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ABSTRACT

Maximizing performance under a power budget is essential for

HPC systems and has inspired the development of many power

management frameworks. These can be broadly characterized into

two groups: model-based and stateless. Model-based frameworks

use machine learning to achieve good performance under a power

budget but are highly dependent on the quality of the learned model

and the data used to train it. Stateless frameworks are more robust

and require no training, but are generally lower performance. In

this paper, we propose a new framework that does not require a

model, but does track a small amount of state in the form of recent

power dynamics. We implement this idea and test it on a public

cloud running both Spark and HPC jobs. We �nd when total power

demand is low, our framework achieves equivalent performance to

prior work, but when power demand is high it achieves mean 8%

performance improvement (with no reliance on a learned model).
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1 INTRODUCTION

As the scale of distributed systems increases, power becomes the

bottleneck of the system design. The US Department of Energy

(DoE)’s goal for Exascale Computing is to operate in a power enve-

lope of 20–30 MW [30]. Overprovisioning—building a systemwhich

is capable of drawing power over its budget and then limiting in-

dividual nodes to respect the budget—has thus been proposed to

increase scale while respecting a power budget [33]. To support this

goal, modern processors include power-capping hardware. Since

the Sandy Bridge architecture, Intel processors have supported the

RAPL (Running Average Power Limit) interface, which takes a pro-

cessor power limit and meets it by automatically managing voltage

and frequency [6].
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In real systems, it is rare that all machines operate at full power.

For example, cloud servers typically operate between 10 to 50%

utilization [3]. Thus, unused power budget on low-power machines

to be migrated to those operating at their power caps to increase

performance. This creates the need for a power management system

that assigns the cluster-wide power budget dynamically based on

power usage such that system performance is maximized.

Prior work proposes three broad categories of power managers:

• Constant allocation systems assign an equal power bud-

get to each node. This approach is simple to implement and

clearly respects the cluster-wide power budget. However, it

is rarely optimal as it cannot shift power dynamically based

on demand.

• Model-based systems use machine learning or similar ap-

proaches [29, 50, 55] to construct models that capture the re-

lationship between measurable system behavior and power-

performance tradeo�s. These systems then use their models

to �nd performance-optimal power assignments and can

dynamically adapt to changes in the operating conditions or

workload. But such models require a huge amount of data

to train, which creates a non-negligible deployment over-

head to migrate such systems to new architectures. They

can also be brittle and subject to failure if the system enters

an operating regime that is not captured in the training data

[46].

• Model-free stateless systems (later referred to as stateless

systems) use no model, and in fact, keep no knowledge or

reference to past operations. Instead, they make decisions

based solely on instantaneous power consumption, shift-

ing unused power from nodes operating below their caps,

to nodes operating at their cap. This model-free approach

works because it is assumed that nodes operating at their

cap can achieve good performance with more power and

nodes operating below their cap will not be hurt if their cap

is lowered. A well-known example of the stateless system

is the power management plugin of SLURM (later referred

to solely as SLURM) which is currently world-widely de-

ployed on many supercomputers and distributed systems

[51]. Such systems are lightweight and ready to operate once

con�gured. They are also robust to di�erent scenarios as they

make decisions based solely on current power usage. How-

ever, lacking a model, they do not have the means to predict

future power states and thus have limited ability to optimize

power allocations.

To illustrate the di�erences between these approaches (and ulti-

mately argue for a new approach), Figure 1 compares 4 di�erent

power management systems (rows 2 to 5) operating on a two-node

(depicted in solid bars) overprovisioned system over 5 timesteps

(shown on x-axis). The caps assigned at each timestep are depicted

This work is licensed under a Creative Commons Attribution‐ShareAlike International 4.0 License.
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Figure 1: Motivational Example: power management systems

in dotted frames. In this example, both nodes will eventually exe-

cute at the maximum power (as shown in the top row with in�nite

budget); however, Node 0 increases its power 2 timesteps before

Node 1 (shown on the �rst row). The constant allocation (row 2)

wastes part of the budget at T2 and T3 but evenly distributes power

at T4. A Perfect Model-based system and a stateless system fully

utilize the budget through time T3. At T4, a perfect model-based

system reassigns part of Node 0’s budget to Node 1, but a stateless

system sees both nodes operating at their power caps and continues

with this disproportionate power allocation, starving node 1. This

raises the question of whether there is a practically realizable power

management system that can arrive at the same place as a perfect

model-based system while looking only at power data.

In fact, this paper argues that there is an important, yet unex-

plored, middle ground between model-based systems and stateless

model-free systems. Speci�cally, power dynamics—changes in power

usage over time—reveal a great deal of information that can be used

to allocate power budgets in a distributed system without reliance

on complicated models. Consider again the example in Figure 1.

From time T1 to T3, node 1’s power increases and it is likely that

it will need more power in the future. By tracking these changes,

power can be redistributed based on the system’s dynamics, without

reliance on a complicated model.

Based on these observations, we present the Dynamic Power

Scheduler (DPS), a model-free stateful power manager for overpro-

visioned systems that improves performance while maintaining a

cluster-level power limit. Inheriting the low-overhead advantage

of the model-free stateless approaches, DPS assumes no a priori

knowledge of application workloads and monitors only power data.

DPS decides the power cap for each node by �rst using a stateless

approach and then updates this initial power distribution using

power dynamics, which include an estimate of each node’s �rst de-

rivative of power and its frequency of power changes. These power

dynamics are then converted into a priority that modi�es the initial

power distribution to ensure that nodes that either (1) need power

now or (2) will likely need power in the near future get that power.

DPS also uses power dynamics to ensure that when power usage

�uctuates too quickly to bene�t from active management, it never

produces worse performance than a constant allocation.

Figure 1 includes DPS as the last row. DPS makes the same

decision as the stateless system until T2. When the power needs

exceed the power budget at T3, di�erent from the stateless system,

DPS detects the increasing trend of Node 1’s power and adjusts the

caps to the anticipated power need. Then at T4, it is able to continue

assigning balanced caps just as a perfect model-based system does.

We implement DPS and test it on an 11-node Linux/x86 server

cluster with the machine learning workloads in the HiBench bench-

mark suite [20] and an HPC benchmark suite, the NAS Parallel

Benchmarks (NPB) [2]. The Spark applications demonstrate distinct

phases in power changes while the HPC applications continuously

require high power. Machine learning applications are implemented

and executed in Apache Spark, and categorized into two groups

based on the application’s power usage. We test in three experimen-

tal setups where two clusters are run in parallel to re�ect a real-

world cloud service utility. In the �rst setup where mid-power Spark

applications are paired with low-power Spark applications, our re-

sults show that DPS achieves similar mean performance to prior

stateless systems, but with a maximum improvement in application

performance of up to 17.5%. In the second setup where high-power

and mid-power Spark workloads are paired together, DPS outper-

forms the power-management plugin in the wide-used resource

manager, SLURM by a mean 5.4%. In the third setup where Spark

applications are paired with NPB applications, DPS out-performs

SLURM, by a mean 8.0% and up to 21.3%.

