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Abstract

A variety of high-energy astrophysical phenomena are powered by the release—via magnetic reconnection—of the
energy stored in oppositely directed fields. Single-fluid resistive magnetohydrodynamic (MHD) simulations with
uniform resistivity yield dissipation rates that are much lower (by nearly 1 order of magnitude) than equivalent
kinetic calculations. Reconnection-driven phenomena could be accordingly modeled in resistive MHD employing
a nonuniform, “effective” resistivity informed by kinetic calculations. In this work, we analyze a suite of fully
kinetic particle-in-cell (PIC) simulations of relativistic pair-plasma reconnection—where the magnetic energy is
greater than the rest mass energy—for different strengths of the guide field orthogonal to the alternating
component. We extract an empirical prescription for the effective resistivity, 7, = aBolJ|? /(J|PT! + (en,c)P*1),
where By is the reconnecting magnetic field strength, J is the current density, n, is the lab-frame total number
density, e is the elementary charge, and c is the speed of light. The guide field dependence is encoded in « and p,
which we fit to PIC data. This resistivity formulation—which relies only on single-fluid MHD quantities—
successfully reproduces the spatial structure and strength of nonideal electric fields and thus provides a promising
strategy for enhancing the reconnection rate in resistive MHD simulations.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Plasma astrophysics (1261); Magnetic

, and Sebastiaan Selvi'

fields (994); Magnetohydrodynamics (1964)

1. Introduction

Strong magnetic fields in astrophysical compact sources
provide a reservoir of magnetic energy. This energy can be
released to the plasma—resulting in particle acceleration and
nonthermal emission—when anti-aligned field lines annihilate
in a process called magnetic reconnection. In a number of
astrophysical sources, reconnection occurs in the relativistic
regime, where the magnetic energy exceeds the plasma rest
mass energy (for reviews, see M. Hoshino & Y. Lyubarsky
2012; D. Kagan et al. 2015; F. Guo et al. 2020, 2024).
Relativistic reconnection can power a variety of high-energy
phenomena, such as emission from black hole coronae,
magnetar flares, blazar jet flares, radio and gamma-ray emission
from pulsar magnetospheres, fast radio bursts, and flares from
supermassive black hole magnetospheres.

Magnetic reconnection refers to the breaking and reconnect-
ing of oppositely directed field lines. This requires the “ideal”
condition
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to be violated for each relevant plasma species s. Here, E and

B are the electromagnetic fields, while (v,) is the mean three-
velocity of species s. In collisional plasmas, the ideal condition
can be broken by resistive effects due to binary particle
collisions—encoded by the resistivity appearing in Ohm's law.
When resistive effects are not important, the magnetic field is
“frozen” into the fluid, as prescribed by Alfvén's theorem
(H. Alfvén 1943; also known as the flux freezing theorem). In
dilute astrophysical plasmas, binary collisions are rare, so the
collisional resistivity is often insufficient to break flux freezing
on interesting time and length scales.

Reconnection occurring in the collisionless regime requires a
kinetic description. Since the typical separation between plasma
scales and global scales is very large, kinetic descriptions, e.g.,
employing the particle-in-cell (PIC) method, are unaffordable at
realistic scale separations. Fluid-type approaches such as
magnetohydrodynamics (MHD), while suitable to model the
global dynamics, are by construction collisional and therefore
unable to capture collisionless effects. In fact, single-fluid
resistive MHD simulations with uniform resistivity yield
reconnection rates in the plasmoid-dominated regime that are
much lower (by nearly 1 order of magnitude) than equivalent
kinetic calculations (J. Birn et al. 2001; D. A. Uzdensky et al.
2010; L. Comisso & A. Bhattacharjee 2016; P. A. Cassak et al.
2017). This discrepancy impacts the timescale of reconnection-
powered flares, e.g., in black hole magnetospheres (A. Bransgr-
ove et al. 2021; A. Galishnikova et al. 2023).
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A large body of work has focused on identifying the
processes that can break the ideal condition in collisionless or
weakly collisional plasmas—here, wave—particle interactions
provide a form of effective collisionality. In pair plasmas, fast
reconnection is mediated by the off-diagonal terms of the
pressure tensor (N. Bessho & A. Bhattacharjee 2005, 2007;
M. Hesse & S. Zenitani 2007; M. Melzani et al. 2014,
M. Goodbred & Y.-H. Liu 2022), which are also important for
electron-ion plasmas in the small, electron-scale diffu-
sion region (L. R. Lyons & D. C. Pridmore-Brown 1990;
R. Horiuchi & T. Sato 1994; H. J. Cai & L. C. Lee 1997;
M. M. Kuznetsova et al. 1998; J. Egedal et al. 2019).

