CCTP-2024-7
UFIFT-QG-24-04

Summing Gravitational Effects from Loops of Inflationary Scalars

S. P. Miao™, N. C. Tsamis?! and R. P. Woodard® (Corresponding author)

L Department of Physics, National Cheng Kung University,
No. 1 University Road, Tainan City 70101, TAIWAN

2 Institute of Theoretical Physics & Computational Physics,
Department of Physics, University of Crete,
GR-710 03 Heraklion, HELLAS

3 Department of Physics, University of Florida,
Gainesuville, FL 32611, UNITED STATES

ABSTRACT

We develop a procedure for re-summing the large logarithms induced in grav-
ity by loops of inflationary scalars. We first show how the scalar can be
integrated out of the field equations in the presence of constant graviton
field. We then extend this result to a fully conserved form which explains
the need for a finite renormalization of the cosmological constant which was
previously inferred from explicit computation. A variant of the renormaliza-
tion group turns out to explain the large logarithmic corrections revealed by
explicit computation in the electric field strength of gravitational radiation
and in the potentials which characterize the response to a point mass. The
implications for graviton loops are discussed.
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1 Prologue

The geometry of cosmology can be characterized by a scale factor a(t), Hub-
ble parameter H (t) and first slow roll parameter €(t),
2 2 204\ g2 1= _a __H

ds® = —dt* + a*(t)dz-dx — H(t) = - €(t) = 4z (1)
The accelerated expansion (H > 0 with 0 < € < 1) of primordial inflation
rips virtual particles out of the vacuum [1]. The phenomenon is largest for
particles such as massless, minimally coupled (MMC) scalars and gravitons,
which are both massless and not conformally invariant [2,3]. This is what is
thought to have caused the primordial spectra of gravitons [4] and scalars [5].

Because more and more quanta are created as inflation progresses, cor-
relators which involve interacting MMC scalars and gravitons often show
secular growth in the form of powers of Infa(t)] [6-15]. For example, the
2-loop dimensionally regulated and fully renormalized expectation value of
the stress tensor of an MMC scalar with a %(Z)‘l self-interaction, on de Sitter
background (e = 0) takes the perfect fluid form (7},,) = (p + p)u,u, + Py
with energy density and pressure [6,16,17],

olt) = 2T m(a) + 003 )
p(t) = ;ii{— In*(a) — %ln(a)} +O(N\?) . (3)

In the correlators of this theory each factor of A can be associated with as
many as two factors of In(a). Contributions which saturate this bound are
known as leading logarithm, whereas those which have fewer factors of In(a)
are known as subleading. In expression (3) the factor of —In*(a) is a leading
logarithm whereas the factor of —21In(a) is subleading.

During a prolonged period of inflation factors of In[a(t)] can grow so
large that they overwhelm even the smallest coupling constant. Developing
a technique to sum up the series of leading logarithms may eventually be as
important for cosmology as the renormalization group summation of leading
momentum logarithms was to flat space quantum field theory. The late
Alexei Starobinsky solved this problem for scalar potential models [18],

A
L=~ 50,00,69" V=5 ~ 56"V 5 (4)
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Starobinsky’s technique can be proven to reproduce each order’s leading log-
arithms [19] and, when V' (¢) is bounded from below, it can be summed up to
give the late time limits of cosmological correlators [20]. However, straight-
forward application of the method fails for more general theories [8,21,22].

To understand the problem with more general theories it is necessary
to distinguish between “Active” fields which induce large logarithms, such
as MMC scalars and gravitons, and “Passive” fields which do not, such as
conformally coupled scalars, fermions, photons and even differentiated Active
fields. One can sum the leading logarithms of theories which contain Passive
fields without derivative interactions by integrating out the Passive fields,
assuming the Active fields are constant in space and time. This results
in a scalar potential model which can then be treated using Starobinsky’s
formalism [8,21].

The large logarithms of scalar potential models derive from what DeWitt
and Brehme termed the “tail” part [23] of the MMC scalar propagator, !

. 1 1 H? 1

D=4 = @)= s s m[—H?(x—x')?] . (5)
The situation when derivative interactions are present is more complicat-
ed because renormalization provides a new mechanism for generating large
logarithms. When using dimensional regularization it turns out that D-de-
pendent factors of a(t) do not occur in divergent primitive contributions,
which are incompletely canceled by counterterms,

(2H)D—4

- (pa)”~ )

D—4

- —m(%) +O(D—4). (6)

(Primitive : ) — <C0unterterm :

These sorts of large logarithms are correctly described by a variant of the
renormalization group [27].

n this de Sitter background example (5), the tail is the logarithmic term. The original
work on this subject was done by Hadamard [24] who considered the Cauchy problem for a
class of linear partial differential equations which include those of Riemannian geometries.
What DeWitt and Brehme did was to cast the same asymptotic form, Hadamard’s “ele-
mentary solution”, in the geometrical language of bitensors and biscalars. The bitensor
formalism had previously been introduced by Ruse [25] and Synge [26], but not applied
to Hadamard’s elementary solution.



