.gov/biblio/1366964

Savoie Lee, David K. Lowenthal, Bronis R. De Supinski, Tanzima Islam, Kathryn
Mohror, Barry Rountree, and Martin Schulz. 2016. I/O Aware Power Shifting. In
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
740-749. https://doi.org/10.1109/IPDPS.2016.15

Aniruddha Marathe, Peter E. Bailey, David K. Lowenthal, Barry Rountree, Mar-
tin Schulz, and Bronis R. de Supinski. 2015. A Run-Time System for Power-
Constrained HPC Applications. In High Performance Computing, Julian M. Kunkel
and Thomas Ludwig (Eds.). Springer International Publishing, Cham, 394-408.
Ivana Marincic, Venkatram Vishwanath, and Henry Hoffmann. 2020. SeeSAw:
Optimizing Performance of In-Situ Analytics Applications under Power Con-
straints. In 2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), New Orleans, LA, USA, May 18-22, 2020. IEEE, 789-798. https:
//doi.org/10.1109/IPDPS47924.2020.00086

D. Meisner, C.M. Sadler, Luiz Barroso, W. Weber, and Thomas Wenisch. 2011.
Power management of Online Data-Intensive services. Proceedings - International
Symposium on Computer Architecture, 319-330. https://doi.org/10.1145/2000064.
2000103

Paul Messina. 2017. The USDOE Exascale Computing Project-Goals and Chal-
lenges.

Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry Hoffmann. 2015. A
Probabilistic Graphical Model-Based Approach for Minimizing Energy Under
Performance Constraints. SIGPLAN Not. 50, 4 (mar 2015), 267-281. https:
//doi.org/10.1145/2775054.2694373

Girish Palshikar et al. 2009. Simple algorithms for peak detection in time-series.
In Proc. Ist Int. Conf. Advanced Data Analysis, Business Analytics and Intelligence,
Vol. 122.

Tapasya Patki, David K. Lowenthal, Barry Rountree, Martin Schulz, and Bronis R.
de Supinski. 2013. Exploring Hardware Overprovisioning in Power-Constrained,
High Performance Computing. In Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing (Eugene, Oregon, USA)
(ICS ’13). Association for Computing Machinery, New York, NY, USA, 173-182.
https://doi.org/10.1145/2464996.2465009

Swann Perarnau, Rajeev Thakur, Kamil Iskra, Ken Raffenetti, Franck Cappello,
Rinku Gupta, Pete Beckman, Marc Snir, Henry Hoffmann, Martin Schulz, and
Barry Rountree. 2015. Distributed Monitoring and Management of Exascale
Systems in the Argo Project. In Distributed Applications and Interoperable Systems,
Alysson Bessani and Sara Bouchenak (Eds.). Springer International Publishing,
Cham, 173-178.

Barry Rountree, David K. Lowenthal, Bronis R. de Supinski, Martin Schulz, Vin-
cent W. Freeh, and Tyler Bletsch. 2009. Adagio: Making DVS Practical for Complex
HPC Applications. In Proceedings of the 23rd International Conference on Super-
computing (Yorktown Heights, NY, USA) (ICS °09). Association for Computing Ma-
chinery, New York, NY, USA, 460-469. https://doi.org/10.1145/1542275.1542340
Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Maziéres,
and Nickolai Zeldovich. 2011. Energy Management in Mobile Devices with the
Cinder Operating System. In Proceedings of the Sixth Conference on Computer
Systems (Salzburg, Austria) (EuroSys ’11). Association for Computing Machinery,
New York, NY, USA, 139-152. https://doi.org/10.1145/1966445.1966459

Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li, Darren
De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy, Christopher Mal-
one, Jimmy Clidaras, and Parthasarathy Ranganathan. 2020. Data Center Power
Oversubscription with a Medium Voltage Power Plane and Priority-Aware Cap-
ping. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS °20). Association for Computing Machinery, New York, NY, USA,
497-511. https://doi.org/10.1145/3373376.3378533

DPS:

[38

[39

[40

[41

[42

[43

[44

[45

]

