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ABSTRACT: In a systematic study, we use an equivalent pair of improved numerical relativity
codes based on a tetrad-formulation of the classical Einstein-scalar field equations to examine
whether slow contraction or inflation (or both) can resolve the homogeneity, isotropy and
flatness problems. Our finding, based on a set of gauge/frame invariant diagnostics and
the models considered, is that slow contraction robustly and rapidly smooths and flattens
spacetime beginning from initial conditions that are outside the perturbative regime of the
flat Friedmann-Robertson-Walker metric, whereas inflation fails these tests. We present new
numerical evidence supporting the conjecture that the combination of ultralocal evolution
and an effective equation-of-state with pressure much greater than energy density is the key
to having robust and rapid smoothing. The opposite of ultralocality occurs in expanding
spacetimes, which is the leading obstruction to smoothing following a big bang.
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1 Introduction

The foremost challenge for any theory of the origin and early evolution of the universe is
to explain its homogeneity, isotropy and spatial flatness on large scales. These features
are extraordinary for a theory based on general relativity in which a foundational notion
is that spacetime is malleable, capable of curving, shearing, fluctuating and warping. Yet
all the successful predictions of ACDM (a.k.a. the basic “big bang theory”) — primordial
nucleosynthesis, the cosmic microwave background, structure formation, and Hubble expansion
— rely on the assumption that there was no sign of this malleability by the time primordial
nucleosynthesis commenced. Instead, spacetime was well-described by a surprisingly simple flat
Friedmann-Robertson-Walker (FRW) metric that is highly non-generic in general relativity.

In this paper, we present the results of a systematic comparative study of two mechanisms
proposed to smooth and flatten the early universe beginning from initial conditions that are
outside the perturbative regime of the flat FRW metric, namely inflation and slow contraction.
Inflation is a period of accelerated expansion hypothesized to occur shortly after the big
bang during which the equation of state ¢ = (3/2)(1 + p/p) < 1 (where p is the pressure
and p is the energy density of the dominant energy component) and the FRW scale factor
a(t) o< 7/¢ grows faster with 7 than the Hubble radius H—'(7) o< 7. Slow contraction is a

1/¢ where ¢ > 3, which shrinks more slowly than the Hubble radius

period in which a(7) o |7
|H!| o |7] as 7 — 0. (We follow the convention of defining 7 as positive and increasing
during expansion and as negative and increasing towards 7 — 0~ during contraction. This is
the reason for the absolute value signs in the expressions for contraction.) In either case, the
requisite value of € can be attained by a scalar field ¢ evolving down a potential V(¢), for
which £ — %¢2 / (%¢2 + V) in the homogeneous limit. For inflation, obtaining ¢ < 1 requires
a positive potential energy and small scalar field kinetic energy; for slow contraction, the

potential energy must be negative and the kinetic energy must be large enough that the



total energy density is positive. Note that both require similar ingredients (Einstein gravity
and a scalar field with a potential) and the same number of initial conditions to be specified
at the start, which makes for a fair comparison.

For both proposed smoothing mechanisms, it is straightforward to show that they can
smooth out small perturbations to a pure FRW metric, which is why both appeared at first
to be promising candidates. The true test, though, is to begin far from FRW conditions and
solve the full set of non-linearly coupled partial differential Einstein-scalar equations of motion
to determine if smoothing and flattening occurs. This has become possible by adapting the nu-
merical relativity tools originally introduced to study black hole inspiral and merger to address
the homogeneity and isotropy problem in early universe cosmology. There have been a number
of pioneering numerical relativity studies of inflation [1-9] and slow contraction [10-16] using
different formulations of the Einstein equations, treatments of initial conditions, and diag-
nostics, where each study has focused on one smoothing mechanism or the other, as carefully
reviewed and critiqued in ref. [17]. These earlier contributions have informed this paper.

Our goal here is to perform the first systematic comparative study of inflation and
slow contraction, so we have taken a different approach. We have produced two nearly
identical codes that solve the (3+1)-dimensional Einstein-scalar field equations using the same
mean-curvature-normalized, orthonormal tetrad formulation. This form was chosen because
it enables large spatial variations in one or more directions of all freely specifiable physical
quantities that characterize the initial spatial hypersurface. We have also developed a common
set of diagnostics to evaluate when initial conditions are outside the perturbative regime
of a flat FRW and how smooth and flat the universe must become to satisfy observational
constraints. Hundreds of numerical evolutions, each lasting from a few minutes to a few
months, were then run to study how the outcome depends on the different parameters that
specify the initial conditions.

Especially important were studies exploring a key difference between inflation and
slow contraction. Namely, smoothing by slow contraction entails a non-linear smoothing
mechanism based on ultralocality, a general relativistic effect that appears to be unique to
contracting spacetimes. Ultralocality refers to a condition in which the spatial derivative
terms in the non-linearly coupled partial differential Einstein equations fall exponentially fast
during contraction compared to terms containing only time derivatives, converting the partial
differential equations to ordinary differential equations. The ultralocality effect was first
conjectured by Belinski, Khalatnikov and Lifshitz [18] in the 1960s who only considered its
application to the case of fast contraction (¢ < 3) for historical reasons. Curiously, in that case,
the ordinary differential equations have chaotic solutions that produce mixmaster behavior that
unsmooths the universe. With slow contraction (¢ > 3), the ordinary differential equations
have an attractor solution that is flat FRW, just what is desired to solve the homogeneity,
isotropy and flatness problem. Inflation, by contrast, occurs during an expanding phase that
does not have ultralocal behavior. This accounts for our finding that, based on the diagnostics
presented here, inflation is unable to smooth and flatten the inhomogeneous, anisotropic,
and curved initial conditions expected following a big bang.

