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Abstract— With the continual introduction of various vehicle
automation functions and algorithms, the heterogeneity of
human, human-machine, and machine autonomy associated
with the vehicles on the roads elevates as well. Ensuring vehicles
of heterogeneous autonomy to safely and harmoniously share
the roads is important for the interests of driving safety, traffic
throughput, and human acceptance of autonomy. Particularly
due to the wide range of variations in human perceived safety
and risk in driving, empowering the vehicle intelligence to
accurately understand the perceived risk by other surrounding
vehicles is a critical step towards harmonious road sharing.
In this paper, we present an individualizable risk assessment
model (IRAM) that can empower vehicles to compute the
risk maps that individual drivers perceive from the driving
behaviors of other surrounding vehicles on a shared road. The
IRAM offers a realistic risk assessment map around a vehicle
by integrating the relative motions between pertinent vehicles
and drivers’ perceived safety preferences. A naturalistic human
driving dataset, NGSIM, was utilized to evaluate the risk map
generation by the proposed IRAM. The IRAM can be used
for planning vehicle behaviors, such as its path and motion,
that respect the different perceived safety of its surrounding
vehicles’ human/machine drivers.

Keywords: risk assessment, risk map, socially-compliant
automated driving, harmonious road sharing

I. INTRODUCTION

As the development in autonomous driving and driver-
assistance vehicles matures, the number of vehicles equipped
with various automation systems is expected to increase
on roadways [1]-[6]. This will lead to an increase in the
heterogeneity of vehicles across different levels of autonomy,
varying from human-driven vehicles (HDV) to autonomous
vehicles (AV) of SAE Levels 1 through 5 (AVs 1-5) [7]. Ad-
ditionally, various vehicle manufacturers introduce another
dimension of vehicle heterogeneity as the algorithms and
behaviors of the same level of automated vehicles differ with
manufacturers. The mixture of human-driven and automated
vehicles of various levels increases the complexity of the
traffic and raises new driving safety challenges.

Different vehicle manufacturers implement their propri-
etary and oftentimes non-interpretable Al-based decision-
making and control algorithms on their AVsl-5 products,
thereby rendering dissimilar driving behaviors. AVs 1-5 may
drive with egoistic behaviors (e.g., shorter spacing headway
and aggressive lane-changing behavior) that are considered

J. Park and J. Wang are with the Walker Department of Mechanical
Engineering at The University of Texas at Austin. Y. Zhang and W. Luo are
with the Department of Computer Science at the University of North Car-
olina at Charlotte. Emails: jihwanpark98 @utexas.edu, yzhang94 @uncc.edu,
wenhao.luo@uncc.edu, jwang@austin.utexas.edu. This work was partially
supported by NSF Awards 2312465 and 2312466.

physically safe and efficient based on their sensing and
actuation abilities, but may pose threats to other surrounding
vehicles. This becomes more concerning to vulnerable HDV's
and vehicles with low automation levels that are operated by
diverse humans including older, physically-challenged, and
impaired drivers with a wide range of driving abilities, pref-
erences, and safety perceptions [8]-[10]. Individual vehicle
actions perceived as inappropriate or threatening by other
surrounding vehicles may induce panic reactions, crashes,
and ripple effects that endanger highway traffic.

The increasing challenges related to driving safety ne-
cessitate harmonious coordination among vehicles of het-
erogeneous human/machine autonomy on highways. To en-
hance driving safety while achieving harmonious coordina-
tion among vehicles, risk assessments among vehicles are
necessary. By quantitatively assessing how much risk would
be imposed on other surrounding vehicles by its planned path
and trajectory, an intelligent vehicle could decide whether to
maintain its current motion and trajectory plan or adjust its
risk-posing behavior accordingly to reduce the imposed risk
to others. By enabling the imposed-risk-aware planning for
AVs, behaviors of such vehicles may become courteous to
the perceived safety of surrounding vehicles, thus increasing
the harmony of the group of vehicles traveling together.

To have a meaningful assessment of the risk posed to
other road users, developing a model that could reflect an
individual driver’s perception of risk is essential. Since hu-
man drivers have diverse factors that affect their individually
perceived risk, a model that can reflect individual perceived
risk is necessary to enable harmonious coordination among
the road participants. Considering the perceived risk by
others in the motion planning and control stages of ego
AVs is necessary, as it not only ensures physical safety
but also increases public trust and overall acceptance of
AVs and enhances the driving experience of heterogeneous
participants. For this reason, we present an individualizable
risk assessment map (IRAM) that is capable of reflecting
individual drivers’ safety preferences and can be used for
planning an AV’s path and trajectory while respecting the
perceived safety of surrounding vehicles.

