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Propagation of strong electromagnetic waves in tenuous plasmas
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We study the propagation of electromagnetic waves in tenuous plasmas, where the wave frequency ω0 is

much larger than the plasma frequency ωP. We show that in pair plasmas, nonlinear effects are weak for a0 �
ω0/ωP, where a0 is the wave strength parameter. In electron-proton plasmas, a more restrictive condition must

be satisfied, namely, either a0 � 1/ωPτ0, where τ0 is the duration of the radiation pulse, or a0 � 1. We derive

the equations that govern the evolution of the pulse in the weakly nonlinear regime. Our results have important

implications for the modeling of fast radio bursts. We argue that (i) millisecond duration bursts with a smooth

profile must be produced in a proton-free environment, where nonlinear effects are weaker, and (ii) propagation

through an electron-proton plasma near the source can imprint a submicrosecond variability on the burst profile.
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I. INTRODUCTION

Understanding the propagation of electromagnetic waves

in plasmas is important for both laser physics and astro-

physics [1–3]. The advent of high-power laser facilities and

the discovery of bright extragalactic radio transients, i.e., fast

radio bursts, makes it crucial to consider the regime in which

electrons oscillate with relativistic velocities in the field of the

wave [4–7]. In this regime, the wave strength parameter is

a0 � 1 (where a0 is defined as the peak transverse component

of the electron four-velocity in units of the speed of light).

The propagation of electromagnetic waves in plasmas is

governed by Maxwell’s and two-fluid equations [1–3]. These

equations contain nonlinear terms. In the nonrelativistic limit

a0 � 1, nonlinear terms can be treated as a small perturbation

by making an expansion in powers of a0 [1]. This makes

it possible to study the wave propagation analytically in the

limit a0 � 1. However, a systematic analytic treatment of the

relativistic regime a0 � 1 has been lacking so far.

In this paper, we develop a framework to study the prop-

agation of electromagnetic waves in the regime a0 � 1. We

show that nonlinear terms can be treated as a small perturba-

tion when the plasma is sufficiently tenuous, as expected in

astrophysical systems where the frequency of radio waves can

exceed the plasma frequency by several orders of magnitude.
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We apply our framework to fast radio bursts and discuss the

imprint of the plasma surrounding the source on their time

structure.

The paper is organized as follows. In Sec. II, we present the

fundamental equations that govern the propagation of strong

electromagnetic waves. We study the fast oscillations of the

physical quantities on the timescale of the wave period, and

their secular evolution on much longer timescales. In Sec. III,

we derive the equation that governs the evolution of the wave

envelope. We present exact analytical solutions where the

wave intensity is constant and study their stability. In Sec. IV,

we discuss the implications of our results for fast radio bursts

and summarize our conclusions.

II. FUNDAMENTAL EQUATIONS

We consider a quasimonochromatic wave packet of ar-

bitrary polarization that propagates in a cold unmagnetized

plasma. In the frame where the particles ahead of the wave

packet are at rest (hereafter, the “lab frame”), the wave fre-

quency is ω0 and the wave vector is k0ez. We work in units

where the speed of light is c = 1.

The electromagnetic fields can be presented as E =
−(m/|e|)(∇φ + ∂a/∂t ) and B = (m/|e|)∇ × a, where m is

the electron mass and e is the charge. We work in the Coulomb

gauge, namely, ∇ · a = 0. The equation of motion can be

presented as [8]

∂

∂t
(u± ± η±a) −

u±

γ±
× [∇ × (u± ± η±a)]

= −∇(γ± ± η±φ), (1)
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where u+ and u− are the ion and electron four-velocities, and

γ± =
√

1 + u2
± is the Lorentz factor. We defined η− = 1 and

η+ = m/M, where M is the ion mass. We consider both pair

plasmas (η+ = 1) and electron-proton plasmas (η+ � 1). The

continuity equation is

∂

∂t
(γ±n±) + ∇ · (n±u±) = 0, (2)

where n± is the proper number density. We adopt the most

natural definition of the plasma frequency, namely, ωP =√
4π (1 + η+)n0e2/m, where n0 is the electron proper density

ahead of the wave packet. The electromagnetic fields are gov-

erned by Gauss’s law, which can be presented as

∇2φ = −
ω2

P

1 + η+

(

γ+n+

n0

−
γ−n−

n0

)

, (3)

and by Ampère’s law, which can be presented as

∂2a

∂t2
− ∇2a + ∇

∂φ

∂t
=

ω2
P

1 + η+

(

n+u+

n0

−
n−u−

n0

)

. (4)

We work in the frame that moves with the group velocity

k0/ω0 (hereafter, the “wave frame”). As discussed by Clem-

mow [9], in this frame the wave vector vanishes and the wave

frequency is ω =
√

ω2
0 − k2

0 . We solve Eqs. (1)–(4) by sep-

arating the fast oscillations of the physical quantities, which

occur on the timescale 1/ω, from their secular evolution,

which occurs on much longer timescales.