By identifying the dominant contributors to the breaking of
flux freezing in collisionless plasmas, it may be possible to
write the corresponding nonideal electric field as 7.g/—here,
Nerr 1S some effective resistivity and J the electric current
density—which could be incorporated in resistive, single-fluid
MHD approaches as a kinetically motivated subgrid prescrip-
tion (R. M. Kulsrud 1998, 2001; D. Biskamp & E. Schwarz
2001; D. Uzdensky 2003; N. Bessho & A. Bhattacharjee 2010;
S. Zenitani et al. 2010; B. Ripperda et al. 2019; N. F. Loureiro
2023). In general, parameterizing kinetic effects as an effective
resistivity is a nontrivial task (e.g., E. Hirvijoki et al. 2016;
M. Lingam et al. 2017). By means of a statistical analysis based
on PIC simulations, S. Selvi et al. (2023) identified the
mechanisms driving the nonideal electric field in the general-
ized Ohm's law, for the case of relativistic pair-plasma
reconnection. The effective resistivity proposed by S. Selvi
et al. (2023) for the zero guide field case (and earlier suggested
by N. Bessho & A. Bhattacharjee 2007, 2012) has been shown
to successfully enhance the reconnection rate in resistive MHD
simulations (M. Bugli et al. 2024).

As we discuss below, the form of effective resistivity
proposed by S. Selvi et al. (2023) suffers from a few
limitations, which may hamper its applicability. In this work,
rather than analyzing nonideal terms in the generalized Ohm's
law, we adopt an empirical approach. We perform a suite of
PIC simulations of relativistic pair-plasma reconnection with
varying guide field strength, and we formulate an empirical
prescription for the effective resistivity 7.g, Which is derived
directly from our PIC runs through a data-driven parameteriza-
tion. Our proposed model depends only on the electric current
density and the plasma number density, both of which are
readily available in resistive MHD codes. As compared to
S. Selvi et al. (2023), the form of 7, that we obtain has four
main advantages: it is written explicitly in single-fluid MHD
quantities, does not depend on spatial derivatives, is coordinate
agnostic, and is valid for any guide field. We demonstrate that
the formulation of 7.¢ we propose successfully reproduces the
spatial structure and strength of nonideal electric fields in our
PIC simulations, thus providing a promising strategy for
enhancing the reconnection rate in resistive MHD approaches.

2. PIC Simulation Setup

Our simulations are performed with the 3D PIC code
TRISTAN-MP (A. Spitkovsky 2005). We use a 2D x — y
domain, but we track all components of the particle velocity
and of the electromagnetic fields. Although the physics of
particle acceleration in relativistic reconnection is dramatically
different between 2D and 3D (H. Zhang et al. 2021, 2023), the
reconnection rate—which is defined as the plasma inflow
velocity and is the focus of our work—is roughly the same
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(e.g., L. Sironi & A. Spitkovsky 2014; G. R. Werner &
D. A. Uzdensky 2017).

The in-plane magnetic field is initialized in a “Harris
equilibrium” (E. G. Harris 1962), B;j, = Byx tanh(2my/A),
where the direction of the in-plane field reverses at y = 0 over a
thickness A = 70 ¢/w,. Here, ¢/w), is the depth of the plasma
skin, and w, = /4mng e?/m is the plasma frequency, where n,
is the total number density of electron—positron pairs far from
the layer, m is the electron/positron mass, and e is the
elementary charge. We parameterize the field strength in the
plane B, by the magnetization

Bj
- 5 9
4mnomc?

which we take to be ¢ = 50. We consider guide fields of
magnitude B,/By = 0.0, 0.3, 0.6, and 1.0.

The upstream region is initialized with ny = 64 particles per
cell (including both species). We resolve the plasma skin depth
c¢/w, with five cells and evolve the simulation up to 4500 w;l.
In Appendix A, we choose ¢/w, = 20 cells and demonstrate
that our results are robust to spatial resolution. In Appendix A,
we also display cases that include strong synchrotron cooling
losses. For our fiducial runs, the length of the domain in the x-
direction of plasma outflows is L, = 1920c/w,. We use open
boundaries for fields and particles along the x-direction. The
box grows in the y-direction as the simulation progresses,
allowing for more plasma and magnetic flux to enter the
domain. At the end of the simulations, the length of our box
along the y-axis is comparable to L,.

3. Resistivity Formulation

We begin by considering Ohm's law for resistive relativistic
single-fluid MHD (S. S. Komissarov 2007):

P[E +YsB- %(E : V)V] =n — pv). (M
C C

where I' is the bulk fluid Lorentz factor, v is the fluid three-

velocity, p, is the electric charge density, and n is the
collisional resistivity. In a collisionless plasma, the replacement
of 17 by n.g in Equation (1) can be regarded as the definition of
an effective resistivity that incorporates kinetic effects in
single-fluid resistive MHD. As we justify in Appendix B, we
can further assume that |p.v| < |J| and I" ~ 1 and that the third
term in the square bracket is negligible, which yields

EX=E+ 2 xB=n,J. )
C

where E is the nonideal electric field. The spatial structure of
the z-component of the nonideal electric field, EZ*, is shown in
the bottom row of Figure 1, at a representative time after the
simulation has achieved a quasi-steady state (i.e., the
reconnection rate attains a quasi-steady value). The figure
emphasizes that nonideal regions are generally larger for
increasing guide field. We also present the spatial structure of
the total particle density n, (top row; in units of ng) and of the
magnetic energy density (middle row; in units of BZ/8), for
both B, /By = 0 (left column) and B,/By = 1 (right column).