The contributions of this paper are summarized as follows.

1) We propose a realistic risk assessment model incorpo-

rating the relative dynamics between the ego vehicle
and surrounding vehicles and the fine-tunable individual
driver’s safety preferences.

2) We illustrate the flexibility of our model across a range

of traffic scenarios.

3) Using naturalistic human driving data, the Next Gen-

979-8-3315-0592-9/24/$31.00 ©2024 IEEE 2324

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 06,2025 at 13:12:14 UTC from IEEE Xplore. Restrictions apply.



eration Simulation (NGSIM) dataset, we demonstrate
the effective representation of our model compared to
previous methods to illustrate its realistic usage.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe related work. In Section III, we introduce
the IRAM model formulation. In Section IV, we describe the
experiments. Section V presents the experimental results and
Section VI provides conclusion and future plan.

II. RELATED WORK

A. Risk Assessment

There have been several previous studies on how sur-
rounding vehicles pose a risk to an ego vehicle and use the
risk assessment to adjust the behavior of the ego vehicle
to minimize or avoid collision. Wang et al. define risk as
the probability of other agents entering ellipsoidal space
around the ego vehicle [11]. Agents’ probabilistic trajectory
distributions are incorporated to compute the posed risk
values. Woo et al. predict the trajectory of a surrounding
vehicle to determine the collision risk space posed on the
ego vehicle. The risk space is then used to adjust the action
of the ego vehicle to minimize its own collision risk [12].
Howeyver, this is not as intuitive as how human drivers make
decisions since humans also consider how much risk their
action (e.g., lane change) would pose to other vehicles.

B. Risk Assessment Map

A risk assessment map on the environment posed by
surrounding vehicles was proposed in [13]. The region in
which surrounding vehicles intend to occupy was defined
and translated into a region of risk with respect to their
positions and motions. Due to the presence of occupancy,
the ego vehicle ought to respect and avoid such a region
of risk to avoid collision with or imposing risk on the
vehicle in that region. However, the points in the environment
that are used to compute the risk space are treated as
stationary, and the motions of surrounding vehicles are not
considered in the risk assessment, thereby resulting in an
overly conservative or inaccurate risk assessment in dynamic
environments such as highway traffic. Similarly, the authors
of [12] adopted a potential field method to identify a region
of risk space posed on ego vehicles by surrounding vehicles
and introduced an adaptive cruise control method to avoid
the risk of collision. Similar to our method, defining a map
to represent risk information associated with the surrounding
vehicles is presented in [14], where a predictive occupancy
map (POM) is proposed to estimate risk when an ego vehicle
plans several trajectories to make a lane change. Using a risk
map integrated with a deep learning method for interactive
trajectory prediction is offered in [15]. However, these maps
do not consider the relative dynamics between the vehicles.
The model presented in [13] can be updated to integrate
relative motions between the vehicles to estimate a more
realistic risk posed to vehicles.

C. Human perceived safety

The concept of human-perceived safety concerning robots
and vehicles is complex and determined by diverse factors,

each contributing uniquely to the overall safety perceived
by individuals. Researchers have studied to understand and
quantify human perceived safety. Nonaka et al. have found
that physical attributes like the shape and size of robots
can affect human perceived safety [16]. In vehicular context,
factors that could affect users’ perceived safety are the sizes
and velocities at which their or surrounding vehicles are
operated, and the proximity of surrounding vehicles [17].

III. RISK ASSESSMENT MODEL FORMULATION

The objective of having a risk assessment model for
automated vehicle applications is to quantify the potential
risk posed by the ego vehicle to the surrounding vehicles
traveling in the vicinity at any instant. The ego vehicle thus
can utilize the computed risk region to determine whether
its current and/or future planned path and motion respect or
violate other road users’ perceived safety and adjust its path
and motion accordingly if necessary.

A. Individualizable risk assessment model (IRAM)

To enable the ego vehicle of various levels of automation
to assess the perceived risk it poses to the surrounding
vehicles, we present a risk assessment model by introducing
several important improvements from [13]. Such a new
model, referred to as the individualizable risk assessment
model (IRAM), explicitly considers the motions of relevant
vehicles and is capable of representing diverse safety per-
ception by different vehicles/drivers. Throughout the paper,
we define 7 as the ego vehicle that poses risk and j as a
surrounding vehicle that perceives risk from ¢. The IRAM
quantifies the risk posed on the surrounding vehicle j by the
ego vehicle ¢ as follows:

exp (—(q — p;)" oQ(q — p;))
L +exp (—0vl (g —py))