The plan of the paper is as follows. In section 2, we briefly summarize our numerical
relativity schemes and point out the improvements that have been made compared to earlier



publications. In section 3, we discuss the diagnostics we use in evaluating how far initial
conditions are from flat FRW and how we determine whether smoothing and flattening is
achieved. In section 4, we digress to note several ways in which existing numerical techniques
introduce unavoidable inequities that favor one smoothing mechanism relative to the other.
As it turns out, the inequities all favor inflation and disfavor slow contraction, so they do
not qualitatively change our conclusions.

Sections 5 thru 7 present the key results. In section 5, we compare two representative
examples, one inflation and one slow contraction, both of which have been selected because
their initial conditions were, by our diagnostic measures, as far from flat FRW as possible
and yet sufficiently limited that smoothing and flattening still occurs. We have chosen a
negative potential for the scalar field ¢ that is exponentially decreasing with ¢ for the slow
contraction case; and we have chosen a positive quadratic potential for the inflation case.
Both potentials have been investigated previously by several groups [3, 4, 6-9] , including us,
which is useful for making comparisons. Although inflation with quadratic potentials is ruled
out by experimental bounds on the amplitudes of B-modes, we choose it anyway because
it has been suggested that this is the example that is least sensitive to initial deviations
from flat FRW [6, 7].

Based on the diagnostic measures, it is clear for these examples that slow contraction
is a robust and rapid smoother even for initial conditions that are outside the perturbative
flat FRW, but inflation is not. In section 6, we provide new evidence (beyond our earlier
work) illustrating how ultralocality leads to smoothing for slow contraction but not for fast
contraction. In section 7, we then illustrate how the non-ultralocal behavior of inflation
evidences itself when initial conditions are far from flat FRW. We close with a summary and
discussion in section 8. We have extended our survey to other potentials and will report the
results elsewhere. They do not change the qualitative conclusions presented here.

2 Numerical relativity scheme

We numerically solve the (341)-dimensional Einstein-scalar field equations in mean-curvature-
normalized, orthonormal tetrad form, as has been successfully implemented in earlier studies
of contracting spacetimes [10-16] and more recently for studies of inflation [9]. The numerical
scheme is explained in great detail in the appendix of ref. [9]. Whereas the existing contraction
tetrad code allowed spatial variations along one, two or three spatial directions, the earlier
published inflationary tetrad code results only allowed spatial variations along a single
spatial direction [9]. Our first step, therefore, was to write a new inflation tetrad code that
allows variations along two or three spatial dimensions. In the process, a number of small
improvements were made to increase efficiency and accuracy. Then, to keep the comparison
study as even-handed as possible, we made a mirror version that uses the same subroutines,
functions, algorithms, etc. but which is adapted for contraction. The study results here
are from simulations with initial spatial variations along two directions, as described below.
We found no significant differences from high-resolution simulations with initial variations
along one direction. Simulations of the same resolution with initial variations along three
directions would require at least a thousand times the already significant computer resources
used in this study. However, we have run lower resolution simulations with spatial variations



along three directions and confirmed that the qualitative differences between contraction
and expansion described in section 7 appear to be maintained.

There are three obvious differences between the inflation and slow contraction software
packages that involve only a few lines of code and do not affect efficiency or accuracy: the
time slicing, the scalar field potential, and the initial conditions.

The slow contraction code uses constant mean curvature time-slicing,

dan__1
a7

(2.1)

where the coordinate ¢ runs from 0 to —oo and K = K is the mean curvature, which is
equal to 1/3|H~'| in the homogeneous limit. Note that the mean curvature changes by an
exponential factor during slow contraction. Note also that ¢ is not the FRW time coordinate
(indicated by 7 in the previous section). In the homogeneous limit, |¢| represents the number
of e-folds of contraction of the Hubble radius.

In the expanding case, the coordinate time ¢ runs from zero to +oo, and the mean
curvature only changes by a few orders of magnitude. As a result, a modified time slicing
has been found to be necessary [9],

dln|K]|
= —ul(t 2.2
where 1
pu(t) = Ko@)’ (2.3)
K = —3H in the homogeneous limit, and Nyax(t) is the maximum value of the coordinate

lapse N at time t rescaled by the mean curvature divided by pu, N' = %K N/p to make it
dimensionless. As shown in the appendix of ref. [9], this time coordinate ¢ then measures the
maximum number of e-folds of inflation taking place during the simulation.

