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Abstract—Existing adaptive control designs for vehicle
steering-by-wire (SbW) systems mainly rely on quadratic
Lyapunov functions, providing (global) stability and, at best,
(global) asymptotic convergence of certain closed-loop signals.
However, these approaches generally lack assurance in transient
performance. In this paper, we introduce a novel adaptive
control scheme aimed to enhance and guarantee the transient
performance of the adaptive SbW control system. This approach
integrates a varying-degree Lyapunov function with
deterministic robust control. The new adaptive control scheme
is derived in a general context, applicable to a class of single-
input, parametrically uncertain, nonlinear dynamic systems in
Brunovsky form. We then apply this general theoretical result to
develop an adaptive controller for the SbW system. Using a high-
fidelity moving-base driving simulator, we demonstrate the
transient performance improvement of the new adaptive SbW
controller compared to a baseline method.
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[. INTRODUCTION

A. Background

Vehicle steering-by-wire (SbW) technology represents a
major innovation within the automotive automation landscape,
reshaping traditional steering systems at their core [1].
Through the incorporation of electromechanical sensing and
actuation in conjunction with by-wire controls, this technology
grants drivers intelligent and customizable steering responses
[2]. Besides, the elimination of a physical steering column
enhances driving safety by reducing collision-related risks [3].
What makes the SbW technology even more promising is its
seamless compatibility with automated/autonomous driving
systems, promoting it a well-suited solution for the intricate
demands of self-driving functionalities [4],[5]. Recent studies
also highlight how SbW systems can enhance shared steering
control between humans and automation systems [2],[5],[6].
These promising aspects of SbW technology have spurred a
surge in research efforts dedicated to advancing its
capabilities, particularly in SbW controls.

B. Literature Overview

A core component of the SbW system is a properly crafted
control system. This control system plays a pivotal role in
effectively managing the steering servo motor, ensuring it
produces the desired steering torque. This, in turn, ensures that
the vehicle's front road wheels accurately track the steering
wheel's reference command (produced either by the driver
and/or the automated driving system). In the literature, a gamut
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of control approaches for vehicle SbW systems has been
documented. These methods involve robust control
techniques, including H,, control [7], sliding-mode control [§],
and others. Adaptive control [9] and iterative learning control
[10], among others, have also been studied.

Markedly, the adaptive control method has gained
considerable interest in formulating the SbW control law. This
is primarily due to its capability to address model
uncertainties, such as electromechanical parameter
perturbations [18], through real-time learning and adaptation
[9]. In [10], an adaptive sliding-model control strategy was
introduced for SbW system control, with a noteworthy feature
being its adaptive compensation for the self-aligning moment.
In [11], an SbW control law based on the adaptive
backstepping control method was presented. To enhance its
robustness, this adaptation mechanism incorporated a novel
leakage modification, ensuring the boundedness of adaptive
control parameters. In a distinct approach, authors in [12]
ingeniously unified adaptive sliding-mode control with an
event-triggered mechanism to govern the SbW system. The
introduction of the event-triggered scheme yielded benefits in
conserving communication resources within the control
system. Recent studies explored the fusion of adaptive control
and artificial neural networks for SbW system control,
demonstrating the neural network's effectiveness in modeling
complex uncertainties [13].

C. Research Gap and Our Contribution

While the previous studies have shown effectiveness in
controlling the adaptive SbW system and adequately coping
with system uncertainties through adaptation, there may still
be considerable room for improving the control system's
performance. Particularly, the majority of adaptive SbW
controllers found in the literature can only theoretically
guarantee (global) stability and at best (global) asymptotic
convergence of certain closed-loop signals. However,
transient behaviors, which are equally, if not more critical
than steady-state characteristics, tend to receive less attention.
Consequently, these existing adaptive SbW controllers may
exhibit inadequate transient performance (e.g., slow
convergence, oscillatory responses, significant overshoots,
etc.). In response to this research gap, the contribution of this
paper is dedicated to enhancing the transient performance
from two perspectives. First, virtually all existing adaptive
SbW controllers in the literature are established with
quadratic Lyapunov functions (QLF). Departing from such a
mainstream, we originate a new adaptive control scheme
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based on a varying-degree Lyapunov function (VDLF) to
tackle the SbW control design problem. VDLF-based
adaptive control law, as demonstrated later, outperforms the
traditional QLF-based method by offering superior transient
and convergence properties. Second, we propose a systematic
integration of VDLF-based adaptive control with
deterministic robust control (DRC). This integration further
bolsters the transient performance of the closed-loop system.
Augmenting DRC ascertains exponentially fast transient
performance with prescribed precision.