Derivative interactions are also more complicated in the way one inte-
grates out Passive fields in the presence of a constant Active background.
When derivative interactions are absent the coupling to a constant Active
field is typically a mass term, as in Yukawa [8] or scalar quantum electrody-
namics in Lorenz gauge [21]. This leads to a conventional Coleman-Weinberg
potential [28], of course modified by functions of the dimensionless ratio of
%. Derivative interactions lead to a new type of effective potential in which
the field strength of a Passive field depends upon constant Active fields [27].
In this paper we consider a third type of effective potential in which con-
stant Active fields shift the Hubble parameter on which the Passive field
propagators depend. 2

The model we shall study is how a loop of MMC scalars on de Sitter
background induce changes in gravity,

_ 1 wy [ [R—(D—Q)A]\/—_g
L= _5 u¢au¢g \/_g+ 167G 9 (7)

where G is Newton’s constant and A = (D — 1)H? is the cosmological con-
stant. The scalar loop contribution to the graviton self-energy was made
about a decade ago [30], and used to solve the effective field equations for
gravitational radiation [31,32] and for the gravitational response to a point
mass [33]. Unfortunately, the original computation fails to be conserved
because it lacks a finite renormalization of the cosmological constant, the
necessity for which was only realized recently [34]. This problem was com-
pounded by representing the non-conserved graviton self-energy using a sum
of structure functions which are automatically conserved [32]. When the
computation was re-done, including the finite renormalization, and making
no assumptions about structure functions, a somewhat different result was
found for the In[a(t)] correction to the potentials [35]. The effects on gravi-
tational radiation were also computed to enough accuracy to reveal a loga-
rithmic change in the electric component of the Weyl tensor. The purpose
of this paper is to explain both logarithmic corrections using a variant of the
renormalization group. We will also explain how to integrate the scalar out of
the gravitational field equation for constant graviton background, and show
that the induced stress tensor implies precisely the finite renormalization of
the cosmological constant which is needed to make the graviton self-energy
conserved [34].

2Hubble-induced effective potentials can also occur in theories for which matter fields
assume a non-trivial background [29].



This paper consists of six sections. In Section 2 we review non-linear
sigma models, which manifest large logarithms from renormalization (6) and
also stochastic logarithms from effective potentials derived from Active fields
modifying the field strengths of Passive fields. Section 3 shows that inte-
grating the scalar out of (7) in the presence of a spacetime constant graviton
background induces a new type of effective stress tensor by modifying the
Hubble constant on which the scalar propagator depends. We show that this
result explains the finite renormalization required in the exact calculation.
Because the induced stress tensor is only valid at leading logarithm order, it
is not conserved when the graviton field is allowed to depend on space and
time. In Section 4 we show how the stress tensor can be extended to give
a fully conserved form. A variant of the renormalization group is used in
Section 5 to explain the large logarithms found for gravitational radiation
and for the response to a point mass. Section 6 gives our conclusions and
also discusses the prospects for extending this analysis to loops of gravitons.

2 Non-linear Sigma Models

Non-linear sigma models have the same hOhOh derivative interactions as
gravity, and induce the same factors of In[a(t)] on de Sitter background, but
without the complex index structure or the gauge issue. They have therefore
received much attention as a simple venue for sorting out the complexities
of derivative interactions [19,27,36-40]. A simple example consists of two
scalar fields A(z) and B(z) with the following Lagrangian,

1 1 1 2
L= —30,A 0,4 g"\/=g - 5(”5“1) OB OBg*V=g. (8

The first variations of its action provide the equations of motion,

T = w043 v <o o

The above theory is not renormalizable and hence requires an ever-increasing
number of counterterms.

* Perturbative Results



The quantities computed were the expectation values of A, B and their
squares, the mode functions u4(n, k) & up(n, k), and the exchange potentials
Py(n,r) & Pp(n, k). The latter two are obtained from the scalar self-mass
—iM?(x; 2") which supplies the quantum corrections to the linearized effective
field equation for a scalar ®(x),

DO(x) — /d4x/M2(x;x/)<I)(x') = J(z), (11)

where D = 0*a?0,, is the kinetic operator and J(z) the source. The quantum
corrections to the propagation of scalar radiation are imprinted in the mode
function correction which is obtained when J(z) = 0. The choice J(z) =
a(n)d3(x) gives the scalar exchange potential.