As for the scalar field potentials, a negative potential is required for slow contraction, as
noted in the Introduction. We use a well-studied exponential form, V(¢) = —Vj exp(¢p/M),
where M < Mp and Mp = 2.4 x 10'8 GeV is the reduced Planck mass. (This study only
explores the smoothing phases and not the reheating and latter stages, we do not need to
add a minimum to the potential or a bounce as would be required in the full evolution since
we do not get close to that stage.) In the homogeneous limit, a canonical scalar field rolling
down a negative exponential of this form has an attractor solution in which the equation of
state ¢ — 1/2M?. For this survey, we limit consideration to values of M between 0.1 and
0.2 (corresponding to attractor solutions with e between 13 and 50), which has been shown
to be sufficient to smooth the universe [12, 13] (although much larger values are possible
and smooth even more robustly and rapidly). In the case of inflation, a positive potential is
required. We use a well-studied example, V(¢) = %m2¢2, where m = 3.8 x 1073 Mp.

As a practical matter, we confined the high-resolution studies to spatial variations along
one and two directions, which is sufficient to check for consistency and for any non-linear
effects that may arise when there are variations along more than one direction. Extending the
survey to high-resolution simulations with initial spatial variations along three dimensions
requires parallelism over multiple CPUs and much more expensive simulations. As a check,



though, we have run lower-resolution examples with initial spatial variations along three
dimensions for short durations and found no qualitative differences in the outcomes and
from the results reported in section 7.

The initial conditions were set using York’s conformal method [19] for both inflation and
slow contraction to ensure they satisfy the Hamiltonian and momentum constraints. In our
implementation, the spatial metric on the initial time slice (¢t = t¢) is set to be conformally-flat,
7ij(to, T) = ¥ (to, )dij, where 1 denotes the conformal factor. The components of the spatial

3-curvature tensor ngp, Ay and the tetrad vector components E,' then satisfy:

ﬁab(th f) = 07 (24)
Ay(to, B) = =20 By 0y, (2.5)
B (to, &) = v 2(Ko/3) " 16,". (2.6)

where A, = %51)“1ch is the antisymmetric part of N, (the nine intrinsic spatial curvature
variables) and ng, = Ny — eap® A, is the symmetric part. A “bar’ on top of any variable
corresponds to rescaling by the mean curvature (i.e., dividing by K/3). Early alphabet indices
(a, b, etc.) are frame indices and middle indices (i, j, etc.) are coordinate indices.

There remains the freedom to specify the initial scalar field distribution ¢(to,Z), the

conformally re-scaled initial scalar field velocity @, and the divergence-free (transverse,

trace-less) part of the conformally-rescaled shear tensor, Z;{bT(to, z) = ¢622b, parameterized
as follows:
| b2+ eacos (4 4+ ay) K crcos (4 + ay) +as
_ Ko\~
Zy = (3) K by +aicos (£ +ay) ascos(%+ay)+cs |, (2.7)
crcos (¥ 4+ ay) + a3 azcos (§+az) +c3 —zIr - Z4F

where a1, az,as, b1, b2, c1,c2, 3,02, 0y and K are constants;

Q= (I?)_l X (fo cos (7720:6 + do) + focos (n;fy + dg) + Qo)

¢ = f1cos (nzlaf + d1) + f3cos (7233/ + dg) + ¢o,

(2.8)

where Qo, o0, fo, f1, f2, f3, Mo, m1, Mo, ms, dy, d1,do,ds are constant and denote the mean
value, the amplitude, the mode number and the phase of the initial velocity and field
distribution, respectively, and Ky is the initial mean curvature.

The choice of cosine reflects the fact that, for the numerical simulation, we must choose
periodic boundary conditions 0 < x,y < 27 L0y with 27 LOg identified as the ‘box side-length,’
where ©q is the initial inverse mean curvature and L > 1 is a positive integer. With periodic
boundary conditions, the mode numbers (m;) must be fixed integers, so the box side-length
must be co-moving, i.e. with a box side-length scaling as a(t).

For slow contraction, the scale factor shrinks very little over the course of the simulation.
We start with an initial inverse mean curvature Qg that is larger than the present Hubble
radius ~ O(10%%) but have the freedom to choose the box side-length to be yet larger still.
This ensures that the box encompasses from the start a spatial volume large enough to evolve



through slow contraction, bounce and expansion into the size of the observable universe
today. Then we choose the number of grid points such that the initial grid spacing is as small
as possible compared to the initial mean curvature since our goal is to study the effects of
introducing large amplitude spatial variations that range over scales including ones smaller
than the initial mean curvature. The optimal choice is to choose L = 1 and maximize the
number of grid points as much as computer resources allow. If simulations end with the entire
box being smooth and flat, this indicates that slow contraction has successfully resolved the
homogeneity, isotropy and flatness problems beginning from an initial state that is outside
the perturbative regime of flat FRW spacetimes.

Inflation simulations are quite different. The scale factor a(t) expands by an exponential
factor over the course of the simulation and, hence, so does the box side-length (when
expressed in physical units). We start with an inverse mean curvature scale Oq that is 1/27L
times the box side-length. Physically, this length is microscopic compared to the present
Hubble radius in physical units. (More precisely, O is of order the Hubble radius at the
beginning of inflation.) We choose a grid spacing that is smaller than ©( because we want to
investigate the effects of initial spatial variations that vary over length scales smaller than
Oy (the kinds of variations expected following a big bang). During the early stages of the
simulation before accelerated expansion begins, the Hubble radius can grow faster than a(t),
depending on the initial conditions, and, as a result, can grow relative to the box size by
a modest factor. We want to choose L large enough to follow that stage of the evolution.
Then, once inflation starts, the situation reverses: the Hubble radius grows much more slowly
than a(t) and, hence, shrinks relative to the box size. Well before the end of inflation, the
Hubble radius becomes smaller than the grid spacing. The best compromise for following the
evolution on scales of order the Hubble radius during both the early and late stages is to
choose L > 1 and maximize the number of grid points as much as computational resources
allow (see related discussion in section 4). In future studies, one might consider using
adaptive mesh refinement to extend dynamic range of the simulations.

