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ABSTRACT

We present multiwavelength polarization measurements of the luminous blazar Mrk 501 over a 14-
month period. The 2-8 keV X-ray polarization was measured with the Imaging X-ray Polarimetry
Explorer (IXPE) with six 100-ks observations spanning from 2022 March to 2023 April. Each IXPE
observation was accompanied by simultaneous X-ray data from NuSTAR, Swift/XRT, and/or XMM-
Newton. Complementary optical-infrared polarization measurements were also available in the B, V,
R, I, and J bands, as were radio polarization measurements from 4.85 GHz to 225.5 GHz. Among the
first five IXPE observations, we did not find significant variability in the X-ray polarization degree and
angle with IXPE. However, the most recent sixth observation found an elevated polarization degree at
> 30 above the average of the other five observations. The optical and radio measurements show no
apparent correlations with the X-ray polarization properties. Throughout the six IXPE observations,
the X-ray polarization degree remained higher than, or similar to, the R-band optical polarization
degree, which remained higher than the radio value. This is consistent with the energy-stratified shock
scenario proposed to explain the first two IXPE observations, in which the polarized X-ray, optical,
and radio emission arises from different regions.

1. INTRODUCTION electrons propagate away from the shock front, radiating
at optical and radio wavelengths, with PD decreasing as
they encounter larger, and likely increasingly turbulent,
regions of the jet flow.

Blazars are a class of radio-loud active galactic nuclei
(AGN) featuring relativistic jets powered by accreting

supermassive black holes, with one of the jets pointing ] ) o
within ~ 10° of our line of sight (e.g., Hovatta & Lind- Following Mrk 501, observations of similar blazars
with peaks of their synchrotron spectral energy distribu-

tion (SED) at ultraviolet or X-ray frequencies,! namely
Mrk 421 (Di Gesu et al. 2022b, 2023; Kim et al. 2024),
PG 15534113 (Middei et al. 2023), 1ES 0229420 (Ehlert

fors 2019). The strongly beamed jet emission dominates
the spectral energy distribution (SED), making blazars
prime targets for studying particle acceleration and non-
thermal emission mechanisms that occur in the jets (see,

e.g., Blandford et al. 2019). et al. 2023), and 1ES 1959465 (Errando et al. 2024), and
The advent of the Imaging X-ray Polarimetry Ex- PKS 2155-304 (Kouch et al. 2024) have provided fur-
plorer (IXPE; Weisskopf et al. 2022) has enabled X-ray ther evidence supporting the shock-accelerated energy-

polarization measurements of blazars, which inform us stratified scenario.

about the magnetic field geometry during periods of effi- Since the first two Mrk 501 'o.bservations in.March
cient particle acceleration in the jets (Zhang & Bottcher 2022, IXPE has obtained additional observations of

2013; Zhang et al. 2019; Liodakis et al. 2019; Peirson the source accompanied by concurrent multi-wavelength

et al. 2022). The first IXPE observation of a blazar con- data, including one in 2022 July (Lisalda et al. 2024) and
three more in 2023. Here we present the analysis of the

three 2023 observations and compared them to the three
2022 observations to provide the first long-term analysis
of a blazar’s X-ray polarimetric properties. Section 2 de-
scribes all of our multi-wavelength polarization observa-

firmed Mrk 501 to be linearly polarized at photon en-
ergies of 2-8 keV, with a polarization degree (hereafter
PD) of ~ 10%, several times the concurrent values at
optical and radio wavelengths, with electric-vector po-
larization angle (PA hereafter) parallel to the jet axis

on the sky (Liodakis et al. 2022). The initial results tions and in Section 3 we discuss the X-ray polarimetric
were interpreted in terms of synchrotron radiation aris-
ing from a shock-accelerated electron population that 1 Mrk 501 is a high-synchrotron-peaked (HSP) source, defined as

becomes energy-stratified due to radiative cooling. The Vsyn >101° Hz (Ajello et al. 2020).



IXPE OBSID Date Exp (ks) Net count rate (cts/s) MDPgg (%) Other X-ray data*
01004501 (IXPE1) 2022-03-07 104 0.24 6.4 NuSTAR 60701032002 (20 ks)
01004601 (IXPE2) 2022-03-27 87 0.44 5.0 NuSTAR 60702062004 (20 ks)
01004701 (IXPE3) 2022-07-09 98 0.21 7.5 Swift/XRT 00011184** (0.9 ks)
02004601 (IXPE4) 2023-02-12 95 0.12 9.5 XMM 0902111901 (14 ks)
02004501 (IXPE5) 2023-03-19 102 0.14 8.4 XMM 0902112201 (9 ks)
02004701 (IXPE6) 2023-04-16 94 0.15 8.5 Swift/XRT 00015411 (1.1 ks)

Table 1. Details of each IXPE observation studied in this work. The net count rates shown here are the average background
subtracted 2-8 keV count rate per second. The Minimum Detectable Polarization at 99% confidence, MDPgg, is defined in

Sec. 3.2.

