
IFAC PapersOnLine 58-28 (2024) 672–677

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2025.01.043

Among these car-following models, the IDM arguably holds 
the most significant influence on transportation research and 
the advancement of intelligent driving functions. However, 
despite its prominence, IDM does have its limitations. Thus, 
there are potential areas where IDM can be further improved 
and extended. One noteworthy endeavor focuses on addressing 
numerical issues within the IDM equation. Albeaik et al.
(2022) elucidate that vehicle speeds can occasionally exhibit 
unrealistically negative values. To tackle this challenge, the 
authors propose solutions such as velocity projections and 
implementing deceleration limits. Additionally, Derbel et al.
(2013) propose adjusting the gap term to mitigate the problem 
of inaccurately predicting collisions. This adaptation entails 
augmenting the minimum distance between vehicles, 
particularly at higher speeds. Another cluster of efforts aims to 
expand the operating range of IDM. This includes efforts such 
as incorporating human sensory inputs, like the driver's visual 
angle, to enhance the modeling of car-following behaviors on 

B. Extensions of the Intelligent Driver Model

(Treiber et al., 2000) stands out as a car-following model. It 
dynamically adjusts a vehicle's acceleration to maintain safe 
following distances while reflecting individual driving 
behaviors, energy consumption, and comfort (Shen et al., 2022, 
Ma et al., 2022a, Ma et al., 2022b, Wang et al., 2022b).  The 
second category revolves around machine-learning-based 
techniques. These models utilize methods such as deep neural 
networks and/or reinforcement learning to adapt to various 
driving scenarios. For instance, Hart et al. (2024) exemplify 
this approach in their work.

Car-following models are pivotal for understanding how a 
vehicle longitudinally behaves as it trails another vehicle on the 
road (Wang et al., 2021). These models are essential tools in 
dissecting traffic dynamics and evaluating safe distances 
between vehicles, among other applications. They form the 
foundation of microscopic traffic flow modelling and 
simulation, making them indispensable for transportation 
researchers and engineers striving to improve transportation 
systems. In addition to their relevance in transportation 
research, car-following models have also proven beneficial in 
the development of autonomous and automated driving 
functions. Notably, they inspire the design of adaptive cruise 
control (ACC) (Wang et al., 2002, Treiber et al., 2000) as well 
as cooperative adaptive cruise control (CACC) systems (Derbel 
et al., 2013) for platooning. Compared to control theoretical 
approaches, the car-following-model-inspired ACC and CACC 
systems tend to be more human-centric as they aim to mimic 
the responses of human drivers.

Car-following models can generally be classified into two main 
categories: theory-based and data-driven. In the theory-based 
category, kino-dynamic models are prominent. For instance, 
the Gipps Model ensures safe following distances by 
calculating speeds based on a driver's braking and acceleration 
limits (Gipps et al., 1981). Similarly, the Newell Model focuses 
on maintaining constant spacing to the lead vehicle (Newell et 
al., 2002). Additionally, the Intelligent Driver Model (IDM)
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winding roads, as investigated by Zhang et al. (2023). 
Additionally, Zong et al. (2021) extended IDM for multi-
vehicle platoons to accommodate the velocities and 
accelerations of multiple vehicles. Moreover, Wang et al. 
(2022a) endeavored to generalize IDM to predict car-following 
behaviors during lane changes. They introduced a parameter, 
𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , representing the lane change time, which they argued was 
crucial for shaping a hyperbolic tangent transition function to 
model lane changes and ensure smooth IDM acceleration 
during this process.

C. Research Gaps

Several limitations in the study by Wang et al. (2022) have 
been identified. Methodologically, the sole reliance on 𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , a 
temporal parameter, to characterize the lane-change 
transitional phase may be inadequate. To effectively capture 
the lane-changing transition, real-time information on the 
lateral position of the ego vehicle is necessary (Lee et al., 
2004). Solely relying on 𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 makes it challenging to 
accommodate the non-uniform temporal nature of lane changes 
and individual human variations. Another limitation lies in the 
model validation; Wang et al. (2022) preliminarily validated 
their model with simple numerical simulations, lacking real-
world data and human-in-the-loop testing. This raises concerns 
regarding the soundness and potential applicability of the 
model in real-world scenarios.

D. Contributions and Paper Organization

To address these limitations, we develop a systematically 
modified IDM model capable of predicting the longitudinal 
motion of the ego vehicle concerning both leading vehicles in 
the current and target lanes, pre, post, and during the lane 
change. This transitional model incorporates a dynamic 
weighting function, which adjusts the relative importance of
each of the two leading vehicles during integration based on the 
ego vehicle's lateral displacement during the lane-changing 
maneuver. Regarding validation, we employ a high-fidelity,
moving-base, driving simulation system and conduct human-
in-the-loop experiments to validate the proposed extension to 
IDM. We use the Parameterized Derivative-Free Optimization 
Solver (Zhou et al., 2023) to fit the IDM parameter values 
based on our collected data due to its efficacy in nonlinear 
hyperparameter optimization problems.

