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1 Introduction

The foremost challenge for any theory of the origin and early evolution of the universe is

to explain its homogeneity, isotropy and spatial flatness on large scales. These features

are extraordinary for a theory based on general relativity in which a foundational notion

is that spacetime is malleable, capable of curving, shearing, fluctuating and warping. Yet

all the successful predictions of ΛCDM (a.k.a. the basic “big bang theory”) — primordial

nucleosynthesis, the cosmic microwave background, structure formation, and Hubble expansion

— rely on the assumption that there was no sign of this malleability by the time primordial

nucleosynthesis commenced. Instead, spacetime was well-described by a surprisingly simple flat

Friedmann-Robertson-Walker (FRW) metric that is highly non-generic in general relativity.

In this paper, we present the results of a systematic comparative study of two mechanisms

proposed to smooth and flatten the early universe beginning from initial conditions that are

outside the perturbative regime of the flat FRW metric, namely inflation and slow contraction.

Inflation is a period of accelerated expansion hypothesized to occur shortly after the big

bang during which the equation of state ε ≡ (3/2)(1 + p/ρ) < 1 (where p is the pressure

and ρ is the energy density of the dominant energy component) and the FRW scale factor

a(τ) ∝ τ1/ε grows faster with τ than the Hubble radius H−1(τ) ∝ τ . Slow contraction is a

period in which a(τ) ∝ ♣τ ♣1/ε where ε ≫ 3, which shrinks more slowly than the Hubble radius

♣H−1♣ ∝ ♣τ ♣ as τ → 0−. (We follow the convention of defining τ as positive and increasing

during expansion and as negative and increasing towards τ → 0− during contraction. This is

the reason for the absolute value signs in the expressions for contraction.) In either case, the

requisite value of ε can be attained by a scalar field ϕ evolving down a potential V (ϕ), for

which ε → 3

2
ϕ̇2/(1

2
ϕ̇2 + V ) in the homogeneous limit. For inflation, obtaining ε < 1 requires

a positive potential energy and small scalar field kinetic energy; for slow contraction, the

potential energy must be negative and the kinetic energy must be large enough that the
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total energy density is positive. Note that both require similar ingredients (Einstein gravity

and a scalar field with a potential) and the same number of initial conditions to be specified

at the start, which makes for a fair comparison.

For both proposed smoothing mechanisms, it is straightforward to show that they can

smooth out small perturbations to a pure FRW metric, which is why both appeared at first

to be promising candidates. The true test, though, is to begin far from FRW conditions and

solve the full set of non-linearly coupled partial differential Einstein-scalar equations of motion

to determine if smoothing and flattening occurs. This has become possible by adapting the nu-

merical relativity tools originally introduced to study black hole inspiral and merger to address

the homogeneity and isotropy problem in early universe cosmology. There have been a number

of pioneering numerical relativity studies of inflation [1–9] and slow contraction [10–16] using

different formulations of the Einstein equations, treatments of initial conditions, and diag-

nostics, where each study has focused on one smoothing mechanism or the other, as carefully

reviewed and critiqued in ref. [17]. These earlier contributions have informed this paper.

Our goal here is to perform the first systematic comparative study of inflation and

slow contraction, so we have taken a different approach. We have produced two nearly

identical codes that solve the (3+1)-dimensional Einstein-scalar field equations using the same

mean-curvature-normalized, orthonormal tetrad formulation. This form was chosen because

it enables large spatial variations in one or more directions of all freely specifiable physical

quantities that characterize the initial spatial hypersurface. We have also developed a common

set of diagnostics to evaluate when initial conditions are outside the perturbative regime

of a flat FRW and how smooth and flat the universe must become to satisfy observational

constraints. Hundreds of numerical evolutions, each lasting from a few minutes to a few

months, were then run to study how the outcome depends on the different parameters that

specify the initial conditions.

Especially important were studies exploring a key difference between inflation and

slow contraction. Namely, smoothing by slow contraction entails a non-linear smoothing

mechanism based on ultralocality, a general relativistic effect that appears to be unique to

contracting spacetimes. Ultralocality refers to a condition in which the spatial derivative

terms in the non-linearly coupled partial differential Einstein equations fall exponentially fast

during contraction compared to terms containing only time derivatives, converting the partial

differential equations to ordinary differential equations. The ultralocality effect was first

conjectured by Belinski, Khalatnikov and Lifshitz [18] in the 1960s who only considered its

application to the case of fast contraction (ε ≤ 3) for historical reasons. Curiously, in that case,

the ordinary differential equations have chaotic solutions that produce mixmaster behavior that

unsmooths the universe. With slow contraction (ε ≫ 3), the ordinary differential equations

have an attractor solution that is flat FRW, just what is desired to solve the homogeneity,

isotropy and flatness problem. Inflation, by contrast, occurs during an expanding phase that

does not have ultralocal behavior. This accounts for our finding that, based on the diagnostics

presented here, inflation is unable to smooth and flatten the inhomogeneous, anisotropic,

and curved initial conditions expected following a big bang.