We refer the reader to ref. [17] for a review of how to properly apply the York method
using an elliptic solver in order to obtain initial conditions for the conformal factor ¢ consistent
with the Hamiltonian and momentum constraints even for conditions outside the perturbative
regime of flat FRW spacetimes and how to evolve the combined hyperbolic-elliptic system
of Einstein-scalar partial differential equations.

3 Diagnostics

The goal of our survey is to determine for inflation and slow contraction how far the
inhomogeneous, anisotropic and curved initial conditions can be from the target final state —
a flat FRW spacetime dominated by the scalar field (€24 = 1) — and still reach the target
by the end of the smoothing phase.

Four objective quantitative tests are:

1. |Qg| test: a robust smoothing mechanism should have dynamical properties that enable
the associated stress-energy component (e.g., due to the scalar field in our cases) to
overtake the other degrees of freedom for a sustained period long enough to smooth and



flatten the universe. One test for robustness is, therefore, showing that smoothing occurs
beginning from \QS)\ < 1. We screen out cases where this initial condition is not satisfied.

. A/(20p) < 1: asecond test is whether smoothing occurs if the initial spatial variations
include modes whose wavelengths are comparable to the initial inverse mean curvature
©¢ (which, in a homogeneous universe would be the Hubble radius). Otherwise, the
initial conditions would be ones for which the universe is relatively smooth on the scale of
the Hubble radius at the very start, which is neither expected physically nor the kind of
condition we aim to test. Due to the periodic boundary conditions, the initial spatial vari-
ations given in eqs. (2.7) and (2.8) are expressed as sums of fourier modes with different
wavelengths \; = 2w LOg/m; commensurate with the periodic box side-length 27 L©y,
where m; = mg, m1, ms,... are integers. With this parameterization, this second test
reduces to checking if 7L/m; < 1 for one or more of the m;. Whereas the condition on
]Qg\ < 1 is not so difficult to obtain for either inflation or so contraction, this second
test is more challenging, especially for inflation where the evolution is not ultralocal.

. Weyl curvature ¢ and Chern-Pontryagin invariant P: these two scalars, derived
from the Weyl curvature tensor, were first proposed as good measures of inhomogeneity,
anisotropy and curvature in ref. [17] because they are independent of the formulation,
gauge or frame.

The conformal Weyl curvature tensor C is the trace-free part of the Riemann

nvpo
curvature tensor. The scalars derived from it are

C= C””'MCWM (3.1)
and
P = *CcHrre Cw,po, (3.2)
where
* _ 1 ¢
CWPU = §XMV CTCPU’ (3.3)

with Xpvre = —/1—-9gle e being the totally anti-symmetric Levi-Civita 4-form and
€ e being the Levi-Civita tensor. The two curvature invariants can be expressed in
terms of two spatial 3-tensors F,; and H, corresponding to the electric and magnetic
components of the Weyl curvature tensor, as detailed in [17]:

C = S(EabEab - HabH“b), (3.4)
P = 16E,H™. (3.5)

Notably, E,;, depends directly on the shear tensor ¥,;, and H,, depends on contractions
of ¥4, with components of the spatial curvature Ny, and on the spatial derivatives of
Yap- The significance of this distinction in testing inflation vs. slow contraction will
be discussed in the next section.

For flat FRW, C = P = 0. A third objective test of a smoothing mechanism is how large
the mean |C| and |P| (averaged over the simulation volume) can be initially and yet have



the smoothing mechanism reduce them to |¢| < 1071 and |P| < 10719 by the end of the
simulation. Here the hat refers to normalizing by the initial Ricci curvature. The initial
mean values of |C| and |P| must both be greater than unity to be significantly outside
the perturbative regime of flat FRW. This is a necessary but not sufficient condition. For
example, a special case for which |C| and |P| can be large is the Schwarzschild-de Sitter
metric, a configuration that does not represent the expected condition emerging from
a big bang. Special cases can be handled by a cursory check of the numerical output.

The upper bounds of 1071% on the final mean values |C| and |P| are necessary to
ensure that the deviations from flat FRW after smoothing are negligible compared to
the quantum-generated curvature perturbations generated during the last stages of
smoothing. Those quantum-generated perturbations are supposed to seed the observed
temperature fluctuations in the cosmic microwave background. The observed amplitude
of those fluctuations (squared) (67/T)% ~ 1071, sets the 10~° upper bound on |C]|
and |P| after smoothing.

4. crg and 0'72,: a fourth objective test is how large the variances of ]é | and |75| can be
initially and yet have smoothing reduce them negligible levels. Checking the variance in
addition to the mean is an important independent test because it screens out special in-
stances where the means are large but nearly homogeneous. As with the means, the vari-
ances of |C| and |P| must both be greater than unity to be significantly far from flat FRW.