In order to determine the effective resistivity 7es, we focus
on the z-component of Equation (2), which dominates the
nonideal field for the whole range of B,/B, we explore. The



THE ASTROPHYSICAL JOURNAL LETTERS, 978:L45 (12pp), 2025 January 10

B,/By=0.0
= 10!
5
\
S 107!
>

1073

—= 102
S _2
= 10
__ -301 : 7 ? 0.1
315 : :
> ot e e Pl 0.0
15
> -0.1

640 680 720 760

Moran et al.

520 560 600 640 680 720 760 800 840

z [c/w)]

Figure 1. Spatial distribution of the particle number density r, (top row; in units of 1) of the magnetic energy density (middle row; in units of BZ/87) and of the
z-component of the nonideal electric field as defined in Equation (2) (bottom row; in units of By), for simulations with B,/B, = 0 (left) and B,/B, = 1 (right). The
snapshots are taken at a representative time to show the nonideal electric field and plasmoid structure after the simulations have achieved a quasi-steady state. We
define x = 0 as the edge of the simulation domain (so, the plot only shows a portion of the domain), while y = 0 in the midplane.

z-component E;|< is the only significant component for zero
guide field, being 1 to 2 orders of magnitude larger than other
components; for nonzero guide fields, we still determine e
from E) = n,J, but we show that the same effective
resistivity properly describes other components, specifically
EY = n,J. (see Section 4). Our new prescription for the
effective resistivity is derived using a data-driven phenomen-
ological model with two free parameters, which are bench-
marked with PIC simulations. We compare the performance of
our prescription to the resistivity model from S. Selvi et al.
(2023)—based on a kinetic approach—and to its extension
employing MHD quantities.

3.1. Kinetically Motivated Resistivity

S. Selvi et al. (2023) analyzed PIC simulations of relativistic
reconnection in pair plasmas and identified the terms that
dominate the nonideal electric field in the generalized Ohm's
law (M. Hesse & S. Zenitani 2007). Their analysis was
restricted to regions of electric dominance, defined as having
E} > B} + By2 (which is nearly identical to the condition
|E| > |B| in the case of zero guide field). They found that the
z-component of the nonideal electric field could be written as

m {u,
Ez>|< = Ns23 kinz = [n_< d ay("ey>]]z’ (3)

where 7, is the total number density (including both electrons

and positrons); (v..) and (u.,) are, respectively, the mean
electron three- and four-velocity in the z-direction;'® and
(Vey) = vy is the mean three-velocity along y, which is roughly
the same for both species (hereafter, we call v, the single-fluid y
velocity).

The effective resistivity proposed by S. Selvi et al. (2023) in
Equation (3) has a few limitations: (i) it provides a satisfactory
description of the nonideal electric field only for B, = 0; and
(ii) it was derived considering regions of electric dominance,
which are only a subset of the regions hosting nonideal fields

10 At X-points, positrons and electrons have opposite (v,.) and (u,.), but the
ratio (u,;)/(ve;) is the same for both species.

(L. Sironi 2022; S. R. Totorica et al. 2023), where resistive
effects are important. In order to derive Equation (3), S. Selvi
et al. (2023) used the approximation

ay(ne <Vey> <uez>) ~ e <uez> 8y <vey> 5 “4)

which is valid only in the vicinity of the center of the current
sheet. In fact, as shown in Figure 2, the effective resistivity in
Equation (3) (hereafter, 7523 xin) provides a reasonable descrip-
tion of the nonideal field near the center of the layer
(|ylwp/c S 1), where |[E| > |B| (blue shaded area), but it
significantly overestimates the ground truth (i.e., the direct
measurement of E.* from PIC runs) farther away from the layer
(Iylwp/c Z 1.