This novel adaptive control scheme is derived for a general
class of single-input, parametrically uncertain, nonlinear
dynamic systems in Brunovsky form, making it applicable to
a range of physical systems. In this paper, the spirit of the
proposed solution will be elaborated through its application in
the adaptive SbW control law synthesis.

D. Paper Organization

The paper proceeds as follows: In Section II, we establish the
theoretical foundation by deriving an adaptive control law
(integrating VDLF and DRC) for a general n'"-order, single-
input, parametrically uncertain, nonlinear dynamic system in
Brunovsky form. This section includes analyses of closed-loop
stability, signal convergence, and boundedness, along with a
theoretical comparison to the conventional QLF-based
adaptive control solution. Section III applies the proposed
adaptive control scheme to develop an adaptive controller for
the SbW system. Section IV presents experimental results
comparing the suggested SbW adaptive controller with a
baseline QLF-based solution. Section V concludes the paper.

II. THEORETICAL FOUNDATION

This section details the establishment of the adaptive control
law, which synergizes the VDLF and the DRC, for an n'P-
order, single-input, parametrically uncertain, nonlinear
dynamic systems in Brunovsky form. We will begin by
formulating the control problem, followed by the synthesis of
the adaptive control law and subsequent stability analysis. We
will then compare certain theoretical properties of the
proposed adaptive control law to those of the traditional QLF-
based solution.

A. Control Problem Formulation

To demonstrate the essence of the proposed adaptive control
design strategy, we will examine a class of single-input
uncertain nonlinear dynamic systems that can be transformed
into the following form (x, u € R):

M

x™ = Z al-fl-(x, %, %, woxD, W)
i=1

+bg(x, %, %, oxD), w)u. (D
In this context, we have w € R™ being a measurable
exogenous vector. Both f;(e,¢): R" X R™ - R and g(e,
):R*xXR™ >R are known Lipschitz functions.
Additionally, model parameters a; ER and b € R are
assumed to be unknown constants or exhibit slow variations.
It's important to note that we further assume b, the high-
frequency gain, to be non-zero with known sign, along with
g(e,*) to be non-zero within the system's operational range,

732

ensuring controllability. The dynamic system described in (1)
serves as a model for a range of physical systems.

To maintain clarity and succinctness in notation, we will
henceforth omit the explicit function input arguments for all
nonlinear functions (except when it is needed for emphasis).
In other words, functions f;(e,*) and g(e,), originally
defined as functions of x and its derivatives up to the
(n — 1)™ order and w, will be represented simply as f; and g
in the subsequent discussion. This allows compact expression
of the single-input, uncertain, nonlinear system in what is
referred to as the controllable canonical form:

x
X X
d X :

—( - =| 4 _
x™=D \Z a;f; + bgu/
i=1

dt
The primary objective of our control design is to ensure that
x closely follows a bounded reference command x, € R. We
adopt the assumption that x, is sufficiently smooth, i.e., it
possesses at least n-fold differentiability with respect to time.
With this in mind, we then introduce reference-tracking
errors, denoted as  e® & x® _x® p—0... N
Accordingly, the dynamics associated with these tracking
errors can be expressed as follows:
é
e é

d é _ : ’ 3)

de| M
em-1 \b gu+ Z 0.f; — b‘lxﬁn) /
=1

where (64, ...,0y) = (b tay,.., b~ tay). We assume 0; €
(Qi,@i) and 6;, §i are given a prior or can be estimated in
practice.

We define the following perturbation variable Y € R (a
composite error) to facilitate the subsequent control law
synthesis:

Y2, eV 4¢, ,e® 4 tcge. (4)

In (4), parameters ¢; € R,,j = 0,---,n — 1 are judiciously
selected to ensure that matrix A,, defined as follows, is
Hurwitz.

(2)

A, 2 (0 ;n—l),f 2 (=60
We also enforce ¢,,_; = 1.