4 Limitations

Despite efforts at conducting a fair comparison of inflation and slow contraction, such as
designing mirror codes and common objective diagnostics, numerical general relativity imposes
certain unphysical technical limitations that tend to bias the outcomes. In the interest of full
disclosure and to inspire improvements in future similar studies, we describe these here.

As it turns out, all the known technical biases are in the direction of favoring inflationary
smoothing. Since our finding is that slow contraction solves the homogeneity, isotropy
and flatness problems and inflation does not, our qualitative conclusion is not changed by
these limitations. If anything, the quantitative advantages of slow contraction are being
underestimated.

The biases trace back to the fact that the shear (anisotropy) X, grows faster than spatial
curvature ng, in a contracting universe, and the reverse is true in an expanding universe. Shear
and spatial curvature are the key components that can most effectively block a scalar field
from dominating and thereby prevent smoothing. A limitation of our current implementation
of the York method used to set initial conditions that satisfy the Hamiltonian and momentum
constraints is that the conditions imposed on ¥, and ng, are fundamentally different.

In particular, our implementation places no significant restriction on X4, but requires ng,
to be precisely zero on the entire initial spatial hypersurface. Fixing n,, = 0 on the initial
time-slice advantages inflation. It does not force ng, to be zero for all time. In fact, the
non-linear evolution of the Einstein equations generates a non-zero ng,, within a few time
steps. However, the average curvature will remain zero so that there are necessarily patches
where the spatial curvature passes through zero across the simulation. These patches are



places where inflation has no spatial curvature to overcome, which advantages inflation, but
only because of artificial limitations of current numerical simulation techniques.

A similar situation occurs with € and P and with the electric and magnetic components
of the Weyl tensor, E,, and Hg,. The electric component depends on the shear, and so
is periodic but otherwise unconstrained. However, the magnetic component is comprised
mostly of terms proportional to contractions of the shear with ng,,. These terms are zero
on the initial time-slice and, even as ng, varies in later steps, the magnetic term will tend
to pass through zero in patches where ny, passes through zero. Since P = 16E,,H, the
Chern-Pontryagin invariant P does this same. Again, inflation is favored and slow contraction
receives no analogous advantages.

In principle, the York method can be extended to handle metrics with non-zero spatial
curvature. This would be a useful technical advance, albeit one that is challenging. If that
were to be achieved, though, the expectation would be that inflation would lose its artificial
advantage and smoothing would be more difficult.

Another difference between simulations of inflation versus slow contraction has to do
with the box side-length 27 LOg. As described in section 2, contraction can be optimally
simulated with L = 1; inflation requires L to be made as large as computational resources
allow. In the inflation case, it is necessary to increase the integer mode numbers m; in the
arguments of the cosines in eq. (2.8) by a factor of order L. Otherwise, by increasing the
box side-length but keeping the m; fixed, the initial wavelengths of any spatial variation
become much larger than the inverse mean curvature from the very start, an initial condition
that is nearly homogeneous over a Hubble volume. This consideration, which artificially
favors inflation, was not included in cases presented our earlier paper [9]. This motivated
developing the second diagnostic described in section 3.

5 Survey results

The results of the systematic survey of inflation and slow contraction are unambiguous.
They do not require looking through hundreds of examples. Rather, it suffices to consider
representative cases. For inflation, we varied the parameters that determine the initial spatial
variations of the shear, scalar field gradient, scale field velocity — both individually and
in combinations — to find examples that came closest to satisfying the diagnostic criteria
described in section 3 and still smooth and flatten; no examples satisfied all of them. For
slow contraction, we could satisfy them all, and we varied the same parameters to find the
initial conditions that most exceed the criteria and yet still smooth. Two representative cases
are summarized in table 1. The differences are great both qualitatively and quantitatively.

For both inflation and slow contraction, many examples satisfied the first criterion in
section 3, [Q4| < 1, including the two representative cases presented in table 1. However, no
inflation example was found that passed the other three tests and still smoothed and flattened,
as indicated by the red boxes in table 1. The initial conditions for the case that came closest



Inflation Slow Contraction

A]20] < 1

max C_, max P > 1

o%>1,012p>1

Table 1. Results of the three critical tests described in section 3 to assess whether a smoothing
mechanism can solve the homogeneity, isotropy, isotropy problems beginning from initial conditions
that are outside the perturbative regime of flat FRW. To qualify, a smoothing mechanism must be able
to smooth in cases where the initial conditions satisfy all three criteria. In the survey, no inflationary
example was found that satisfied any of the three conditions and still smoothed and flattened (as
indicated by the red boxes); the initial conditions for an example that came closest and still smoothed
are shown in the box. By contrast, a wide range of slow contraction examples satisfied all three
conditions by a substantial margin and still smoothed and flattened; the initial conditions for an
extreme case in the survey are shown in the green boxes.

are detailed in the figure. Its parameter values, as defined in egs. (2.7) and (2.8), are:

Ko=-3;, a1=1.7, a3=3.0, az=1.5, b1=1.8, bo=—1.5, (5.1)
c1=50, =50, c3=10.0, £=0.01; az=ay,=0.0 (5.2)
£1=0.24, m1=49, dy=—1.05, f3=0.29, mz=42, d3=0.0, ¢o=25; (5.3)
fo=0.44, mo=6, do=—1.57, f2=0.18, my=5, ds=0.0, Qo=-5.0. (5.4)

The box side-length is 27 LOy where ©¢ = 3/K( and L = 70, which is sufficient to ensure
that the box is larger than the Hubble volume throughout the simulation, as required. In the
quadratic potential of the scalar field, m? = 1.43 x 107° in reduced Planck units. Figure 1
shows the evolution of the average values of ¢ and P in the simulation as a function of ¢
(whose value equals the number of e-folds of expansion) is shown for the first 20 e-folds. It is
apparent that the initial conditions fail two critical tests in that the initial values of Pand
its variance are significantly less than one. (The max values of € and P do not reach the
requisite smoothness bound of 107!° until the 80th e-fold mark. Inflation continues for ~ 60
e-folds, roughly satisfying the minimal conditions required for an inflation model.)