The plan of the paper is as follows. In section 2, we briefly summarize our numerical

relativity schemes and point out the improvements that have been made compared to earlier
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publications. In section 3, we discuss the diagnostics we use in evaluating how far initial

conditions are from flat FRW and how we determine whether smoothing and flattening is

achieved. In section 4, we digress to note several ways in which existing numerical techniques

introduce unavoidable inequities that favor one smoothing mechanism relative to the other.

As it turns out, the inequities all favor inflation and disfavor slow contraction, so they do

not qualitatively change our conclusions.

Sections 5 thru 7 present the key results. In section 5, we compare two representative

examples, one inflation and one slow contraction, both of which have been selected because

their initial conditions were, by our diagnostic measures, as far from flat FRW as possible

and yet sufficiently limited that smoothing and flattening still occurs. We have chosen a

negative potential for the scalar field ϕ that is exponentially decreasing with ϕ for the slow

contraction case; and we have chosen a positive quadratic potential for the inflation case.

Both potentials have been investigated previously by several groups [3, 4, 6–9] , including us,

which is useful for making comparisons. Although inflation with quadratic potentials is ruled

out by experimental bounds on the amplitudes of B-modes, we choose it anyway because

it has been suggested that this is the example that is least sensitive to initial deviations

from flat FRW [6, 7].

Based on the diagnostic measures, it is clear for these examples that slow contraction

is a robust and rapid smoother even for initial conditions that are outside the perturbative

flat FRW, but inflation is not. In section 6, we provide new evidence (beyond our earlier

work) illustrating how ultralocality leads to smoothing for slow contraction but not for fast

contraction. In section 7, we then illustrate how the non-ultralocal behavior of inflation

evidences itself when initial conditions are far from flat FRW. We close with a summary and

discussion in section 8. We have extended our survey to other potentials and will report the

results elsewhere. They do not change the qualitative conclusions presented here.

2 Numerical relativity scheme

We numerically solve the (3+1)-dimensional Einstein-scalar field equations in mean-curvature-

normalized, orthonormal tetrad form, as has been successfully implemented in earlier studies

of contracting spacetimes [10–16] and more recently for studies of inflation [9]. The numerical

scheme is explained in great detail in the appendix of ref. [9]. Whereas the existing contraction

tetrad code allowed spatial variations along one, two or three spatial directions, the earlier

published inflationary tetrad code results only allowed spatial variations along a single

spatial direction [9]. Our first step, therefore, was to write a new inflation tetrad code that

allows variations along two or three spatial dimensions. In the process, a number of small

improvements were made to increase efficiency and accuracy. Then, to keep the comparison

study as even-handed as possible, we made a mirror version that uses the same subroutines,

functions, algorithms, etc. but which is adapted for contraction. The study results here

are from simulations with initial spatial variations along two directions, as described below.

We found no significant differences from high-resolution simulations with initial variations

along one direction. Simulations of the same resolution with initial variations along three

directions would require at least a thousand times the already significant computer resources

used in this study. However, we have run lower resolution simulations with spatial variations
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along three directions and confirmed that the qualitative differences between contraction

and expansion described in section 7 appear to be maintained.

There are three obvious differences between the inflation and slow contraction software

packages that involve only a few lines of code and do not affect efficiency or accuracy: the

time slicing, the scalar field potential, and the initial conditions.

The slow contraction code uses constant mean curvature time-slicing,

d lnK

dt
= −1, (2.1)

where the coordinate t runs from 0 to −∞ and K ≡ Ka
a is the mean curvature, which is

equal to 1/3♣H−1♣ in the homogeneous limit. Note that the mean curvature changes by an

exponential factor during slow contraction. Note also that t is not the FRW time coordinate

(indicated by τ in the previous section). In the homogeneous limit, ♣t♣ represents the number

of e-folds of contraction of the Hubble radius.

In the expanding case, the coordinate time t runs from zero to +∞, and the mean

curvature only changes by a few orders of magnitude. As a result, a modified time slicing

has been found to be necessary [9],

d ln ♣K♣

dt
= −µ(t), (2.2)

where

µ(t) ≡
1

Ñmax(t)
, (2.3)

K = −3H in the homogeneous limit, and Ñmax(t) is the maximum value of the coordinate

lapse N at time t rescaled by the mean curvature divided by µ, Ñ ≡ 1

3
KN/µ to make it

dimensionless. As shown in the appendix of ref. [9], this time coordinate t then measures the

maximum number of e-folds of inflation taking place during the simulation.

As for the scalar field potentials, a negative potential is required for slow contraction, as

noted in the Introduction. We use a well-studied exponential form, V (ϕ) = −V0 exp(ϕ/M),

where M < MP and MP = 2.4 × 1018 GeV is the reduced Planck mass. (This study only

explores the smoothing phases and not the reheating and latter stages, we do not need to

add a minimum to the potential or a bounce as would be required in the full evolution since

we do not get close to that stage.) In the homogeneous limit, a canonical scalar field rolling

down a negative exponential of this form has an attractor solution in which the equation of

state ε → 1/2M2. For this survey, we limit consideration to values of M between 0.1 and

0.2 (corresponding to attractor solutions with ε between 13 and 50), which has been shown

to be sufficient to smooth the universe [12, 13] (although much larger values are possible

and smooth even more robustly and rapidly). In the case of inflation, a positive potential is

required. We use a well-studied example, V (ϕ) = 1

2
m2ϕ2, where m = 3.8 × 10−3MP .