Accordingly, error dynamics as in (3) can be equivalently
transformed into a cascaded system (k € R* ):

—Cn-2

_Cn—l). (5)

e
¢ é
df ¢ \_ ;
at\ i |~ n-z [
o(n-2) Y_Z. ¢ e
Jj=0

M+1
Y=—kY+b<gu+Z@Lfi>. (6)

i=1
In (6), Oyss2bt and fyy 2 —x™ +kY+
7;5 c ]-e(j *+1)_ Supposing 6; in (5) were known (ideal case),
the idealized control law,
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1
u=——> 6f, ™

9=
would render Y’s dynamics Hurwitz so that Y will converge
to zero exponentially fast. As a result, (e, ...,e(n_l)) will
converge to zero thanks to the vanishing perturbation Y.
Nevertheless, in real-world applications, obtaining
sufficiently accurate values for 8; can be challenging, if not
impossible. These values can also exhibit (slow) changes due
to variations in operating conditions. A practical approach to
tackle this parametric uncertainty is to implement a direct
adaptive control scheme that can dynamically compensate for
these uncertainties in real-time. This involves substituting 6;
in the nominal control law with their online estimated
counterparts, denoted as 8; (so-called certainty equivalence).

B. VDLF-based and DRC-augmented Adaptive Control
Law

Strategically integrating VDLF and DRC, a robust adaptive
control law is formulated as follows:

U =uy + up, (8)
where u, and wup denote the VDLF-based adaptive
compensation part and the DRC augmentation, respectively.
u, and up are designed as:

M+1
Mfl =t
sgn(b
up = — gg( )z P; tanh(e 1YP)). (10)
i=1

For u,, a projection-based adaptation law for ; is
formulated as (we adopt the projection scheme from [14]):

6,v6; € [Qi:gi]
éi = PrOj[Qi'gi] (él) = QI,V él’ € (_OO'QL)

Ei,V éi € (5,:, 00)
The rationale behind implementing the projection scheme in
this context is based on the assumption that 6; € (QL-, HL-) and

1D

that §; and 6; are either known beforehand or can be estimated
in practical scenarios. With these predefined bounds in place,
the projection scheme in (11) offers two advantages: it
prevents unnecessary learning efforts beyond the feasible
range and enhances the adaptative mechanism's robustness
against unmodeled dynamics and disturbances as it
guarantees boundedness for 8;. The auxiliary parameter ; is
adapted as,

G; = A;sgn(D|Y[* M Psgn(MHf; — 1. (12)
In (12), I; 2 0;(6; — §,) is a leakage term (to safeguard the
boundedness of f; in the face of unmodeled dynamics and
disturbances), 1; € R™ is the rate of adaptation, o; € R* is the
rate of leakage, and

g 21+ sy + 24D

] (13)

It is important to note that while In(|Y|) becomes unbounded
as |Y| approaches zero, the value of # remains bounded
because nl(i|molyl In(|Y]) = 0. To prevent numerical overflow

YIn(Y]).

in practice, we can substitute In(|Y|) with In(|Y] + Y,), where
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Y, € R* is chosen sufficiently small.
The degree function s(|Y]) in (13) is designed as:

1
s(YD = a5 + 5 (Bs — a){tanhys (Y - DI + 13 (14)

The design parameters for s(|Y|) are specified as follows:
as € (0,1), Bs € (1,0), and y, € R*. As per the design,
s(]Y]) is guaranteed to have a lower bound of ag and is,
therefore, always positive. It is essential to emphasize that
when selecting the value of y, it should be sufficiently large
to enable rapid switching between a; and S;.

Meanwhile, for uj, we design P; as,

P2 ’riz + AGFf7, (15)

where 1; € R shall be chosen sufficiently close to zero and
AG; 26, — 9, is the projection interval width for 8.
Moreover, € € R* inside tanh(e) in (10) is a design
parameter to prescribe the precision of the DRC’s guaranteed
transient convergence.

C. Closed-loop Stability Analysis

With the definition ; 2 ; — 6; as the control parameter
adaptation error, the dynamics for the perturbation Y, under
the effectuation of the robust adaptive control law as in (8) —

(10), can be expressed as follows:
M+1 M+1

—KkY —b Z 8.f, — Ib| Z P tanh(e~1YP). (16)
i=1 i=1

Next, two short facts and two lemmas are offered to
facilitate the subsequent analysis.
Fact 1. P; = |A;f;|. This fact is straightforward to prove as
P & 12+ D02 = JAOEfE = |A6,f].
Fact 2. Vv ER,e € R,, 0 < |v] — vtanh(e 1v) < ge~?
where o = 0.279. This fact can also be easily verified with
an elementary calculus analysis.
Lemma 1. [14] The scaler function Vg defined below is

positive semidefinite:
M+1

Vg 2 Z lz%[(éi —0)' - (@:-8)]. an

i=1

Lemma 2. With a sufficiently large y,, # as defined in (13)
is positive semidefinite and bounded. Lemma 2 can be proved
with an elementary calculus analysis.