*All IXPE observations reported here also have Swift XRT and UVOT coverage.
** XMM observed Mrk 501 simultaneously with IXPE, but XMM oBsID 0902110701 suffered from significant background flaring

and was not included in this analysis.

and spectroscopic data analysis. In Section 4, we ana-
lyze the long-term polarimetric behavior. We draw our
conclusions in Section 5. The uncertainties reported in
this work are at the 68% confidence-interval (1) unless
stated otherwise.

2. DATA
2.1. IXPFE Data

IXPE targeted Mrk 501 three times in 2023, following
three pointings in 2022, all with exposure times of ~ 100
ks. (See Table 1 for details.) For these observations, we
first apply the background screening criteria of Di Marco
et al. (2023) to the publicly available pipeline-processed
level 2 events to remove background events. We then ex-
tracted the polarization cube with the PCUBE algorithm
using the XPBIN function of IXPEOBSSIM,? with a 1’ ra-
dius source region centered at the source position. For
each observation, a background polarization cube was
also extracted from an annulus with 2/5 and 5 inner
and outer radii with the same center as the source po-
sition. Section 3 describes the procedures followed to
generate the I, @, and U Stokes parameters from the
extracted IXPE data.

For each OBSID, spectra files were extracted using XSE-
LECT with the same source and background regions. For
the spectral response functions, we used the 20240125
version of the IXPE CALDB with the event weigh-
ing algorithm using an elongation normalized param-
eter of a®7. We also accounted for the vignetting and
aperture corrections to the auxiliary response functions
using IXPECALCARF within the HEASARC FTOOLS
(NASA High Energy Astrophysics Science Archive Re-
search Center (HEASARC) 2014). While the IXPE ob-
servations for pointed sources generally place the target
at the optical axis of the mirror modules, small offsets

2 Version 31.0.1, with instrument response function (IRF) v13; see

https://github.com/lucabaldini/ixpeobssim.

on the scale of ~ 1’ are expected due to IXPE’s boom-
drift correction and dithering effects. These effects were
taken into account using IXPE’s level 2 attitude files
when deriving the vignetting and aperture corrections.
We group the total flux density (Stokes I) spectra with
a minimum of 25 counts per bin. The @ and U spectra
were binned with a constant 5 channels (0.2 keV) per
bin.

IXPE also observed Mrk 501 for three times in 2022
(see Table 1). We re-processed and extracted PCUBE and
spectra for the 2022 observations similar to how we pro-
cessed the 2023 observations. One distinction is that
for the first two IXPE observations in 2022, we used a
fixed off-axis angle of 2/73 to calculate the vignetting
and aperture correction to the response functions in-
stead of using the attitude files. This is motivated by a
correction in the IXPE optical axis relative to the star
trackers took place on June 7th, 2022. For the remain-
der of the paper, we refer to the six IXPE observations in
their chronological order (see Table 1) as IXPE1 through
IXPES6.

2.2. Ancillary X-ray Data

To supplement the IXPE observations, we make use
of the contemporary ancillary X-ray data from NuS-
TAR,and XMM-Newton when available; see Table 1.
Mrk 501 is one of the targets in the list of Fermi-LAT
“sources of interest” with extensive monitoring by the
Neil Gehrels Swift Observatory X-Ray Telescope (Stroh
& Falcone 2013). For the remaining IXPE observa-
tions without contemporary NuSTAR or XMM-Newton
data, we make use of Swift/XRT data obtained during
the IXPE pointing. The ancillary X-ray data are used
for spectral and spectral-polarimetric analysis described
in Section 3. Additionally, photometric measurements
from the Swift Ultraviolet/Optical Telescope (UVOT)
were also included in our analysis. For NuSTAR and
Swift XRT and UVOT data, HEASOFT 6.31.1 was used
for data reduction and extraction. For XRT, the Win-
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dowed Timing mode spectra were extracted using a cir-
cular region with a 47" radius, with backgrounds ac-
counted for with time-dependent WT background files.
For the Photon Counting mode observations, the spec-
tra were extracted following the procedures described
in Middei et al. (2022, see their Section 2). For NuS-
TAR, we extracted spectra from both focal plane mod-
ules (FPM) with a 90” radius source aperture and a
background annulus with 150” and 220" inner and outer
radii, respectively. For XMM-Newton, XMMSAS ver-
sion 20.0.0 was used for data reduction and spectral ex-
traction of the EPIC-PN data. Background flares were
screened and filtered using a 3o clipping algorithm. The
source and background spectra were extracted from the
timing-mode data with a source region of 20 detector
rows and a source-free region between 3 < RAWX < 5.

2.3. Multi-wavelength observations

Multi-wavelength observations contemporaneous with
the three IXPE pointings in 2022 are described in detail
in Liodakis et al. (2022) and Lisalda et al. (2024). De-
tails of the analysis of data from the different telescopes
can be found there as well. Here, we provide a short de-
scription and present the multiwavelength observations
taken around the 2023 IXPE observation dates.