By contrast, many slow contraction models satisfied all four tests in section 3 by a
substantial margin. Table 1 gives the details for a slow contraction example in the survey
that smoothed despite initial conditions were among those furthest from flat FRW and yet
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Figure 1. For the inflation model described in table 1, the evolution of the max values of |C| and |P|
in the simulation and their variances as a function of the ¢ coordinate (equal to the number of e-folds

of inflationary expansion).
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Figure 2. For the contraction model described figure 1, the evolution of the max values of |é | and
|’ﬁ| in the simulation and their variances as a function of the ¢ coordinate (equal to the number of

e-folds of contraction of the Hubble radius).

smoothed. Its parameters are:

Ko=—30; a;=1.02, as=18,  a3=09, b =1.08,  by=—0.9, (5.5)
c1=3.0, c=3.0, ¢3=6.0, k=0.01; a,=0a,=0.0 (5.6)
£1=0.6, mi=4,  dy=—1.05, f3=0.66, mz=3, d5=0.5,  ¢o=0.0; (5.7)
fo=06, mo=5,  do=—157, fo=0.72, me=2, dy=0.0, Qu=2.0. (5.8)

The potential coefficient is Vo = 0.1 in units of H QM]%. The box side-length is 27 LO( with
L =1, which is sufficient to ensure that the box is larger than the Hubble radius throughout
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Figure 3. The state space orbit for the contraction model described in section 4 and table 1 in the
(X1, ¥_) showing worldines for ten different spatial points in the simulation. The small solid red circles
correspond to the initial condition at that point. The thin red curves show the trajectory. The grey dots
show indicate the conditions at successive time steps along the trajectory. The quarter circle corresponds
to the vacuum Kasner solution, and the center of the circle corresponds to the target flat FRW.

contraction, as required. In the exponential potential, M = 0.1 in reduced Planck units,
which has an attractor solution with equation-of-state ¢ = 50. Figure 2 is the complement
to figure 1 for the case of contraction: the evolution of the max values of ]é | and \75\ in the
simulation and their variances as a function of ¢ (which corresponds to the number of e-folds of
contraction of the Hubble radius). The criteria that the initial values of these four quantities
are greater than one is exceeded by an exponential factor and they reach the smoothness
bound within the first 20 e-folds despite the extremely inhomogeneous initial conditions.

The central conclusion of the survey, based on these examples, is that slow contraction
solves the homogeneity, isotropy, and flatness problems and that inflation is problematic.
This is consistent qualitatively with earlier individual cases studies by us [9-17]. However,
now one can point to the results of hundreds of runs that systematically explore a wide range
of initial conditions, and one can measure quantitatively how powerful of a smoother slow
contraction really is, far exceeding the requisite limits on the average Weyl curvature € and
the Chern-Pontryagin invariants P and their variances by many orders of magnitude!

We have suggested that ultralocality is the reason for the extraordinary smoothing power
of slow contraction in refs. [13, 17], and its absence in an expanding universe is what makes
inflation problematic. In the following two sections, we will provide examples of supporting
evidence stemming from the survey.

6 Ultralocality: slow contraction vs. fast contraction

The notion of ultralocality was introduced by Belinski, Khalatnikov and Lifshitz in ref. [18]
(BKL) who conjectured that, in contracting vacuum space-times, spatial derivatives in the
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Figure 4. The state space orbit for two simulations beginning with the same initial conditions. The
only difference is that the scalar field is free in (a), which is a case of fast contraction, and the scalar
field has a negative potential in (b), corresponding to a case of slow contraction.

equations of motion become small compared to the time derivatives. Removing spatial
gradients reduces the Einstein-scalar field equations from a system of partial differential
equations to a system of ordinary differential equations. In more recent work, it has been
demonstrated through numerical relativity simulations that this “ultralocal” behavior also
occurs when there are matter sources or a free scalar field [20-22]. In all but the free scalar
case, shear grows to dominate the evolution which then triggers chaotic mixmaster behavior.
The chaotic nature results in an uncontrollable growth of inhomogeneity. The free scalar
case is borderline in this sense; in the homogenous limit, the ratio of anisotropy to scalar
field energy density approaches a constant.

Ultralocality has also been demonstrated in numerical relativity simulations of slow
contraction [13, 17] where the scalar field is self-interacting through a negative potential
energy. If the potential is sufficiently steep (corresponding to € > 3), the system of ordinary
differential equations has an attractor solution that drives widely separated points in space to
a common fixed point: flat FRW. Because different spatial points begin with different initial
conditions, they start with different deviations from flat FRW and evolve at different rates
towards it. However, because the atttractor is a strong one, even points that were not causally
connected at the beginning of slow contraction end up reaching the flat FRW condition
shortly after it begins and rather rapidly, within twenty or so e-folds of slow contraction
of the Hubble radius for a wide range of conditions.