Ry.0,i-j(q,pj,vi,v5) =

b

(1
where ¢ € R? is any point in the planar environment (e.g., a
highway), p; is the center position of the surrounding vehicle
7, Q is the diagonal matrix of the inverse square of the stan-
dard deviation, v;, and v; are the velocities of the ego vehicle
1 and surrounding vehicle j, respectively, and v, = v; — v;
is the relative velocity between the surrounding vehicle and
ego vehicle. The perceived safety parameters ¢ and 6 are
diagonal matrices of vectors [(ong, Q1at] and [Wiong, Wiat)
that control the scale and direction of the perceived risk map.
The equation consists of the multiplication of two functions.
The numerator term is the Gaussian function that measures
the magnitude of perceived risk from the center of the
surrounding area. The numerator is multiplied by the logistic
function that directs the perceived risk region toward the
source of risk. In this problem, we assume all the vehicles’
perceived safety parameters, positions, and velocities at each
time step are known to one another via communications.
Equation 1 considers vehicles as point estimates by only
considering their center position, which does not consider
the dimension of vehicles. To incorporate the varying size
of the vehicles’ dimensions, we extend Equation 1 by first
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Fig. 1: The effects of varying the parameters ¢ and 6, with values set at [1.25, 1.5, 1.75], are shown. These parameters can alter the
size and direction of the perceived risk map for surrounding vehicles. The adjustments in ¢ and 6 influence the risk model by shaping

the risk contours’ spatial and directional characteristics.

defining the effective positions of the ego and surrounding
vehicle, positions where the center-to-center distance vector
(g — p;) crosses the edges of the vehicles. These positions
inherently include information concerning each vehicle’s
dimensions of width and length. The effective distance 7
is defined as the relative distance between the ego and the
surrounding vehicles’ effective positions, gesf — Pjefr. The
effective distance is used to replace g — p; to utilize a more
realistic and accurate distance between two vehicles. The
concept of effective distance is illustrated in Fig. 2. Taking
account of the dimensions of the vehicles, the physically
infeasible region (since two cars cannot overlap with each
other) of the potential location of the ego vehicle is presented
in blue, as shown in Fig. 1.

exp (—(refr) T QU refr) )
1+ exp (—0vT (reg))

€y

Ry 0,i—j(Teit Vi, vj) =

B. Relative motion of vehicles

Considering relative motion between vehicles is part of
humans’ intuitive decision-making process while driving. A
human driver typically decides on executing actions such as
car following, overtaking, and lane-changing based on their
relative motion (how fast or slow their vehicles are compared
to other vehicles). Hence, the relative motion between the
surrounding and ego vehicles must be incorporated into the

reff
—>q-p;

Gerr 13 SUr
.pjleff & ego

Fig. 2: Effective positions and distance between the ego and
surrounding vehicles. The surrounding vehicle and ego vehicles in
potential locations are represented as yellow and red, respectively.

risk assessment model, and it influences the risk map by
skewing the distribution toward the source of perceived risk.

C. Perceived safety tuning parameters

The imposed risk by ego vehicle ¢ onto the surrounding
vehicle 7 may be perceived differently with different human
drivers or perception systems of vehicle j. Therefore, the tun-
able perceived safety parameters, ¢ and 6, are incorporated
in the IRAM model to reflect various human drivers’ safety
preferences and/or the differences among vehicle perception
systems. In Fig. 3, we demonstrate that our model can
recover the model [13] by tuning the parameters ¢ and 6.
This flexibility of the IRAM model allows for representa-
tions of different perceived safety in the same situation by
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choosing different model parameter sets. Additionally, if such
an IRAM parameter set of the surrounding vehicle j can
be made available to ego vehicle ¢ through, for example,
vehicle-to-vehicle (V2V) communication, then ego vehicle ¢
can accurately quantify the risk its path and motion pose
on the surrounding vehicle j, thus planning its path and
motion respecting such risk, and vice versa, vehicle j can
also respect the risk perceived by vehicle ¢ in its planning via
R;_,;, thereby achieving safe and harmonious road sharing.

10

0 5 10 15 20 25 30
X [m]

(a) Risk assessment map by [13].

X [m]

0 5 10 15 20 25 30
X [m]

(b) Risk assessment maps by IRAM.