We acknowledge that a highly constrained set of application

workloads (and inputs) could bene�t from 1-time training in a

model-based approach, which, however, bares a non-negligible

overhead beyond such a constrained scenario, as we believe HPC

(and cloud) workloads are becoming increasingly diverse and dy-

namic. On the contrary, DPS can be deployed on any cloud system,

including commercial cloud systems like elastic clouds. DPS can

also be deployed in systems where the applications are black-boxes

where Model-based systems are essentially unable to operate.

To our best knowledge, this paper proposes the �rst model-free

stateful power manager and makes the following contributions:

• Developing a model-free stateful power management system

to maximize performance under a power cap. The state is

simply the recent power usage changes, which we refer to

as power dynamics.

• Proposing a new methodology for designing power manage-

ment systems based only on recent power behavior.

• Making all scripts, code, and data available as open source,

so others can test or extend these results.
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2 RELATEDWORK

Power and energy have become �rst-order concerns for computer

system design. Therefore, power management has been proposed

at both node and cluster-level. We �rst brie�y cover node-level

designs before reviewing cluster-level solutions (the topic of this

paper). Cluster-level solutions, of course, require some node-level

support [4]. Several OS projects add support for node-level power

monitoring and energy allocation [11, 17, 21, 36, 41, 42, 44, 48, 52].

Several studies pro�le applications or hardware-level metrics to

improve energy e�ciency [16, 31]. To support setting power limits,

Intel’s SandyBridge and later processors provide power manage-

ment in hardware [6]. RAPL provides an interface for specifying a

power limit and then keeps the processor at or below that limit.

As we enter the exascale era, the United States Department

of Energy (DoE) is anticipating a cluster-level power envelope

of 10s of Megawatts (MW)[30]. In this scenario, it is anticipated

that large-scale systems for supercomputing and datacenters will

be overprovisioned; that is, it will not be possible to power each

server at its TDP (Thermal Design Power) while still respecting

the cluster-level budget. For example, prior work proposes improv-

ing performance for HPC systems by overprovisioning and using

RAPL to set node-level power limits below TDP [33]. In industry,

Google has deployed overprovisioned systems worldwide for sev-

eral years [37]. The overprovisioned system has become a practical

and critical approach to addressing tight cluster-level power limits

in current and future cloud clusters. As introduced in Section 1,

prior works on cluster-level power management systems can be

generally separated into three categories and this section covers

each.

2.1 Constant Allocation Systems

Some early works in cluster-level power management explore con-

stant allocation systems that set a static power cap for each node

in the system [12, 35]. Patki et al. [33] �rst explored application

scalability in a strictly overprovisioned system with a constant al-

location system using RAPL to set node-level power limits. Sarood

et al. [40] extended this system to include power limits on DRAM.

Constant allocation systems assure cluster-level power limits and

are easy to implement (given RAPL’s hardware support), but using

the same peak power limit for all nodes leads to sub-optimal appli-

cation performance, as nodes with compute-heavy workloads run

at the limits, and other nodes run below their limits, making poor

use of the available power.

2.2 Model-based Systems

Researchers quickly realized the limits of constant allocation and

turned to solutions that dynamically allocate power. A prominent

class of model-based systems uses machine learning to make deci-

sions on how to set node-level caps to meet cluster-wide budgets.

For example, Lee et al. [26] models I/O behavior to dynamically

adjust per-node power budgets by shifting power from I/O bound

nodes to compute bound ones. The idea of power management via

a workload characterization model has been studied within various

types of services, including online data-intensive services [29], par-

allel workloads [19], non-interactive workloads [10], visualization

workloads [5], and microservices [18]. Several works build job per-

formance models to manage an isolated component or coordinate

multiple components [13, 14, 25, 27, 39]. Machine learning models

are also widely studied for power management. The PowerShift

project models coupled applications o�ine to make power cap de-

cisions based on its model’s predictions [54]. The PoDD project

upgrades this idea by building machine learning models online

[55]. The PANN project uses neural networks to dynamically al-

locate power in overprovisioned systems [50]. Some other works

build feedback-based models to improve power e�ciency. Wang

et al. [47] establishes a feedback control framework to improve

power e�ciency with DVFS. Several feedback-based systems are

proposed to adaptively apply power capping and maximize per-

formance [15, 28, 45, 53]. Model-based systems generally achieve

near-optimal performance under the assumption that their models

have su�cient training data. Once trained, their optimality (and

sometimes even ability to meet the power budgets) is dependent

on the assumption that runtime workloads are drawn from the

same distribution as their training data. If the architecture or work-

loads change signi�cantly from this training set, the models will

no longer maximize performance, and in some cases might fail to

maintain the power budget.

2.3 Stateless Model-free Systems

Stateless model-free systems eliminate the dependence on a well-

trained model. SLURM is a widely used cluster job and resource

management system that incorporates a power management plu-

gin. SLURM’s power management system is a stateless system that

maintains a cluster-wide power limit by setting node-level power

caps using only the current power measurements [51]. A frame-

work based on SLURM provides safe hardware overprovisioning on

a 965-node cluster at Kyushu University [38]. The Argo project in-

corporates a conclave-node two-level stateless power management

system [7–9, 34]. The Fukagu supercomputer incorporates a core

retention mode to turn o� idle nodes based on current processes

and improve energy e�ciency [24]. These systems demonstrate

the practical bene�ts of approaches that eschew models. However,

stateless model-free systems make power assignments using only

current power usage, forcing a greedy optimization strategy. They

lack the ability to predict future power usage and escape local

optima, providing sub-optimal performance, especially when work-

loads transition through phases of high- and low-power needs.

To the best of our knowledge, only model-free systems are de-

ployed in production clusters. As of June 2022, SLURM is the default

resource and job manager for 5 supercomputers in the top 10 of the

Top 500 list, including Frontier, LUMI, Sunway TaihuLight, Perl-

mutter, and Tianhe-2A [1]. Fukagu still remains as the second top

supercomputer in the world. Therefore this paper takes the position

that a power management system that can be applied in real-world

systems should not rely on a model that introduces a high deploy-

ment cost and a reliance on well-calibrated training data. Thus, this

paper explores a model-free power management system that can

escape local optima by incorporating power dynamics.
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3 POWER MANAGEMENTWITH DYNAMICS

Overprovisioned systems must divide a cluster-wide power budget

among individual nodes. We refer to the maximum power that a

node could draw as its power demand. Generally, meeting a node’s

power demand will result in higher performance; compute-bound

nodes tend to have high power demands, while memory- and IO-

bound nodes tend to have lower demands. So, a power manager

should meet a node’s demands whenever possible. However, some-

times there is not su�cient budget tomeet all nodes’ demands simul-

taneously. In this case we would like to ensure each node is equally

penalized so the power budget is fairly distributed according to

demands. We note that this is a novel de�nition of fairness—instead

of evenly distributing power among units, we seek to distribute

power proportional to each node’s demands. In other words, we

de�ne fairness based on a node’s power demand rather than its

absolute power.