As a practical matter, we confined the high-resolution studies to spatial variations along

one and two directions, which is sufficient to check for consistency and for any non-linear

effects that may arise when there are variations along more than one direction. Extending the

survey to high-resolution simulations with initial spatial variations along three dimensions

requires parallelism over multiple CPUs and much more expensive simulations. As a check,
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though, we have run lower-resolution examples with initial spatial variations along three

dimensions for short durations and found no qualitative differences in the outcomes and

from the results reported in section 7.

The initial conditions were set using York’s conformal method [19] for both inflation and

slow contraction to ensure they satisfy the Hamiltonian and momentum constraints. In our

implementation, the spatial metric on the initial time slice (t = t0) is set to be conformally-flat,

γij(t0, x⃗) = ψ4(t0, x⃗)δij , where ψ denotes the conformal factor. The components of the spatial

3-curvature tensor n̄ab, Āb and the tetrad vector components Ēa
i

then satisfy:

n̄ab(t0, x⃗) = 0, (2.4)

Āb(t0, x⃗) = −2ψ−1Ēb
i
∂iψ, (2.5)

Ēa
i
(t0, x⃗) = ψ−2(K0/3)−1δa

i. (2.6)

where Āb ≡ 1

2
εb

cdN̄cd is the antisymmetric part of N̄ab (the nine intrinsic spatial curvature

variables) and n̄ab ≡ N̄ab − εab
cĀc is the symmetric part. A “bar’ on top of any variable

corresponds to rescaling by the mean curvature (i.e., dividing by K/3). Early alphabet indices

(a, b, etc.) are frame indices and middle indices (i, j, etc.) are coordinate indices.

There remains the freedom to specify the initial scalar field distribution ϕ(t0, x⃗), the

conformally re-scaled initial scalar field velocity Q̄, and the divergence-free (transverse,

trace-less) part of the conformally-rescaled shear tensor, Z̄T T
ab (t0, x⃗) ≡ ψ6Σ̄0

ab, parameterized

as follows:

Z̄T T
ab =



K0

3

−1











b2 + c2 cos
( y

L + αy
)

κ c1 cos
( y

L + αy
)

+ a3

κ b1 + a1 cos
(

x
L + αx

)

a2 cos
(

x
L + αx

)

+ c3

c1 cos
( y

L + αy
)

+ a3 a2 cos
(

x
L + αx

)

+ c3 −Z̄T T
11 − Z̄T T

22











, (2.7)

where a1, a2, a3, b1, b2, c1, c2, c3, αx, αy and κ are constants;

Q̄ =



K0

3

−1

×
(

f0 cos



m0

L
x+ d0



+ f2 cos



m2

L
y + d2



+Q0



ϕ = f1 cos



m1

L
x+ d1



+ f3 cos



m3

L
y + d3



+ ϕ0,

(2.8)

where Q0, ϕ0, f0, f1, f2, f3,m0,m1,m2,m3, d0, d1, d2, d3 are constant and denote the mean

value, the amplitude, the mode number and the phase of the initial velocity and field

distribution, respectively, and K0 is the initial mean curvature.

The choice of cosine reflects the fact that, for the numerical simulation, we must choose

periodic boundary conditions 0 ≤ x, y ≤ 2πLΘ0 with 2πLΘ0 identified as the ‘box side-length,’

where Θ0 is the initial inverse mean curvature and L ≥ 1 is a positive integer. With periodic

boundary conditions, the mode numbers (mi) must be fixed integers, so the box side-length

must be co-moving, i.e. with a box side-length scaling as a(t).

For slow contraction, the scale factor shrinks very little over the course of the simulation.

We start with an initial inverse mean curvature Θ0 that is larger than the present Hubble

radius ∼ O(1026) but have the freedom to choose the box side-length to be yet larger still.

This ensures that the box encompasses from the start a spatial volume large enough to evolve
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through slow contraction, bounce and expansion into the size of the observable universe

today. Then we choose the number of grid points such that the initial grid spacing is as small

as possible compared to the initial mean curvature since our goal is to study the effects of

introducing large amplitude spatial variations that range over scales including ones smaller

than the initial mean curvature. The optimal choice is to choose L = 1 and maximize the

number of grid points as much as computer resources allow. If simulations end with the entire

box being smooth and flat, this indicates that slow contraction has successfully resolved the

homogeneity, isotropy and flatness problems beginning from an initial state that is outside

the perturbative regime of flat FRW spacetimes.