Similar to the previous IXPE sessions, a number of
telescopes operating across the electromagnetic spec-
trum provided contemporaneous data. Here we focus on
the radio and optical regimes. For a discussion on the
very high-energy ~-ray behavior of Mrk 501 during the
first three IXPE observations, see MAGIC Collaboration
et al. (2024). At radio wavelengths, those telescopes in-
cluded the Effelsberg 100-m antenna, the IRAM 30 m
telescope, the Korean VLBI Network (KVN), and the
SubMillimeter Array (SMA; Ho et al. 2004). These fa-
cilities provide coverage from 4.85 to 225.5 GHz. Effels-
berg observations at 4.85, 10.45, and 17 GHz were ob-
tained as part of the Monitoring the Stokes @, U, I, and
V' Emission of AGN jets in Radio (QUIVER) program
(Myserlis et al. 2018; Kraus et al. 2003). Observations
at 86 GHz with the IRAM-30m telescope were taken
as part of the Polarimetric Monitoring of AGN at Mil-
limeter Wavelengths (POLAMI) project® (Agudo et al.
2018a,b; Thum et al. 2018). The KVN observations used
the Yonsei and Tamna antennas in single dish mode to
provide observations at 22, 43, 86, and 129 GHz (Kang
et al. 2015). Finally, 225.5 GHz observations were taken
within the SMA Monitoring of AGNs with Polarization
(SMAPOL) program (Myserlis et al., 2024 in prepara-

3 http://polami.iaa.es/
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Figure 1. Spectra during IXPE6 of Mrk 501 with ancillary
X-ray data. The solid lines are the best-fit models. Top:
Swift/XRT and IXPE total flux density spectra. Bottom:
IXPE @ and U spectra for DUL.

tion). All of the radio observations are shown in the ap-
pendix (Figure A1). The source exhibited a low degree
of polarization (< 4%) for the entire monitoring period,
with a roughly constant polarization angle fluctuating
about an average of PAR.q = 157° 4+ 3° at 225.5 GHz
to PARaq = 170° £ 1° at 4.85 GHz. We note the radio
polarimetry measurements utilized in this work were all
obtained with either single-dish observatories or radio
telescope arrays in single-dish modes. The observed ra-
dio emission is thus dominated by the unresolved blazar
jet emission and the fluxes and polarization measure-
ments are not affected by the different aperture sizes be-
tween radio observatories. However, radio observations
at higher frequencies tend to have less significant Fara-
day depolarization (Burn 1966), therefore we primarily
consider the high frequency polarization measurements
(see Table 2).

In the optical and infrared regime, Mrk 501 was ob-
served using the Calar Alto Observatory’s 2.2 m tele-
scope, the Haleakala Observatory’s T60, the KANATA
telescope, LX-200 operated by St. Petersburg State Uni-
versity, the Nordic Optical Telescope (NOT), the 1.8 m
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Observation Optica-IR Radio (GHz) PDopt (R) PAopt  PDiadio (86, 225.5 GHz) PARgaaio (86, 225.5 GHz)
(1) 2) 3) (4) (5) (6)

IXPE1 V,B,R,1,J 86 6.6+04 11045 1.5+0.5, - 148 + 10, -
IXPE2 V,B,R,I,J,H,K N/A 47403 12043 .- -
IXPE3 V.B,R,I,J,H K 86, 225.5 2.7+0.5 109 £5 1.54+0.3,1.3£0.3 144 £5, 130+ 3
IXPE4 V,B,R,I,J 4.85, 10.45, 17, 66409 150+4 32406, 2.9+ 0.5 176 +3, 162 + 2

86, 225.5
IXPE5 V.B,R,I,J 4.85, 10.45, 17, 6.1+£0.7. 125+ 3 -, 1.8+0.2 -, 154+ 3

22, 43, 86, 225.5

IXPES V,R,1,J 4.85, 10.45, 17, 22, 43, 59415 10846 -, 33+04 -, 15642

86, 225.5

Table 2. Summary for the multi-wavelength data reported in this work. Column (1) shows the available optical to IR bands,

while Column (2) shows the available radio bands in GHz. Shown in italicised fonts are bands at with both polarimetric and
photometric measurements were available. Bands with only polarimetric measurements were shown in boldface. We also show

the host-galaxy subtracted polarimetric measurements results for the R-band in columns (3) and (4).

For radio polarimetric

measurements, we show the polarimetric measurements from the higher frequency bands, 86 GHz and 225.5 GHz, in columns
(5) and (6). See Section 2.3 for details. From columns (3) to (6), the PD values were shown in %, and PA values were shown

in degrees.