Before entering the details of the calculation, we anticipate

some important facts. Since the wave vector vanishes, the

spatial derivatives do not affect the fast oscillations. Then,

Eqs. (1) and (2) give u± � ∓η±a, and γ±n± � const, showing

that the current n±u± is proportional to a/γ±. Particles ahead

of the wave packet have a large Lorentz factor, γ0 = ω0/ω.

We focus on the regime in which the particle Lorentz factor

inside the wave packet is nearly constant (i.e., γ± � γ0). In

this regime, nonlinear effects are weak, as the current be-

comes proportional to a (when γ± � γ0, one has n± � n0,

from which it follows that n±u± � ∓η±n0a). Since the spatial

derivatives do not affect the fast oscillations, the left-hand

side of Eq. (4) can be approximated as −ω2a. Substituting

n±u± � ∓η±n0a into the right-hand side of Eq. (4), one

finds the dispersion relation of the wave, which is ω2 = ω2
P,

or, equivalently, ω2
0 − k2

0 = ω2
P in the laboratory frame. This

implies γ0 = ω0/ωP. We will show that the key condition

γ± � γ0 can be satisfied even in the regime a0 � 1 when the

plasma is sufficiently tenuous.

A. Fast oscillations

When nonlinear effects are weak, high-order harmonics of

the fields can be neglected. Then, the vector potential can be

presented as

a = ψ0 + 1
2
a0e−iωt + c.c., (5)

where c.c. is the complex conjugate of the fast oscillating term

proportional to e−iωt . The complex function a0 describes the

envelope of the wave packet. The real function ψ0 describes

the secular evolution of the vector potential.

The fast oscillations of the four-velocity can be determined

by substituting Eq. (5) into Eq. (1). The spatial derivatives can

be neglected if ∇|a0| � ωa0 in the wave frame. Since we will

find that ω = ωP, the longitudinal size of the wave packet in

the laboratory frame should be longer than a few wavelengths,

and the transverse size should be longer than the plasma skin

depth (these conditions are satisfied by radio bursts of GHz

frequency and millisecond duration that illuminate a substan-

tial fraction of the solid angle). Then, one finds

u± = −u0ez + δu0± ∓ 1
2
η±a0e−iωt + c.c., (6)

where u0 =
√

γ 2
0 − 1 = k0/ω is the four-velocity ahead of the

wave packet, and δu0± describes the secular evolution of the

four-velocity. The wave strength parameter, which is defined

as the peak transverse component of u− in units of the speed

of light, is given by a0 = max[|a0|].
Keeping corrections of the order of δu0±/γ0 and a2

0/γ
2
0 , the

Lorentz factor can be presented as

γ± = γ0 −
u0

γ0

δu0z± +
η2

±|a0|2

4γ0

+
η2

±a2
0

8γ0

e−2iωt + c.c., (7)

where we neglected a term proportional to a0z. Since the

Coulomb gauge implies a0z/lz ∼ a0⊥/l⊥, the longitudinal size

of the wave packet should be shorter than its transverse size

(i.e., lz � l⊥ in the wave frame, which is satisfied when the

radio burst illuminates a substantial fraction of the solid an-

gle).

The fast oscillations of the proper number density can be

determined by substituting Eq. (7) into Eq. (2). Neglecting the

spatial derivatives, one finds

n± = n0 + δn0± −
η2

±a2
0n0

8γ 2
0

e−2iωt + c.c., (8)

where δn0± describes the secular evolution of the proper den-

sity. We will keep corrections of the order of δn0±/n0.

B. Secular evolution

Now we derive the equations that govern the secular evo-

lution of the physical quantities. Here, retaining the spatial

derivatives is crucial. For example, the gradient of the ra-

diation intensity affects the dynamics of the plasma via the

ponderomotive force [1]. We refer the reader who is not inter-

ested in the details of the calculation to our final results, which

are Eqs. (18), (19), and (22).