Inflation simulations are quite different. The scale factor a(t) expands by an exponential

factor over the course of the simulation and, hence, so does the box side-length (when

expressed in physical units). We start with an inverse mean curvature scale Θ0 that is 1/2πL

times the box side-length. Physically, this length is microscopic compared to the present

Hubble radius in physical units. (More precisely, Θ0 is of order the Hubble radius at the

beginning of inflation.) We choose a grid spacing that is smaller than Θ0 because we want to

investigate the effects of initial spatial variations that vary over length scales smaller than

Θ0 (the kinds of variations expected following a big bang). During the early stages of the

simulation before accelerated expansion begins, the Hubble radius can grow faster than a(t),

depending on the initial conditions, and, as a result, can grow relative to the box size by

a modest factor. We want to choose L large enough to follow that stage of the evolution.

Then, once inflation starts, the situation reverses: the Hubble radius grows much more slowly

than a(t) and, hence, shrinks relative to the box size. Well before the end of inflation, the

Hubble radius becomes smaller than the grid spacing. The best compromise for following the

evolution on scales of order the Hubble radius during both the early and late stages is to

choose L ≫ 1 and maximize the number of grid points as much as computational resources

allow (see related discussion in section 4). In future studies, one might consider using

adaptive mesh refinement to extend dynamic range of the simulations.

We refer the reader to ref. [17] for a review of how to properly apply the York method

using an elliptic solver in order to obtain initial conditions for the conformal factor ψ consistent

with the Hamiltonian and momentum constraints even for conditions outside the perturbative

regime of flat FRW spacetimes and how to evolve the combined hyperbolic-elliptic system

of Einstein-scalar partial differential equations.

3 Diagnostics

The goal of our survey is to determine for inflation and slow contraction how far the

inhomogeneous, anisotropic and curved initial conditions can be from the target final state —

a flat FRW spacetime dominated by the scalar field (Ωφ = 1) — and still reach the target

by the end of the smoothing phase.

Four objective quantitative tests are:

1. |Ω0

φ| test: a robust smoothing mechanism should have dynamical properties that enable

the associated stress-energy component (e.g., due to the scalar field in our cases) to

overtake the other degrees of freedom for a sustained period long enough to smooth and
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flatten the universe. One test for robustness is, therefore, showing that smoothing occurs

beginning from ♣Ω0
φ♣ ≪ 1. We screen out cases where this initial condition is not satisfied.

2. λ/(2Θ0) < 1: a second test is whether smoothing occurs if the initial spatial variations

include modes whose wavelengths are comparable to the initial inverse mean curvature

Θ0 (which, in a homogeneous universe would be the Hubble radius). Otherwise, the

initial conditions would be ones for which the universe is relatively smooth on the scale of

the Hubble radius at the very start, which is neither expected physically nor the kind of

condition we aim to test. Due to the periodic boundary conditions, the initial spatial vari-

ations given in eqs. (2.7) and (2.8) are expressed as sums of fourier modes with different

wavelengths λi = 2πLΘ0/mi commensurate with the periodic box side-length 2πLΘ0,

where mi = m0, m1, m3, . . . are integers. With this parameterization, this second test

reduces to checking if πL/mi < 1 for one or more of the mi. Whereas the condition on

♣Ω0
φ♣ ≪ 1 is not so difficult to obtain for either inflation or so contraction, this second

test is more challenging, especially for inflation where the evolution is not ultralocal.

3. Weyl curvature Ĉ and Chern-Pontryagin invariant P̂: these two scalars, derived

from the Weyl curvature tensor, were first proposed as good measures of inhomogeneity,

anisotropy and curvature in ref. [17] because they are independent of the formulation,

gauge or frame.

The conformal Weyl curvature tensor Cµνρσ is the trace-free part of the Riemann

curvature tensor. The scalars derived from it are

C ≡ CµνρσCµνρσ (3.1)

and

P ≡ ∗Cµνρσ Cµνρσ , (3.2)

where
∗Cµνρσ ≡

1

2
χ τζ

µν Cτζρσ , (3.3)

with χµντζ ≡ −
√

♣ − g♣εµντζ being the totally anti-symmetric Levi-Civita 4-form and

εµντζ being the Levi-Civita tensor. The two curvature invariants can be expressed in

terms of two spatial 3-tensors Eab and Hab corresponding to the electric and magnetic

components of the Weyl curvature tensor, as detailed in [17]:

C = 8
(

EabE
ab −HabH

ab


, (3.4)

P = 16EabH
ab. (3.5)

Notably, Eab depends directly on the shear tensor Σab and Hab depends on contractions

of Σab with components of the spatial curvature Nab and on the spatial derivatives of

Σab. The significance of this distinction in testing inflation vs. slow contraction will

be discussed in the next section.

For flat FRW, Ĉ = P̂ = 0. A third objective test of a smoothing mechanism is how large

the mean ♣Ĉ♣ and ♣P̂♣ (averaged over the simulation volume) can be initially and yet have

– 7 –



J
C
A
P
0
7
(
2
0
2
4
)
0
7
7

the smoothing mechanism reduce them to ♣Ĉ♣ < 10−10 and ♣P̂♣ < 10−10 by the end of the

simulation. Here the hat refers to normalizing by the initial Ricci curvature. The initial

mean values of ♣Ĉ♣ and ♣P̂♣ must both be greater than unity to be significantly outside

the perturbative regime of flat FRW. This is a necessary but not sufficient condition. For

example, a special case for which ♣Ĉ♣ and ♣P̂♣ can be large is the Schwarzschild-de Sitter

metric, a configuration that does not represent the expected condition emerging from

a big bang. Special cases can be handled by a cursory check of the numerical output.