For use in single-fluid MHD codes, Equation (3) needs to be
rewritten using fluid quantities. As we have already discussed
above, the mean three-velocity along y is roughly the same for
the two species, (v.,) =~ (v,). The most reasonable approx-
imation for the ratio between the mean four- and three-
velocities of a given species is (u,.)/(v.,) =~ (7), where the
mean particle Lorentz factor (including both bulk and internal
motions) can be derived from the 7% component of the stress
energy tensor as (7) = T°/nmc?. This leads to a form of
Equation (3) that can be implemented in MHD:

m

EX = gy ninn: = [ > (7 8yvy]fz- (%)

n.e

As shown in Figure 3, Equation (5) is an excellent
approximation of the kinetic form in Equation (3) (compare
top right and bottom right panels). However, as anticipated in
Figure 2, the two forms overestimate the true resistivity (top
left of Figure 3), especially at the boundaries of the current
layer. In an earlier version of S. Selvi et al. (2023), Equation (3)
was cast in an alternative form, approximating

(Uez) ~ 1

(o) J1 — (L/en;c)? ,

which only holds if each species has negligible internal
motions and moves in the z-direction with dimensionless drift

(6)
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Figure 2. 1D slice of the domain along y through an X-point, for the simulation
with zero guide field. The top panel shows the z-component of the nonideal
electric field in units of By; the middle panel shows the resistivity; and the
bottom panel shows the electric current J, (in blue), the number density n, (in
orange), and the drift speed vg,../c ~ J./en,c (in green). In the top and middle
panels, we present in blue the ground truth obtained directly from our
simulation, while other colors show various choices for 7., as described in the
legend. Our prescription for resistivity (Equation (10)) is shown as 7(c, Ppest)
and 7(c, ppign) for the values of p defined in Section 4 and corresponding o
values. Regions where |E| > |B| are shaded in blue.
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speed of |J,|/en,c. This was recently rewritten by M. Bugli
et al. (2024) in the form

2
Npoa = L\/(an"y) + (TE))*. (N
en,c e

While the approximation in Equation (6) leading to
Equation (7) does not generally hold, as shown by the poor
agreement between the top right and bottom left panels in
Figure 3, Equation (7) appears to provide a remarkably good
proxy for the ground truth (compare top left and bottom left).
While Equation (7) appears to improve upon the kinetically
motivated model by S. Selvi et al. (2023), it loses some of the
physical motivation of Equations (3) and (5).

While useful, the forms of effective resistivity presented in
this subsection have some undesirable properties: (i) they only
apply to the case of zero guide field; (ii) they contain a spatial
derivative, which makes them difficult to include in relativistic
MHD codes while maintaining causality (L. Del Zanna et al.
2007); (iii) they only apply to the main layer and not to the
antireconnection layers in between merging plasmoids (which
extend along y and for which the relevant velocity derivative is
0w,); and (iv) they retain a dependence on the system
geometry (e.g., via the z-component E."), which makes it hard
to incorporate in global MHD simulations where current sheets
will be curved, oscillating, and generally not aligned with the
coordinate axes. In the Section 3.2, we turn to a more agnostic
approach that avoids some of these issues.

3.2. Prescriptive Resistivity

To overcome the limitations of the model by S. Selvi et al.
(2023), we propose an empirical approach. We expect that in
regions of strong currents—as defined below—the nonideal
electric field should approach |E'| — (vi,/c)Bo, where vy, is the
reconnection rate (i.e., the inflow velocity of plasma into the
layer; see Figure 4), which implies that the effective resistivity
should be

Vin Bo
c U’

A choice of 7 o [J| 7! is inapplicable in regions of small
electric currents, where the resistivity should vanish. We
therefore design a form such that 7.g o |J|” for small current
densities, where p > 0 is a free parameter. More precisely, this
should occur where |J| < en,c. Adding a normalization factor
o, this motivates choosing a form

OéB()lJ |p OéB()
Tett = +1 FR +1° ®)
WIP*" + (enic)? W1 + (enic/ITDPF

We will determine free parameters o and p from PIC
simulations. This scales as 7 o |J|?/(en,c)P! at small
currents and approaches 7. = aBo/(2|J|) for |J| ~ enc. We
therefore expect /2 ~ vy, /¢, as we indeed find below (see also
Figure 4). The condition |J| =~ en,c corresponds to the charge
starvation regime, i.e., all charge carriers move at near the
speed of light. This limit is indeed realized in the inner region
of the current sheet: as the bottom panel of Figure 2 shows, the
1D profiles of J, and n, have the same shape, suggesting a

(®)

Nett —
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Figure 3. A comparison between the measured nonideal electric field Ejk (top left) and its reconstruction 7/, based on different choices of e 1523 kin (Equation (3))
in top right, 75,4 (Equation (7)) in bottom left, and 75,3 mup (Equation (5)) in bottom right. All panels are normalized to B,. Within each panel, horizontal black lines
separate different time snapshots: the first one is taken when the reconnection rate shown in Figure 4 first settles into a steady state, and the others follow after 450,
810, and 1080 w;l, respectively. The horizontal axis is measured with respect to the center of the portion of domain that is displayed. The derivatives in Equations (3),
(5), and (7) are computed as numerical derivatives on cells downsampled by a factor of 2.
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Figure 4. Reconnection rate (i.e., the plasma inflow velocity normalized by c¢)
over time for each guide field case, as indicated in the legend. The reconnection
rate is measured as the mean inflow velocity in the region y = [—672, 672]c/
Wp. In the same color, we show with the shaded area the acceptable ranges of
a/2 of our resistivity prescription, which we define in Section 3.2.