The structure of the paper is as follows. Section II presents both 
the original IDM and the modified version that accounts for 
lane-change transitions, along with several candidate 
transitional functions. Section III outlines the experimental 
setup used for gathering car-following data to validate the 
models. In Section IV, the performance of the models is 
examined. Finally, Section V presents the selected model with 
the most effective transitional function and explores avenues 
for future research.

2. IDM CAR-FOLLOWING MODEL AND MODIFICATION

This section details the Intelligent Driver Model equation and 
introduces the proposed modification. The IDM produces a 
modeled acceleration that enables the ego vehicle to conduct a 

desired car-following behavior while keeping a safe distance 
from the lead vehicle. It is calculated based on the current 
traffic scenario and five model parameters defined as: desired 
speed 𝑣𝑣𝑣𝑣0 (on a free road with no lead vehicles, based on speed 
limit), time headway 𝑇𝑇𝑇𝑇, minimum gap 𝑠𝑠𝑠𝑠0 (bumper-to-bumper 
distance between ego vehicle and lead vehicle), maximum 
acceleration 𝑎𝑎𝑎𝑎, and comfortable braking deceleration 𝑏𝑏𝑏𝑏. The 
equation is set up as:

𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑎𝑎𝑎𝑎
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. (1)

In (1), ∆𝑣𝑣𝑣𝑣 denotes the velocity difference between the ego and 
lead vehicles, 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒 represents the velocity of the ego vehicle, 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙
and 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 are the longitudinal positions of the lead vehicle and ego
vehicle, respectively, and 𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙 is the length of the lead vehicle. 
The expression 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 − 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 − 𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙 represents the bumper-to-bumper 
spacing. For simplicity, all vehicles are assumed to be of equal 
length in this scenario, though future studies may adapt the 
model to accommodate varying vehicle lengths. Next, we will 
describe how we adapt the IDM based on these definitions.

To demonstrate our IDM longitudinal acceleration with the 
transitional variables during a lane change, we first present the 
IDM longitudinal acceleration equation before the lane-change 
maneuver and after the lane-change maneuver as follows.
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In (2), 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿∗ represents the desired bumper-to-bumper distance 
before the lane change,

𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿∗ = 𝑠𝑠𝑠𝑠0 + 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇 +
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2√𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏
. (3)

In (3), 𝑣𝑣𝑣𝑣𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 represent the velocity and longitudinal 
position of the lead vehicle prior to the lane change, 
respectively. In addition, 𝐿𝐿𝐿𝐿 is the length of the vehicle which as 
explained earlier is a constant. In a similar fashion, the IDM 
acceleration equation after the lane change is presented as.
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And the bumper-to-bumper distance after the lane change,

𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿∗ = 𝑠𝑠𝑠𝑠0 + 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇 +
𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜|𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜|

2√𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏
. (5)

In (4) and (5), 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 represent the velocity and 
longitudinal position of the lead vehicle after the lane change, 
respectively. To combine equations (2) and (4), we utilize 
transitional functions to combine 𝑣𝑣𝑣𝑣𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 into a single 
velocity 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 into a single longitudinal 
position 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Therefore, our new IDM longitudinal acceleration 
equation with the transitional variables is presented as:
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. (7)

We refer to (6) as T-IDM, the transitional IDM acceleration 
equation. In the next section, we will discuss how the 
transitional variables are obtained.

3. TRANSITIONAL FUNCTIONS

In this section, we discuss how the transitional functions to 
produce the T-IDM evolved. We introduce and discuss the four 
transitional functions to be examined. Each function depends 
on a transitional variable 𝑟𝑟𝑟𝑟, which ranges from 0 to 1 and 
represents how much of the lane change maneuver has been 
completed. It is calculated based on the lateral positions of the 
ego vehicle, the lead vehicle before the lane change, and the 
lead vehicle after the lane change as:

𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = 𝑦𝑦𝑦𝑦𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡)
𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡) . (8)

In (8), 𝑦𝑦𝑦𝑦𝑒𝑒𝑒𝑒 is the lateral position of the ego vehicle, 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the 
lateral position of the lead vehicle before the lane change, and 
𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the lateral position of the lead vehicle after the lane 
change. The transitional variable 𝑟𝑟𝑟𝑟 is calculated at each time 
step. The plot of 𝑟𝑟𝑟𝑟 varying against time in a lane-changing 
maneuver is shown in Figure 1.

Figure 1. Variation of r against time.