Although it is di�cult to quantify how much a single node’s

power demand is capped at a certain time, we can de�ne a more

general term of how a node’s power demand is satis�ed throughout

the lifetime of a workload, as the node’s satisfaction. Equation 1

shows the de�nition of satisfaction of Node n. Then we can further

de�ne the fairness of allocating the power budget to two nodes. As

shown in Equation 2, the fairness of Node ğ and Ġ is unity minus the

absolute di�erence between the satisfaction of ğ and Ġ . The fairness

is between 0 and 1, and the higher the fairness is, the two nodes are

getting closer percentages of the power budget they demand. Aswill

be discussed later in section 6, a higher fairnesswill generally result

in a higher harmonic mean performance of di�erent workloads.

ĩėĪğĩ ĜėęĪğĥĤ(Ĥ) =
average power under current cap

average power under no cap
(1)

ĜėğĨĤěĩĩ (ğ, Ġ) = 1 − |ĩėĪğĩ ĜėęĪğĥĤ(ğ) − ĩėĪğĩ ĜėęĪğĥĤ( Ġ) | (2)

While conceptually simple, meeting power demands fairly is

challenging in practice for two reasons: (1) the true demand cannot

be measured directly as the system might be capped and (2) the

demands vary dynamically, so even once the demand is known at

some point, it is not clear what it will be in the future. Because

di�erent machines may support di�erent power management scales

(cores, sockets, or nodes), in the following text we refer to each part

of a machine that supports power capping individually as a unit.

3.1 Fluctuating Power Demands

Power demand is continually changing. At any time, a unit’s power

demand depends on its application workload and even di�erent

phases within an application. Figure 2 shows three Apache Spark

applications—LDA, Bayes, and LR—and their power over time, exe-

cuted separately without power limit. We refer to the power con-

sumption that an application would exhibit without a cap as its

power demand. From the �gures we summarize three observations

about these applications’ power dynamics; i.e., their changes in

power demand over time.

• Power phase duration is diverse. Applications put dif-

ferent computing loads on the system at di�erent times, re-

sulting in power phases. In Figure 2a, LDA has a long phase
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Figure 2: Power phases for di�erent applications.

ranging from second 0 to 125. Figure 2c shows LR has many

phases shorter than 10 seconds, for example from second 140

to 149. Figure 2b shows phase durations in between these

extremes, but each phase has a di�erent length. One longer

duration ranges from second 50 to 75, but a shorter one lasts

only 13 seconds, from second 235 to 248.

• Peak power at each phase is diverse. In Figure 2b, Bayes’s

peak power is di�erent for di�erent phases. For example,

from second 50 to 75, power increases to 165W, but from

second 175 to 192, the peak power is only 110W.

• The �rst derivative of power is diverse. When power

changes, its �rst derivative also di�ers based on the current

computing loads. In Figure 2a, power increases from 20W

to 160W in 3 seconds starting from second 3, but decreases

slowly from 160W to 70W in 20 seconds starting from second

97. In Figure 2b, changing speeds are di�erent in di�erent

phases: from second 50 to 75, power both increases and

decreases quickly, but from second 195 to 225, power both

increases and decreases slowly.

3.2 Power Management Challenges

Under a system-wide power budget, the power dynamics observed

above lead to two power management challenges:

• Matching the power demands and the budget through

application phases. To respect all units’ demands fairly,

the power management system should not over or under

allocate the budget to any unit. Under-allocating limits that

unit’s performance, while over-allocating means less budget

is available for other units. Yet the diversity in both peak

power and power derivatives makes it hard to match the

allocation to demands fairly.

• Handling high-frequency power changes. Power man-

agement decisions take time. But the diverse power phase

duration can be too short for the system to react. For exam-

ple, in Figure 2c the periods of high and low power usage
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Table 1: Terminology.

Variable Description

Ī Timestep Ī

ĐC Time at Ī

ĚĐ The granularity of timesteps

āC Energy consumption till Ī

ČC Power consumption at Ī
3%C
3)

Derivative at Ī

āC (Č) Estimated power at Ī

ÿC Power cap at Ī

are very short and the power manager must determine if it

can reallocate power fast enough to improve performance. If

it cannot, there is a risk that overall performance is worse as

the system reacts too slowly, providing extra power just as

the application transitions to a low-power phase and taking

power just as it transitions to high power.

3.3 Power Dynamics

A key observation in this work is that power changes with inertia;

power changes are locally predictable, meaning we can estimate

near-future power changes from recent power history. We de�ne

the components in the power history that are useful for this estima-

tion as power dynamics and identify two key components: the �rst

derivative and the frequency. Relevant symbols and terminology

are included in Table 1.

The estimation of the �rst derivative is as de�ned in equation 3.

It indicates the direction and magnitude of power changes. If it is

positive, power is increasing, and vice versa. The absolute value of

the �rst derivative indicates the speed of change. Though it does

not allow us to predict the exact power consumption, it implies the

direction that the power is most likely to go. If power is increasing

quickly, power will likely either increase or stay high in the near

term. Similarly, if power is decreasing quickly, we can predict the

unit will not need more power budget in the near term.

ĚČC =
ČC − ČC−1

ĚĐ
(3)

But such prediction can be wrong when the frequency change

is high. Therefore the frequency is another important element in

the power dynamics. The frequency is inferred from the number

of power peaks in the recent past. The frequency may be too fast

for the power management system to keep up with. In this case,

it is important to know the reaction speed of the power manager,

and have a separate power allocation mechanism that handles the

case when the power change frequency is faster than the power

management system’s reaction.

4 DPS DESIGN

DPS is a model-free stateful power manager. It builds o� of prior

stateless approaches, but distinguishes itself by taking power dy-

namics into consideration and attaching a priority to each power-

allocation unit based on the observed dynamics.

Power Caps

Temporary Cap Allocation Result

Estimated
Power History

Queue

Priority
Module

Priority
Array

Cap
Readjusting

Module

Stateless
Module

Kalman
Filter

Figure 3: DPS control system design

4.1 Design Principles

DPS has two fundamental design goals: overhead minimization

and performance maximization. Overhead includes both operation

and deployment. The operating overhead is the cost of making

decisions, including data collection, signal transition, power cap

setting, etc. The deployment overhead is the preparation cost for

the system to operate, for model-based systems, this can be large. In

summary, the goals of low overhead (deployment and operational)

and high performance lead to the following design principles:

• Minimum load on applications. The system should have

minimal impact on application performance, including the

cost of monitoring and setting power, communication, etc.

• No initial pro�ling or data-driven model building. A

model of any kind that involves pro�ling or training data will

dramatically increase overhead compared to a model-free

system. Instead of relying on such a pre-trained model to

predict the power demand, DPS incorporates power dynamics

to make decisions on power caps.

• Only power usage data is involved. Making decisions

based on any metric other than power usage requires addi-

tional operational and deployment overhead. DPS thus uses

only unit-level power consumption data.