The above perturbative calculations of self-masses and VEV’s were per-
formed in the “in — in” formalism which is causal and which allows only
real self-masses [41-49]. The regulation technique is dimensional regulariza-
tion which preserves coordinate invariance. As a result the Lagrangian (8)
requires two counterterms per scalar field to renormalize the self-masses at
1-loop,

AL _jyp = —%C’Al OAOAV—g — %C’AQ RO,AD,Ag"\/—yg

1 1
~5Cm OBOB V=g~ 5Cn ROBO,B g™V~ . (12)

Moreover, the VEV’s of the squares of the scalar fields require composite
operator renormalization which at 1-loop and 2-loop orders implies the fol-
lowing counterterms, 3

B2 = B>+ Ky R+ K RB? + K, R+ O(\Y) . (14)
Finally, to renormalize the 3-point vertex of the theory at 1-loop order, the
counterterm Lagrangian is,

1 1

AﬁABB == _§CABBl DA auB a,,B gMV\/ - - §CABB2 aMA a,,B DB gMV V _g

1 1
—5Canss ADBOB=g — 5 Cann RAG,BO,Bg" =g . (15)

3No renormalizations are needed for the VEV’s of A(x) which is ultraviolet finite to
this order and the VEV of B(z) vanishes to all orders by virtue of the shift symmetry of

(8)-



In (15) the last term is the curvature-dependent coupling constant renormal-
ization. It turns out that at 1-loop there is no such renormalization and the
associated 1-loop [-function vanishes [27,39],

SN = Aren — A= Clapps X R+O0(X°) =0)° + O(\) = (16)

DoN 5 s
g TIn() =0X+0(N) . (17)

All the coefficients in (12-15) are determined so that they absorb the
primitive divergences of the perturbative diagrams. The leading logarithm
renormalized results are most conveniently presented in the form of Table 1
[27,39]:

Quantity Leading Logarithms
wa(n. k) [1-2375 m(a) + OO } x A
ug(n, k) {1+o+0(x4)} x S
Pain,r) | {1-3% m(a) +O(XY) b x K 1n(Hr)
Py(n,7) {1 + O} x KL In(Hr)
(QIA@)) {1432 (a) + O } x A5 In(a)
(Q1A2(2)] Qsen {1-2 m(a) + OO | x £ 1n(a)
(Q]B(2)|) 0
(B(2)|ren {1 + 00} x £ n(a)

Table 1: Leading logarithm renormalized perturbative results for the AB model to leading
logarithm. Red denotes leading logarithms explained by the stochastic formalism while
denotes those explained by the renormalization group.

* Re-summation Techniques: Stochastic

For the infrared secular contributions due to the ever-increasing number of
degrees of freedom with super-horizon wavelengths k < a(t)H, the stochas-
tic method can re-sum the leading contributions and provide the late time
evolution; this was explicitly displayed by Starobinsky and Yokoyama [20]
for a scalar ®(z) in de Sitter spacetime with a non-derivative self-interacting



potential V(®) and a static late time evolution limit. The basic idea is
to replace ®(z) with a stochastic field ¢(z) which commutes with itself
[o(x), p(2)] = 0, and whose correlators are completely free of ultraviolet
divergences. The stochastic field ¢(x) is constructed from the same free cre-
ation and annihilation operators that appear in ®(x) in such a way that the
two fields produce the same leading logarithms at each order in perturbation
theory. The requirement to concentrate on these infrared modes, simplifies
the equation of motion to a Langevin equation obeyed by the stochastic field

o(x),

Pla) ~ pol@) = ~5 V() (18)

where ¢, is the stochastic jitter given by the infrared truncated free field
mode sum emanating from ®(z).

- The extension of the method to scalars with derivative self-interactions
can be seen by noting, for instance in the equation of motion (9) for A(z),
that a constant A(z) = A field is a field strength renormalization of B(z).
It follows that we can quantify the effect of the undifferentiated A(zx) to
all orders by simply integrating out the differentiated B(z) fields in (9) for
constant A(z) = A. Taking the VEV of (9) gives the first order equation for
the 1-loop effective potential,

V(A a® = —%)\<1+%)\X)al)_2<ﬂ

IN(D=1)kH?dP
= +2 ( 1)_ ¢ , (20)
1+30A

0" B(x) 8MB(:):)’Q> . (19)

A

which upon taking the unregulated D = 4 limit and integrating gives the
1-loop effective potential,

Vi (A) = ——1n)1 + —)\A‘ . (21)

By integrating the derivative interactions out of the field equations in the
presence of a constant scalar background, we obtained a curvature-dependent
effective potential Vg for which the standard stochastic procedure applies:
one merely replaces V' in the non-derivative re-summation rule with Vig.

4For the purposes of this analysis we have converted from conformal time 7 to co-moving
time t.