The secular evolution of the four-velocity can be deter-

mined substituting Eqs. (5)–(7) into Eq. (1). Averaging over

the fast oscillations, one finds

∂

∂t
(δu0± ± η±ψ0) + ez × [∇ × (δu0± ± η±ψ0)]

= ∇

(

δu0z± −
η2

±|a0|2

4γ0

∓ η±φ0

)

, (9)

where φ0 describes the secular evolution of the scalar

potential. In the derivation of Eq. (9), we approximated

u0/γ0 � 1 as appropriate because γ0 � 1. It is convenient to

define the variables γ0(1 + η+)δv = δu0+ + η+δu0− and
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γ0(1 + η+)δq = δu0+ − δu0− + (1 + η+)ψ0, which are gov-

erned by

∂δv

∂t
−

∂δv

∂z
= −η+∇

|a0|2

4γ 2
0

, (10)

∂δq

∂t
−

∂δq

∂z
= −∇

[

ψ0z + φ0

γ0

−
(1 − η+)|a0|2

4γ 2
0

]

. (11)

In the derivation of Eqs. (10) and (11), we used the identity

ez × (∇ × δv) = ∇⊥δvz − ∂δv⊥/∂z. The right-hand side of

Eq. (10) is the ponderomotive force.

The secular evolution of the proper number density can be

determined by substituting Eqs. (6)–(8) into Eq. (2), and av-

eraging over the fast oscillations. It is convenient to introduce

a new variable, (1 + η+)δρ = δn0+/n0 + η+δn0−/n0 − (1 +
η+)δvz, which is governed by

∂δρ

∂t
+ η+

∂

∂t

|a0|2

4γ 2
0

−
∂δρ

∂z
= −∇⊥ · δv⊥. (12)

Now we study the secular evolution of the electromagnetic

fields and derive Eq. (17). Substituting Eqs. (5), (6), and (8)

into Eq. (4), and averaging over the fast oscillations, one finds

1 + η+

γ0ω
2
P

(

∂2ψ0

∂t2
− ∇2ψ0 + ∇

∂φ0

∂t

)

−
1

2γ 2
0

(

δn0+

n0

−
δn0−

n0

)

ez

=
δu0+

γ0

−
δu0−

γ0

−
(

δn0+

n0

−
δn0−

n0

)

ez. (13)

In the derivation of Eq. (13), we approximated u0/γ0 � 1 −
1/2γ 2

0 . Here one should keep corrections of the order of 1/γ 2
0

because the leading terms cancel, as we show below. Since

the average physical quantities vary on a scale comparable to

the length of the wave packet, which in the wave frame is

much longer than 1/ωP, one has, for example, ∇2ψ0/ω
2
P �

ψ0. Then, the terms on the right-hand side of Eq. (13) should

nearly balance, as they are much larger than the terms on the

left-hand side. The transverse and longitudinal components of

Eq. (13) give, respectively, δq⊥ = ψ0⊥/γ0 and

δn0+

n0

−
δn0−

n0

= (1 + η+)

(

δqz −
ψ0z

γ0

)

. (14)

Substituting Eqs. (7) and (8) into Eq. (3), and averaging over

the fast oscillations, one finds

1 + η+

γ0ω
2
P

∇2φ0 +
1

2γ 2
0

(

δu0z+

γ0

−
δu0z−

γ0

)

−
(1 − η2

+)|a0|2

4γ 2
0

=
δu0z+

γ0

−
δu0z−

γ0

−
δn0+

n0

+
δn0−

n0

.

(15)

One should combine the longitudinal component of Eq. (13)

and Eq. (15) to eliminate the large terms on the right-hand

sides. Then, one can use the approximate expression given by

Eq. (14). This procedure gives

1

ω2
P

(

∂2

∂t2

ψ0z

γ0

− ∇2 ψ0z + φ0

γ0

+
∂2

∂t∂z

φ0

γ0

)

−
1

γ 2
0

(

δqz −
ψ0z

γ0

)

+
(1 − η+)|a0|2

4γ 2
0

= 0. (16)

In order to eliminate the spatial derivatives in the transverse

direction, one should substitute δq⊥ = ψ0⊥/γ0 into the trans-

verse component of Eq. (11), take the divergence of both

sides, and use the gauge condition ∇⊥ · ψ0⊥ = −∂ψ0z/∂z.