Fig. 3: Ego vehicle: green; surrounding vehicles: red. The param-
eters ¢ and 6 in IRAM can produce different risk assessment map
shapes including approximately the same risk map generated by the
model in [13]. (a) shows the risk map generated by the model in
[13]. (b) shows two cases where the IRAM parameters ¢ and 6 are
set as [0.8, 1.2], [1.0, 1.4], [1.0, 1.0], [5.0, 1.0] for the above and
below, respectively. The IRAM with parameter set of ¢=[1.0, 1.0]
and 0=[5.0, 1.0] can reproduce a similar result as [13].

The sensitivity analysis of these tunable parameters of ¢
and 0 is shown in Fig. 1. This demonstration shows how
tuning the parameters can affect the size and direction of the
posed risk region. As qjopg OF (g increases, more risk space
is formed toward the vehicle’s longitudinal or latitudinal
direction, respectively. Similarly, as wjong OF Wiqs increases,
more risk space is skewed toward the vehicle’s longitudinal
or latitudinal direction, respectively.

D. Physical Interpretation of the IRAM model

We provide an intuitive explanation of the IRAM model to
demonstrate how it can be used in diverse driving scenarios.

Four commonly encountered driving cases on highways
are simulated to illustrate how risk space would form in
each case. These cases are vehicle following, smooth lane
switching, aggressive lane switching, and lane exchange,
which are referred to as Cases 1 through 4 in Fig. 4. The
risk maps consist of levels of risk contour where the risk
values decrease from the center of the surrounding vehicle.
We consider three risk regions: high-risk (yellow), medium-
risk (light green), and low-risk (dark green) regions. At each
time step, the risk values are computed by sweeping through
the map. Every point in the map, ¢, is considered a potential
location, as if the ego vehicle were located at the point with
its current motion. In Case 1, the ego vehicle (green) follows
the surrounding vehicle (red) with a higher longitudinal
velocity. The risk space is formed behind the vehicle, skewed
toward the ego vehicle, which is the source of the posed
risk. This intuitively makes sense as the drivers perceive risk
from tailgating vehicles at higher speeds. Cases 2 and 3 are
single-vehicle lane-changing scenarios with an ego vehicle
that intends to change into the surrounding vehicle’s lane
with smooth and aggressive steering, respectively. Due to
aggressive steering, which induces higher lateral speed at
the instant, a larger risk space is formed toward the lateral
direction upward. Similarly, Case 4, which is a two-vehicle
lane exchange scenario, induces an even greater difference
in relative lateral speed, resulting in greater skewing of the
perceived risk direction toward the ego vehicle.

IV. EXPERIMENTS

We used a naturalistic human driving dataset, NGSIM
[18], to evaluate IRAM in highway driving scenarios. The
objective is to compare the perceived-risk-violating and
perceived-risk-respecting maneuvers of the ego vehicle to
demonstrate the effective representation of our model com-
pared to the previous methods and illustrate its realis-
tic usage. We first build a multi-lane highway with five
mainline lanes according to the structure described in the
NGSIM US-101 dataset. An ego vehicle and surrounding

Case 1 Case 2

10 10
X [m] X [m]

Fig. 4: Four commonly encountered scenarios on highways: Vehi-
cle following (Case 1), Smooth lane switching (Case 2), Aggressive
lane switching (Case 3), and Lane exchange (Case 4). ¢=[1.75,
1.75] and 6=[1.0, 1.5] are selected in this illustration. The risk
posed to the surrounding (green) vehicles by the ego (red) vehicle
is represented in each case.
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Fig. 5: Risk-violating maneuver (Red upper box) and risk-respecting maneuver (Green bottom box) demonstrations. The ego vehicle,
surrounding vehicles, and the vehicle that the ego vehicle is overtaking by changing lanes are represented as green, blue, and dark yellow
objects. High, medium, and low-risk levels are yellow, light green, and dark green.

vehicles—vehicles within a 25-meter radius of the ego
vehicle—are created on the map. The surrounding vehicles
conform to the positions and velocities of the NGSIM,
whereas the ego vehicle behaves according to the pure pursuit
controller, which creates a target trajectory that the ego
vehicle can follow. To demonstrate the potential usage of
IRAM, we conduct the experiment with a smooth lane-
change scenario. To simulate a lane change in an ego vehicle,
we sent a command to the controller to set the target lane
to be a lane to the left with a target velocity of 25 m/s
and a steering angle of 2.5 © and 5.0 ° for risk-respecting
and risk-violating, respectively. The sampling frequency is
set to 20 Hz. In each time step, the perceived risk map of
the surrounding vehicles is computed and overlaid on top
of the map. The ego vehicle, surrounding vehicles, and the
vehicle that the ego vehicle is overtaking by changing lanes
are represented as green, blue, and yellow objects in Fig. 5.
The perceived risk of surrounding vehicles with our model
is represented in red, and the previous model’s risk map is
presented in purple.