- When the generic field equation (9) of A(zx) is restricted to de Sitter
spacetime we get, °

ANH? 1

d( g
——(a®A) =V (A)a® = = ———1 -
(@A) =V =0 = 1672 1+2)0A

(22)

Equation (22) can be solved exactly, and for the initial condition A;, = 0 the

solution is,
A2 H?
1+ —=1 —11. 2
\/ * 1672 n(a) ] (23)

2
ACIZX

The Langevin equation (18) for the associated stochastic field A(z),

AH? 1

A-Ay =" ——— 24

1672 1437 A 249
introduces the stochastic jitter coming from the infrared truncated free field
A,. The general solution consists of the C-number solution (23) plus a series

in powers of A, coming from iterating (24),

)\2H3 t )\3H3
A=Aq+ A, — /
0

t
| dtA+—— | d'A 00 . 25
3272 Aot 6472 /0 A, + O] (25)

* Re-summation Techniques: Renormalization Group

For the leading logarithms coming from the ultraviolet sector, the stan-
dard QFT re-summation methodology of the renormalization group needs, as
well, an extension due to the presence of a curved spacetime: counterterms
can be regarded as curvature-dependent renormalizations of the bare parame-
ters present in the original theory. Consider, for instance, the renormalization
of the composite operator A?(x). Of the general set of counterterms (13),
the K ,,RA? is a field strength renormalization,

A2 =\/ZoxA2, | Zpo=1-2K,xR+0M\), (26)

which is curvature dependent.

5Since the scale factor varies much faster than the field during inflation, it is preferable
to have derivatives act on the scale factor instead of the field. Thus, the single time
derivative of the Hubble friction term dominates over the second time and space derivatives
terms.



- The re-summation of the leading logarithms from the renormalization
group is well known in QFT: the 1-loop approximation to the running cou-
pling re-sums the leading logarithmic behaviour of all the loop diagrams. 6
Recall that the N-point function Gy (21, ..., xy; A\; p) at a scale p can be ex-
pressed in terms of its value at a scale ug via the running coupling constant

(),
Gn(z1, .. an; Ap) = Gy(xy, ..o o A(w); o)

cexp| N [" 0500 )

where y(A(p)) is the y-function of the associated field. B
Since for the AB model the 1-loop S-function vanishes, so that A\(u) = A,
the leading In(u) re-summation becomes a power law,

Ho

Gn(x1,...,en; A ) = Gy (21, ..., 2N A f1o) X {; (28)

] N~(A)
* Agreement: Stochastic Analysis

To substantiate that the above re-summations do indeed produce the lead-
ing logarithms, we must compare their predictions against the perturbative
results of Table 1.

- Starting from the stochastic re-summation, we expand the stochastic
solution (25) in powers of A and take its VEV, 7

} AH? \2H? \
<Q‘A(t,x) Q> =2 ln(a){l—l— 5 In(a) + O(A )} (29
as well as the VEV of its square,
H? N2 H?
2 = _ o 4
<Q‘A (t,x)‘Q> - ln(a){l 5 In(a) + O(A )} . (30)

Comparing (29) and (30) with their perturbative counterparts (Q|A(z)|2)
and (Q|A%(z)|Q2) in Table 1 shows perfect agreement, a highly non-trivial

SFurthermore, the running coupling obtained by solving the renormalization group
equations with the S-function approximated with its ¢-loop expression re-sums not only
the leading logarithm arising at any order, but also the first /-1 subleading logarithms.

"The infrared truncated free field A, has the canonically commuting creation and

annihilation operators of A so that: (Q|A,(¢,%)|Q) = 0 and (QA2(¢, Z)|Q) = H’ In(a)

42
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achievement indeed.

* Agreement: Renormalization Group

A similar non-trivial agreement is maintained when we consider the renor-
malization group analysis and its re-summation of the leading logarithms.
For instance, the Callan-Symanzik equation for the composite operator A?(x)
has the form [27],

[a% + 58—(1 + ] <Q’A2(:c)’(2> —0. (31)

ren

The £ and v functions are,

AON
0In(u)

Therefore, there should no leading logarithms coming from this analysis to
this order (2-loop) and indeed the corresponding perturbative result seen in
Table 1 for (Q]A?(2)|Q).en confirm this; both leading logarithms are stochas-
tic effects as described above. ®

- The curvature-dependent field strength renormalization of the compos-
ite operator B%(z) is [27],

_ 81n(ZA2)
T (2

B = =0+0(X\°) =0+0(\"). (32)

_3>\2H2
1672

Zp=1-2KpxR+0\) = 7, = +ONHYY,  (33)
so that its associated Callan-Symanzik equation predicts the leading loga-

rithm contribution to this order to be "’31\2 52 which is identical to what is
seen in Table 1 for (QB?(2)|)ren-

* Comments

- It turns out that all entries in Table 1 are reproduced by one or the
other of the re-summation techniques. Yet another example, is the \° order
term %ln(a) that appears in the VEV’s of Table 1: it comes from the
coincidence limit of the scalar propagator and is a stochastic effect; it could
not be explained by the renormalization group since it does not obey the
Callan-Symanzik equation.

- Among the physical conclusions from the above analysis, we could high-
light the behaviour of the scalar field A(z). It provides an example of a field

8The same is true for the renormalized VEV of A(z).
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which, (i) rolls down its potential at a faster rate due to its stochastic jitter,
(ii) develops a positive mass from a stochastically induced effective potential,
and (7i) has a time evolution that does not approach a static limit but grows
and persists to arbitrarily late times.