Then, isolate the term ∇2
⊥(ψ0z + φ0)/γ0 and substitute it into

Eq. (16). This procedure gives

1

ω2
P

(

∂2

∂t2

ψ0z

γ0

−
∂2

∂z2

φ0

γ0

+
∂2

∂t∂z

φ0 − ψ0z

γ0

)

−
1

γ 2
0

(

δqz −
ψ0z

γ0

)

+
(1 − η+)|a0|2

4γ 2
0

= 0. (17)

The equations that govern the secular evolution of the

physical quantities [i.e., Eqs. (10), (11), (12), and (17)] can

be significantly simplified by neglecting the time derivative of

|a0|2. This approximation is justified because we work in the

frame that moves with the group velocity of the wave, where

the time evolution of the wave envelope is slow.1 More for-

mally, one can show that ∂|a0|2/∂t � ∇|a0|2 from Eqs. (24)

and (25) below. In this approximation, the longitudinal com-

ponent of Eq. (10) gives δvz = η+|a0|2/4γ 2
0 . The transverse

component of Eq. (10) and Eq. (12) gives, respectively,

∂δs

∂t
−

∂δs

∂z
= −η+∇2

⊥
|a0|2

4γ 2
0

, (18)

∂δρ

∂t
−

∂δρ

∂z
= −δs, (19)

where δs = ∇⊥ · δv⊥.

One cannot neglect the time derivatives in Eqs. (11) and

(17). The reason becomes clear after a Fourier transform.

Defining δqz =
∫

d3Kd� δq̃z exp[i(K · x − �t )], the longitu-

dinal component of Eq. (11) gives

δqz =
Kz

Kz + �

[

ψ0z + φ0

γ0

−
(1 − η+)|a0|2

4γ 2
0

]

, (20)

where we dropped the tilde. Since the time evolution is slow,

one may neglect the second-order time derivatives, and ap-

proximate Kz/(Kz + �) � 1 − �/Kz in Eq. (20). Substituting

the resulting expression into the Fourier transform of Eq. (17),

and neglecting the second-order time derivative of ψ0z, one

1Our approximation is similar to the classical quasistatic approxi-

mation [10–12]. However, we retain the time derivative of the fluid

variables in Eqs. (18) and (19), and the time derivative of the elec-

tromagnetic fields in Eq. (22). As we show below, this is crucial to

study the instabilities.
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finds
(

1

γ 2
0

−
K2

z

ω2
P

)

φ0

γ0

−
�Kz

ω2
P

(

1 +
ω2

P

γ 2
0 K2

z

)

φ0

γ0

+
�Kz

ω2
P

(

1 −
ω2

P

γ 2
0 K2

z

)

ψ0z

γ0

=
(1 − η+)|a0|2

4γ 2
0

. (21)

In the derivation of Eq. (21), we neglected terms of the order

of a2
0/γ

4
0 , which are much smaller than the term on the right-

hand side of Eq. (21) because γ0 � 1.

Substituting � = 0 into Eq. (21) would be incorrect near

the resonance K2
z = ω2

P/γ
2
0 , where the first term on the left-

hand side vanishes. Instead, one should substitute K2
z =

ω2
P/γ

2
0 into the second and third terms. Then, the inverse

Fourier transform of Eq. (21) gives

2

ω2
P

∂2

∂t∂z

φ0

γ0

=
1

ω2
P

∂2

∂z2

φ0

γ0

+
1

γ 2
0

φ0

γ0

−
(1 − η+)|a0|2

4γ 2
0

. (22)

In pair plasmas (η+ = 1), one has φ0 = 0, whereas in

electron-proton plasmas (η+ � 1), a nonvanishing average

electric field is generated. Since the time evolution is slow,

the terms on the right-hand side should nearly balance. Then,

Eq. (22) is analogous to a forced harmonic oscillator. The

solutions of the homogeneous equation are plasma waves. In

the laboratory frame, the phase velocity of the plasma waves is

equal to the group velocity of the electromagnetic pulse [13].

