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Abstract: This paper proposes an extension of the Intelligent Driver Model (IDM) for predicting the vehicle
longitudinal motion intentions during lane-changing maneuvers. The extension systematically creates a
single, modified IDM model that can predict the ego vehicle’s longitudinal motion with respect to both
leading vehicles in the current and target lanes before, during, and after the lane change. A dynamic
weighting function, determined by the ego vehicle’s lateral displacement throughout the lane-changing
maneuver, assigns relative importance to each of the two leading vehicles during integration. Several
candidates for the dynamic weighting function are suggested in this context. Using a high-fidelity, moving-
base driving simulation system, a human-in-the-loop pilot study was carried out, specifically recording ego
vehicle motion data during lane changes. This data was utilized to calibrate the transitional IDM,
demonstrating its efficacy in predicting the ego vehicle’s longitudinal motion during lane changes.
Furthermore, we compared the performance of various transitional functions and identified the hyperbolic

tangent function as the most effective choice.

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Car-following model, intelligent driver model (IDM), lane changes, transitional function

1. INTRODUCTION
A. Background

Car-following models are pivotal for understanding how a
vehicle longitudinally behaves as it trails another vehicle on the
road (Wang et al., 2021). These models are essential tools in
dissecting traffic dynamics and evaluating safe distances
between vehicles, among other applications. They form the
foundation of microscopic traffic flow modelling and
simulation, making them indispensable for transportation
researchers and engineers striving to improve transportation
systems. In addition to their relevance in transportation
research, car-following models have also proven beneficial in
the development of autonomous and automated driving
functions. Notably, they inspire the design of adaptive cruise
control (ACC) (Wang et al., 2002, Treiber et al., 2000) as well
as cooperative adaptive cruise control (CACC) systems (Derbel
et al., 2013) for platooning. Compared to control theoretical
approaches, the car-following-model-inspired ACC and CACC
systems tend to be more human-centric as they aim to mimic
the responses of human drivers.

Car-following models can generally be classified into two main
categories: theory-based and data-driven. In the theory-based
category, kino-dynamic models are prominent. For instance,
the Gipps Model ensures safe following distances by
calculating speeds based on a driver's braking and acceleration
limits (Gipps et al., 1981). Similarly, the Newell Model focuses
on maintaining constant spacing to the lead vehicle (Newell et
al., 2002). Additionally, the Intelligent Driver Model (IDM)

(Treiber et al., 2000) stands out as a car-following model. It
dynamically adjusts a vehicle's acceleration to maintain safe
following distances while reflecting individual driving
behaviors, energy consumption, and comfort (Shen et al., 2022,
Ma et al., 2022a, Ma et al., 2022b, Wang et al., 2022b). The
second category revolves around machine-learning-based
techniques. These models utilize methods such as deep neural
networks and/or reinforcement learning to adapt to various
driving scenarios. For instance, Hart et al. (2024) exemplify
this approach in their work.

B. Extensions of the Intelligent Driver Model

Among these car-following models, the IDM arguably holds
the most significant influence on transportation research and
the advancement of intelligent driving functions. However,
despite its prominence, IDM does have its limitations. Thus,
there are potential areas where IDM can be further improved
and extended. One noteworthy endeavor focuses on addressing
numerical issues within the IDM equation. Albeaik et al
(2022) elucidate that vehicle speeds can occasionally exhibit
unrealistically negative values. To tackle this challenge, the
authors propose solutions such as velocity projections and
implementing deceleration limits. Additionally, Derbel et al.
(2013) propose adjusting the gap term to mitigate the problem
of inaccurately predicting collisions. This adaptation entails
augmenting the minimum distance between vehicles,
particularly at higher speeds. Another cluster of efforts aims to
expand the operating range of IDM. This includes efforts such
as incorporating human sensory inputs, like the driver's visual
angle, to enhance the modeling of car-following behaviors on
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winding roads, as investigated by Zhang et al. (2023).
Additionally, Zong et al. (2021) extended IDM for multi-
vehicle platoons to accommodate the velocities and
accelerations of multiple vehicles. Moreover, Wang et al.
(2022a) endeavored to generalize IDM to predict car-following
behaviors during lane changes. They introduced a parameter,
T}c, representing the lane change time, which they argued was
crucial for shaping a hyperbolic tangent transition function to
model lane changes and ensure smooth IDM acceleration
during this process.