nearly constant drift velocity J./en, >~ 0.9 c¢. In fact, if we
define the drift velocity v, = J/en,, our prescription can be
written as

OéBO

I+ (/)P

Nett = (10)

In the inner region of the current sheet, where |v,,| 2~ ¢ (green
line in the bottom panel of Figure 2), we obtain neg o |J \_1,
which matches the double-peaked shape of the ground truth
(i.e., E,/J,) in the middle panel of Figure 2. We emphasize that
the density dependence in v, o< J/n, is a key ingredient of our
resistivity model—in fact, the density in the middle of the sheet
can be significantly larger than in the immediate upstream; see
bottom panel of Figure 2.

In Section 5, we provide an equivalent, more general version
of Equation (9) suitable for implementation within resistive
MHD codes.

4. Results

To determine the optimal values of « and p in Equation (10),
we consider the z-component of the nonideal field and define a
loss, or data-fit metric

L(a, p) = Y |ES — nggz (e, p)LPES],

X,y

Y

i.e., we minimize the L2 loss (the mean squared error) between

Nefs). and the measured E*. The loss is weighted by |E| to
ensure that the large regions with negligible nonideal fields do
not skew our findings. We calculate the optimal parameters «
and p by minimizing this loss through a simple grid search. We
create a composite domain including several time snapshots of
the PIC simulations. For each case with varying guide field, the
snapshots (roughly 15 in each case) are equally spaced from the
time when reconnection first attains a quasi-steady state up to
the end of our simulations, w,t = 4500. For each snapshot, we
consider a region extending along the whole domain in x and
with thickness 64 ¢/w, along y (sufficient to enclose the largest
plasmoids), centered around the current sheet. As a representa-
tive case, the loss for B,/By, = 1 is shown in Figure 5. The
manifold shows that a valley of small loss, with values of L
near the global minimum (shown by the red point), stretches
across a wide range of p.

In order to determine the optimal p and define a range of
acceptable values, we adopt the following procedure. We begin
by minimizing the loss on many small, randomly selected
regions (hereafter, “patches”) of the composite domain. In each
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Figure 5. Loss manifold computed with Equation (11) for B,/By = 1, as a
function of o and p. The red point marks the (c, p) combination of minimum
loss. Many combinations in the dark blue valley produce losses very close to
the global minimum. A correlation between the two parameters can also
be seen.

Table 1
Best-fit p with Upper and Lower Limits of the Acceptable Range (Last
Column) for Each Guide Field

B,/By Patch Dim. (¢/w,) Num. Patches p

0.0 [80, 16] 2500 0.0044%3
0.3 [160, 40] 2000 9.597832
0.6 [240, 40] 600 154738
1.0 [120, 24] 1500 18.2734

Note. We indicate the dimensions (along x and y, respectively) of the patches
used to compute the distribution of values of p (second column) as well as the
number of patches (third column).

Table 2
For Each Guide Field We Show the Best-fit Value of p (Second Column) and
the Lowest and Highest Acceptable Values (Third Column)

Bg/BO Phest [plowv phigh] 04(17)

0.0 0.00 [0.00, 1.73] 0.0369 p + 0.3268
0.3 9.59 [4.22, 18.2] 0.0046 p + 0.1295
0.6 154 [13.3, 19.2] 0.0017 p + 0.1002
1.0 18.2 [12.0, 23.3] 0.0010 p + 0.0702

Note. These bounds are calculated as described in the text. We also show a
function that returns the optimal « for a given p within this range (fourth
column).

small patch, we find that there is a clearly preferred value of p
(i.e., a sharp minimum of Equation (11), as opposed to the wide
minimum we find on global scales), which we will use to define
a range of acceptable values of p. We continue adding regions
until the results converge, meaning that repeatedly selecting the
same number of random patches produces the same outcome,
regardless of which regions are chosen. We vary the patch size
depending on the guide field strength, such that the patch is
twice larger than the typical extent of a region with significant
nonideal fields (see bottom panels in Figure 1). The number of

Moran et al.
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Figure 6. Best fit (ppey) and upper bound (ppign) as a function of guide field
strength.

Table 3
The Results Obtained When Varying the Size of Patches Used to Compute p
(Default Values Are in Table 1) and the Percentiles Used in the Threshold for
Patch Selection (Default Values Are 55-45)

B, /By Patch Dim. (¢/w)) Threshold per. p

0.0 (60, 32] 55-45 0.007438
0.0 (80, 16] 60-40 0.004:33
1.0 (80, 40] 55-45 17.843:
1.0 [120, 24] 6040 18.2748

Note. As before, for B,/By = 0.0, we use 2500 patches, and for B,/By = 1.0,
we use 1500 patches.