]

]

]

]

]

]

Adaptive Power Management for Overprovisioned Systems

Ryuichi Sakamoto, Thang Cao, Masaaki Kondo, Koji Inoue, Masatsugu Ueda,
Tapasya Patki, Daniel Ellsworth, Barry Rountree, and Martin Schulz. 2017. Produc-
tion Hardware Overprovisioning: Real-World Performance Optimization Using
an Extensible Power-Aware Resource Management Framework. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 957-966.
https://doi.org/10.1109/IPDPS.2017.107

Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. 2014. Max-
imizing Throughput of Overprovisioned HPC Data Centers Under a Strict
Power Budget. In SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 807-818. https:
//doi.org/10.1109/SC.2014.71

Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry Rountree, and Bronis de
Supinski. 2013. Optimizing power allocation to CPU and memory subsystems in
overprovisioned HPC systems. In 2013 IEEE International Conference on Cluster
Computing (CLUSTER). 1-8. https://doi.org/10.1109/CLUSTER.2013.6702684
Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan
Chen. 2013. Power Containers: An OS Facility for Fine-Grained Power and Energy
Management on Multicore Servers. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Houston, Texas, USA) (ASPLOS ’13). Association for Computing
Machinery, New York, NY, USA, 65-76. https://doi.org/10.1145/2451116.2451124
David Snowdon, Etienne Sueur, Stefan Petters, and Gernot Heiser. 2009. Koala a
platform for OS-level power management. Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys’09, 289-302. https://doi.org/10.1145/
1519065.1519097

Tapan Srivastava, Huazhe Zhang, and Henry Hoffmann. 2023. Penelope: Peer-
to-Peer Power Management. In Proceedings of the 51st International Conference
on Parallel Processing (Bordeaux, France) (ICPP "22). Association for Computing
Machinery, New York, NY, USA, Article 43, 11 pages. https://doi.org/10.1145/
3545008.3545047

Vibhore Vardhan, Wanghong Yuan, Albert III, Sarita Adve, Robin Kravets, Klara
Nahrstedt, Daniel Sachs, and Douglas Jones. 2009. GRACE-2: Integrating fine-
grained application adaptation with global adaptation for saving energy. IJES 4
(01 2009), 152-169. https://doi.org/10.1504/1JES.2009.027939

Xiaorui Wang and Ming Chen. 2008. Cluster-level feedback power control for
performance optimization. In 2008 IEEE 14th International Symposium on High
Performance Computer Architecture. 101-110. https://doi.org/10.1109/HPCA.2008.
4658631

Yawen Wang, Daniel Crankshaw, Neeraja J. Yadwadkar, Daniel Berger, Christos
Kozyrakis, and Ricardo Bianchini. 2022. SOL: Safe on-Node Learning in Cloud

(47

[48

[50

[51

[52

[53

[54

[55

]

SC ’23, November 12-17, 2023, Denver, CO, USA

Platforms. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS °22). Association for Computing Machinery, New York,
NY, USA, 622-634. https://doi.org/10.1145/3503222.3507704

Zhikui Wang, Cliff McCarthy, Xiaoyun Zhu, Partha Ranganathan, and Vanish
Talwar. 2008. Feedback Control Algorithms for Power Management of Servers.
(01 2008).

Andreas Weissel, Bjorn Beutel, and Frank Bellosa. 2002. Cooperative I/O: A
Novel I/O Semantics for Energy-Aware Applications. In 5th Symposium on
Operating Systems Design and Implementation (OSDI 02). USENIX Association,
Boston, MA. https://www.usenix.org/conference/osdi-02/cooperative-io-novel-
io-semantics-energy-aware-applications

Greg Welch, Gary Bishop, et al. 1995. An introduction to the Kalman filter. (1995).

Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree. 2017.
PANN: Power Allocation via Neural Networks Dynamic Bounded-Power Allo-
cation in High Performance Computing. In Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing (Denver, CO, USA) (E2SC’17). As-
sociation for Computing Machinery, New York, NY, USA, Article 8, 7 pages.
https://doi.org/10.1145/3149412.3149420

Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing, Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 44-60.