When τ0 � 1/ωP, where τ0 = lz/γ0 is the pulse duration

in the laboratory frame, Eq. (22) has the approximate so-

lution φ0/γ0 = |a0|2/4. There is no wakefield, as φ0 = 0 in

the region behind the pulse where a0 = 0. In contrast, when

τ0 � 1/ωP, the forcing term proportional to |a0|2 is practi-

cally impulsive. The strength of the potential within the pulse

is φ0/γ0 ∼ a2
0ω

2
Pτ

2
0 and reaches its maximum in the tail of

the pulse. The strength of the potential in the wake is equal

to the value of the derivative immediately behind the pulse,

(∂/∂z)(φ0/γ0) ∼ a2
0ω

2
Pτ0/γ0, times the period of the plasma

wave, γ0/ωP, which gives φ0/γ0 ∼ a2
0ωPτ0. In short pulses

where τ0 � 1/ωP, the wakefield potential is much larger (by a

factor of 1/ωPτ0) than the maximal potential within the pulse.

C. When are nonlinear effects weak?

Our results are valid when the particle Lorentz factor is

nearly constant in the wave frame, so that nonlinear effects

are weak. Equation (7) shows that the condition γ± � γ0

requires a0 � γ0 and δu0z± � γ0. Since δu0z± = ±η±φ0 +
η2

±|a0|2/4γ0, one needs a0 � γ0 and φ0 � γ0. In pair plasmas

(η+ = 1), one has φ0 = 0. Then, nonlinear effects are weak

for2 a0 � γ0 = ω0/ωP. When a0 � γ0, particles are trapped

within the pulse, as their longitudinal velocity in the labora-

tory frame becomes comparable with the group velocity of the

wave [15].

2Kennel and Pellat studied the propagation of plane waves in pair

plasmas [14]. They found that the plane wave is a sine function for

a0 � γ0, whereas it has a sawtooth profile for a0 � γ0. Plane-wave

solutions in the strongly nonlinear regime a0 � γ0 may have limited

practical importance, as particles would be trapped within a pulse of

finite size.

In electron-proton plasmas (η+ � 1), nonlinear effects are

weak in the nonrelativistic limit a0 � 1. The duration of the

pulse is crucial when a0 � 1. For short pulses with τ0 �
1/ωP, the strength of the potential is φ0/γ0 ∼ a2

0ω
2
Pτ

2
0 within

the pulse, and φ0/γ0 ∼ a2
0ωPτ0 in the wake (these estimates

are valid for φ0 � γ0). When τ0 � 1/a2
0ωP, our model de-

scribes both the pulse and the wakefield. When 1/a2
0ωP �

τ0 � 1/a0ωP, the condition φ0 � γ0 is satisfied within the

pulse, whereas the wakefield is strongly nonlinear.3 Electrons

trapped in the nonlinear plasma wave can be accelerated to

Lorentz factors �γ 2
0 in the laboratory frame [13,16]. Our

model describes the evolution of the pulse, but not the wake-

field acceleration. When τ0 � 1/a0ωP, our model describes

only the leading portion of the pulse, of duration ∼1/a0ωP, as

the condition φ0 � γ0 is violated in the tail of the pulse.

III. EVOLUTION OF THE WAVE ENVELOPE

Equations (18), (19), and (22) should be complemented

with the equation that governs the evolution of the wave

envelope. Substituting Eqs. (5), (6), and (8) into Eq. (4), and

considering the resonant terms (i.e., the terms proportional to

e−iωt ), one finds

2iω
∂a0

∂t
=

(

ω2
P − ω2

)

a0 − ∇2a0

+ ω2
P

[

δρ − (1 − η+)
φ0

γ0

+
1 + η3

+

1 + η+

|a0|2

8γ 2
0

]

a0.

(23)

In the derivation of Eq. (23), we used the relations δn0+/n0 +
η+δn0−/n0 = (1 + η+)[δρ + η+|a0|2/4γ 2

0 ] and δn0+/n0 −
δn0−/n0 = (1 + η+)[φ0/γ0 − (1 − η+)|a0|2/4γ 2

0 ], where the

latter relation follows from Eqs. (14) and (20). We also ne-

glected the second-order time derivative of a0, as appropriate

because the time evolution of the wave envelope is slow.

The first term on the right-hand side of Eq. (23) is much

larger than the other terms and therefore should vanish. This

condition gives the dispersion relation of the wave, which

is ω2 = ω2
P, or, equivalently, ω2

0 = k2
0 + ω2

P in the laboratory

frame. This implies γ0 = ω0/ωP.

Equation (23) can be simplified considering specific cases.