• Ensures the same lower-bound performance as con-

stant allocation. For any power management system that

makes dynamic decisions, there is a risk that it may make

worse decisions than simply dividing the cluster-wide power

budget equally for each unit, resulting in a lower fairness

than what constant allocation guarantees. Indeed, prior work

can reduce performance compared to constant allocation

in certain scenarios (see Section 6). However, DPS ensures

the same lower-bound performance as constant allocation

because it incorporates power dynamics, so it knows when

power behavior will be poorly suited to dynamic reallocation

and it switches to a constant approach.

4.2 Hardware Support: RAPL in DPS

DPS interacts with the hardware in 2 ways, reading power usage

data and setting power caps. Both abilities are supported by Intel’s

RAPL system [6]. RAPL observes various low-level hardware events

and estimates energy consumption based on event counters. Still,

the accuracy of RAPL’s energy readings is shown to be high and

the overhead is low [23].

Although DPS uses RAPL to read power and set the power caps,

it is not tied to the RAPL interface. DPS only needs to interact with

the hardware in these two ways and it can be implemented with

any interface with these functionalities.
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4.3 DPS Control System

DPS consists of a server on a central node and clients on each

computing node (similar to SLURM’s power management plugin).

Each client is responsible for reading power, setting caps, and com-

municating with the server for all the power capping units on the

node. The control system is excluded from the client to minimize

operating overhead. The server keeps a list of all the power cap-

ping units, including their current power caps, estimated power

histories, and priorities, which we will go into detail about later in

this section. The control system on the server, as shown in Figure 3,

consists of 4 modules and two important global data sets. At each

time step, the control system receives current power usage data

from all computing nodes. The stateless module takes in current

power and outputs a temporary cap allocation decision. The pri-

ority module takes in the power history and updates the priorities

attached to all units. Although RAPL has been veri�ed by previous

work to deliver reliably high accuracy, noise exists in power usage

traces and we further assume pessimistically that RAPL bares cer-

tain measurement noise. Therefore we assume the exact power is

not known, but is a hidden variable that must be estimated from

these noisy measurements. To address such noisy measurements,

DPS incorporates a Kalman Filter that takes the (potentially noisy)

power measurements and updates the estimated power history,

which stores the recent power dynamics for each unit. This power

history is then fed into the priority module. The cap readjusting

module �nally takes the priorities and the caps produced by the

stateless module and outputs the cap decisions, internally modify-

ing the caps set by the stateless system based on the priorities. The

control system then sends the new caps to all computing units. This

section introduces each individual module and how the control

system incorporates power dynamics to provide improved power

cap allocation compared to a stateless system, without requiring

any additional measurements or models.

4.3.1 Stateless Module. As indicated by the name, this module is

a stateless power management system, which takes in the current

power and decides the power caps only based on the current power.

This cap result serves as a temporary basis to be readjusted by the

cap resettingmodule. As shown in Algorithm 1, the stateless module

is a Multiplicative-Increase-Multiplicative-Decrease (MIMD) based

controller, inspired by SLURM’s power management system [51]. It

maintains two thresholds for increasing and decreasing the power

cap respectively, set at percentages of the current cap. If a unit’s

current power is below the decreasing threshold, its power cap will

be decreased by a percentage or to its current power. If the current

power of a unit is above the increasing threshold, its power cap will

be increased by a percentage or by what is left in the cluster-wide

budget. The cap-increasing loop is done in a random manner so

that no unit has priority in increasing the cap over others.

4.3.2 Kalman Filter. The Kalman Filter (KF) produces an estimation

of a joint probability distribution over a single measurement for

each time frame by taking unknown noise and variance as other

variables.We use the version of a 1-dimensional Kalman Filter in the

standard formulation that renders minimum computing loads while

providing reliable estimations [49]. More speci�cally in DPS, at each

time step, the KF module calculates the Kalman gain based on the

Algorithm 1: Stateless module

1 Function multp_inc_multp_dec(8=2_CℎA4Bℎ>;3 ,

342_CℎA4Bℎ>;3 , 8=2_?4A24=C8;4 , 342_?4A24=C8;4):
// power: list of current power consumption of all units

// cap: list of current power cap of all units

// set_flag: list of flags for all units of whether the

cap is changed

2 global power, cap, set_flag;

// Initialize set_flag to 0

3 for D ∈ D=8CB do

4 B4C_5 ;06[D ] ← 0 ;

// First loop: decrease caps

5 for D ∈ D=8CB do

6 if ?>F4A [D ] < 20? [D ] ∗ 342_CℎA4Bℎ>;3 then

7 20? [D ] ← max(?>F4A [D ],

20? [D ] ∗ 342_?4A24=C8;4) ;

8 B4C_5 ;06[D ] ← 0;

// Second loop: increase caps in random order

9 0E08;_1D364C ← C>C0;_1D364C - sum(cap);

10 for D ∈ random(D=8CB) do

11 if ?>F4A [D ] > 20? [D ] ∗ 8=2_CℎA4Bℎ>;3 then

12 C4<?C ← min(20? [D ] ∗ 8=2_?4A24=C8;4 ,

0E08;_1D364C);

13 20? [D ] ← C4<?C;

14 0E08;_1D364C ← 0E08;_1D364C − C4<?C;

estimation uncertainty, which is updated after each estimation, and

produces an estimation of current power. The estimation will be

pushed into the global estimated power history queue.

4.3.3 Priority Module. The priority module estimates the two prop-

erties of power dynamics, the frequency and the �rst derivative,

and attaches a priority of either high or low to each unit.

As shown in algorithm 2, the priority module keeps track of the

changing frequency of units’ power phases. At each time step, the

module �rst identi�es the high-frequency units and attaches high

priorities to them. For those who have already been identi�ed as

high-frequency units, the module checks both the number of promi-

nent peaks [32] and the standard deviation over the power history.

If the two measures are both below their thresholds, they are iden-

ti�ed as low-frequency units. The additional check on the standard

deviation is because of the uncertainty in the power and the �xed

threshold in calculating the number of prominent peaks. Sometimes

the number of prominent peaks can fall below the threshold yet

power is still changing with high frequency, the standard deviation

identi�es such scenarios.