With the afore-listed facts and lemmas, the main theorem is
now presented.
Theorem 1. We denote the error vector as z = (e, ) e("_l)).
For the process dynamics as described in (6), the following
results hold if the VDLF and DRC-based robust adaptive
control law is applied:
a) The closed-loop adaptive system is stable in the large and

tlLrgY(t),z(t) =0.

Y

b) |[Y®)| < \/e‘z"(t‘to)ﬂ +%ﬂz+l),\7’t >t, where Q 2
|b|(M+1)
1Y (tp)]? — £
ke
Proof:

To prove Result a), a VDLF (the degree of |Y]| is varying) is
conceived as follows:

vy o2 Y| 4 opg, (18)
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It is clear that V; > 0 (as previously established in Lemma 1,
Vg = 0). The degree of |Y| varies according to the magnitude
of |Y|. This marks a notable departure from the conventional
QLF-based adaptive control approach, where this exponent
remains constant.

Applying the chain rule, we take the time derivative of V;,
resulting in,

v, = H|Y[* M Dsgn(Y)Y + V.

Invoking (16) and (17),

(19)

M+1
—HIYO — 20 MDsgn(0b ) 6,

i=1

V

M+1
— Y5 sgn(Y)|b| Z P, tanh(e~1YP)

i=1
M+1

bl 1~ < . ANA
+ Z /1—i [eiei — (6, - ai)ei].
i=

Employing the adaptation law of éi as stated in (12), V; can
be reduced to,

(20)

V, = —k3|Y|HHs0D

M+1
—%(|b| Z [Y|5Dsgn(Y)P; tanh(e~1YP,)

i=1

|Kh| ~ r= A~ = AN A
+Z~T (08,8~ 0) - (3.-8)8]. @D
i i
It is easy to verify that the term
[Y[sMDsgn(Y) ¥4 P; tanh(e"'YP,) = 0  since  both

[Y|sPsgn(Y)P; and tanh(e"1YP;) are odd functions with
respect to Y, thereby leading to:
V, < —kH|Y|tHs(YD
K|

+Z.y_l. [_Jiei(éi —6;)—(6: - 91')91'] : (22)
Now, if0; € (Qi,gi), we can conclude 8; — 6; = 0 from the
definition of the projection operator. This infers V; <
—kF|Y[7HIYD < 0. If §; € (—o0,8;), we again observe
from the construction of the projection operator that 8; = 0
and 0;=6;, along with ;<0 and 6;-6; <0.
Consequently, we can deduce that V; < —k3|Y|*+(YD < 0.
Similarly, when 6; € (Ei, 00), we can derive that §; = 0 and
0; = 6;, along with §; > 0 and 8; — §; = 0. This, in turn,
leads to the same conclusion that V; < —k3|Y|*+ (YD < 0.

In summary, the assertion of V; < —kH|Y|**s(YD <o
holds true regardless of the values of 8;. This establishes the
global stability and signal boundedness of the closed-loop
adaptive system.

Furthermore, it is not hard to demonstrate that ¥, remains
bounded, indicating the uniform continuity of V.
Consequently, we can assert that V; is bounded from below,
as well as V; is negative semidefinite and uniformly
continuous. This leads to the conclusion that gl_)rg V(@) =0

and tlimY(t) = 0, as substantiated by the Lyapunov-like

Lemma presented in [15]. As a result, (e, e e(n_z)) will
converge to zero thanks to the }imY(t) = 0 (the subsystem in
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(6) that admits Y as an input is Hurwitz). Since Y is a linear

combination of (e, ...,e™ ), we can conclude that e

will also converge to zero, meaning tlim z(t) = 0. This
—00

proves the Result a) of the theorem.
To prove Result b), a different Lyapunov function is devised

as follows:
V, £ Y2,

First, invoking Fact 1, we can assert that:
M+1 M+1 M+1

b Gfi<Ibl ) [A6f < bl ) 7.
i=1 i=1 i=1

With this, the time derivative of V, can be carried out as,
V, = —2kY?
M+1

(23)