We compare the two maneuvers with three metrics: the
time the ego vehicle traveled to complete the lane change, the
duration it violated the overtaking vehicle’s perceived safety,
and the average overlap between the ego vehicle and high,
medium, and low-risk regions during the risk violation are
computed. We define risk-respecting maneuvers to be ones
where the average overlap between is less than 10% across all
levels of risk regions. Otherwise, they are considered risk-
violating maneuvers. Five simulation trials are completed,
and the average value of each metric is reported.

A. Anticipated Collision Time

We use a 2D surrogate safety indicator called Anticipated
Collision Time (ACT) which is a generalized Time-To-
Collision (TTC) to account for collisions in planar (2D)
cases. Although the risk values do not directly represent the
ACT, we study how risk values and ACT are correlated to
each other as ACT since measuring the time to collision is

commonly used as a safety metric. To study the relationship
between the risk values and ACT, we randomly sampled three
points in each level of risk contour. These points serve as
the positions of the ego vehicles and ACT is computed. We
removed the points where cars cannot be physically located.
The equation to compute ACT is defined as follows:

6
(sz)’ 3
t
where ¢§ is the shortest distance between the approaching
vehicles at a time instance ¢ and dd/dt is the closing-in rate,
a rate at which the vehicles approach each other. Further
details on computing each variable can be found in [19].

ACT =

V. RESULTS
A. IRAM Demonstration

The potential usage of IRAM is demonstrated in Fig. 5,
where the initial, medial, and final stages of the ego vehicle’s
lane change behavior are presented. With IRAM, the ego
vehicle can determine whether its current trajectory to change
lanes respects or violates the other vehicle’s perceived risk. In
the red upper box, the ego vehicle (green) poses a risk to the
surrounding vehicle (yellow) by changing lanes at a relatively
higher lateral speed. Hence, it invades the perceived risk
region and violates the perceived safety of the surrounding
vehicle. In the green lower box, the ego vehicle intends
to change lanes with a relatively lower lateral and higher
longitudinal speed, which results in a minimal invasion of
the perceived risk in front of the surrounding vehicle. Thus,
it completed a lane change while respecting the surrounding
vehicle’s perceived safety with minimal violations.

The quantitative results of the experiment are presented
in Table I. Although the risk-violating maneuver completed
the lane change faster than the risk-respecting maneuver, it
violated the perceived safety of the surrounding vehicle for
a longer period of time and in a larger region on average.
Hence, the result demonstrates the risk assessment model can
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well represent the varying perceived safety of drivers based
on ego vehicles’ maneuvers. Moreover, the proposed criteria
can be used in designing a controller that reduces the time
to complete actions such as lane-changing while minimizing
the violation time and amount of the violated risk region.

TABLE I: Comparison of risk-respecting and -violating maneu-

vers.
Travel Violation High Medium Low
time Duration Risk Risk Risk
[s] [s] [%] [%] [%]
Risk-Violating 2.5 1.5 325 235 21.2
Risk-Respecting 4.8 0.7 3.1 7.2 9.8

B. Correlation between risk values and ACT

The relationship between risk values and ACT is presented
in Fig. 6. The correlation between sampled risk values and
ACT is computed as -0.8683, strongly suggesting a negative
correlation between the two variables. This result is intuitive
since the ACT should be higher as the ego vehicle poses a
smaller risk with perceived risk-respecting maneuvers, taking
a longer time to collide. Thus, the ACT metric serves as
a proxy to measure how much the surrounding vehicles
perceive risk from the ego vehicle. The strong correlation
between the two variables indicates the risk assessment
map generated by IRAM represents the individual driver’s
perceived safety reasonably well.

Correlation between Risk value and ACT

ACT [sec]

T
0.4 0.5 0.6 0.7 0.8
Risk value

Fig. 6: Correlation between ACT and IRAM estimated risk values.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a concept of an individualizable
risk assessment model (IRAM) designed to accommodate the
different safety perceptions of individual drivers. The integra-
tion of perceived safety parameters into the risk assessment
model could serve to enhance the path and trajectory plan-
ning of automated vehicles by reflecting the perceived safety
preference of surrounding drivers. Our result demonstrated
a significant correlation between the computed risk values
and the anticipated collision time metrics, highlighting the
efficacy of IRAM in mirroring individual safety perceptions
during highway driving scenarios. For future work, we plan

to leverage IRAM to design advanced controllers that not

only ensure physical safety but also significantly enhance

the overall driving experience for various road users by

respecting their driving safety preferences on highways.
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