After attaching the priority according to the frequency, the mod-

ule estimates the �rst derivative for all units that are identi�ed

as low frequency. Two thresholds are involved in classifying the

�rst derivative, one positive and one negative. If the �rst derivative

is above the positive threshold, a high priority is attached. If it is

below the negative threshold, a low priority is attached. If it is in

between, the unit’s current priority is not changed. The positive

threshold detects fast power increases, and the negative threshold

detects fast decreases. The reason behind using two thresholds is
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Algorithm 2: Priority Module

1 Function set_priority(8=2_CℎA4Bℎ>;3 , 342_CℎA4Bℎ>;3 ,

BC3_CℎA4Bℎ>;3 , ??_CℎA4Bℎ>;3 , 38A4E_;4=6Cℎ):
// duration_history: list of duration of each power reading

// high_freq_flags: list of flags of whether the unit is

demonstrating high-frequency power changes

2 global power_history, duration_history,

high_freq_flags, priority_arr

3 for D ∈ D=8CB do

4 ??_2>D=C ←count_prominent_peaks(?>F4A_ℎ8BC>A~ [D ],

8=2_CℎA4Bℎ>;3)

5 if not ℎ86ℎ_5 A4@_5 ;06B [D ] then

6 if ??_2>D=C > ??_CℎA4Bℎ>;3 then

7 ℎ86ℎ_5 A4@_5 ;06B [D ] ← )AD4

8 ?A8>A8C~_0AA [D ] ← )AD4

9 continue

10 else

11 if ??_2>D=C < ??_CℎA4Bℎ>;3 and

std(?>F4A_ℎ8BC>A~ [D ]) < BC3_CℎA4Bℎ>;3 then

12 ℎ86ℎ_5 A4@_5 ;06B [D ] ← �0;B4

13 ?A8>A8C~_0AA [D ] ← �0;B4

14 continue

15 if not ℎ86ℎ_5 A4@_5 ;06B [D ] then

16 0E6_38A4E ←
?>F4A_ℎ8BC>A~ [−1]−?>F4A_ℎ8BC>A~ [−38A4E_;4=6Cℎ]

sum(duration_history[u][-direv_length:])

17 if 0E6_38A4E > 8=2_CℎA4Bℎ>;3 then

18 ?A8>A8C~_0AA [D ] ← )AD4

19 continue

20 if 0E6_38A4E < 342_CℎA4Bℎ>;3 then

21 ?A8>A8C~_0AA [D ] ← �0;B4

22 continue

Algorithm 3: Cap Readjusting Module: Restore

1 Function restore(8=2_CℎA4Bℎ>;3):

2 global power, cap, set_flag

// Restore all caps to the initial cap if no unit is

consuming high power

3 A4BC>A4_5 ;06← )AD4

4 for D ∈ D=8CB do

5 if ?>F4A [D ] > 8=8C80;_20? ∗ 8=2_CℎA4Bℎ>;3 then

6 A4BC>A4_5 ;06← �0;B4

7 break

8 if A4BC>A4_5 ;06 then

9 for D ∈ D=8CB do

10 20? [D ] ← 8=8C80;_20?

11 B4C_5 ;06[D ] ← )AD4

that after the power change, the unit’s priority should be kept un-

changed until the power changes again. For example, if a unit is set

as high-priority when its power increases, it should be considered

as high-priority until tasks are �nished and power decreases.

4.3.4 Cap Readjusting Module. After the Stateless Module makes a

temporary cap allocation decision, some of the cluster-wide power

budget could be unassigned. The cap readjusting module allocates

this unassigned budget to all the high-priority units. If there is

no power budget left after the Stateless Module’s adjustment, this

module instead readjusts the caps of all the high-priority units

to force a relatively high fairness between all units and �x any

major unfairness due to the Stateless Module’s random ordering.

However, if there are no large loads in the whole system at all,

and every unit’s power demand is lower than the constant cap

(power budget evenly divided among all units), this module will

ignore all previous decisions and set each unit’s cap to the constant

cap. Such restoration makes sure there is headroom for any unit’s

incoming tasks. Therefore the Cap Readjusting Module is separated

into restoring and readjusting.

Algorithm 3 shows that the restoring part of this module checks

if the current power usage of each unit is under a threshold and

restores the cap of each unit if so. The boolean �ag indicating

whether restoration is made is passed to the readjusting module.

As shown in algorithm 4, the readjusting part �rst checks the

boolean �ag passed by the restoring part. If all caps are already re-

stored, this part will be skipped at once. If not, then it calculates the

remaining unassigned budget and readjusts the caps accordingly.

If there is some remaining unassigned budget, the module will

assign the budget to all high-priority units in a way that units

with lower caps currently will get allocated more additional budget.

Such an allocation decision is made considering two aspects. First,

high-priority units with lower caps will need more budget for them

to reach peak power compared to those with higher caps. Second,

if these units are increasing power in order, units with lower caps

will eventually be penalized harder if they are not allocated more

additional budget at this time step.

On the other hand, if there is no remaining unassigned bud-

get, the module will readjust the caps of all high-priority units

in case units increasing power in order but capped are not penal-

ized equally. The module leaves low-priority units unchanged and

equalizes the caps of all high-priority units. Such a decision not

only limits all high-priority units to the same power cap, but also

ensures that this power cap is no lower than the constant cap, be-

cause low-priority units cannot increase power and get allocated

with additional budgets before this time step. Therefore, the Cap

Readjusting Module ensures the same lower-bound performance

as the constant allocation.

4.4 Power Dynamics Address Challenges

DPS includes all necessary mechanisms to tackle the two power

management challenges identi�ed in Section 3.2:

• Matching the power demands and the budget through

application phases.When a unit quickly increases power—

i.e., a large positive �rst derivative—it is identi�ed as high

priority. By assigning extra power to such units, the Cap

Readjusting Module ensures that they always get a fair allo-

cation in anticipation of their future demands. When cluster-

wide power demand exceeds budget, the Cap Readjusting

Module restores all high-priority units’ power caps to the

same level. Since it is impossible for a model-free system to
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Algorithm 4: Cap Readjusting Module: Readjust

1 Function readjust(A4BC>A4_5 ;06):

2 global power, cap, set_flag, priority

3 if A4BC>A4_5 ;06 then return

4

5 0E08;_1D364C ← C>C0;_1D364C - sum(cap)

6 if 0E08;_1D364C > 0 then
// Assign all the rest budge if any left

7 ℎ86ℎ_?A8>A8C~_A0C8>B ← Dictionary()

8 for D ∈ D=8CB do

9 if ?A8>A8C~ [D ] then

10 ℎ86ℎ_?A8>A8C~_A0C8>B [D ] ← 20? [D ]

11 1D364C_ℎ86ℎ ←sum(ℎ86ℎ_?A8>A8C~_A0C8>B.values())

12 for D ∈ ?A8>A8C~ [D ] .keys() do

13 ℎ86ℎ_?A8>A8C~_A0C8>B [D ] ←

1D364C_ℎ86ℎ/ℎ86ℎ_?A8>A8C~_A0C8>B [D ]

14 C>C0; ←sum(ℎ86ℎ_?A8>A8C~_A0C8>B.values())

15 for D ∈ ?A8>A8C~ [D ] .keys() do

16 20? [D ] ← min(B?42_<0G_20? ,

0E08;_1D364C ∗ ℎ86ℎ_?A8>A8C~_A0C8>B [D ]/C>C0;)

17 B4C_5 ;06[D ] ← )AD4

18 else
// Readjust all high-priority units

19 1D364C_ℎ86ℎ ← 0

20 2>D=C_ℎ86ℎ ← 0

21 for D ∈ D=8CB do

22 if ?A8>A8C~ [D ] then

23 1D364C_ℎ86ℎ ← 1D364C_ℎ86ℎ + 20? [D ]

24 2>D=C_ℎ86ℎ ← 2>D=C_ℎ86ℎ + 1

25 A403 9DBC43_20? ← 1D364C_ℎ86ℎ/2>D=C_ℎ86ℎ

26 for D ∈ D=8CB do

27 if ?A8>A8C~ [D ] then

28 20? [D ] ← A403 9DBC43_20?