3 Constant Graviton Induced Stress Tensor

On D = 4 dimensional de Sitter the cosmological constant is A = 3H2. The
gravitational field equation associated with our model (7) is,

1 1
Ry = 5 Rgu + 3H%g, = 87G {5@6“,, - 5%9”"} 0pp 050 (34)

We seek to integrate out the scalar fields on the right hand side of (34). If this
could be done for an arbitrary metric field g, (z) it would give us the exact
1-loop effective field equation, however, this is not possible. What we can
do instead is to integrate out the scalars for constant graviton field, which
should suffice at leading logarithm order. As we shall see, this constant back-
ground is just de Sitter spacetime with a different cosmological constant.

- Consider the general class of conformally rescaled backgrounds with con-
stant H and arbitrary g, (),

Hn

9u(2) = @ G () = @ 1 + whu(a)| a= (35)

Here and henceforth x? = 167G is the loop-counting parameter of quantum
gravity. For geometries (35) we find, °

07, = atl (8,0 + 0,8%, = 3 G ) + 1%, (36)
Rpa;w — _H? E]{)O (5pu Jov — 5PV gau>

+aH |:5pufoua - 6puf0ua + gpa <fouo¢ 5110 - foua guo)] + EPUNV ’ (37>

Ry = —3H? 50y + aH |20, 4 5 7 T,0] + B (38)
H_ .~ 1~

R=-12H"3"+6—gT°;+ S5 R. (39)
a a

9We define: fp,uu = %gpg (ﬁg#,y + gua,u - gm/,o)-
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Thus, the left hand side of (34) becomes,

1 Y
By = 5 R gy + 3120, = 31 (14 5% gy + 20H [T, =G 77 T,

2
~ 1. =~
"‘ij - §gHVR . (40)

- When we focus on geometries with A, (x) constant (which implies constant
Guv()), so that only terms without derivatives acting on the field are selected,
the curvature tensor (37) simplifies,

_ 2 ~00
Rpa;w G—c =—-H g <5pu Gov — 5p1/ gau) ’ (41)
and we recognize a de Sitter geometry albeit with a different cosmological
constant,

Juwp=0 = H* — —g"H*. (42)

- To integrate out the differentiated scalars present in the right hand side of
(34),

0u0(x) 0,0(x) = (2|0u0(x) ,0(2)| Q). (43)

the above expectation value is to be evaluated in the scalar vacuum for the
background (35) with g, (x) a spacetime constant.

What is needed for the computation of (43) is the coincidence limit of the
mixed derivative of the scalar propagator in de Sitter spacetime, a quantity
that has been evaluated using dimensional regularization (and the old Hubble
parameter H) [6,16],

HP  T(D)
lim 8,8, iMgs(v;2") = — * G
x}inm O, 1 dS(ZL' $) (47_()% QF(g—l—l) Iu (z) Guv=c
3H*
N —35.3 X g () _— (44)

The finite D=4 remainder in (44) emerges after the automatic subtraction of

the quartic and quadratic divergences of the doubly differentiated propagator.

By effecting the replacement (42) in the evaluation (44), the right hand
side (43) equals,

3[— GO H?]?

(2|oo@aow|e) | =2ETTTL 0w @)

guu:a2§uu 327T2
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so that,

1
876G <Q 04 0 — 309" 09 0

2)
Iur=02Gpw
B 3%2[—§00H2]2

1 X g (). (46)

Note that (46) represents a negative contribution to the cosmological constant
which can become arbitrarily large if —¢% achieves arbitrarily large values.

- Substituting (40) and (46) into the gravitational field equations (34) we
arrive at the leading logarithm form,

~ 1. ~ - e B
Ry, — §9uvR +2aH |T°,,— G §* Foaﬁ]
2H2
— 3% 11 ~00 K 72 g A7
L @ g D
displaying the scalar-induced gravitational stress-energy tensor T,if;d ,
in 3 2
T,ul/d = 3972 [ - ’Q{)Oﬂz] v (48)

always with the understanding that g, (z)=constant.
For g% = —1 the induced stress tensor (48) takes the form of a negative
addition to the cosmological constant of,

3k2H*

A=

(19)
If we want the quantity “H” to represent the true Hubble parameter, at least
initially, (49) must be absorbed by making a finite renormalization of the
cosmological constant. This is precisely the finite renormalization which was
previously recognized as being necessary to make the scalar loop contribution
to the graviton self-energy conserved — see equations (33) and (38) of [34].

4 Generally Conserved Extension

The induced stress tensor (48) is not conserved when g, is allowed to depend
on space and time. It is important to understand that this is not an error
but rather the inevitable consequence of working at leading logarithm order.

13



Consider, for example, the A\¢* energy density and pressure (2-3). Under
the symmetries of homogeneity and isotropy conservation reduces to p =
—3H(p+ p), and relations (2-3) do obey this,

AH?

=G 2H In(a) + O(N\?) (50)

4
—3H(p+p) = —3H{ ;HWQ [+ In*(a) — In*(a) — 2 ln(a)} + O(AZ)} . (51)
However, the right hand side (51) only agrees with the left (50) by virtue of
the sub-leading factor of —2 In(a) in the pressure (3). With just the =+ In*(a)
leading logarithm contributions, conservation is violated.