Wanghong Yuan and Klara Nahrstedt. 2003. Energy-Efficient Soft Real-Time
CPU Scheduling for Mobile Multimedia Systems. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles (Bolton Landing, NY, USA)
(SOSP °03). Association for Computing Machinery, New York, NY, USA, 149-163.
https://doi.org/10.1145/945445.945460

Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance Under
a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques.
SIGARCH Comput. Archit. News 44, 2 (mar 2016), 545-559. https://doi.org/10.
1145/2980024.2872375

Huazhe Zhang and Henry Hoffmann. 2018. Performance & Energy Tradeoffs
for Dependent Distributed Applications Under System-Wide Power Caps. In
Proceedings of the 47th International Conference on Parallel Processing (Eugene,
OR, USA) (ICPP 2018). Association for Computing Machinery, New York, NY,

USA, Article 67, 11 pages. https://doi.org/10.1145/3225058.3225098
Huazhe Zhang and Henry Hoffmann. 2019. PoDD: Power-Capping Dependent

Distributed Applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver, Colorado)
(SC °19). Association for Computing Machinery, New York, NY, USA, Article 28,
23 pages. https://doi.org/10.1145/3295500.3356174

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
10.5281/zeno0do.8066467

ARTIFACT IDENTIFICATION

This paper proposes a power management system, named DPS, that
improves undergoing application performance while respecting
a cluster-wide power budget without relying on a model. DPS
interacts with the hardware and assumes no knowledge of any
application. The artifact includes a Python package of DPS which
can be imported to deploy or test on any workload!. The package
also includes an implementation of the power plugin for the SLURM
workload manager, and an oracle as described in section 5.2. The
experiments of this paper are conducted with the HiBench and the
NAS Parallel Benchmark Suites. The provided artifact also includes
a script to automatically reproduce all experiments in this paper.
In addition to the above, we include scripts to install and config-
ure all required software packages, and produce plots for all figures
in the paper. A detailed README.md, describing how to run exper-
iments and reproduce each figure, is included in the description.

REPRODUCIBILITY OF EXPERIMENTS

The artifact includes a setup script that needs to be executed at the
beginning to establish the connection between nodes and install
all the required benchmarks and tools. Next, a script is provided
to run experiments on two clusters with any workload pair as
described in section 5.2, under any power cap as long as it respects
the hardware specification. We also provide a script to automatically
run all workload pairs using the configuration mentioned in this
paper. The script will run four main experiments.

e Constant allocation Each benchmark workload will be
tested under a constant 110W power cap per socket. This
experiment will provide the baseline throughput time.

e Low utility Mid-power and high-power Spark workloads
will be executed when paired with low-power Spark work-
loads. 28 pairs of workloads will be tested. The results of this
experiment will be used to generate a similar plot as Figure
4.

e High utility Mid-power and high-power Spark workloads
will be paired with each other and executed. The results
of 49 pairs of workloads in this experiment will be used to
generate a similar plot as Figure 5.

e Spark NPB Mid-power and high-power Spark workloads
will be paired with NPB workloads. The results of this ex-
periment include 56 pairs of workloads and will be used to
generate a similar plot as Figure 6.

Once the experiments complete, the results can be plotted using
the provided plotting scripts. Given the performance variance in
Spark workloads, Spark workload in each pair is repeated at least 10
times. Consequently, the total execution time of the experimental
runs is over 1,000 hours.

Uhttps://github.com/jerryding95/DPS-Dynamic-Power-Scheduler

Once all pairs are executed, the experimental results can be
separated by the power management systems tested, Constant Allo-
cation, Oracle, SLURM, and DPS. The results include the start time,
end time, and throughput time of each workload. The throughput
time is the performance metric we use to plot figures in this pa-
per. The harmonic mean throughput time of each workload in the
Constant Allocation group will be the baseline. The speedup of a
workload in a pair in another group, for example in Figure 5(a), is
calculated as the baseline divided by the workload’s harmonic mean
throughput time in that group. When several pairs are grouped,
for example in Figure 4, the speedup is the baseline divided by the
harmonic mean of all the runs of the workload. In Figure 5(b) and
Figure 6, the value is the harmonic mean of the speedup of the two
paired workloads.