C. Research Gaps

Several limitations in the study by Wang et al. (2022) have
been identified. Methodologically, the sole reliance on T;¢, a
temporal parameter, to characterize the lane-change
transitional phase may be inadequate. To effectively capture
the lane-changing transition, real-time information on the
lateral position of the ego vehicle is necessary (Lee et al.,
2004). Solely relying on T, makes it challenging to
accommodate the non-uniform temporal nature of lane changes
and individual human variations. Another limitation lies in the
model validation; Wang et al. (2022) preliminarily validated
their model with simple numerical simulations, lacking real-
world data and human-in-the-loop testing. This raises concerns
regarding the soundness and potential applicability of the
model in real-world scenarios.

D. Contributions and Paper Organization

To address these limitations, we develop a systematically
modified IDM model capable of predicting the longitudinal
motion of the ego vehicle concerning both leading vehicles in
the current and target lanes, pre, post, and during the lane
change. This transitional model incorporates a dynamic
weighting function, which adjusts the relative importance of
each of the two leading vehicles during integration based on the
ego vehicle's lateral displacement during the lane-changing
maneuver. Regarding validation, we employ a high-fidelity,
moving-base, driving simulation system and conduct human-
in-the-loop experiments to validate the proposed extension to
IDM. We use the Parameterized Derivative-Free Optimization
Solver (Zhou et al., 2023) to fit the IDM parameter values
based on our collected data due to its efficacy in nonlinear
hyperparameter optimization problems.

The structure of the paper is as follows. Section II presents both
the original IDM and the modified version that accounts for
lane-change transitions, along with several candidate
transitional functions. Section III outlines the experimental
setup used for gathering car-following data to validate the
models. In Section IV, the performance of the models is
examined. Finally, Section V presents the selected model with
the most effective transitional function and explores avenues
for future research.

2.IDM CAR-FOLLOWING MODEL AND MODIFICATION

This section details the Intelligent Driver Model equation and
introduces the proposed modification. The IDM produces a
modeled acceleration that enables the ego vehicle to conduct a

desired car-following behavior while keeping a safe distance
from the lead vehicle. It is calculated based on the current
traffic scenario and five model parameters defined as: desired
speed v, (on a free road with no lead vehicles, based on speed
limit), time headway T, minimum gap s, (bumper-to-bumper
distance between ego vehicle and lead vehicle), maximum
acceleration a, and comfortable braking deceleration b. The
equation is set up as:
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In (1), Av denotes the velocity difference between the ego and
lead vehicles, v, represents the velocity of the ego vehicle, x;
and x, are the longitudinal positions of the lead vehicle and ego
vehicle, respectively, and L; is the length of the lead vehicle.
The expression x; — x, — L; represents the bumper-to-bumper
spacing. For simplicity, all vehicles are assumed to be of equal
length in this scenario, though future studies may adapt the
model to accommodate varying vehicle lengths. Next, we will
describe how we adapt the IDM based on these definitions.

To demonstrate our IDM longitudinal acceleration with the
transitional variables during a lane change, we first present the
IDM longitudinal acceleration equation before the lane-change
maneuver and after the lane-change maneuver as follows.

.
SpLc

Vo \* 2
AipM, beforeLc = @ [1 - (é) - (m) ] (2)

In (2), sp; represents the desired bumper-to-bumper distance
before the lane change,

velvaC - vel

2Vab

In (3), vy and xp;c represent the velocity and longitudinal
position of the lead vehicle prior to the lane change,
respectively. In addition, L is the length of the vehicle which as
explained earlier is a constant. In a similar fashion, the IDM
acceleration equation after the lane change is presented as.

AipM, afterLc — @ [1 - (EY - ( — L)Z] NG
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And the bumper-to-bumper distance after the lane change,
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In (4) and (5), vgc and x4 represent the velocity and
longitudinal position of the lead vehicle after the lane change,
respectively. To combine equations (2) and (4), we utilize
transitional functions to combine vy;, and v, into a single
velocity v, and x;,;c and x,; . into a single longitudinal
position x;,.. Therefore, our new IDM longitudinal acceleration
equation with the transitional variables is presented as:

)
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We refer to (6) as T-IDM, the transitional IDM acceleration
equation. In the next section, we will discuss how the
transitional variables are obtained.