(24)

M+1
—2b Z YO,f; — 2|b| Z YP; tanh(e ' YP;)
i=1 i=1
M+1
< —2kY? + 2|b| z [[YP.| — YP, tanh(e"1YP)]. (25)

i=1
At this point, we can apply Fact 2 and establish:

V, < —2kY? + 2|b|(M + 1)pe~ 2.
By the Comparison Lemma [16], we have Vt > ¢,

b|((M+1
V() < g ~2k(t=to) [Vz (to) — %

(26)

b|[(M +1
+Q| I(ke ). @7)
Since V, 2 Y%, we can conclude Result b) of the theorem
from (27), thus concluding the proof for Theorem 1. m

D. Comparison To QLF-based Solution

If we were to design a QLF-based adaptive controller, the
updating law for ; would be modified as follows (note the
difference compared to the VDLF-based updating law in
(12)): ‘

éi = Alsgn(b)Yfl - li' (28)

At this point, we can discern the fundamental difference
between the updating laws in VDLF and QLF approaches.
Specifically, the VDLF approach accelerates the tracking-
error energy dissipation as the V; is dynamically scaled with
respect to |Y|**$UYD. When |Y| > 1, the varying-degree
function s(|Y]) switches to s € (1,0), ensuring
[Y]1*s0YD > |Y|2. On the other hand, when |Y]| < 1, s(|]Y])
will switch to ag € (0,1), again ensuring |Y|**5YD > |y)2.
As the experimental results will illustrate, this dynamic
energy-dissipation acceleration mechanism introduced by the
VDLF-based design fosters an improved transient
performance when contrasted with the QLF approach.

Next, Result b) of Theorem I does not typically hold for
conventional adaptive control schemes. In other words,
conventional schemes do not inherently provide assured
exponentially fast transient performance with predefined
precision. However, through systematic augmentation of the
DRC term up, we can ensure that the norm of the perturbation
term Y(t) converges exponentially fast to a prescribed
residual set. The size of this residual set can be specified by
adjusting the design parameters k or €.
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Remark 1: The original proposition for DRC augmentation
can be traced back to [15], where it complements a QLF-
based adaptive controller. This work extends such a design
scheme to a VDLF-based adaptive design.

Remark 2: While drawing inspiration from the nonquadratic
Lyapunov function design in [16] and [17], the energy-
dissipation acceleration of these works is indeed local. In
contrast, the proposed approach in this work achieves a global
scale of energy dissipation, which is facilitated by VDLF’s
smooth switching mechanism.

III. APPLICATION TO SBW SYSTEM CONTROL

According to [8], based on a simplified single-track vehicle
model, we shall express the process dynamic model of the
SbW system as:

Js6¢ + Bsdp = Kkpu — €¢5gN(6¢) — Tsq, (29)
where 8¢ symbolizes the front road-wheel angle. J; and By are
the rotational inertia and the (viscous) frictional coefficient of
the steering system, respectively; u denotes the voltage
command sent to the steering motor; & is the magnitude of
the Coulomb frictional torque; &, is the motor constant as
Km = K1k K3k, Wwhere Kk, represents the scaling factor
converting the steering motor input voltage into the steering
motor output torque, k, denotes the gear ratio of the gear
head, x5 signifies the gear ratio of the rack and pinion rack
system, and lastly x, serves as the scaling factor that maps the
linear motion of the rack to the front road-wheel angle; 7,
the self-aligning torque, can be approximated as [7, 19-21]:

W
T = Gl + ) (5= B-42),  (30)
X
where C is the cornering stiffness of the front axle, [,,, and
l, represent the mechanical trail and the pneumatic trail,
respectively, § stands for the vehicle sideslip angle, [ is the
vehicle’s front wheelbase, w, denotes the vehicle yaw rate,
and v, symbolizes the vehicle's longitudinal velocity. The
control design objective is to ensure that §; accurately follows
a bounded and smooth reference command, &,, which can
originate from either the human driver or the automated
driving system. This control objective shall remain robust
even in the presence of potential uncertainties in the
aforementioned SbW model parameters.
Following the derivation in Sec. I, a control-oriented SbW
model can be established as (6, £ 67 — 8,,Y = ¢, + 8,):

d =Y
ac’ =

5
Y=-kY+b|lu+ Hiﬁ->, 31)
(=2

where b = K, J5t, 0, = Bikt, 0, = gpkt, 03 = C (L +

L)k, 04 = Cr(Ln + 1) ke, 05 = b1 and  f; =
. . wy .