In pair plasmas (η+ = 1), one has

i

ωP

∂a0

∂t
= −

1

2ω2
P

∇2a0 +
1

2
δρa0 +

|a0|2

16γ 2
0

a0. (24)

In electron-proton plasmas (η+ � 1), one has

i

ωP

∂a0

∂t
= −

1

2ω2
P

∇2a0 +
1

2
δρa0 −

1

2

φ0

γ0

a0. (25)

In the derivation of Eq. (25), we took into account that

φ0/γ0 � a2
0/γ

2
0 . This condition is satisfied because the

strength of the scalar potential within the pulse is φ0/γ0 ∼

3Sprangle, Esarey, and collaborators studied the pulse propagation

in the limit η+ = 0 [10–12]. Relativistic optical guiding of short

pulses was found to be suppressed when τ0 � 1/a0ωP, in agreement

with our results.
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min[a2
0, ω

2
Pa2

0τ
2
0 ]. Since in the laboratory frame the pulse is

longer than a few wavelengths, one has γ0ωPτ0 = ω0τ0 � 1,

which implies ω2
Pa2

0τ
2
0 � a2

0/γ
2
0 .

Instabilities

The effect of modulation/filamentation instabilities and

stimulated scattering processes has been originally considered

for laser plasma interaction [17–21] and, subsequently, for

pulsar radio emission [22–25] and fast radio bursts [26–31].

These instabilities can be studied within our framework. One

should find a plane-wave solution of Eqs. (18), (19), (22),

(24), and (25), and then study the evolution of a small per-

turbation of the wave intensity. We discuss the limiting cases

η+ = 1 and η+ = 0. Previous studies focusing on the nonrel-

ativistic limit a0 � 1 suggest that a kinetic model would give

the same growth rate of the instabilities as our fluid model

[17,29].

In pair plasmas (η+ = 1), one has φ0 = 0. Then, the evo-

lution of the wave envelope is governed by Eqs. (18), (19),

and (24). We study the evolution of a small perturbation of the

wave intensity by defining

a0 = n̂(1 + δa)a0 exp

[

−i
a2

0

16γ 2
0

ωPt

]

, (26)

where δa � 1, and n̂ is a unit vector (i.e., |n̂| = 1). The

dispersion relation can be determined by substituting Eq. (26)

into Eqs. (18), (19), and (24), and neglecting terms of the order

of (δa)2 (note that δa = δs = δρ = 0 is an exact solution of

these equations). It is convenient to use the variables δa + δa∗

and δa − δa∗, where δa∗ is the complex conjugate of δa.

Assuming that these variables are proportional to exp[i(K ·
x − �t )], one finds

(� + Kz )2

(

4�2

K2
−

K2

ω2
P

−
a2

0

4γ 2
0

)

=
a2

0K2
⊥

2γ 2
0

. (27)

Substituting � = −Kz + 
� into Eq. (27), and considering

long wavelengths in the longitudinal direction (i.e., Kz � K⊥
and Kz � |
�|), one finds the growth rate of the filamen-

tation instability. The maximal rate is given by (
�)2 =
−(a2

0/2γ 2
0 )ω2

P and it is achieved for wave numbers K2
⊥ �

(a0/γ0)ω2
P. The instability develops if the duration of the

radiation pulse is longer than the inverse of the growth rate.

When |
�|lz � 1 or, equivalently, a0ωPτ0 � 1, the pulse is

broken into filaments parallel to the direction of propagation.

Our framework cannot be used to study the saturation of the

instability, as the density fluctuations become large [32–34].

In the limit of infinitely massive ions (η+ = 0), one has

δs = δρ = 0. Then, the evolution of the wave envelope is

governed by Eqs. (22) and (25). We study the evolution of

a small perturbation of the wave intensity by defining

a0 = n̂(1 + δa)a0 exp

[

i
a2

0

8
ωPt

]

, (28)

and φ0/γ0 = (a2
0/4)(1 + δφ), where δa � 1 and δφ � 1 (this

solution is valid for a0 � 1). The derivation of the dispersion

relation is analogous to the case of a pair plasma. One finds

(

1 −
γ 2

0 K2
z

ω2
P

−
2γ 2

0 Kz�

ω2
P

)

(

4�2

K2
−

K2

ω2
P

)

= −
a2

0

2
. (29)

The filamentation instability (Kz = 0) develops for K2
⊥ <

a2
0ω

2
P/2. The maximal growth rate is given by �2 =

−a4
0ω

2
P/64 and it is achieved for K2

⊥ = a2
0ω

2
P/4. Consider

a plasma shell of width 
R in the laboratory frame. The

instability develops if the shell crossing time in the wave

frame, 
R/γ0, is longer than the inverse of the growth rate.