Although the violation of conservation of the induced stress tensor (48)
has a good explanation, it does present us with a problem. The gravitational
field equations (34) consist of 10 relations, for a general metric, of which 4
are automatically implied by conservation. If one adds the non-conserved
stress tensor (48) this will no longer be true. All 10 of the equations cannot
be used, because the Oth order equations are still conserved. So which 6
of the 10 equations should we solve, and why? Note that this sort of issue
could not arise with the very similar effective potentials which are induced
in non-linear sigma models; it is specific to gravity and it will have to be
confronted as well when graviton loops are considered.

We believe that the answer is to extend the leading logarithm stress tensor
(48) to a generally conserved form. The variation of any invariant would give
such a conserved form, and it is worthwhile first considering the two 1-loop
counterterms,

AL = 1 R*/=g + c3Cop,sC*° /=g . (52)
The variation of the Weyl counterterm will still contain a Weyl tensor, which

vanishes for de Sitter, so this counterterm has no impact. The variation of
the R? counterterm contributes to the stress tensor as,

2 0AS
V=g og"

For D-dimensional de Sitter with arbitrary Hubble parameter H, the Ricci

1
AT, =

= 1| gw R~ 4(Ru + 90— DuD, )R] . (53)

tensor is R, = (D — 1)H2guy. The covariant derivatives all vanish so we
have,

P 4(RW + g — DHD,,>R = D(D-1)XD-DH'g . (54)

14



The factor of (D — 4) means that only the divergent part of the counterterm
¢; can make a nonzero contribution to expression (53),

D—4 1
M RV RS TETe (55)
The result does not quite agree with (48),
—4
H
1 _
AT/J,V - 3271'29#1} . (56)

Although the R? counterterm induces a stress tensor (56) which fails to
agree with the leading logarithm result (48), it is close enough that we are
motivated to consider more general functions of the Ricci scalar. Expressions
(38) and (39) for the Ricci tensor and scalar suggest that we could regard
[—g%H?] as £ and try to extend the stress-energy tensor (48) so that it

12
emerges from a more general Lagrangian,

Lr =—f(R)V-g, (57)
which gives the conserved source,
K2 5ST[g] 1, ) /
— r—_g 6guu(x) - _51% g/»ll/f(R) + K [Ruy _'_g/,u/D - D“Dy]f (R) , (58)

where O = ﬁaﬂ[\/—ggway] is the scalar covariant d’Alembertian and D,

is the covariant derivative operator. By substituting (38) and (39) into (58),
by discarding the sub-leading terms involving foaﬁ and E, and by defining
X = —129"H?, equation (58) reduces to a 1st order differential equation
for the function f(X),

X? |y X f(X)y
s = —F0) 53X 00 = (557 (59)
which has the solution,
X2In(%5)

FX) = S (60)

whose 1st and 2nd derivatives equal,

2X In(5) + X 21n(s57) + 3

poo = 2 PR e 3 )

28.3 .72 ’ 28.3. 72
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- Furthermore, the two derivative terms present in (58) are,
90 = G [gpoaﬁaa + 2aH gopﬁp - gpofapoﬁa] ’ (62)
—DuDy = ~8,0y + aH 8,0, + 0%,0 = G g 0y| + 17,0, (63)

It will turn out to be rather useful to extract the metric from the Ricci tensor
(38),

1 U T <1~
Ry = 39+ 20H [FOW—ZQW G| + [Ruy—ZgWR}
1
= ZgWR + AR, , (64)
and to define the dimensionless Ricci scalar R from (39),
~af fO D
g R
R=120%| - " o | =120 xR 65
7 R Uy T . (65)

In view of (64), (65) and (60), (61) the three terms on the right hand side of
(58) become,

1

—51{2 Guv f(R) = _6€H2R2 IH(R) Guv (66)

K2R f'(R) = 3¢H*R? [2 In(R) + 1} G + €R [2 In(R) + 1] AR, , (67)

K2 [gWD—DHDy] F(R) = e[glwl:l—DuD,,} [mln(n) +R} , (68)
where € = ’Z,zfr]; .

Summing (66-68) gives,

k* 8S7|g]
V=9 9g" (z)

= 3eH*R? g, + €R[21n(R) + 1| AR,
+e[g,w|:| - DMDV] [272 In(R) + R} . (69)

The spacetime geometries of cosmological interest are homogeneous,

~ 1 o = : Tii = 03 .
oo 0 . G0i=0 Gij = 0ij (70)
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The quantities of interest have the following form,

~ ax ~ 1
[ 7T, = ~ai
00 2x — g af 2@:1: ) (71>
~ Tl 1.
RMV =0 , AR/M/ = —a2H:p |: anu(so,j + Zgul/] ’ (72)

so that the relevant derivative operators become,

1. a 4 1.
9B —D,D, = gy [x8t+2xH+§x] 0==0°,", [xat—xH+§x] 9, . (74)