=6, f2 = —sgn(Sf),f3 =B —6pfs= Z'fs = =6, +

kY + ¢y6,.

With the SbW control-oriented model derived in (31),
which aligns with the standard form shown in (6), we can
readily apply the general control design framework
introduced beyond (8) in Section II to formulate the robust

c06e'
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adaptive SbW controller. According to Theorem 1, the
proposed control design can theoretically ascertain that the
closed-loop adaptive system is stable in the large and
tlLrgY(t), 8,(t),8,(t) = 0. Further, the DRC augmentation

further ensures the prescribed exponential convergence of the
norm of the perturbation variable Y.

IV. EXPERIMENTAL VALIDATION

A. Experiment Setup

For the experimental verification of the adaptive controller's
effectiveness, we employ a high-fidelity driving simulation
setup [22] as Figure 1 shows. As depicted on the left, the
moving-base driving simulator system incorporates a physical
SbW system, a six-degree-of-freedom Steward motion
platform, and a cylindrical projection screen. Furthermore,
depicted on the right, a dSPACE SCALEXIO hardware-in-
the-loop (HIL) computer is employed to simulate vehicle
dynamics (with the software named ASM). The adaptive
controller is also programmed within this HIL computer.
Communication between the HIL computer and the driving
simulator is achieved via CAN Bus and Ethernet. To mimic
the vehicle following a slalom path, the reference steering
command is designed as &, = k, sin(@,t).

f
| 6-DoF Moving-Base Simulator | $ || dSPACE HIL System | ASM

1

I

1 O 6o

. simulated  vehicle | ; cmmzy = @
. ="

I Idynamics,  motor .

: §

I

I

I

; voltage signal

steering angle
measured by
encoder

Adaptive SHW Control

Figure 1. Experimental system setup.

The baseline controller and the proposed controller both
utilize the projection operator as described in (11) (with
identical projection bounds). The adaptation law for the
baseline controller follows the QLF approach outlined in
(29). Additionally, the proposed controller incorporates the
DRC uy, a feature absent in the baseline controller.

—arr

g 015 ——VDLF-DRC 1
= Ref. Road-Wheel Angle
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0 5 10 15 20 25 30

Time (s)
Figure 2. Road-wheel angle responses.

B. Experimental Result

Figure 2 displays the road-wheel angle tracking results for
both the proposed robust adaptive control law and the baseline
solution. While both approaches demonstrate adequate
tracking performance, Figure 3 reveals a substantial
advantage of the DRC-augmented VDLF-based design in
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terms of transient performance. Specifically, the synergy
between the VDLF and the DRC leads to rapid convergence
of the tracking error towards zero, with a peak error not
exceeding 0.01 rad. In contrast, the QLF-based approach
exhibits continuous oscillations and slower error decay, even
after a 30-second interval, with a significantly larger peak
error. The root mean square tracking error with the QLF
method is 0.0142 rad, whereas it is reduced to 0.0024 rad
(an improvement of over 80%) with the proposed solution.

10°

Road-Wheel Angle Error (rad)
3
£ N
i
—————

0 5 10 15 20 25
Time (s)

Figure 3. Road-wheel angle tracking errors (semi-log plot).

V. CONCLUSIONS

This paper provides an assured transient performance to the
adaptive SbW control system. To achieve this, we propose a
novel adaptive control approach that integrates a varying-
degree Lyapunov function with deterministic robust control.
This new adaptive control scheme is developed in a general
context, making it applicable to a class of single-input,
parametrically uncertain, nonlinear dynamic systems in
Brunovsky form. We utilize this general theoretical result to
design an adaptive controller tailored to the SbW system.
Employing a high-fidelity motion-based driving simulator
with a physical SbW system, we showcase the enhanced
transient performance achieved by the new adaptive SbW
controller when compared to a baseline solution. Future
research endeavors will prioritize generalizing the proposed
adaptive control method to encompass a broader range of
nonlinear systems. Further, extensive experimental validation
in actual autonomous vehicles will be carried out.
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