Table 4
Performance L2 Loss of Various Resistivity Models as Compared to the
Measured Ez* , for Different Guide Fields

B,/By Model |EX| (E¥)? 1
0.0 1(, Pres)z 5.052 3.517 21.35
1, Phign)- 5.157 3.599 17.93
0.3 n(at, Presds 3.121 1.085 12.97
1, Phigh)- 3.129 1.086 13.00
0.6 1(c, Pres)z 0.410 0.067 3.913
1, Prign)- 0.412 0.067 3.920
1.0 1, Pres)- 0.108 0.008 2.047
1, Phign)J- 0.110 0.009 2.048

Note. We vary the weight of the loss function as indicated in the last three
columns. We exclude cells where n, < 1.

patches and the patch size used in this step are indicated in
Table 1. To ensure that the loss in a given patch is informative
(which is not the case for patches with small Ez* ), we require

median(E;l< patch > median(Ez* )alobal + threshold, (12)

where the median is computed in a given patch (left-hand side)
or over the whole composite domain (right-hand side). The
threshold indicated on the right-hand side is the difference
between the 55th and 45th percentiles of the distribution of E."
in the whole domain. We use these percentiles instead of the
standard interquartile range to ensure a more robust analysis
that includes a greater portion of the domain. We define pp.g, as
the value that minimizes the loss when considering the
combined area of all patches.

We then create the distribution of values of p that minimize
the loss in each patch. The difference Ap,,, between the 50th
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Figure 7. A comparison between the measured nonideal electric field E,* (left column) and its reconstruction 7./, based on our prescription in Equation (10), for the
whole range of guide fields we explored. The middle column shows 7ee(c, prest)/; (here, « is the value corresponding to pyes based on the linear fit in Table 2), while
the right column shows 7er(ct, phign)J; (o is the value corresponding to ppign). All panels are normalized to B,y. Within each panel, horizontal black lines separate
different time snapshots: the first one is taken when the reconnection rate shown in Figure 4 first settles into a steady state, and the others follow after 450, 810, and
1080 w;l respectively. The horizontal axis is measured with respect to the center of the portion of domain that is displayed (which is a small fraction of the composite

domain used to determine the best-fit values of a and p).

and 16th percentiles of this distribution gives the lower limit on
allowed values of p, p,.,, = max[p,., — Ap,- 0], while the
difference Apy;qn between the 84th and 50th percentiles gives
the upper limit ppigh = Ppest + APnign. These values are
indicated for each guide field in Table 2. We plot ppes and phigh
as a function of guide field in Figure 6. Table 3 demonstrates
that our findings do not depend much on the patch size or the
threshold percentiles employed in Equation (12). We find that
the optimal value of p is robust to patch size and varies by <2%
when the threshold percentiles are altered. Similarly, the upper
and lower limits on on p decrease by a modest amount when
varying these parameters.

Within the range [piow, Phigh], We then consider 15 evenly
spaced values of p. For each value, we find the optimal « using
the loss function on the combined area of all patches. This
reveals that the two parameters are correlated. We interpolate to
find a(p) and show the resulting linear fits in Table 2. The
range of /2 corresponding to the interval [piow, Phign] is
shown by the colored shaded bands in Figure 4. As expected,

a/2 matches well with the measured reconnection rate, for all
guide field cases (solid lines of the same color).

We finally assess how well the reconstructed 7./, captures
the nonideal field E obtained directly from our PIC
simulations. Table 4 shows the L2 loss obtained for p = pypes OF
P = Dnign- For each of the two choices, the corresponding value
of « is obtained from the linear fit in Table 2. We find that,
regardless of the weight adopted in the loss function (no
weight, IEZ*l or (EZ*)Z), the L2 loss increases by less than ~10%
when using ppien, as compared to choosing pyes (and for the
unweighted loss of B;/Bj = 0, ppign performs better than ppes).
We therefore regard all solutions within the range of
[Poest> Phign] as acceptable.

This is also confirmed by the 2D spatial profiles shown in
Figure 7. For all the guide fields we explore, we present the
ground truth in the left column (i.e., the nonideal field E*
measured directly from our simulations), the reconstruction
Nefi(Q, Poest)); in the middle column (here, « is the value
corresponding to pyes based on the linear fit in Table 2), and
the reconstruction 7jegf(cv, Phign)J; in the right column (here, « is