3. TRANSITIONAL FUNCTIONS

In this section, we discuss how the transitional functions to
produce the T-IDM evolved. We introduce and discuss the four
transitional functions to be examined. Each function depends
on a transitional variable r, which ranges from 0 to 1 and
represents how much of the lane change maneuver has been
completed. It is calculated based on the lateral positions of the
ego vehicle, the lead vehicle before the lane change, and the
lead vehicle after the lane change as:

r(t) =

In (8), y, is the lateral position of the ego vehicle, y,; . is the
lateral position of the lead vehicle before the lane change, and
Yarc 1s the lateral position of the lead vehicle after the lane
change. The transitional variable r is calculated at each time
step. The plot of r varying against time in a lane-changing
maneuver is shown in Figure 1.
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Figure 1. Variation of r against time.

Due to slight natural variations in human driving within a single
lane, the variable r is constrained between 0 and 1. Future
studies may incorporate a smoothing function to refine the
lateral position deviations of the ego vehicle in traditional car-
following scenarios. At r = 0, the vehicle follows the classical
IDM with the lead vehicle before the lane change, represented
by vy = vy and Xy = Xpc. Conversely, at r =1, the
scenario transitions to following the lead vehicle post-lane
change, indicated by vy, = v, and X4, = X41¢. In case there
is no lead vehicle, a speed limit will be used. To illustrate these
dynamics, we present plots of transitional functions ranging
from 0 to 1. The first such function is linear, defined as:

Xtr linear = (1 - r)xbLC + 7 Xarcs (9)

where x can be replaced with v. The second transitional
equation is a quadratic function of the form

(10)

The third transitional equation is a hyperbolic tangent function
of the form

— 2 2
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Xertann = (1= T(1))xppc + T(M)xg1c, (11)

T(r) = %(tanh (f r— g) + 1), (12)

where f is a tuning parameter. The fourth transitional equation
is an exponential function of the form

Xtr.exp — 1- E(r))xbLC +E(r)- XaLc» (13)
e’ —1
By =S, (14)

where p is a tuning parameter. The curves of these four
transitional functions above, linear, quadratic, Eq. (12), and Eq.
(14), are presented in Fig. 2.

1 1

0.5 0.5
0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 04 06 08 1
1 1

Hyperbolic Tangent |~

0.5 0.5
0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 2. Curves of transitional functions to be used in T-IDM.
The horizontal axis represents » values and the vertical axis
represents transitional function output value.

Figure 2 demonstrates the smooth transition of functions from
0 to 1. Specifically, the hyperbolic tangent and exponential
functions are parameterized with tuning constants f'and r at 6
and 0.4 respectively. These settings confirm that atr = 0.5, the
functions indicate a lane change is half-complete. Future
research could investigate the impact of parameter variations
for more precise control. Notably, the exponential function's
inherent asymmetry is particularly useful for differentiating
lane change phases. Having integrated these functions into the
reformed IDM equation, we will next assess their real-world
efficacy using the T-IDM equation in a human-in-the-loop
driving simulator experimentation.

4. EXPERIMENTAL DATA COLLECTION — DRIVING
SIMULATOR AND SCENARIO DESCRIPTION

To collect real-world data for the thorough analysis of our T-
IDM, we used a 6-degree-of-freedom (DoF) moving-base
driving simulator (as shown in Figure 3) with one driver. The
details of the simulator setup can be found in Zhou et al. (2023).
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Figure 4. Highway scenario with ego vehicle (EV), original
lead vehicle (OLV), and new lead vehicle (NLV).
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Figure 5. Linear transition T-IDM velocity (Scenario 1).
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Figure 6. Quadratic transition T-IDM velocity (Scenario 1).

There are two scenarios in which data is collected as Figure 4
shows. In Scenario 1, two lead vehicles in separate lanes exhibit
randomized speed variations to mimic natural driving
conditions, maintaining an average speed of 28 m/s. The human
driver initiates a lane change when the lead vehicle in the
current lane starts braking, subsequently enabling both the ego
and the target lane's lead vehicle to overtake the braking
vehicle. In Scenario 2, the same conditions are applied except
the lead vehicle in the target lane will suddenly slow down once
the human driver of the ego vehicle initiates the lane change.
As a result, the lead vehicle prior to the lane change overtakes
both the ego vehicle and the new lead vehicle. We will now
present the results of our model in these diverse scenarios.