Consequently, the two non-zero components in this background are,

k* 0Srlg)

\/_—gégoo(z) = €9goo X A ) (75)
A = 3H?R® + 3HG§C . xat) [273 In(R) + 72] . (76)
26

K ST[g] — 692] % B7 (77>

V—g0g"(x
1 1
B = 3H*R? — (ZH:b + 2Ha0, + 50, + xaf) [272 m(R)+R|, (78

~—

and the conservation equation is satisfied,

A=3H(-A+B). (79)

Moreover, the extended source (69) has the proper correspondence limit (48)
because when g, is constant only the first term in the right hand side of
(69) survives. It should also be noted that the extension we analyzed is by
no means unique.

5 Renormalization Group Analysis

Analysis of the exact 1-loop effective field equations produced three re-
sults [35]. First, the electric component of the Weyl tensor for plane wave

gravitational radiation (h;;(t, ¥) = eij(lg, Nu(t, l{:)eiE‘f) receives a logarithmic
correction,

Coiog () = Cliy (£, {1 = 2 xIn(a) + O(G*) } . (80)
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A similar logarithmic correction affects the gravitational potentials,
ds? = — [1-2@@,@]&2 +a?(t) [1 . 2<I>(t,r)]df-df, (81)

generated in response to a static point mass M,

ar

bit.r) = D1+ g — ) < O()) (8

a(t,r) = — {1 - 5 — WL [In(aHr)+1] + O(GH) } . (83)
The factors of -5 in (82-83) represent de Sitter versions of corrections which
have long been known on flat space background [50-52]. They are not leading
logarithm contributions and have no interest for us.

The three leading logarithm corrections (80) and (82-83) are not explained
by the induced stress tensor we considered in the previous section. They
closely resemble the logarithmic corrections previously found to the electric
components of the field strength tensor for plane wave electromagnetic radi-
ation [13], and to the Coulomb potential for a static point charge [12]. Those
two results can be explained by a variant of the renormalization group [53],
and it turns out that a similar explanation works for the gravitational loga-
rithms (80) and (82-83).

The model (7) was the first quantum gravitational system ever studied
using dimensional regularization [54]. It has long been known that this model
requires two counterterms at 1-loop order,

AL = 1 R*/=g + c3Cop,sC° /=g . (84)

The coefficients ¢; and ¢ which were used to derive the 1-loop results (80)
and (82-83) are [30,35],

_ pPT(R) (D-2)
“T T2 (D-1XD-3)(D-4) (%)
=t ~'I(3) 2 (86)

28737 (D+1)(D-1)(D=3)*(D—4) "

where p is the scale of dimensional regularization.

Like the non-linear sigma models considered in Section 3, our model (7) is
nonrenormalizable. Recall from Section 3 that it was necessary to sort the re-
sulting BPHZ (Bogoliubov, Parasiuk [55], Hepp [56] and Zimmermann [57,58|
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counterterms into those which can be viewed as renormalizing parameters of
the bare theory and those that provide irrelevant higher derivative contri-
butions which do not induce large logarithms. Experience with the large
electromagnetic logarithms induced by graviton loops [53] shows that this
sometimes requires dissecting the original counterterms. For example, renor-
malizing the 1-loop graviton contribution to the vacuum polarization on de
Sitter background requires three counterterms [59,60], '°

A,C = AC H2F;'ijggikgjé\/ —g + UH2FuquagungJ V=9
+C, DaF/u/ DﬁFpU gaﬁgupguo /__g . (87)

However, the curvature-dependent field strength renormalization which ex-
plains the large electromagnetic logarithms is [53],

07 = —4[6 - (3D—8)C4] i (88)

The analogous decomposition of the gravitational counterterms (84) be-
gins by writing the Eddington (R?) counterterm as the sum of three terms,

R = (R—DA>2 +2DA [R—(D—Q)A] + D(D—4)A?. (89)

(i) The first term in (89) involves products of second derivatives of the gravi-
ton field, and explicit computation shows that it engenders no large loga-
rithms [35].
(7i) However, the second term can be viewed either as a renormalization of
Newton’s constant in the original model (7), or else as a renormalization of
the graviton field strength. Because we have no information about higher
order couplings it is convenient to adopt the latter interpretation.
(7i) The third term is finite.

The interpretation adopted for the second term in (89) applies as well to
the special term arising, at quadratic order, from the term proportional to
O2h,, in the Weyl counterterm of (84),

ChuvporC"7 = =220,0,h,5 C*"7 + O(K°RY) — —2202hy; Coioj ,  (90)

where C*7 is the conformally rescaled Weyl tensor. Direct calculation [35]
shows that the two time derivatives can act on scale factors to eventually
contribute to the large logarithms (80) and (82-83).