THE ASTROPHYSICAL JOURNAL LETTERS, 978:L45 (12pp), 2025 January 10 Moran et al.
Bg/BO =0.3 E‘I* 'r](a, pbest)t]m n(a7phigh)Jz
I ] ] 0.050
-5.0 14 _— e =y - -
o P T L ]
0.025
— 5.0 S : & : = : ==
@. e~ ! o s S
A A L ] : 0.000
3 50
2. 5.0 B E
> 504 i i -0.025
5.0 _ 1 1 —0.050
5.0 b b
Bg/BO =
5.0 4 4 0.050
5.01 : .
0.025
— -5.01 1 i
=
5.0 : 1
3 0.000
2. 501 g g
S 5.0 4 4 —0.025
5.0 7] 7 —0.050
5.0 : 1
B,/By=1
501, e — : . 0.04
501" AT 1 :
= 0.02
=501 e E .
% 5.0 1 . 1 1 0.00
— 5.01. e T— e — 7] 7] —
> 5.0 —== : . 0.02
5.0 it % T 1 —0.04
5.0 ' = 1 ] 0.06
80 60 -40 20 0 20 40 60 80-80 -60 -40 20 0 20 40 60 80-80 -60 -40 -20 0 20 40 60 80 ’
T [c/w,) z [c/w,] z [c/w,]

Figure 8. Same as Figure 7, but for the x-component of the nonideal field, which appears for nonzero guide field cases. The resistivity is based on Equation (10) and
employs the same values of a and p as in Figure 7. Although our model was not developed using the x-component of E , it is able to recover the basic structure of
regions with significant E*. The magnitude of EF is in units of By, and the times shown are the same as in Figure 7.

the value corresponding to phign). The plot shows that the two
reconstructions are equally good for nonzero guide fields, while
for B, /Bo = 0, the case neg(cv, Phigh)J; seems to capture better
the longitudinal extent of nonideal regions. Most importantly,
our prescriptive resistivity performs clearly better than the
kinetically motivated models presented in Figure 3.

Although our prescriptive resistivity was benchmarked with
the z-component of the nonideal field, it can successfully model
other nontrivial components that appear for nonzero guide
fields. This is shown in Figure 8. While Ey* is negligible for all

guide fields, there are distinct areas in which E" is significant
for nonzero guide field cases. We calculate 7./, via
Equation (10) using the same « and p from the analysis of
the z-component described above. From the results in Figure 8,
we can conclude that the scalar resistivity in Equation (10)
provides a satisfactory description of all components of the
nonideal electric field across the whole range of guide fields
that we explore.

5. Discussion

We have performed a suite of PIC simulations of relativistic
pair-plasma reconnection with varying guide field strength, and
we have formulated an empirical prescription for the effective
resistivity 7.¢ in Equation (9) or equivalently Equation (10).
Our prescription depends on two free parameters, « and p,
which are derived directly from our PIC runs—with «/2
expected to be comparable to the dimensionless reconnection
rate. As compared to the kinetically motivated model proposed

by S. Selvi et al. (2023), the form of 7.¢ that we propose has
four main advantages: it is explicitly written in single-fluid
MHD quantities, does not depend on spatial derivatives, is
coordinate agnostic, and is valid for any guide field. It depends
only on the electric current density and the particle number
density (and the two free parameters discussed above). We
have demonstrated that the scalar resistivity we propose
successfully describes the spatial structure and strength of all
components of the nonideal field. It thus provides a promising
strategy for enhancing the reconnection rate in relativistic
resistive MHD approaches.

To confirm the robustness of our findings, we demonstrate in
Appendix A that the form in Equation (10) (with « and p
determined from our reference runs) provides an excellent
description of nonideal fields in independent simulations,
which either include synchrotron cooling or resolve the plasma
skin depth with 20 cells (as compared to 5 cells for our
reference runs).

We conclude with an important remark. Our prescription in
Equation (9) can be equivalently written as

13)

" _ |E*| I:aBgf |E*|]plr1
eff — .

en,c |E*|
In the limit of very high p, the square bracket is elevated to a
very small power, yielding a contribution of order unity.
Furthermore, Figure 5 suggests that, as long as p is large, our
results do not significantly depend on its precise value. In the
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limit p > 1, the effective resistivity simplifies to

E
neff =~ b} (14)

which has several advantages: it is simple; coordinate agnostic;
and no longer depends on the free parameters « and p, i.e., it
holds for any guide field strength. It retains the dependence on
density that we already emphasized as being of key importance.
The approximation p > 1 holds for all guide fields
Bg/BO > 0.3; see Figure 6. In Appendix C, we demonstrate
that solutions with p > 1 provide a satisfactory fit also for the
case of zero guide field. We therefore regard Equation (14) as
the most promising form of effective resistivity to implement in
resistive MHD simulations of relativistic reconnection, espe-
cially in global problems where it is nontrivial to determine the
guide field strength.