As has been noted in refs. [13, 17], this novel smoothing behavior contradicts the standard
lore that the causal connectivity and causal interaction is essential for homogenizing and
isotropizing. The best that is possible is a local causal smoother, according to this lore. Yet,
with ultralocal smoothing, the first step is to disconnect neighboring points in spacetime by
shrinking the spatial derivative terms in the equations of motion until they are negligible and
relying on attractor behavior to drive the points independently to the same desired common
flat FRW endpoint. In this sense, the smoothing by slow contraction is universal and acausal.

Figure 3 illustrates this behavior for the slow contraction model described in the previous
section by showing the time-evolution of the shear tensor ¥, using a standard state space

orbit plot. The axes are (X, _) where ¥, = %(211 +Y9) and £_ = 2—\1/?;(211 — Y97). The
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Figure 5. The state space orbits for two simulations of inflation. The orbits in (a) are for the
inflationary case described in section 5 that comes closest to satisfying the initial conditions criteria
delineated in section 3 and still smooths. The trajectories are inward and reach the center of the circle
corresponding to flat FRW. The plot in (b) is an inflationary case with initial conditions somewhat
closer to satisfying the criteria but which fails to smooth. The trajectories do not reach the center
and some even turn away from flat FRW.

Y4 are normalized such that the unit circle (ii + %2 = 1) corresponds to the vacuum Kasner
solution. The center of the circle corresponds to the flat FRW solution. For simplicity, we
show only one quadrant. Each trajectory corresponds to a particular spatial point in the
simulation, where the points are evenly spread across the box; the red circles represent starting
points. Trajectories that begin at or beyond the quarter circles typically have C>1and
P> 1. In this case, many trajectories start significantly outside the circle, consistent with the
large mean values reported in table 1. But each trajectory, traveling over different paths and
taking different amounts of time, is drawn rather directly to the flat FRW point at the center
of the circle, even for these extreme initial conditions. This behavior is a sign of robust and
rapid smoothing and is characteristic of the combination of ultralocality and slow contraction.

One might wonder if ultralocality is all that is required. Figure 4 shows that the answer
is no. The figure illustrates the difference in the state space orbit plots for two examples
of contraction. Because both are contracting, both evolutions become ultralocal. In the
first case, the scalar field is free (V(¢) = 0), corresponding to € = 3; in the second case,
the scalar field has a negative potential with an attractor solution with ¢ = 13. Even
though the evolution becomes ultralocal in both cases and the starting points are inside the
circle (so relatively mild initial conditions compared to figure 3), the outcomes are quite
different. The trajectories never reach flat FRW (the center of the circle) in the case of fast
contraction, but rapidly converge to flat FRW for the case of slow contraction. In other
words, ultralocality alone does not solve the homogeneity, isotropy and flatness problems,
but ultralocality combined with £ > 3 clearly can. (N.B., as detailed in the phase diagrams
shown in ref. [13], the crossover in € from non-smoothing to smoothing occurs somewhere
between ¢ = 3 and 13, depending on the initial conditions.)

As emphasized in ref. [23], the combination of ultralocality and e > 3 drives the Weyl
curvature to zero at spacetime points that are causally disconnected. Penrose [24] earlier
pointed out that this condition is essential for explaining why the early universe is FRW,
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but he had no physical explanation for it. Penrose went so far as to propose a new law
of physics (the Weyl Curvature Hypothesis) that initial singularities must have zero Weyl
curvature. However, the Hypothesis is not only ad hoc, but it is unlikely to be valid following
a big bang once quantum effects are included. If the universe passes through a phase with
strong quantum gravitational effects following a bang, quantum gravity fluctuations create
large random fluctuations in spacetime. The same criticism applies to slow contraction if
continued to such high densities that quantum gravity effects become large. To fully replace
the Weyl Curvature Hypothesis with a physical mechanism, a third essential element is
a smooth transition from contraction to expansion (a.k.a. “non-singular bounce”) at low
densities where quantum gravity effects are negligible.

7 Ultralocality: slow contraction vs. inflation

We have shown above that ultralocality — the rapid shrinking of spatial derivative terms in
the Einstein-scalar field equations in a contracting universe — plays a central role in solving
the homogeneity, isotropy and flatness problems with slow contraction. This also suggests
the reason why inflation is problematic — the spatial gradient terms in the Einstein-scalar
field equations grow. Heuristic arguments explaining how inflation smooths assume the
inflaton field has already dominated the evolution. But if the initial conditions are outside
the perturbative regime of flat FRW, as expected, for example, following a big bang, there is
spatially varying shear and curvature with significant spatial gradients that can dominate
the evolution and block inflation if those gradients grow.

The state space orbits in figure 5 exemplify the problem. On the left are the orbits
for the inflationary example described in table 1 that comes closest to satisfying the four
criteria in section 3 and yet smooths. The smoothing is indicated by the convergence of
trajectories at the center of the Kasner circle. Note that the starting points are all inside
the Kasner circle and much closer to the center compared to the slow contraction case. Also
the trajectories are converging in way that becomes increasingly twisty as they approach
the center, which differs from the slow contraction examples.