The upper bounds of 10−10 on the final mean values ♣Ĉ♣ and ♣P̂♣ are necessary to

ensure that the deviations from flat FRW after smoothing are negligible compared to

the quantum-generated curvature perturbations generated during the last stages of

smoothing. Those quantum-generated perturbations are supposed to seed the observed

temperature fluctuations in the cosmic microwave background. The observed amplitude

of those fluctuations (squared) (δT/T )2 ∼ 10−10, sets the 10−10 upper bound on ♣Ĉ♣

and ♣P̂♣ after smoothing.

4. σ2

C and σ2

P : a fourth objective test is how large the variances of ♣Ĉ♣ and ♣P̂♣ can be

initially and yet have smoothing reduce them negligible levels. Checking the variance in

addition to the mean is an important independent test because it screens out special in-

stances where the means are large but nearly homogeneous. As with the means, the vari-

ances of ♣Ĉ♣ and ♣P̂♣ must both be greater than unity to be significantly far from flat FRW.

4 Limitations

Despite efforts at conducting a fair comparison of inflation and slow contraction, such as

designing mirror codes and common objective diagnostics, numerical general relativity imposes

certain unphysical technical limitations that tend to bias the outcomes. In the interest of full

disclosure and to inspire improvements in future similar studies, we describe these here.

As it turns out, all the known technical biases are in the direction of favoring inflationary

smoothing. Since our finding is that slow contraction solves the homogeneity, isotropy

and flatness problems and inflation does not, our qualitative conclusion is not changed by

these limitations. If anything, the quantitative advantages of slow contraction are being

underestimated.

The biases trace back to the fact that the shear (anisotropy) Σab grows faster than spatial

curvature nab in a contracting universe, and the reverse is true in an expanding universe. Shear

and spatial curvature are the key components that can most effectively block a scalar field

from dominating and thereby prevent smoothing. A limitation of our current implementation

of the York method used to set initial conditions that satisfy the Hamiltonian and momentum

constraints is that the conditions imposed on Σab and nab are fundamentally different.

In particular, our implementation places no significant restriction on Σab but requires nab

to be precisely zero on the entire initial spatial hypersurface. Fixing nab = 0 on the initial

time-slice advantages inflation. It does not force nab to be zero for all time. In fact, the

non-linear evolution of the Einstein equations generates a non-zero nab within a few time

steps. However, the average curvature will remain zero so that there are necessarily patches

where the spatial curvature passes through zero across the simulation. These patches are
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places where inflation has no spatial curvature to overcome, which advantages inflation, but

only because of artificial limitations of current numerical simulation techniques.

A similar situation occurs with Ĉ and P̂ and with the electric and magnetic components

of the Weyl tensor, Eab and Hab. The electric component depends on the shear, and so

is periodic but otherwise unconstrained. However, the magnetic component is comprised

mostly of terms proportional to contractions of the shear with nab. These terms are zero

on the initial time-slice and, even as nab varies in later steps, the magnetic term will tend

to pass through zero in patches where nab passes through zero. Since P = 16EabH
ab, the

Chern-Pontryagin invariant P̂ does this same. Again, inflation is favored and slow contraction

receives no analogous advantages.

In principle, the York method can be extended to handle metrics with non-zero spatial

curvature. This would be a useful technical advance, albeit one that is challenging. If that

were to be achieved, though, the expectation would be that inflation would lose its artificial

advantage and smoothing would be more difficult.

Another difference between simulations of inflation versus slow contraction has to do

with the box side-length 2πLΘ0. As described in section 2, contraction can be optimally

simulated with L = 1; inflation requires L to be made as large as computational resources

allow. In the inflation case, it is necessary to increase the integer mode numbers mi in the

arguments of the cosines in eq. (2.8) by a factor of order L. Otherwise, by increasing the

box side-length but keeping the mi fixed, the initial wavelengths of any spatial variation

become much larger than the inverse mean curvature from the very start, an initial condition

that is nearly homogeneous over a Hubble volume. This consideration, which artificially

favors inflation, was not included in cases presented our earlier paper [9]. This motivated

developing the second diagnostic described in section 3.

5 Survey results

The results of the systematic survey of inflation and slow contraction are unambiguous.

They do not require looking through hundreds of examples. Rather, it suffices to consider

representative cases. For inflation, we varied the parameters that determine the initial spatial

variations of the shear, scalar field gradient, scale field velocity — both individually and

in combinations — to find examples that came closest to satisfying the diagnostic criteria

described in section 3 and still smooth and flatten; no examples satisfied all of them. For

slow contraction, we could satisfy them all, and we varied the same parameters to find the

initial conditions that most exceed the criteria and yet still smooth. Two representative cases

are summarized in table 1. The differences are great both qualitatively and quantitatively.