29 B4C_5 ;06[D ] ← )AD4

predict the exact fairness at any moment, DPS assumes that

all high-priority units demand the highest power possible.

While it does not guarantee that the maximum fairness is

achieved, it avoids the situation that a high-priority unit’s

power budget is aggressively stripped by another one, re-

sulting in low satisfaction for a high-priority unit, and forces

a relatively high instantaneous fairness.

• Handling high-frequency power changes. DPS identi�es

high-frequency units as high priority. By assuming they are

in need of extra power, DPS assures their performance does

not su�er, even when it cannot react to the speed of their

phase changes. This approach guarantees the same lower-

bound performance as constant allocation, where prior work

(that does not account for these high-frequency changes)

can easily produce worse results than constant allocation (as

we will see in the evaluation section).

5 EXPERIMENTAL SETUP

5.1 Hardware Evaluation Platform

We use the Chameleon cloud [22]. Each experiment runs on a

Server node and ten client nodes. The client nodes include two

clusters. Each node is a dual-socket system running Ubuntu 18.04

(GNU/Linux 5.4) with 2 Intel(R) Xeon(R) Gold 6240 processors, 192

GB of RAM, and hyperthreads. Each socket has 24 cores/48 threads

and a 20 MB last-level cache. TurboBoost is turned on and the

CPU frequency governor is set in performance mode. The servers

support power capping at the granularity of sockets, with a Thermal

Dynamic Power (TDP) of 165W per socket. For all the experiments

in this paper, a cluster-wise 66.7% power limit is enforced.

5.2 Data Analytics and HPC Benchmarks

We test 7 widely-used machine learning applications (written in

Apache Spark) from the HiBench Benchmark Suite [20], and 8

compute-intensive HPC benchmarks from the NAS Parallel Bench-

mark Suite (NPB) [2]. We also use 4 micro applications from the

HiBench Benchmark Suite that consume much less power. Spark

workload specs are listed in Table 2 and the NPB workload specs

are listed in Table 4. Spark workloads are labeled as mid-power if

the time portion above 110W is above 10%, and they are labeled

as high-power if more than 2/3 of the time power is above 110W.

Low-power workloads are executed with 1 Spark executor with

8 cores. The mid-power and high-power workloads are executed

with 48 Spark executors with 8 cores, taking up all cores (including

virtual cores) on the worker nodes. All NPB workloads are consid-

ered as high-power as over 99% of the time power is above 110W.

The thread setting for the NPB workloads is the maximum allowed.

To test the power manager’s ability to adapt to a wide range

of situations, we create several di�erent workload pro�les by co-

executing applications with di�ering power demands. Spark work-

loads have distinct power phases while NPB workloads consistently

consume high power. Therefore, we experiment with the following

three benchmark setups:

• Spark low utility: mid-power and high-power paired with

low-power workloads, representing total utility below 50%.

• Spark high utility: A high-power workload paired with

mid-power workloads, with average utility above 50%.

• Spark NPB: mid-power and high-power Spark workloads

paired with NPB workloads, representing high utility and

tight power demands.

In the �rst group we compare DPS to constant allocation, SLURM’s

power management plugin, and an oracle. In the second and third

group no low-power workloads are included, and the cluster-wide

power demands often exceed the power budget. Meanwhile, the

variation ins Spark makes the instantaneous power demand at a

speci�c time uncertain. Altogether, implementing an oracle in such

cases is extremely di�cult. Therefore we only compare DPS to

constant allocation and the SLURM plugin in this group.

6 RESULTS AND EVALUATIONS

We report results for all scenarios described above. We compare a

number of power managers based on their harmonic mean perfor-

mance improvement over constant allocation. For reference, Tables
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Table 2: Spark benchmark workloads.

Workload Data size Duration Power Type Above 110W

Wordcount 3.1 GB 44.36s low-power 0.18%

Sort 313.5 MB 38.48s low-power 0.10%

Terasort 3.0 GB 54.53s low-power 0.07%

Repartition 3.0 GB 44.92s low-power 0.20%

Kmeans 224.4 GB 1467.08s mid-power 47.58%

LDA 4.1 GB 1254.12s mid-power 51.54%

Linear 745.1 GB 928.36s mid-power 14.53%

LR 52.2 GB 499.37s mid-power 16.69%

Bayes 70.1 GB 342.18s mid-power 33.20%

RF 32.8 GB 415.71s mid-power 35.78%

GMM 8.6 GB 2432.43s high-power 68.96%

Table 3: Spark benchmark computing Resources.

Power Type # Executors Cores per executor

low-power 1 8

mid-power 48 8

high-power 48 8

Table 4: NAS Parallel Benchmark applications.

Workload Data size Duration Threads

BT (Block Tri-diagonal solver) 247.1 GB 3509.29s 144

CG (Conjugate Gradient) 21.8 GB 1839.00s 128

EP (Embarrassingly Parallel) 4 TB 6019.07s 192

FT (Fourier Transform) 400.0 GB 152.83s 128

IS (Integer Sort) 128.0 GB 416.80s 128

LU (Lower-Upper Gauss-Seidel) 296.5 GB 1895.89s 192

MG (Multi-Grid communication) 400.0 GB 143.82s 128

SP (Scalar Penta-diagonal solver) 494.2 GB 3563.23s 144

2 and 4 report themean latency of eachworkload under the constant

allocation scheme (each socket gets 110 W power cap). Although

experiments with multiple power limits lower than the TDP can

provide a more comprehensive evaluation of DPS, multiple runs

of each benchmark workload are needed to diminish the perfor-

mance variance and the benchmark workloads are time-consuming.

We repeated at least 10 runs for each workload and spent over

1,000 hours collecting data for experiments with one power limit.

We note that in all cases (and for all power managers) the power

caps are respected. We therefore focus the evaluation solely on the

di�erence in performance.

6.1 Performance: Spark Low Utility Workloads

When a mid-power workload is paired with a low-power workload,

cluster-wide power demands rarely exceed the budget. As shown in

Figure 4, both DPS and the oracle improve over constant allocation

by 5% to 8% on average. The performance improvements di�er

betweenworkloads, though. DPS provides amaximum performance

improvement for GMMat 17.6%. SLURM also improves performance

for 5 workloads to a similar extent as DPS and the oracle, except for

Linear and LR, which both have high-frequency power phases. LR’s

performance is decreased by 4.0% with SLURM. The performance

di�erence between DPS and SLURM mainly results from DPS’s

ability to identify and handle these high-frequency changes.

For two workloads, LDA and GMM, the oracle doesn’t provide

maximum performance. In fact, the oracle doesn’t provide maxi-

mum performance at all times for any workload. The two reasons

behind this are �rst, cluster-wide power demands rarely exceed

the budget and DPS and SLURM are able to provide close-to-oracle

performance as long as they match power caps to power demands

fast enough, and second, the Spark workloads demonstrate such

variable performance between di�erent runs under the same exe-

cution condition that the average performance of DPS and SLURM

may exceed that of the oracle.