Perkins Telescope (PTO, Boston University), and the
Sierra Nevada Observatory’s (SNO) T90 telescope. The
Calar Alto observations used the Calar Alto Faint Ob-
ject Spectrograph (CAFOS) to provide R-band observa-
tions. T60 used the DiPol-2 polarimeter (Piirola et al.
2014, 2020), which can simultaneously measure the PD
in the B, V, R bands. LX-200 provided R-band po-
larimetry and B, V, R, I photometry. HONIR (Hi-
roshima Optical and Near-InfraRed camera’) at the
KANATA telescope (Kawabata et al. 1999; Akitaya
et al. 2014) can simultaneously measure polarization
at multiple optical/infrared (IR) bands; it provided R
and J band observations. NOT used the Alhambra
Faint Object Spectrograph and Camera (ALFOSC) and
the Tuorla Observatory’s semi-automatic data reduction
pipeline (Hovatta et al. 2016; Nilsson et al. 2018) for B,
V, R, T observations. PTO used the PRISM camera’
for polarimetric (R) and photometric (B, V, R, I) obser-
vations. The T90 observations at SNO were performed
with a set of polarized filters in R band. Several obser-
vations were obtained within a single night, which were
then binned using a weighted average. All of the optical
and infrared observations are shown in Figure A1-Right.

Unpolarized flux from the host galaxy of Mrk 501 con-
tributes significantly to the optical/IR emission. This
leads to depolarization, which we correct by subtracting
the host-galaxy flux within a given aperture (Nilsson
et al. 2007) following Hovatta et al. (2016). Only the R-
band observations are corrected, since we lack a model
for the host-galaxy light for the other bands. Instru-

4 http://hasc.hiroshima-u.ac.jp/instruments/honir /filters-e.html
5 https://www.bu.edu/prism/

mental limitations prevent us from correcting the T60
observations. All the other R-band observations have
been corrected for the host-galaxy depolarization.

We were not able to obtain J-band observations si-
multaneous with the IXPE pointings; however, the two
available observations between the fourth and fifth IXPE
exposures appear consistent with the optical bands. The
observed PD is consistent within uncertainties in all op-
tical /IR bands, and appears to vary in tandem. The in-
trinsic R-band PD (PDgp hereafter) varies from about
1.6% to ~9%, with a median of 6.6%+1.9%. The PA
(PAopt hereafter) fluctuates around the jet axis posi-
tion angle on the plane of the sky (120° + 12°; Weaver
et al. 2022) from ~ 100° to ~ 150°, with a median of
133° £+ 14°. A summary of the multiwavelength obser-
vations is provided in Table 2.

3. ANALYSIS
3.1. Spectro-polarimetry

For the spectro-polarimetric analysis, we combine a
log-parabola spectrum (Massaro et al. 2004) with a mul-
tiplicative model that applies a constant polarization,
POLCONST. The model used in XSPEC can be written as
follows:

const x T Babs x polconst x logpar.

The CONST component accounts for the instrumental
normalization. The POLCONST component includes two
parameters: the polarization degree PDx and the polar-
ization angle PAx. The log-parabolic model is defined
as the F(E) = K(E/Epiyor) (@ +#108(E/Epivot)) . The pa-
rameters o, 3, and Epiyot defines the energy-dependent
power-law index of the spectrum, and K represents the
normalization. Elivot is a constant for optimal fitting re-


http://hasc.hiroshima-u.ac.jp/instruments/honir/filters-e.html
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IXPE Observation x?/d.o.f. a Jé] norm PD (%) PA (deg)
IXPE1 1285.46 / 1274 1.754+0.04 0.36 £0.02 0.043+0.001 9.8+1.7 —44+5
IXPE2 1654.83 / 1480 1.50 +0.03 0.40 +0.02 0.066 +0.001 10.3+1.4 —65+4
IXPE3 559.2 / 643 1.99+£0.02 0.36+0.03 0.053£0.001 69+18 —46+38
IXPE4 582.1 / 577 2.28+0.00 0.10£0.01 0.037+0.000 9.0+2.4 —70+£8
IXPE5 594.88 / 589  2.27+0.01 0.03+0.01 0.041+0.000 6.0+2.1 —-73+11
IXPE6 603.62 / 599  2.15+0.02 0.24+0.03 0.041+0.001 185+22 —77+3

Table 3. Spectral-polarimetric results with IXPE and ancillary X-ray data for each ObsID, including the fitting statistics and
degrees of freedom (d.o.f.), log-parabolic model parameters «, 8, and normalization (norm), and the polarization degree and
angle (PD and PA). The uncertainties quoted here are for 68% confidence intervals.