The experimental results also include a log of the average power
during every operating cycle, the power cap set, and the priority (if
DPS is running) at every operating decision for each socket. One
can match the power-related data to each workload using the start
and end time and further plot the time-series power-related data.
We can also get the average power consumption during the lifetime
of a workload. Furthermore, we can compute the satisfaction of
each node and the fairness between the two clusters. In the artifact,
we include a script that computes the fairness of each pair and
generates a figure similar to Figure 7.

ARTIFACT DEPENDENCIES REQUIREMENTS

As stated in section 4.2, although DPS is not tied to any power-
management interface, the package is implemented to interact
with the hardware with RAPL, therefore the only hardware require-
ment is Intel processors with RAPL available. The experiments in
this paper were conducted on Cascade Lake R processors, yet the
requirement is any newer generation than Sandybridge inclusively.
A Linux system version newer than 18.04 inclusively is required
as we did not test on older versions. To reproduce the experiment
results in this paper, the following software libraries are needed:

e Python 3.6

e Java OpenJDK 8u362-b9
e Hadoop 2.7.7

e Spark 2.4.8

e OpenMPI 4.1

The experiments in this paper use two public datasets as follows:

e HiBench 7.1
e NPB 3.4.2

These two benchmark suites represent two distinct workload sets
on a distributed system. The Spark workloads in the HiBench bench-
mark suite have distinct power phases while the HPC workloads in
the NPB benchmark suite always consume the total power budget.

The program is mainly implemented in Python, therefore we list
all dependent Python libraries below:

e Numpy 1.25
e Scipy 1.10.1

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

We have included two scripts to automatically set up the cluster and
install all required libraries. More specifically, the setup_cluster.sh
script sets up the network alias first, then downloads and in-
stalls the four required software libraries on all machines, and
lastly builds the DPS Python package on all machines. The initial-
ize_hibench_hadoop_spark.sh script will start the HDFS, Yarn, and
Spark processes and generate the input Spark data. The total time
to set up the cluster and install the libraries and packages should
be under 20 minutes, given adequate downloading speed.

To execute workloads, we provide a Python script, exp.py. One
can execute one workload with the script by specifying the work-
loads on two clusters respectively, the power management system,
and workload repeating times in the arguments. As stated in Appen-
dix A.2, we include a run_experiment.sh script to run all workload
pairs to reproduce the experiment results in this paper, which will
take over 1,000 hours. To run toy examples taking shorter time, one
can change the repeat variable in the run_experiments.sh script to
1 and change all NPB benchmark classes in the NPB_CLASS vari-
able in src/DPS/config.py file to S before building the package.,
and then execute the run_experiment.sh script. This would bring
the total time down to under 3 hours.

Ding, et al.

	Abstract
	1 Introduction
	2 Related work
	2.1 Constant Allocation Systems
	2.2 Model-based Systems
	2.3 Stateless Model-free Systems

	3 Power Management with Dynamics
	3.1 Fluctuating Power Demands
	3.2 Power Management Challenges
	3.3 Power Dynamics

	4 DPS Design
	4.1 Design Principles
	4.2 Hardware Support: RAPL in DPS
	4.3 DPS Control System
	4.4 Power Dynamics Address Challenges

	5 Experimental Setup
	5.1 Hardware Evaluation Platform
	5.2 Data Analytics and HPC Benchmarks

	6 Results and Evaluations
	6.1 Performance: Spark Low Utility Workloads
	6.2 Performance: Spark High Utility Workloads
	6.3 Performance: Spark & NPB Workloads
	6.4 Fairness Analysis
	6.5 Overhead Analysis
	6.6 Summary of Key Results

	7 Conclusion
	8 Acknowledgement
	References