When |�|
R/γ0 � 1 or, equivalently, a2
0ω

2
P
R/ω0 � 1, the

radiation pulse is broken into filaments of transverse size,

∼1/a0ωP.

The modulational instability (K⊥ = 0) can develop in

electron-proton plasmas. When a0ω0 � ωP, wave numbers

K2
z < a2

0ω
2
P/2 are unstable and the maximal growth rate is the

same as the filamentation instability. In the laboratory frame,

the longitudinal size of the radiation intensity modulations

is ∼1/a0ω0. When a0ω0 � ωP, the growth rate is given by

�2 = −a2
0K2

z /8 and large wave numbers (K2
z > ω2

P/γ
2
0 ) are

stabilized. The modulational instability merges with stimu-

lated Raman scattering, which develops for K2
z = ω2

P/γ
2
0 .

IV. DISCUSSION

We introduced a framework to study the propagation of

strong electromagnetic waves in tenuous plasmas where ωP �
ω0. We showed that in pair plasmas, nonlinear effects are

weak for a0 � ω0/ωP. Instead, in electron-proton plasmas,

one needs either a0 � 1/ωPτ0, where τ0 is the duration of

the radiation pulse in the laboratory frame, or a0 � 1. In the

weakly nonlinear regime, the evolution of the wave envelope

is governed by Eqs. (18), (19), (22), (24), and (25).

Our results have important implications for the modeling

of fast radio bursts (FRBs). For a typical luminosity L ∼
1042 erg s−1 and frequency ν0 = ω0/2π ∼ 1 GHz, the FRB

strength parameter is a0 ∼ 200 R−1
11 , where R = 1011R11 cm

is the distance from the source (most likely a magnetar) [6,7].

The composition of the plasma surrounding the magnetar

is uncertain. A relativistic wind is formed outside the light

cylinder, which is located at the distance R ∼ 1010 cm assum-

ing a rotation period of a few seconds. Magnetar winds are

magnetized and likely composed of electron-positron pairs

[35]. On the other hand, magnetar flares can eject a significant

amount of protons with mildly relativistic speeds [36–38]. The

ejected electron-proton shell becomes weakly magnetized as

it expands [39]. Below we argue that the composition of the

plasma surrounding the source affects the observed properties

of FRBs.

FRBs may be unable to propagate on astrophysically rel-

evant scales when nonlinear effects are strong, as particles

can be trapped within the pulse. Then, the kinetic energy

of the trapped particles would eventually exceed the pulse

electromagnetic energy. A smooth pulse of duration τ0 ∼
1 ms should be produced in a proton-free environment, as the

condition a0 � 1/ωPτ0 would require an unrealistically small

density, n0 � 10−8R2
11 cm−3.

An electron-proton shell near the source may affect the

FRB time structure. Nonlinear effects are weak in the
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leading portion of the pulse, of typical duration 1/a0ωP ∼
90 n

−1/2
0 R11 ns. We envision two alternative scenarios. (i) The

leading portion detaches from the rest of the pulse, which

is therefore continuously eroded. This would produce a se-

quence of short pulses of duration ∼1/a0ωP, consistent with

the ultrafast variability of some radio bursts [40–42]. (ii) The

leading portion does not detach. The rest of the pulse may be

unable to propagate on astrophysically relevant scales. This

would produce a single short pulse, which could explain the

recently discovered ultrafast radio bursts [43]. Fully kinetic

simulations can be used to study the propagation of FRBs in

the strongly nonlinear regime.

Millisecond duration bursts with a smooth profile must

be produced in a proton-free environment, where nonlinear

effects are weaker. In unmagnetized pair plasmas, nonlin-

ear effects are weak for a0 � ω0/ωP, which requires n0 �
105R2

11 cm−3. We will show elsewhere that when the magne-

tization is large (i.e., when ωL > ωP, where ωL is the Larmor

frequency in the background magnetic field), nonlinear effects

are weak for a0 � ω0/ωL. The latter condition implies that

the magnetic field strength should be B � 1 R11 G. We will

discuss elsewhere the implications of this constraint for FRB

models.
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