We conclude with three caveats. First, our results are based
on 2D simulations. While the physics of particle acceleration in
relativistic reconnection is dramatically different between 2D
and 3D (e.g., H. Zhang et al. 2021, 2023; A. Chernoglazov
et al. 2023), the nonideal physics of field dissipation—the focus
of our work—is roughly the same (e.g., L. Sironi & A. Spitk-
ovsky 2014; G. R. Werner & D. A. Uzdensky 2017). Yet,
dedicated 3D simulations should be performed to confirm our
findings. Second, we have employed an electron—positron
composition, and future work is needed to confirm our results
in the case of electron—proton and electron—positron—proton
plasmas. Finally, the generalization of our prescription to the
regime of trans- or nonrelativistic reconnection is far from
trivial. In fact, the importance of charge starvation and
compressibility effects in our prescriptive model, as empha-
sized in Section 3.2, is likely to change in the case of low
magnetization. There, the plasma beta becomes another
important parameter governing the reconnection physics. We
defer the investigation of the effective resistivity in trans- and
nonrelativistic reconnection (for different plasma beta) to
future work.

Moran et al.
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Appendix A
Additional Validations

We validate our results on two additional sets of simulations
having zero guide field: first, we increase the spatial resolution,
and then we perform simulations with strong synchrotron
cooling. In all the cases, we find that our prescription in
Equation (10)—using the same « and p as determined in the
main text (see Table 2)—provides a successful reconstruction
of the nonideal field.

We first confirm our findings with a higher-resolution
simulation (c/w,=20 cells) having zero guide field. The
length of the domain in the x-direction is L, = 480 ¢/w,. The
results in Figure 9 confirm the robustness of our conclusions,
with 7eg(v, Phign)J; Vvisually providing the best proxy for the
nonideal field.
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Figure 9. A comparison of the measured E and various reconstructions 7/. using different forms of the resistivity. Top row, from left to right: ground truth,
Equation (3), and Equation (5). Bottom row, from left to right: Equation (7) and Equation (10) for both pyes and ppign (and their respective best-fit o values, calculated
from the functions in Table 2). The simulation has zero guide field and a spatial resolution of ¢/w, = 20 cells. All panels are normalized to By. Within each panel,
horizontal black lines separate different time snapshots: at the start of the quasi-steady phase and after 112.5, 202.5, and 270 w;l.
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Figure 10. Same as Figure 9 but for standard resolution (c/w, = 5 cells) and with the addition of synchrotron cooling losses, as quantified by ~.q = 100 (weak
cooling regime, since 7,,q > o). Within each panel, horizontal black lines separate different time snapshots: at the start of the quasi-steady phase and after 450, 810,

and 1080 w,".
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Figure 11. Same as Figure 9 but for standard resolution (c/w, = 5 cells) and with the addition of synchrotron cooling losses, as quantified by ;.q = 25 (strong cooling

regime, since Yy,q < 0). We show the same time snapshots as in Figure 10.

We also perform simulations with synchrotron cooling losses
and the fiducial resolution of ¢/w, = 5 cells. We quantify the
cooling strength via the radiation-reaction Lorentz factor 7,,q,
also known as the classical “burn-off” limit, at which the
radiation-reaction drag force balances the accelerating force of
the reconnection electric field, yielding

Yot = J _£0u/B0 (A1)
(4/3)or(By/8m)

The results in Figures 10 and 11 confirm the robustness of our
conclusions, both for weak (7,,q = 100) and strong (Vr.q = 25)
cooling. In particular, our prescription 7eg{c, pPpign)J; visually
appears to provide the best proxy for the nonideal field. In
summary, Equation (10)—with « and p determined from the

10

fiducial simulations discussed in the main text—can be
successfully applied to other runs, including the important
case of strong cooling losses.

Appendix B
The Full Ohmss Law

In the main text, we reduced the full Ohm's law for resistive
relativistic single-fluid MHD (Equation (1)) to the simpler form
in Equation (2). We verify in Figure 12 that our results still
hold when using the full relativistic Ohm's law for resistive
MHD, as given in Equation (1). Differences with respect to
Figure 7 are minor, especially in lower guide field cases. For
simulations with stronger guide fields, we see that when the full
Ohm's law is used, the agreement between our model and the
ground truth in plasmoid cores improves.
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Figure 12. Same as Figure 7 but including all terms in the Ohm's law for resistive relativistic single-fluid MHD (Equation (1)) instead of the simplified form in
Equation (2), which we used in the main paper. We still employ our prescription (Equation (10)) with the same « and p as discussed in the main text.

Extending the Range of p for Zero Guide Field

In Figure 7, we have shown that higher values of p appear to
reconstruct more accurately the nonideal electric fields in the
case of zero guide field, despite yielding formally higher loss
values. Motivated by this, we explore how the 2D spatial

Appendix C

structure of 7/, With 7 in Equation (10), changes when

truth.

11

using values of p higher than pye, (for each p, we use the
« value given by the function in Table 2). The results shown
in Figure 13 show that values of p greater than ppie, up to at
least p = 4 provide an excellent reconstruction of the ground
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Figure 13. A comparison of the measured E.* and the reconstruction 7/. using Equation (10). We vary p beyond the range given in Table 1, and for each p, we use
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