Due to slight natural variations in human driving within a single 
lane, the variable 𝑟𝑟𝑟𝑟 is constrained between 0 and 1. Future 
studies may incorporate a smoothing function to refine the 
lateral position deviations of the ego vehicle in traditional car-
following scenarios. At 𝑟𝑟𝑟𝑟 = 0, the vehicle follows the classical 
IDM with the lead vehicle before the lane change, represented 
by 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑣𝑣𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 . Conversely, at 𝑟𝑟𝑟𝑟 = 1, the 
scenario transitions to following the lead vehicle post-lane 
change, indicated by 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 . In case there 
is no lead vehicle, a speed limit will be used. To illustrate these 
dynamics, we present plots of transitional functions ranging 
from 0 to 1. The first such function is linear, defined as:

𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (1 − 𝑟𝑟𝑟𝑟)𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑟𝑟𝑟𝑟 ∙ 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , (9)

where 𝑥𝑥𝑥𝑥 can be replaced with 𝑣𝑣𝑣𝑣. The second transitional 
equation is a quadratic function of the form

𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (1 − 𝑟𝑟𝑟𝑟)2𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑟𝑟𝑟𝑟2𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 . (10)

The third transitional equation is a hyperbolic tangent function 
of the form

𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ = �1 − 𝑇𝑇𝑇𝑇(𝑟𝑟𝑟𝑟)�𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑇𝑇𝑇𝑇(𝑟𝑟𝑟𝑟)𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , (11)

𝑇𝑇𝑇𝑇(𝑟𝑟𝑟𝑟) =
1
2
�tanh �𝑓𝑓𝑓𝑓 ∙ 𝑟𝑟𝑟𝑟 −

𝑓𝑓𝑓𝑓
2
� + 1� , (12)

where 𝑓𝑓𝑓𝑓 is a tuning parameter. The fourth transitional equation 
is an exponential function of the form

𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (1 − 𝐸𝐸𝐸𝐸(𝑟𝑟𝑟𝑟))𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐸𝐸𝐸𝐸(𝑟𝑟𝑟𝑟) ∙ 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , (13)

𝐸𝐸𝐸𝐸(𝑟𝑟𝑟𝑟) =
𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝 − 1
𝑒𝑒𝑒𝑒1 − 1

, (14)

where 𝑝𝑝𝑝𝑝 is a tuning parameter. The curves of these four 
transitional functions above, linear, quadratic, Eq. (12), and Eq. 
(14), are presented in Fig. 2.

Figure 2. Curves of transitional functions to be used in T-IDM.
The horizontal axis represents r values and the vertical axis 
represents transitional function output value.

Figure 2 demonstrates the smooth transition of functions from 
0 to 1. Specifically, the hyperbolic tangent and exponential 
functions are parameterized with tuning constants f and r at 6 
and 0.4 respectively. These settings confirm that at 𝑟𝑟𝑟𝑟 = 0.5, the 
functions indicate a lane change is half-complete. Future 
research could investigate the impact of parameter variations 
for more precise control. Notably, the exponential function's 
inherent asymmetry is particularly useful for differentiating 
lane change phases. Having integrated these functions into the 
reformed IDM equation, we will next assess their real-world 
efficacy using the T-IDM equation in a human-in-the-loop 
driving simulator experimentation.

4. EXPERIMENTAL DATA COLLECTION – DRIVING 
SIMULATOR AND SCENARIO DESCRIPTION

To collect real-world data for the thorough analysis of our T-
IDM, we used a 6-degree-of-freedom (DoF) moving-base 
driving simulator (as shown in Figure 3) with one driver. The 
details of the simulator setup can be found in Zhou et al. (2023). 
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Figure 3. 6-DoF Moving-Base Driving Simulator.

Figure 4. Highway scenario with ego vehicle (EV), original 
lead vehicle (OLV), and new lead vehicle (NLV).

Figure 5. Linear transition T-IDM velocity (Scenario 1).

Figure 6. Quadratic transition T-IDM velocity (Scenario 1).

There are two scenarios in which data is collected as Figure 4 
shows. In Scenario 1, two lead vehicles in separate lanes exhibit 
randomized speed variations to mimic natural driving 
conditions, maintaining an average speed of 28 m/s. The human 
driver initiates a lane change when the lead vehicle in the 
current lane starts braking, subsequently enabling both the ego 
and the target lane's lead vehicle to overtake the braking 
vehicle. In Scenario 2, the same conditions are applied except 
the lead vehicle in the target lane will suddenly slow down once 
the human driver of the ego vehicle initiates the lane change. 
As a result, the lead vehicle prior to the lane change overtakes 
both the ego vehicle and the new lead vehicle. We will now 
present the results of our model in these diverse scenarios.