PCUBE Spectro-polarimetry (all) Spectro-polarimetry (IXPE-only)

PD (%) PA (deg) PD (%)  PA (deg)  PD (%) PA (deg)

IXPE1 10.14+21 —-53+6 9.8 £ 1.7 —44 4+ 5 9.0 £ 2.6 —44 + 8
IXPE2 114417 —-64+£4 10.3+14 —65+4 9.4+2.0 —64+6
IXPE3 59+23 —-40+11 69418 —46 + 8 6.9+29 —48 + 12
IXPE4 9.9+ 3.2 —754+9 9.0+24 —704+8 9+4 —714+16
IXPE5 6.7+£28 —-84+12 6.0+2.1 -73+11 59+34 -T2+ 17
IXPE6 15.34+28 —82+5 185+22 —77+3 16.3 +3.4 —76£6
Combined 8.9+1.0 —65+3 - - 8.7+1.2 —62+4

Table 4. Comparison between polarization measurements with PCUBE analysis, and spectral-polarimetric analysis with and

without ancillary X-ray data.

sults in the log space, here we fixed to 1 keV. The results
of the analysis, including both IXPE and ancillary soft
X-ray data, are listed in Table 1. The XMM-Newton
and Swift/XRT data were limited to 0.5-10 keV for the
model fitting. For NuSTAR, the 3-30 keV data were
used (higher energy channels were not used due to the
limited signal to noise ratio). For spectral fitting, we
used an MCMC sampling approach with the Goodman-
Weare algorithm and 500,000 steps. As a demonstra-
tion, we plot the spectra and the data/model ratio for
IXPEG6 in Figure 1. The I, @, and U spectral plots for
the other IXPE observations are shown in the Appendix
in Fig. A2 and Fig. A3. We also repeated the analysis
using only the IXPE data, and found the results to be
generally consistent with the analysis with the ancillary
X-ray data.

The fitting parameters are listed in Table 3. For
comparison, the polarization degree and angle from the
PCUBE analysis and the spectro-polarimetric analysis are
listed in Table 4 and shown in Fig. 2. We also extracted
time-averaged IXPE spectra by merging event lists from
all six observations. Source and background spectra
were generated from merging events in the source and
background regions for each observation, respectively.
The ancillary response function was calculated with the
IXPECALCARF script in a similar manner as for each ob-
servation.

3.2. Model-independent Polarimetry with IXPE

Here we describe the results from the polarization
cube analysis, which calculates the X-ray PD (PDx) and
PA (PAx) using Stokes parameters I, @, and U for all
of the events within the source extraction region, where
PDx = /(Q/I)2 + (U/I)? and PAx = 0.5arctan(U/Q)
(Kislat et al. 2015). Background subtraction was accom-
plished by subtracting the sums of the Stokes parame-
ters in the background region from those in the source
region. We report the model-independent polarization
measurement events in the 2-8 keV range in Table 4.
The minimum detectable polarization at 99% confidence
interval (MDPyg), defined as MDPgg & 4.29/(v/Cs (1)),
is dependent on the mean count-weighted modulation
factor (u) and the total source photon counts Cy. The 2—
8 keV MDPyy is listed in Table 1. To test the feasibility
of energy-resolved polarimetry, we divided IXPE6 into
two energy bins covering the range 2-4 keV and 4-8 keV.
IXPEG6 has the highest 2-8 keV PD among all IXPE ob-
servations at 15.3% =+ 2.8%, with MDPgg = 8.5%. How-
ever, MDPgg over 4-8 keV increases to 21%, and we did
not find significant polarization detection in this high-
energy bin. Similar results with 4-8 keV PD < MDPgg
were found for the other IXPE observations. Therefore,
we do not include energy-resolved analysis in this work.

In summary, we detected polarization at > 3o signif-
icance for the first two and the last IXPE observations
both with the spectro-polarimetric or PCUBE analysis.
The detection significance of the other three observa-
tions was slightly less than 3o.




30-135°

30-135°

Figure 2. Polar plots displaying polarization measure-
ments based on the model-independent PCUBE analysis (top).
The contours represent the 1o, 20, and 30 uncertainties in
PDx and PAx based on the @, U error circles and their rela-
tions to PDx and PAx described in Section 3.2. The spectro-
polarimetric fitting results with IXPE and ancillary X-ray
data analysis are shown in the bottom. The error contours
are based on the MCMC sampling described in Section 3.1
within 68%, 95%, and 99.7% ranges. The results obtained
from these two independent methods are consistent with each
other.
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probability (Pnun) of the X2 test for the variability of @
and U for IXPE6. The green shaded area above the dashed
line makrs the region with Pxun > 1%. The dotted line
represents the 3o (99.73%) significance level. For the range
of bin sizes explored here, we find no statistical evidence
(< 30) that Mrk 501 varied in either @ or U. Similar results
were found for all six Mrk 501 IXPE observations discussed
in this work.
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Figure 4. Swift/XRT X-ray spectral properties as a func-
tion of time in MJD. From top to bottom, the panels include
the 2-8 keV flux in 107'° ergs™ cm™2, the log-parabolic
model paramters « and (3, and the spectral hardness ratio
defined as (H—S)/(H+S), where H and S are Swift fluxes in
the 2-10 keV and 0.5-2 keV bands, respectively. Dates of
IXPE observations are highlighted in red.