For both inflation and slow contraction, many examples satisfied the first criterion in

section 3, ♣Ωφ♣ ≪ 1, including the two representative cases presented in table 1. However, no

inflation example was found that passed the other three tests and still smoothed and flattened,

as indicated by the red boxes in table 1. The initial conditions for the case that came closest
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Inflation Slow Contraction

λ/♣2Θ♣ < 1 λ/♣2Θ♣ = 4.5 λ/♣2Θ♣ = 0.48

max C̄, max P̄ > 1
C̄ = 3.5 C̄ = 7 × 107

P̄ = 0.3 P̄ = 9 × 106

σ2
C > 1, σ2

P > 1
σ2

C = 0.4 σ2
C = 1.1 × 1013

σ2
P = 0.003 σ2

P = 3.3 × 1011

Table 1. Results of the three critical tests described in section 3 to assess whether a smoothing

mechanism can solve the homogeneity, isotropy, isotropy problems beginning from initial conditions

that are outside the perturbative regime of flat FRW. To qualify, a smoothing mechanism must be able

to smooth in cases where the initial conditions satisfy all three criteria. In the survey, no inflationary

example was found that satisfied any of the three conditions and still smoothed and flattened (as

indicated by the red boxes); the initial conditions for an example that came closest and still smoothed

are shown in the box. By contrast, a wide range of slow contraction examples satisfied all three

conditions by a substantial margin and still smoothed and flattened; the initial conditions for an

extreme case in the survey are shown in the green boxes.

are detailed in the figure. Its parameter values, as defined in eqs. (2.7) and (2.8), are:

K0 =−3; a1 =1.7, a2 =3.0, a3 =1.5, b1 =1.8, b2 =−1.5, (5.1)

c1 =5.0, c2 =5.0, c3 =10.0, κ=0.01; αx =αy =0.0 (5.2)

f1 =0.24, m1 =49, d1 =−1.05, f3 =0.29, m3 =42, d3 =0.0, ϕ0 =25; (5.3)

f0 =0.44, m0 =6, d0 =−1.57, f2 =0.18, m2 =5, d2 =0.0, Q0 =−5.0. (5.4)

The box side-length is 2πLΘ0 where Θ0 = 3/K0 and L = 70, which is sufficient to ensure

that the box is larger than the Hubble volume throughout the simulation, as required. In the

quadratic potential of the scalar field, m2 = 1.43 × 10−5 in reduced Planck units. Figure 1

shows the evolution of the average values of Ĉ and P̂ in the simulation as a function of t

(whose value equals the number of e-folds of expansion) is shown for the first 20 e-folds. It is

apparent that the initial conditions fail two critical tests in that the initial values of P̂and

its variance are significantly less than one. (The max values of Ĉ and P̂ do not reach the

requisite smoothness bound of 10−10 until the 80th e-fold mark. Inflation continues for ∼ 60

e-folds, roughly satisfying the minimal conditions required for an inflation model.)

By contrast, many slow contraction models satisfied all four tests in section 3 by a

substantial margin. Table 1 gives the details for a slow contraction example in the survey

that smoothed despite initial conditions were among those furthest from flat FRW and yet
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Figure 3. The state space orbit for the contraction model described in section 4 and table 1 in the

(Σ̄+, Σ̄−
) showing worldines for ten different spatial points in the simulation. The small solid red circles

correspond to the initial condition at that point. The thin red curves show the trajectory. The grey dots

show indicate the conditions at successive time steps along the trajectory. The quarter circle corresponds

to the vacuum Kasner solution, and the center of the circle corresponds to the target flat FRW.

contraction, as required. In the exponential potential, M = 0.1 in reduced Planck units,

which has an attractor solution with equation-of-state ε = 50. Figure 2 is the complement

to figure 1 for the case of contraction: the evolution of the max values of ♣Ĉ♣ and ♣P̂♣ in the

simulation and their variances as a function of t (which corresponds to the number of e-folds of

contraction of the Hubble radius). The criteria that the initial values of these four quantities

are greater than one is exceeded by an exponential factor and they reach the smoothness

bound within the first 20 e-folds despite the extremely inhomogeneous initial conditions.

The central conclusion of the survey, based on these examples, is that slow contraction

solves the homogeneity, isotropy, and flatness problems and that inflation is problematic.

This is consistent qualitatively with earlier individual cases studies by us [9–17]. However,

now one can point to the results of hundreds of runs that systematically explore a wide range

of initial conditions, and one can measure quantitatively how powerful of a smoother slow

contraction really is, far exceeding the requisite limits on the average Weyl curvature Ĉ and

the Chern-Pontryagin invariants P̂ and their variances by many orders of magnitude!

We have suggested that ultralocality is the reason for the extraordinary smoothing power

of slow contraction in refs. [13, 17], and its absence in an expanding universe is what makes

inflation problematic. In the following two sections, we will provide examples of supporting

evidence stemming from the survey.