The right is an inflationary example with initial conditions that come somewhat closer
to satisfying the criteria. In this case, though, smoothing fails. The opposite of ultralocal
behavior occurs. Spatial gradients are growing sufficiently rapidly that inflation cannot take
hold. Some trajectories end up turning away from the center. And this occurs when the
starting points (indicated by the solid red circles) are well inside the Kasner circle indicating
that the initial conditions are not extreme, as they are in the slow contraction example above.

Figure 6 plots {4 s, the relative contributions of scalar field energy, shear and curvature,
as a function of time for two cases. The first is the slow contraction model described in
section 5 and table 1 that begins with conditions so extremely far from flat FRW that the
plot extends far outside the frame for the initial time steps, However, after 15 e-folds of
contraction, the combination of ultralocality and slow contraction smooths.

The second case shown in figure 6 is the inflation example presented in section 5 that
came closest to satisfying the three diagnostic conditions in table 1 and still smoothed. (The
parameters are given in eq. (5.1).) Even in this case, whose starting conditions are not
significantly far from flat FRW, the small initial spatial gradients grow rapidly during the first
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Figure 6. Snapshots show the relative contributions of scalar field energy, shear and curvature
(Qg,s,%) in the initial time step and then a series of time steps following. In the contraction case
(top row), the initial spatial gradients are so large that they extend beyond the frame, but they are
eventually smoothed through ultralocality and slow contraction. In the inflation case (bottom row),
the initial spatial gradients are small and grow rapidly, consistent with the idea that the opposite of
ultralocality occurs when initial conditions are far from flat FRW.

steps. This is the expected signature if the opposite of ultralocality occurs during expansion.
For cases, that are outside the perturbative regime of FRW initially, as measured by C and
73, the gradients grow so rapidly that smoothing does not occur.

As in all of our numerical studies to date, we test for numerical convergence and
consistency with general relativity by checking that the Gauss (or Hamiltonian), Codazzi
(or momentum), as well as other constraints are satisfied. This is a conventional approach
that entails comparing the rescaled L2 norm of the constraint at low, medium and high
resolutions. The detailed procedure is described in refs. [12, 13]. For example, figure 7
shows the rescaled L2 norm of the Hamiltonian constraint ||Cg|| that indicates second order
convergence for the inflation example in figure 6.

8 Discussion

Numerical relativity can play a crucial in exploring fundamental issues in cosmology such
as considered here: the solution to the homogeneity, isotropy and flatness problems. We
have used objective tests, including ones based on gauge/frame invariant measures, and
found huge differences between slow contraction and inflation. Slow contraction can smooth
and flatten even when the initial conditions are exponentially far from flat FRW initial
conditions. Inflation can only smooth in cases where the initial conditions are comparatively
close to flat FRW at the start. The simulations also enable us to understand why there
is this enormous qualitative and quantitative difference. Physics becomes ultralocal in a
contracting universe which rapidly reduces spatial gradients until they become negligible for
the dynamics. When combined with slow contraction (¢ > 3), world-lines converge to a flat
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Figure 7. The L2 norm of the Hamiltonian constraint ||Cg|| for the inflation example in figure 6
comparing results for three resolutions rescaled by the second power of the resolution ratio, consistent
with second order convergence.

FRW attractor. Conversely, spatial gradients grow in an expanding pre-inflating universe.
If they are large to begin with, as one would expect after a big bang, they can grow fast
enough that inflation cannot take hold.

These results were indicated in some earlier studies, although other studies suggested
inflation is also an effective smoother. Important advances incorporated in this study are
formulations that allow a much broader range of initial conditions for both inflation and slow
contraction and objective diagnostics that enable the distinction between initial conditions
that are outside the perturbative regime of flat FRW. Including these leads to the conclusions
presented here — and this despite the limitations in current numerical methods described
in section 4 that favor inflation or our choice of a positive quadratic potential for inflation
that has been found to be least sensitive to initial conditions [4, 6, 7]. (As noted in the
introduction, we have extended our survey to other potentials and will report the results
elsewhere; they do not appear to change the qualitative conclusions presented here.)

The results have potentially profound implications. Observations inform us that we are
living in a spacetime that is extraordinarily special — much more homogeneous, isotropic
and flat than one would expect from general relativity, or from a multiverse, or from what
can be inferred based on anthropic arguments. Some remarkable predictive physical process
must account for it. If the universe does not emerge perturbatively close to homogeneous
and isotropic immediately after a big bang, the results based on our diagnostics and the
models considered suggest that adding an inflaton does not typically smooth or flatten it, due
in part to the absence of ultralocality. At the same time, it appears that ultralocality in a
slowly contracting universe can accomplish the task in a predictive, universal and acausal way.
Of course, to transition to the expanding universe we observe, the slow contraction phase
would have to connect to a bounce, a smooth transition contraction to expansion described to
leading order by classical equations of motion. Examples of bounces that naturally connect
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slow contraction to hot expansion have been described in refs. [25-27]; and in refs. [28, 29], a

detailed mechanism for generating quantum fluctuations during the bounce that evolve in

the temperature fluctuations observed in the cosmic microwave background is presented.
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