6.2 Performance: Spark High Utility Workloads

When pairing mid-power and high-power Spark workloads, the

cluster-wide power demands often exceed the power budget. In

such cases, the performance re�ects not only how fast the power

management system reacts to demand changes but how both work-

loads are penalized when the power budget is exceeded.

Figure 5 (a) shows the harmonic mean of each mid-power work-

load when it is paired with a high-power workload. DPS delivers

either the same performance or improvements up to 5.2% compared

to the constant allocation. SLURM penalizes all workloads except

GMM. For workloads with long power phases, Kmeans, LDA, and

RF, SLURM slows them down by from 8.9% to 14.3%. The workloads

with high frequencies, Linear and LR, are penalized by up to 7.7%.

Figure 5 (b) shows the harmonic mean of the performance of

each workload and its paired GMM executions. DPS improves the

mean performance of both workloads or ensures the lower-bound

performance all the time, but the mean performance of SLURM is

up to 8.1% below the constant allocation baseline. DPS outperforms

SLUM by up to 22.76% at maximum for LDA. While SLURM always

prioritizes power allocation to GMM and penalizes the other paired

workload, DPS makes sure both workloads are equally penalized.

By taking power fromGMM and allocating it to the other workloads

when necessary, DPS improves performance for bothworkloads and

ensures the same lower-bound performance as constant allocation.

6.3 Performance: Spark & NPBWorkloads

Spark workloads have phases but the NPB workloads always con-

sume high power. That is to say, when a Spark workload is paired

with an NPB workload, they compete for power budget whenever

the Spark workload is not idle. Therefore these performance results

re�ect how well the managers balance a limited power budget.

The Spark NPB group runs Spark workloads on one cluster and

NPB workloads on another, including all exhaustive pairs of mid-

power and high-power Spark workloads and the NPB Workloads.

Among all the pairs, DPS always outperforms SLURM by a range

from 1.7% to 21.3%. Figure 6 (a) shows the result grouped by the

Spark workloads. For each workload in the �gure, the two bars rep-

resent the harmonic mean performance gains of the paired work-

loads managed by DPS and SLURM respectively, normalized to the

constant allocation at 110W per socket. While performance di�ers

between di�erent workloads, DPS improves the performance of

all the workloads. On the contrary, SLURM decreases the perfor-

mance of all workloads but Linear and LR. Since the data in the
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Figure 4: Hmean performance gain of the Spark low utility group normalized to under constant 110W cap.
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Figure 5: Normalized hmean performance gain of the Spark

high utility group.
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Figure 6: Normalized hmean application performance gain

of the Spark NPB group.

�gure represents the harmonic mean between the Spark workload

and NPB workloads, it shows that the performance improvement

of the NPB workloads and the performance decline of the Spark

workloads under SLURM leads to an overall performance drop. For

example, for the pair of GMM and EP, SLURM results in a 30.3%

performance decline for GMM and 27.8% performance increase

for EP, altogether resulting a harmonic mean 9.8% performance

decline. DPS, on the other hand, yields 3.9% and 5.2% performance

increases for GMM and EP respectively, and a harmonic mean 4.6%

performance improvement. DPS outperforms SLURM on Kmeans

by a max 12.4% and a min 1.9% on Linear, and an overall mean 8.0%.
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Figure 7: Fairness of the two High-utility workload groups.

Figure 6 (b) shows the result grouped by the NPB workloads.

Similar to grouping by Sparkworkloads, DPS improves performance

for all NPB workloads, and SLURM decreases performance for all

workloads except LU. The performance speedup also varies among

NPB workloads. For short-duration NPB workloads, such as FT

and EP, when paired with long-duration Spark workloads, such

as Kmeans and GMM, multiple runs are in need to match one

run of the Spark workload. Although NPB workloads consistently

demand high power, the short period between workloads makes

each execution look like a power phase. Given a long range of time,

the short-duration NPB workloads do not always demand high

power. Therefore SLURM delivers better performance with short-

duration NPB workloads. In general, DPS outperforms SLURM by

a minimum of 4.9% on IS and a maximum 12.2% on SP.

6.4 Fairness Analysis

For the Spark Low Utility workloads, DPS, SLURM, and the oracle

achieve similar fairness, close to 1. This is because there is generally

su�cient power to cover all power demands. Yet for the Spark High

Utility workloads, DPS achieves a mean 0.97 fairness while SLURM

achieves only 0.75 mean fairness. Figure 7 shows the distribution of

the workload fairness under DPS and SLURM. More speci�cally for

each workload, DPS gets a fairness from 10.9% to 43.6% higher than

that of SLURM. For the Spark & NPB workloads, where fairness

has the most in�uence on the harmonic mean performance, DPS

and SLURM achieve a mean 0.96% and 0.71% fairness respectively.

Workload-wise, DPS always gets a higher fairness than SLURM,

from 0.2% to 77.5%. We observe a general positive correlation be-

tween fairness and harmonic mean performance.

6.5 Overhead Analysis

All above reported performance data is real measurements on sys-

tems running either DPS or SLURM. The performance data includes

the overhead of the power management systems themselves. DPS
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and SLURM are implemented using the same Internet communica-

tion protocol, while Constant Allocation and Oracle do not have

overhead since they do not change the power caps.

As discussed in section 4, DPS is designed with multiple mod-

ules among which is a stateless module. The stateless module has

theoretically the same overhead as SLURM. Apart from that, the

overhead of the other three modules also scales by a constant cost.

As DPS keeps a short range of estimated power history of each

socket, default 20 time steps, the power history can easily �t in the

last-level cache even scaled to tens of thousands of nodes, taking

up several megabytes. Therefore IO is not bottle-necking the turn-

around time of DPS and we observe that it incurs less than 0.5%

average CPU usage on the controller node with 10 client nodes. In

fact, we observe that communication using the BSD socket inter-

face takes up most of the turnaround time. The network latency is

of tens of microseconds. Scaling to 1,000 nodes would only incur

a several millisecond latency, which is little compared to a one-

second decision loop time. Since only 3 bytes are exchanged per

request with each node, scaling to even 1M nodes, requiring a net-

work tra�c size of 3MB, would put a little burden on a network

bandwidth in GB/s. Such overhead is shared among all centralized

power management systems and consistent with SLURM and prior

work [43, 55]. Therefore we claim that DPS has negligibly more

operating overhead than SLURM, a stateless system, and the con-

troller could handle tens of thousands of nodes with no bottleneck

in computation or network.

Di�erent from model-based systems, DPS is ready to operate

once deployed on a cluster. It needs at most the time of the range

of estimated power history to make desired decisions, which is

defaulted at 20 seconds. SLURM, on the other hand, sets power caps

based on instantaneous power, so it starts to operate functionally

as soon as deployed on a cluster. However, considering 20 seconds

are negligible compared to the lifetime of a cluster, we claim that

DPS has negligibly more deployment overhead than SLURM.