5.  MODEL PERFORMANCE

5.1 Results of Each Transitional Function 

In this section, we present quantitative and qualitative 
comparisons of the models (with different transitional 
functions) in both scenarios. From Figures 5 - 12, the purple 
dotted line represents the start and end of the lane change. Upon 
analyzing velocity curves in Figures 5-8, we observed that the 
ego vehicle employing T-IDM decelerates and then accelerates 
around the 31-second mark during the lane change, initially due 
to the decelerating lead vehicle and subsequently transitioning 
to match the higher speed of the new lead vehicle at 𝑟𝑟𝑟𝑟 = 0.5. 

Figure 7. Hyperbolic tangent transition T-IDM velocity 
(Scenario 1).

Figure 8. Exponential transition T-IDM velocity (Scenario 1).

On the other hand, Scenario 2 offers additional insights. The 
velocity curves in Figures 9-12 show a sudden deceleration of 
the new lead vehicle, with the ego vehicle demonstrating 
slower velocity adaptation compared to Scenario 1. 
Nevertheless, the T-IDM effectively prevents overtaking in 
most transitions, maintaining close velocity alignment.

Figure 9. Linear transition T-IDM velocity (Scenario 2).
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Figure 10. Quadratic transition T-IDM velocity (Scenario 2).

Figure 11. Hyperbolic tangent transition T-IDM velocity 
(Scenario 2).

Figure 12. Exponential transition T-IDM velocity (Scenario 2).

5.2 Analysis and Comparison of the Transitional Functions

In this section, we present a detailed analysis of transitional 
functions within the T-IDM. The quadratic transition, with its 
sharp curvature, is dismissed due to its pronounced jerk in 
Figure 10. Additionally, as illustrated in Figure 2, the 
exponential function doesn’t exhibit tapering as 𝑟𝑟𝑟𝑟 approaches 0 
and 1, and its steep slope in this range heightens sensitivity to 
fluctuations in 𝑟𝑟𝑟𝑟, leading to unstable T-IDM velocities. As a 
result, the exponential function shows significant velocity 
variance after the lane change, highlighting its instability due 
to a steep slope at the extremes of 𝑟𝑟𝑟𝑟, as seen in Figures 8 and 
12. Conversely, the hyperbolic tangent function demonstrates 
superior performance in vehicle speed management during lane 
changes, as shown by smoother transitions in Figures 7 and 11. 
It ensures stable car-following behavior and outperforms the 
linear transition. Notably, despite the speed being slightly
greater post-lane change in Figure 11, the longitudinal position 
curve in Figure 13 confirms that the ego vehicle maintains 

effective car-following behavior with the new lead vehicle, 
contrasting with the quadratic transition where the T-IDM ego 
vehicle overtakes the new lead vehicle. Supported by 
qualitative data and root-mean-squred-error (RMSE) metrics, 
the hyperbolic tangent function is confirmed as the most 
effective for adapting to new lead vehicle velocities in the T-
IDM model.

Figure 13. Hyperbolic tangent transition T-IDM longitudinal 
position (Scenario 2).

In Tables 1 and 2, we evaluated the RMSE values between the
T-IDM-calibrated and the measured velocities of the ego 
vehicle during lane changes with different transitional 
functions. Scenario 1 exhibits higher RMSE values due to a 
significant slowdown by a lead vehicle, while Scenario 2 
provided consistent slowing from all vehicles. The quadratic 
transition yielded the highest RMSE, with linear transition 
performing best during, but not after, the lane change. The 
hyperbolic tangent transition demonstrated reasonable RMSE
values, supporting its selection.

Table 1. RMSE of T-IDM ego vehicle velocity and measured 
ego vehicle velocity during the lane change (Scenario 1).

Linear 
RMSE

Quadratic 
RMSE

Hyperbolic 
Tangent RMSE

Exponential 
RMSE

2.3220 1.8138 2.3135 2.3330
Table 2. RMSE of T-IDM ego vehicle velocity and measured 
ego vehicle velocity during the lane change (Scenario 2).

Linear 
RMSE

Quadratic 
RMSE

Hyperbolic 
Tangent RMSE

Exponential 
RMSE

0.5507 3.3771 0.7026 0.8015

6. CONCLUSIONS AND FUTURE WORK

In this paper, we explored a novel transitional Intelligent Driver 
Model (T-IDM) designed for performing car-following during 
lane-change maneuvers involving two lead vehicles (one in 
each lane) with variable speeds. Our findings indicate that the 
hyperbolic tangent transitional function facilitates the 
smoothest car-following behavior during and after a lane 
change. The introduction of a new transition parameter 𝑟𝑟𝑟𝑟
significantly enhances the T-IDM’s ability to smoothly shift 
car-following from the original to the target lead vehicle as it 
accounts for human behavior. Despite the success, further 
validation of this model is necessary using real-world datasets 
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such as NGSIM and highD. Future work could also explore 
using smoothing techniques for the transition parameter to 
mitigate the inherent lateral position variability caused by 
human driving behaviors. Additionally, we may want to 
investigate defining the transition parameter with some 
objective measurements.
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