

GSA Connects 2024 Meeting in Anaheim, California

Paper No. 222-9

Presentation Time: 3:55 PM

WEATHERING OF CONTINENTAL MAGMATISM: A MECHANISTIC APPROACH INTEGRATING ISOTOPE DATASETS, PLATE RECONSTRUCTION, AND PALEO- CLIMATE MODELING

CAO, Wenrong, Department of Geological Sciences and Engineering, University of Nevada, Reno, Reno, NV 89557, BATAILLE, Clement P., Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada, ZHOU, Xiqiang, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, Beijing 100049, China and WU, Jeremy Tsung-Jui, Department of Geological Sciences and Engineering, University of Nevada, Reno, Reno, NV 89557-0001; Department of Geoscience, National Taiwan University, Taipei, - 10617, Taiwan

Chemical weathering controls the long-term climate of the Earth. Rapidly eroding continental magmatic belts are the fastest weathering zones on the planet but their contribution to the global weathering budget during the Phanerozoic needs to be better quantified. Here, we reconstructed the flux magnitude and isotope composition of the global weathering of continental magmatic belts by developing a mechanistic model accounting for tectonics, paleogeography, and paleo-climate evolution. We first demonstrate that magmatic belt distribution and isotopic composition respond to the supercontinent cycle with a shift towards juvenile continental magmatism during the final assembly of Gondwana and the dispersal of Pangea. We then show that the magnitude of the weathering flux from magmatic belts is modulated by the interplay of paleogeography and paleoclimate, with the highest weathering occurring when magmatic belts are located in the tropics. Finally, we demonstrate that the weathering of magmatic belts controls the global weathering budget throughout the Phanerozoic by uncovering a strong correlation between the reconstructed isotope flux from magmatic belts and the long-term seawater $^{87}\text{Sr}/^{86}\text{Sr}$ variation.

Session No. 222

[T183. Climate and Tectonic Interactions from Bedrock to Basins](#)

Tuesday, 24 September 2024: 1:30 PM-5:30 PM

304B (Anaheim Convention Center)

Geological Society of America *Abstracts with Programs*. Vol. 56, No. 5
doi: 10.1130/abs/2024AM-402163

© Copyright 2024 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

[Back to: T183. Climate and Tectonic Interactions from Bedrock to Basins](#)

[<< Previous Abstract](#) | [Next Abstract >>](#)