6.6 Summary of Key Results

DPS ensures the same lower-bound performance as the Constant

Allocation. In low-utility scenarios where cluster-wide power de-

mands rarely exceed the power budget, DPS yields similar perfor-

mance to SLURM and an oracle. In high-utility scenarios where

cluster-wide power demands often, or even always exceed the

power budget, DPS outperforms SLURM from 1.7% to 21.3%. Other

work on model-based approaches reports a range of 14% to 22%

improvement compared to SLURM [55]. DPS yields competitive

performance improvement without requiring a model.

7 CONCLUSION

This paper presents DPS, a model-free stateful power management

system that improves application performance in an overprovi-

sioned system. DPS contributes a new methodology for designing

a power management system by analyzing power dynamics. It ex-

plores a promising middle ground between prior work on model-

based systems, which require an expensive and error-prone model

but yields very high performance, and model-free stateless systems,

which make decisions based solely on instantaneous power usage.

We hope this inspires people to further explore the use of power dy-

namics and the temporal relationships residing in power usage data,

and achieve performance even closer to the model-based systems.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI

10.5281/zenodo.8066467

ARTIFACT IDENTIFICATION

This paper proposes a power management system, named DPS, that

improves undergoing application performance while respecting

a cluster-wide power budget without relying on a model. DPS

interacts with the hardware and assumes no knowledge of any

application. The artifact includes a Python package of DPS which

can be imported to deploy or test on any workload1. The package

also includes an implementation of the power plugin for the SLURM

workload manager, and an oracle as described in section 5.2. The

experiments of this paper are conducted with the HiBench and the

NAS Parallel Benchmark Suites. The provided artifact also includes

a script to automatically reproduce all experiments in this paper.

In addition to the above, we include scripts to install and con�g-

ure all required software packages, and produce plots for all �gures

in the paper. A detailed README.md, describing how to run exper-

iments and reproduce each �gure, is included in the description.

REPRODUCIBILITY OF EXPERIMENTS

The artifact includes a setup script that needs to be executed at the

beginning to establish the connection between nodes and install

all the required benchmarks and tools. Next, a script is provided

to run experiments on two clusters with any workload pair as

described in section 5.2, under any power cap as long as it respects

the hardware speci�cation.We also provide a script to automatically

run all workload pairs using the con�guration mentioned in this

paper. The script will run four main experiments.

• Constant allocation Each benchmark workload will be

tested under a constant 110W power cap per socket. This

experiment will provide the baseline throughput time.

• Low utility Mid-power and high-power Spark workloads

will be executed when paired with low-power Spark work-

loads. 28 pairs of workloads will be tested. The results of this

experiment will be used to generate a similar plot as Figure

4.

• High utility Mid-power and high-power Spark workloads

will be paired with each other and executed. The results

of 49 pairs of workloads in this experiment will be used to

generate a similar plot as Figure 5.

• Spark NPB Mid-power and high-power Spark workloads

will be paired with NPB workloads. The results of this ex-

periment include 56 pairs of workloads and will be used to

generate a similar plot as Figure 6.

Once the experiments complete, the results can be plotted using

the provided plotting scripts. Given the performance variance in

Spark workloads, Spark workload in each pair is repeated at least 10

times. Consequently, the total execution time of the experimental

runs is over 1,000 hours.

1https://github.com/jerryding95/DPS-Dynamic-Power-Scheduler

Once all pairs are executed, the experimental results can be

separated by the power management systems tested, Constant Allo-

cation, Oracle, SLURM, and DPS. The results include the start time,

end time, and throughput time of each workload. The throughput

time is the performance metric we use to plot �gures in this pa-

per. The harmonic mean throughput time of each workload in the

Constant Allocation group will be the baseline. The speedup of a

workload in a pair in another group, for example in Figure 5(a), is

calculated as the baseline divided by the workload’s harmonic mean

throughput time in that group. When several pairs are grouped,

for example in Figure 4, the speedup is the baseline divided by the

harmonic mean of all the runs of the workload. In Figure 5(b) and

Figure 6, the value is the harmonic mean of the speedup of the two

paired workloads.

The experimental results also include a log of the average power

during every operating cycle, the power cap set, and the priority (if

DPS is running) at every operating decision for each socket. One

can match the power-related data to each workload using the start

and end time and further plot the time-series power-related data.

We can also get the average power consumption during the lifetime

of a workload. Furthermore, we can compute the B0C8B 5 02C8>= of

each node and the 5 08A=4BB between the two clusters. In the artifact,

we include a script that computes the 5 08A=4BB of each pair and

generates a �gure similar to Figure 7.

ARTIFACT DEPENDENCIES REQUIREMENTS

As stated in section 4.2, although DPS is not tied to any power-

management interface, the package is implemented to interact

with the hardware with RAPL, therefore the only hardware require-

ment is Intel processors with RAPL available. The experiments in

this paper were conducted on Cascade Lake R processors, yet the

requirement is any newer generation than Sandybridge inclusively.

A Linux system version newer than 18.04 inclusively is required

as we did not test on older versions. To reproduce the experiment

results in this paper, the following software libraries are needed:

• Python 3.6

• Java OpenJDK 8u362-b9

• Hadoop 2.7.7

• Spark 2.4.8

• OpenMPI 4.1

The experiments in this paper use two public datasets as follows:

• HiBench 7.1

• NPB 3.4.2

These two benchmark suites represent two distinct workload sets

on a distributed system. The Spark workloads in the HiBench bench-

mark suite have distinct power phases while the HPC workloads in

the NPB benchmark suite always consume the total power budget.

The program is mainly implemented in Python, therefore we list

all dependent Python libraries below:

• Numpy 1.25

• Scipy 1.10.1
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ARTIFACT INSTALLATION DEPLOYMENT

PROCESS

We have included two scripts to automatically set up the cluster and

install all required libraries. More speci�cally, the setup_cluster.sh

script sets up the network alias �rst, then downloads and in-

stalls the four required software libraries on all machines, and

lastly builds the DPS Python package on all machines. The initial-

ize_hibench_hadoop_spark.sh script will start the HDFS, Yarn, and

Spark processes and generate the input Spark data. The total time

to set up the cluster and install the libraries and packages should

be under 20 minutes, given adequate downloading speed.

To execute workloads, we provide a Python script, exp.py. One

can execute one workload with the script by specifying the work-

loads on two clusters respectively, the power management system,

and workload repeating times in the arguments. As stated in Appen-

dix A.2, we include a AD=_4G?4A8<4=C .Bℎ script to run all workload

pairs to reproduce the experiment results in this paper, which will

take over 1,000 hours. To run toy examples taking shorter time, one

can change the A4?40C variable in the AD=_4G?4A8<4=CB.Bℎ script to

1 and change all NPB benchmark classes in the #%�_�!�(( vari-

able in BA2/�%(/2>=5 86.?~ �le to ( before building the package.,

and then execute the AD=_4G?4A8<4=C .Bℎ script. This would bring

the total time down to under 3 hours.
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