3.3. Polarization Variability

For individual IXPE observations, we investigated
whether the polarization varied on various time scales
within each observation. This is motivated by the re-
cent observations of another HSP blazar, Mrk 421, which
showed a rotation in the polarization angle during one
of its observations (Di Gesu et al. 2023). The details of
the timing analysis are described in Section 2.2 of Kim
et al. (2024). In short, for each observation, the data
were divided into N bins with identical widths in time,
where N ranged from 2 to 15. For a 100 ks observation,
this means that the time in each bin ranges from 50 ks to
6.7 ks. For each binning scheme, the normalized Stokes
parameters @) and U were calculated. The distributions
of @ and U as a function of time were then compared
to the assumption that ¢ and U are constant over time.
See Figure 3 for an example. For each bin, the com-
parison was done with a x? test. We found that all six
observations have () and U distributions consistent with
the time-independent assumption (i.e., the null hypoth-
esis Pxun > 1%; see Figure 3), suggesting that the 2-8
keV polarization of Mrk 501 did not vary significantly
during each of the IXPE observations reported here.

4. LONG-TERM VARIABILITY
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Figure 5. Various X-ray spectral properties as a function
of the X-ray PD, including the IXPE 2-8 keV flux (top-left),
photon index « (top-right), IXPE 2-4 and 4-8 keV hardness
ratio (HRixpw, bottom-left, see Section 4.1 for definitions),
and spectral curvature (bottom-right).

4.1. X-ray

We first show the spectral properties computed from
the 167 Swift/XRT observations described in Section 2
and plotted in Figure 4. The fluxes were obtained
by fitting the 0.3-10 keV Swift/XRT data with a log-
parabola model with a pivotal energy set to 1 keV.
Photo-electric absorption from Galactic gas with a col-
umn density Ng = 1.69 x 10%° cm? was included in
the spectral fits. During the time between IXPE1 and
IXPE6, the Swift/XRT X-ray fluxes ranged between
—10.38 < log Fy.3_10kev < —9.58 (ergs—!em™2), with
the flux peaking at the first two IXPE observations, then
gradually declining into a relatively quiescent state seen
in the last three observations. The log-parabola spectral
parameters, « and [, and the hardness ratio (HRxgrr

s (H-S)/(H+S), where H and S are Swift/XRT 2-10
keV and 0.5-2 keV fluxes, respectively) are also shown
in Figure 4. Generally, Mrk 501 followed the typi-
cal “harder-when-brighter” behavior (e.g., Zhang et al.
2005). We also show the relation between the X-ray PD
and IXPE 2-8 keV flux, hardness ratio (HRixpg, de-
fined as (H—S)/(H+S), where S and H are IXPE fluxes
between 24 and 4-8 keV, respectively), o and 8 in Fig-
ure H.

The first three IXPE observations were discussed in
Liodakis et al. (2022) and Lisalda et al. (2024), who
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found Mrk 501 to have X-ray polarization angles roughly
parallel to the radio jet axis. The X-ray emission was
polarized at PDx ~ 10% in the first two IXPE observa-
tions (Liodakis et al. 2022). The third IXPE observation
formally had a PD that was slightly smaller but still con-
sistent with the first two observations within the uncer-
tainties. During 2023, Mrk 501 entered a lower flux state
(Figure 4). The lower number of counts, softer spectra,
and corresponding MDPgg resulted in only marginal de-
tection of polarization during IXPE4 and IXPE5, while
the position angle of polarization remained parallel to
the jet axis within uncertainties. Intriguingly, the last
2023 observation (IXPE6G) showed the highest PDx since
the launch of IXPE, while maintaining a similar PA
within the uncertainties. The spectro-polarimetric anal-
yses suggest that IXPEG is outside of the 30 uncertainty
range compared with IXPE1 to IXPE3. To quantify the
deviation of IXPE6 from the other 5 IXPE observations,
we compare the PA and PD measurements of IXPE6
with the average of the other 5 observations with a x?
test. This is based on the assumption that the other 5
observations have similar PA and PD distributions (see
Figure 2). The test has a result of Y = 17.08. In
the two degree-of-freedom case, this corresponds to a p-
value of 0.0002 (> 30), rejecting the null hypothesis that
the elevated PD for IXPEG6 is simply due to statistical
fluctuations.

We also explored whether the Stokes parameters of
the last IXPE observation have a different distribution
than the rest of the observations via two-sample, two-
dimensional Kolmogorov—Smirnov (K-S) tests (Peacock
1983). We calculated the K-S test between the @ and
U parameters of each two pairs of IXPE observations.
Most of the combinations have a very small p-value
< 0.05, rejecting the null hypothesis that their Stokes
parameters have different distributions. This is not sur-
prising, as the non-parametric statistics we tested would
be dominated by the unpolarized events that should
have insignificant differences between observations due
to the high X-ray PD. Despite the substantial increase
in PD for IXPEG, we find no strong correlation between
PD and other spectral properties of IXPE, as demon-
strated in Figure 5.