6 Ultralocality: slow contraction vs. fast contraction

The notion of ultralocality was introduced by Belinski, Khalatnikov and Lifshitz in ref. [18]

(BKL) who conjectured that, in contracting vacuum space-times, spatial derivatives in the
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Figure 4. The state space orbit for two simulations beginning with the same initial conditions. The

only difference is that the scalar field is free in (a), which is a case of fast contraction, and the scalar

field has a negative potential in (b), corresponding to a case of slow contraction.

equations of motion become small compared to the time derivatives. Removing spatial

gradients reduces the Einstein-scalar field equations from a system of partial differential

equations to a system of ordinary differential equations. In more recent work, it has been

demonstrated through numerical relativity simulations that this “ultralocal” behavior also

occurs when there are matter sources or a free scalar field [20–22]. In all but the free scalar

case, shear grows to dominate the evolution which then triggers chaotic mixmaster behavior.

The chaotic nature results in an uncontrollable growth of inhomogeneity. The free scalar

case is borderline in this sense; in the homogenous limit, the ratio of anisotropy to scalar

field energy density approaches a constant.

Ultralocality has also been demonstrated in numerical relativity simulations of slow

contraction [13, 17] where the scalar field is self-interacting through a negative potential

energy. If the potential is sufficiently steep (corresponding to ε ≫ 3), the system of ordinary

differential equations has an attractor solution that drives widely separated points in space to

a common fixed point: flat FRW. Because different spatial points begin with different initial

conditions, they start with different deviations from flat FRW and evolve at different rates

towards it. However, because the atttractor is a strong one, even points that were not causally

connected at the beginning of slow contraction end up reaching the flat FRW condition

shortly after it begins and rather rapidly, within twenty or so e-folds of slow contraction

of the Hubble radius for a wide range of conditions.

As has been noted in refs. [13, 17], this novel smoothing behavior contradicts the standard

lore that the causal connectivity and causal interaction is essential for homogenizing and

isotropizing. The best that is possible is a local causal smoother, according to this lore. Yet,

with ultralocal smoothing, the first step is to disconnect neighboring points in spacetime by

shrinking the spatial derivative terms in the equations of motion until they are negligible and

relying on attractor behavior to drive the points independently to the same desired common

flat FRW endpoint. In this sense, the smoothing by slow contraction is universal and acausal.

Figure 3 illustrates this behavior for the slow contraction model described in the previous

section by showing the time-evolution of the shear tensor Σ̄ab using a standard state space

orbit plot. The axes are (Σ̄+, Σ̄−) where Σ̄+ = 1

2
(Σ̄11 + Σ̄22) and Σ̄− = 1

2
√

3
(Σ̄11 − Σ̄22). The
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Figure 5. The state space orbits for two simulations of inflation. The orbits in (a) are for the

inflationary case described in section 5 that comes closest to satisfying the initial conditions criteria

delineated in section 3 and still smooths. The trajectories are inward and reach the center of the circle

corresponding to flat FRW. The plot in (b) is an inflationary case with initial conditions somewhat

closer to satisfying the criteria but which fails to smooth. The trajectories do not reach the center

and some even turn away from flat FRW.

Σ̄± are normalized such that the unit circle (Σ̄2
+ +Σ̄2

− = 1) corresponds to the vacuum Kasner

solution. The center of the circle corresponds to the flat FRW solution. For simplicity, we

show only one quadrant. Each trajectory corresponds to a particular spatial point in the

simulation, where the points are evenly spread across the box; the red circles represent starting

points. Trajectories that begin at or beyond the quarter circles typically have Ĉ ≫ 1 and

P̂ ≫ 1. In this case, many trajectories start significantly outside the circle, consistent with the

large mean values reported in table 1. But each trajectory, traveling over different paths and

taking different amounts of time, is drawn rather directly to the flat FRW point at the center

of the circle, even for these extreme initial conditions. This behavior is a sign of robust and

rapid smoothing and is characteristic of the combination of ultralocality and slow contraction.

One might wonder if ultralocality is all that is required. Figure 4 shows that the answer

is no. The figure illustrates the difference in the state space orbit plots for two examples

of contraction. Because both are contracting, both evolutions become ultralocal. In the

first case, the scalar field is free (V (ϕ) = 0), corresponding to ε = 3; in the second case,

the scalar field has a negative potential with an attractor solution with ε = 13. Even

though the evolution becomes ultralocal in both cases and the starting points are inside the

circle (so relatively mild initial conditions compared to figure 3), the outcomes are quite

different. The trajectories never reach flat FRW (the center of the circle) in the case of fast

contraction, but rapidly converge to flat FRW for the case of slow contraction. In other

words, ultralocality alone does not solve the homogeneity, isotropy and flatness problems,

but ultralocality combined with ε ≫ 3 clearly can. (N.B., as detailed in the phase diagrams

shown in ref. [13], the crossover in ε from non-smoothing to smoothing occurs somewhere

between ε = 3 and 13, depending on the initial conditions.)