5. MODEL PERFORMANCE
5.1 Results of Each Transitional Function

In this section, we present quantitative and qualitative
comparisons of the models (with different transitional
functions) in both scenarios. From Figures 5 - 12, the purple
dotted line represents the start and end of the lane change. Upon
analyzing velocity curves in Figures 5-8, we observed that the
ego vehicle employing T-IDM decelerates and then accelerates
around the 31-second mark during the lane change, initially due
to the decelerating lead vehicle and subsequently transitioning
to match the higher speed of the new lead vehicle at r = 0.5.
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Figure 7. Hyperbolic tangent transition T-IDM velocity
(Scenario 1).
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Figure 8. Exponential transition T-IDM velocity (Scenario 1).

On the other hand, Scenario 2 offers additional insights. The
velocity curves in Figures 9-12 show a sudden deceleration of
the new lead vehicle, with the ego vehicle demonstrating
slower velocity adaptation compared to Scenario 1.
Nevertheless, the T-IDM effectively prevents overtaking in
most transitions, maintaining close velocity alignment.
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Figure 9. Linear transition T-IDM velocity (Scenario 2).
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Figure 10. Quadratic transition T-IDM velocity (Scenario 2).
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Figure 11. Hyperbolic tangent transition T-IDM velocity
(Scenario 2).
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Figure 12. Exponential transition T-IDM velocity (Scenario 2).

5.2 Analysis and Comparison of the Transitional Functions

In this section, we present a detailed analysis of transitional
functions within the T-IDM. The quadratic transition, with its
sharp curvature, is dismissed due to its pronounced jerk in
Figure 10. Additionally, as illustrated in Figure 2, the
exponential function doesn’t exhibit tapering as r approaches 0
and 1, and its steep slope in this range heightens sensitivity to
fluctuations in 7, leading to unstable T-IDM velocities. As a
result, the exponential function shows significant velocity
variance after the lane change, highlighting its instability due
to a steep slope at the extremes of r, as seen in Figures 8 and
12. Conversely, the hyperbolic tangent function demonstrates
superior performance in vehicle speed management during lane
changes, as shown by smoother transitions in Figures 7 and 11.
It ensures stable car-following behavior and outperforms the
linear transition. Notably, despite the speed being slightly
greater post-lane change in Figure 11, the longitudinal position
curve in Figure 13 confirms that the ego vehicle maintains

effective car-following behavior with the new lead vehicle,
contrasting with the quadratic transition where the T-IDM ego
vehicle overtakes the new lead vehicle. Supported by
qualitative data and root-mean-squred-error (RMSE) metrics,
the hyperbolic tangent function is confirmed as the most
effective for adapting to new lead vehicle velocities in the T-
IDM model.
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Position (km)

0 10 20 30 20 50 50
Time (s)
Figure 13. Hyperbolic tangent transition T-IDM longitudinal
position (Scenario 2).

In Tables 1 and 2, we evaluated the RMSE values between the
T-IDM-calibrated and the measured velocities of the ego
vehicle during lane changes with different transitional
functions. Scenario 1 exhibits higher RMSE values due to a
significant slowdown by a lead vehicle, while Scenario 2
provided consistent slowing from all vehicles. The quadratic
transition yielded the highest RMSE, with linear transition
performing best during, but not after, the lane change. The
hyperbolic tangent transition demonstrated reasonable RMSE
values, supporting its selection.

Table 1. RMSE of T-IDM ego vehicle velocity and measured
ego vehicle velocity during the lane change (Scenario 1).

Linear | Quadratic Hyperbolic Exponential
RMSE RMSE Tangent RMSE RMSE
2.3220 1.8138 2.3135 2.3330

Table 2. RMSE of T-IDM ego vehicle velocity and measured
ego vehicle velocity during the lane change (Scenario 2).

Linear Quadratic Hyperbolic Exponential
RMSE RMSE Tangent RMSE RMSE
0.5507 3.3771 0.7026 0.8015

6. CONCLUSIONS AND FUTURE WORK

In this paper, we explored a novel transitional Intelligent Driver
Model (T-IDM) designed for performing car-following during
lane-change maneuvers involving two lead vehicles (one in
each lane) with variable speeds. Our findings indicate that the
hyperbolic tangent transitional function facilitates the
smoothest car-following behavior during and after a lane
change. The introduction of a new transition parameter r
significantly enhances the T-IDM’s ability to smoothly shift
car-following from the original to the target lead vehicle as it
accounts for human behavior. Despite the success, further
validation of this model is necessary using real-world datasets
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such as NGSIM and highD. Future work could also explore
using smoothing techniques for the transition parameter to
mitigate the inherent lateral position variability caused by
human driving behaviors. Additionally, we may want to
investigate defining the transition parameter with some
objective measurements.
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