4.2. Multiwavelength Properties

We plot the multiwavelength flux variability spanning
the time between the IXPE1 and IXPE6 observations
in Figure 6, including X-ray fluxes in the IXPE band
pass (2-8 keV) from 167 Swift/XRT exposures taken
between 2022-01-01 and 2023-04-15. IXPE fluxes de-
rived from the best-fit models are also shown in the same
plot, as are the fluxes in the optical R band and radio

86 GHz and 225 GHz bands. The R-band observations
were host-galaxy subtracted. We also show the polariza-
tion properties measured by IXPE, R-band, 225 GHz,
and 86 GHz in Figure 7, including the time-dependence
of PD, X-ray to optical PD ratio, and PA.

In Figure 8, we display the broad-band SED of
Mrk 501 during all six IXPE sessions, including the X-
ray spectra from IXPE and ancillary data sets, as well
as Swift/UVOT, optical, and radio photometry. For
each observation, we have also calculated the peak en-
ergy of the best-fit log-parabolic model (Massaro et al.
2004) used in the spectral-polarimetry analysis, with
Epeak = Epivot 10(2—04)/(2,(3)

In general, we find the IXPE fluxes to be within the
average fluctuations typically observed from this target
(e.g., see Liodakis et al. 2022). This would suggest that
all of the IXPE observations of Mrk 501 were taken in
average/quiescent state. Similarly, neither the radio nor
optical observations show any substantial deviation from
the long-term average behavior of the source (see Fig-
ure 8). For the last IXPE observation (IXPE6), the
PDx value is elevated above 30 of the average value of
the other five IXPE observations. Other than the ele-
vated PDx, we do not find any substantial differences
for IXPE6 from the other observations, including the
multiwavelength polarization degree and angles, X-ray
spectral shapes, and multiwavelength fluxes.

We find no apparent correlations in the time depen-
dence of the flux, PD, or PA values at different wave-
lengths as shown in Figures 6 and 7, which is in broad
agreement with the energy stratified shock scenario dis-
cussed in Liodakis et al. (2022), wherein the polarized
emission in the optical and radio bands originate from
regions larger than the region emitting polarized X-ray
emission. We also find the X-ray PD (PDx) to be higher,
or (at one epoch) similar to, the R-band PD (PDgpy),
while the R-band PD is higher than the radio PD. This
is again consistent with the energy-stratified shock sce-
nario. For IXPES5, PD,y, appears to be marginally
higher than PDx with PDx /PDgp = 0.924+0.12 (1o un-
certainty). Note that IXPE5 has the second-lowest flux
and the softest X-ray spectrum (see Figure 5). There-
fore, given the uncertainty of the X-ray PD, IXPES is
still statistically consistent with PDx /PDgpy > 1.

Spanning the six IXPE observations, the X-ray PD
values are generally higher than PDgp, and PDgp is
higher than PD,.q. This is consistent with the energy-
stratified shock scenario, in which the location of the
X-ray emission region is closer to the shock front than
that of the longer-wavelength emission. The lower PDx
we see in IXPE4 and IXPE5 might be attributed to
the change of the spectral curvature, which can be con-
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Figure 6. Multiwavelength Mrk 501 variability of fluxes spanning the six IXPE observations. The fluxes in each band are
normalized by 1071° 107, 107!, and 107!2 erg s~! cm? for X-ray, UV, optical R, and radio bands, respectively.

nected to a decrease in the magnetic field strength (e.g.,
MAGIC Collaboration et al. 2024). Such a decrease
would lower the flux and peak frequency of the SED and
weaken the radiative energy losses. The former effect in-
creases the spectral curvature, while the latter increases
the volume of the emitting region, thereby lowering its
degree of polarization. Alternatively, increased turbu-
lence could also decrease the uniformity of the magnetic
field and hence the polarization degree. However, in this
case one would not expect the curvature of the SED to
increase. Detailed SED modeling of our observations,
planned in a follow-up study, can further elucidate the
physical processes in the X-ray emitting region of the
jet.

We note that the detected X-ray PD fluctuates be-
tween ~ 10-20%, far lower than the synchrotron limit
(e.g., Rybicki & Lightman 1979). This implies that
the observed X-ray emission originates from at least a
partially turbulent emission region that is close to the
site of particle acceleration. This shock-plus-turbulence
scenario naturally explains why the elevated PD dur-
ing IXPE6 was only seen in X-rays. We also note the
lower PDpt values measured in IXPE4 and IXPES are
still within the 30 uncertainty of the average among all
six observations, or of the 2022 IXPE observations with
higher PD. A variety of physical mechanisms could drive
the limited fluctuations we see among six IXPE obser-
vations. However, based on the overall trend of the ele-
vated PD in the X-rays compared to longer wavelengths,
we argue that these six IXPE observations are generally
consistent with the energy-stratified shock scenario with
a highly turbulent magnetic field structure beyond the
shock front.