As emphasized in ref. [23], the combination of ultralocality and ε ≫ 3 drives the Weyl

curvature to zero at spacetime points that are causally disconnected. Penrose [24] earlier

pointed out that this condition is essential for explaining why the early universe is FRW,
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but he had no physical explanation for it. Penrose went so far as to propose a new law

of physics (the Weyl Curvature Hypothesis) that initial singularities must have zero Weyl

curvature. However, the Hypothesis is not only ad hoc, but it is unlikely to be valid following

a big bang once quantum effects are included. If the universe passes through a phase with

strong quantum gravitational effects following a bang, quantum gravity fluctuations create

large random fluctuations in spacetime. The same criticism applies to slow contraction if

continued to such high densities that quantum gravity effects become large. To fully replace

the Weyl Curvature Hypothesis with a physical mechanism, a third essential element is

a smooth transition from contraction to expansion (a.k.a. “non-singular bounce”) at low

densities where quantum gravity effects are negligible.

7 Ultralocality: slow contraction vs. inflation

We have shown above that ultralocality — the rapid shrinking of spatial derivative terms in

the Einstein-scalar field equations in a contracting universe — plays a central role in solving

the homogeneity, isotropy and flatness problems with slow contraction. This also suggests

the reason why inflation is problematic — the spatial gradient terms in the Einstein-scalar

field equations grow. Heuristic arguments explaining how inflation smooths assume the

inflaton field has already dominated the evolution. But if the initial conditions are outside

the perturbative regime of flat FRW, as expected, for example, following a big bang, there is

spatially varying shear and curvature with significant spatial gradients that can dominate

the evolution and block inflation if those gradients grow.

The state space orbits in figure 5 exemplify the problem. On the left are the orbits

for the inflationary example described in table 1 that comes closest to satisfying the four

criteria in section 3 and yet smooths. The smoothing is indicated by the convergence of

trajectories at the center of the Kasner circle. Note that the starting points are all inside

the Kasner circle and much closer to the center compared to the slow contraction case. Also

the trajectories are converging in way that becomes increasingly twisty as they approach

the center, which differs from the slow contraction examples.

The right is an inflationary example with initial conditions that come somewhat closer

to satisfying the criteria. In this case, though, smoothing fails. The opposite of ultralocal

behavior occurs. Spatial gradients are growing sufficiently rapidly that inflation cannot take

hold. Some trajectories end up turning away from the center. And this occurs when the

starting points (indicated by the solid red circles) are well inside the Kasner circle indicating

that the initial conditions are not extreme, as they are in the slow contraction example above.

Figure 6 plots Ωφ,s,k, the relative contributions of scalar field energy, shear and curvature,

as a function of time for two cases. The first is the slow contraction model described in

section 5 and table 1 that begins with conditions so extremely far from flat FRW that the

plot extends far outside the frame for the initial time steps, However, after 15 e-folds of

contraction, the combination of ultralocality and slow contraction smooths.

The second case shown in figure 6 is the inflation example presented in section 5 that

came closest to satisfying the three diagnostic conditions in table 1 and still smoothed. (The

parameters are given in eq. (5.1).) Even in this case, whose starting conditions are not

significantly far from flat FRW, the small initial spatial gradients grow rapidly during the first
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Figure 6. Snapshots show the relative contributions of scalar field energy, shear and curvature

(Ωφ,s,K) in the initial time step and then a series of time steps following. In the contraction case

(top row), the initial spatial gradients are so large that they extend beyond the frame, but they are

eventually smoothed through ultralocality and slow contraction. In the inflation case (bottom row),

the initial spatial gradients are small and grow rapidly, consistent with the idea that the opposite of

ultralocality occurs when initial conditions are far from flat FRW.

steps. This is the expected signature if the opposite of ultralocality occurs during expansion.

For cases, that are outside the perturbative regime of FRW initially, as measured by Ĉ and

P̂, the gradients grow so rapidly that smoothing does not occur.

As in all of our numerical studies to date, we test for numerical convergence and

consistency with general relativity by checking that the Gauss (or Hamiltonian), Codazzi

(or momentum), as well as other constraints are satisfied. This is a conventional approach

that entails comparing the rescaled L2 norm of the constraint at low, medium and high

resolutions. The detailed procedure is described in refs. [12, 13]. For example, figure 7

shows the rescaled L2 norm of the Hamiltonian constraint ∥CG∥ that indicates second order

convergence for the inflation example in figure 6.

8 Discussion

Numerical relativity can play a crucial in exploring fundamental issues in cosmology such

as considered here: the solution to the homogeneity, isotropy and flatness problems. We

have used objective tests, including ones based on gauge/frame invariant measures, and

found huge differences between slow contraction and inflation. Slow contraction can smooth

and flatten even when the initial conditions are exponentially far from flat FRW initial

conditions. Inflation can only smooth in cases where the initial conditions are comparatively

close to flat FRW at the start. The simulations also enable us to understand why there

is this enormous qualitative and quantitative difference. Physics becomes ultralocal in a

contracting universe which rapidly reduces spatial gradients until they become negligible for

the dynamics. When combined with slow contraction (ε ≫ 3), world-lines converge to a flat
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slow contraction to hot expansion have been described in refs. [25–27]; and in refs. [28, 29], a

detailed mechanism for generating quantum fluctuations during the bounce that evolve in

the temperature fluctuations observed in the cosmic microwave background is presented.
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