10The non-covariant AC' counterterm arises from the unavoidable breaking of de Sitter
invariance in the graviton propagator.
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Hence the total field strength renormalization is,

_ 0lm(1+4Z) 3GH?
~ OIn(p?) 201

§Z =D [2(1)—1)01 - cz] K2H? = (91)

The Callan-Symanzik equation for a 2-point Green’s function reads,

[811?(;0 + Ba % + 27] G?=0. (92)
The S-function for GG vanishes at the order we are working. From expression
(6) we see that factors of the renormalization scale p come in the form In(pa),
so that we can replace the derivative with respect to In(u) by a derivative
with respect to In(a). The Weyl tensor (80) can be considered as the 2-point
correlator between the operator Cy,y; and the single particle creation opera-
tor; similarly, the potentials (82-83) can be considered as 2-point correlators.
It follows that the three large logarithms in (80) and (82-83) can all be ex-
plained using the renormalization group. If we ignore possible running of
Newton’s constant it is even possible to sum up the effects to conclude,

Cois (t,7) — Clip; (1, 7) % [a(t)}_g%}i : (93)
GM _3?0112
W(t,r) — o [a(t)Hr} , (94)
GM _31G0Z2
Bt,r) — — % [a(t)Hr] . (95)

6 Epilogue

The continuous production of MMC scalars and gravitons during inflation
causes loop corrections which would be constant in flat space to acquire
secular growth factors in the form of powers of the logarithm of the scale fac-
tor [6-15]. Over a prolonged period of inflation these factors must overwhelm
even the smallest coupling constant. At this point perturbation theory breaks
down and one must employ some non-perturbative re-summation. Starobin-
sky’s stochastic formalism [18,20] sums the series of leading logarithms of
scalar potential models (4) but it must be extended to correctly describe
the leading logarithms of more general models. In these models one must
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distinguish between Active fields which engender secular growth factors and
Passive fields which do not. One form of extending Starobinsky’s formalism
is to integrate out Passive fields in the presence of a spacetime constant Ac-
tive field background. The result is an effective potential which can then be
treated using Starobinsky’s formalism. With the work done in this paper we
now know of three ways in which these effective potentials can be induced:

e Through a constant Active field giving rise to a Passive field mass, as
in Yukawa [8];

e Through a constant Active field changing a Passive field strength, as
in nonlinear sigma models [27]; and

e Through a constant Active field changing the Hubble parameter on
which a Passive field propagator depends, as occurs in our model (7).

In Section 3 we considered an MMC scalar coupled to gravity (7) and
integrated the scalar out of the gravitational field equation in the presence
of a constant graviton background. It turns out that this is equivalent to
merely changing the de Sitter Hubble constant according to the rule (42).
The resulting stress tensor (48) precisely explains the finite renormalization
of the cosmological constant which was previously noted as being necessary
to make the graviton self-energy conserved [34].

In Section 4 we noted that the induced stress tensor (48) is not conserved
when one goes beyond leading logarithm order to permit to graviton field
to vary in space and time. This is not an error, but rather the inevitable
consequence of working at leading logarithm order. However, it does pose
a problem in solving the gravitational field equations. We showed that (48)
can be extended to a form (69) which is generally conserved.

For theories which possess derivative interactions, such as non-linear
sigma models and gravity, a second extension must be made of Starobin-
sky’s formalism to include the large logarithms induced by the incomplete
cancellation between primitive divergences and counterterms (6). These log-
arithms are described by a variant of the renormalization group in which
some portion of the BPHZ counterterms can be regarded as renormalizing
couplings or field strengths of the original theory. That procedure was de-
scribed in Section 2 for non-linear sigma models, and we applied it in Section
5 to the large logarithms (80) and (82-83) which occur in our model (7). The
two BPHZ counterterms (84) can be regarded as giving rise to a graviton
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field strength renormalization (91) which explains all three of the large loga-
rithms. If we ignore possible running of Newton’s constant, it is even possible
to give fully resummed results (93-95). We remark that it should be possible
to determine any running of G by computing the 1PI 3-point function, the
same as has recently been done for non-linear sigma models [39].

The point of making this study was to facilitate the development of a
leading logarithm re-summation technique for graviton loops, so it is worth
commenting on what will generalize and what may differ. First, the proce-
dure of integrating out differentiated graviton fields for constant g, should
involve the same replacement (42) as for our scalar model (7). However, the
more complicated form of the graviton propagator [61,62] makes it likely
that the induced stress tensor will contain a term proportional to 5258 in
addition to one proportional to g,,. Like the scalar-induced stress tensor
(48), it is inevitable that the graviton-induced stress tensor will not be con-
served when one permits the graviton field to depend on space and time. We
plan to seek a fully conserved extension, but we do not expect that a local
one such as (69) can be found. We also expect that 1-loop corrections to
the graviton mode function and to the response to a point mass will involve
stochastic fluctuations in these extended, effective field equations, in addition
to renormalization group effects. Finally, we expect the need for more coun-
terterms than just the two covariant possibilities (84), owing to the same de
Sitter breaking which produced the noncovariant AC' counterterm (87) for
electromagnetism.
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