5. CONCLUSION

We have presented three additional IXPE observa-
tions of the archetypal high-synchrotron-peaked blazar
Mrk 501 obtained in 2023. Combined with the three
2022 observations, our dataset constitutes the first long-
term X-ray polarization light curve from a blazar. All
of our observations were supplemented with simultane-
ous multiwavelength campaigns. During the 14-month
span of our observations, the source was in an average-
to-quiescent flux state across different wavelengths, as
well as in a typical radio, infrared, and optical po-
larization state. For Mrk 501, X-ray PD values were
found to be generally higher than those in other wave-
lengths, with occasional drops in X-ray PD to the level
consistent with the optical PD. The higher X-ray PD
measurements compared to those in other wavelengths
are common among IXPE-observed HSP blazars (e.g.,
Di Gesu et al. 2022b; Middei et al. 2023; Ehlert et al.
2023; Errando et al. 2024; Kim et al. 2024), as are the
fluctuations in the X-ray to optical PD ratio (Errando
et al. 2024). These provide further evidence for shock-
accelerated electron populations that become energy-
stratified as they advect downstream from the shock
front inside a turbulent plasma. For Mrk 501, the po-
larization angle at all wavelengths fluctuates only mod-
estly around the jet axis on the plane of the sky, even
when the polarization degree changes by a factor of two.
This is also common among IXPE observed HSP blazars,
implying that the physics of HSP blazars is essentially
the same throughout the subclass of AGN, even though
Mrk 421 has shown large rotations of the polarization
angle (Di Gesu et al. 2023). Given such interesting vari-
ability patterns, it is important to continue to follow
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Figure 7. Multiwavelength variability of Mrk 501: polar-
ization degree PD (top), PD ratios between different bands
(middle), and polarization angle PA (bottom), spanning the
six IXPE observations. For the middle panel, the PD ra-
tios shown here are the X-ray to optical R-band PD ra-
tios (PDx/PDoypt), and optical R-band to radio 225 GHz
(except for IXPE1l where only the 86 GHz PD measure-
ment was available) PD ratios (PDopt/PDradio). For the
PDx/PDoptin the middle panel, we also marked the regions
expected based on energy-stratified shocks as grey. Expected
values from a single-zone jet model (Di Gesu et al. 2022a),
and two turbulent multi-zone jet models, including Marscher
(2014, Multi-zone 1) and Peirson & Romani (2019, Multi-
zone 2), were also shown.

the X-ray and multi-wavelength polarization, as well as
the SED, of Mrk 501 via long-term monitoring in order
to determine whether the consistency of the magnetic
field geometry and its relation to particle acceleration re-
mains stable or varies over a longer time scale than sam-
pled thus far. It is also important to continue to develop
theories and simulations to explore further the proper-
ties of the shock-plus-turbulence model, and perhaps to
find other physical scenarios that can reproduce the mul-
tiwavelength polarization properties reported here.

Facilities:  Calar Alto, Effesberg-100m, IRAM-
30m, IXPE, KANATA, KVN, LX-200, NOT, NuSTAR,
Perkins-1.8m, SMA, SNO, Swift(XRT and UVOT), T60,
XMM-Newton

———
60000 60020 60040 60060

Software: astropy (Astropy Collaboration et al.
2013, 2018), ixpeobssim, xspec
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APPENDIX

A. SUPPLEMENTARY FIGURES FOR X-RAY AND MULTIWAVELENGTH DATA

We show the complete multiwavelength data in the radio and optical-IR bands in Figure Al. Spectro-polarimetric
data and best-fit models for individual IXPE observations and their ancillary data are also shown in Figure A2 and
Figure A3.

As shown in Fig. A1, some IXPE observations were covered with multiple optical measurements. Specifically, there
are 14, 1, 4, 7, 2, and 5 R-band observations from IXPE1 to IXPE6, respectively. We did not see substantial variations
in the optical PD and PA. During IXPE4, PD,,; appears to have increased. However, within the IXPE4 measurement,
the observation with the most significant deviation from the average value also exhibited large uncertainties, placing
it only 1.60 away from the average. For the radio data, no single IXPE observation included more than one radio
measurement at the same frequency. IXPE4 and IXPE5 do have additional radio measurements immediately before
or after the IXPE observations. However, they are within 1o uncertainty of the radio measurements contemporaneous
to the IXPE observations. The lack of apparent correlations between different wavelengths is still consistent with
the energy-stratified shock scenario in which emission at different wavelengths is thought to originate from different
regions.
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Figure A2. X-ray spectra and best-fit model for each IXPE Mrk 501 observations. Shown here are the IXPE Stokes I spectra
and ancillary X-ray data. Different instruments are color coded, with the data and model ratio shown in the bottom panel for
each plot. See Section 3.1 for details.
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