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Propagation of strong electromagnetic waves in tenuous plasmas
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We study the propagation of electromagnetic waves in tenuous plasmas, where the wave frequency wy is
much larger than the plasma frequency wp. We show that in pair plasmas, nonlinear effects are weak for ay <
wy/wp, where aq is the wave strength parameter. In electron-proton plasmas, a more restrictive condition must
be satisfied, namely, either ay < 1/wpTy, Where 7y is the duration of the radiation pulse, or ayp < 1. We derive
the equations that govern the evolution of the pulse in the weakly nonlinear regime. Our results have important

implications for the modeling of fast radio bursts. We argue that (i) millisecond duration bursts with a smooth
profile must be produced in a proton-free environment, where nonlinear effects are weaker, and (ii) propagation
through an electron-proton plasma near the source can imprint a submicrosecond variability on the burst profile.
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I. INTRODUCTION

Understanding the propagation of electromagnetic waves
in plasmas is important for both laser physics and astro-
physics [1-3]. The advent of high-power laser facilities and
the discovery of bright extragalactic radio transients, i.e., fast
radio bursts, makes it crucial to consider the regime in which
electrons oscillate with relativistic velocities in the field of the
wave [4-7]. In this regime, the wave strength parameter is
ap > 1 (where qy is defined as the peak transverse component
of the electron four-velocity in units of the speed of light).

The propagation of electromagnetic waves in plasmas is
governed by Maxwell’s and two-fluid equations [1-3]. These
equations contain nonlinear terms. In the nonrelativistic limit
ap < 1, nonlinear terms can be treated as a small perturbation
by making an expansion in powers of ay [1]. This makes
it possible to study the wave propagation analytically in the
limit ap < 1. However, a systematic analytic treatment of the
relativistic regime ay >> 1 has been lacking so far.

In this paper, we develop a framework to study the prop-
agation of electromagnetic waves in the regime ay > 1. We
show that nonlinear terms can be treated as a small perturba-
tion when the plasma is sufficiently tenuous, as expected in
astrophysical systems where the frequency of radio waves can
exceed the plasma frequency by several orders of magnitude.
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We apply our framework to fast radio bursts and discuss the
imprint of the plasma surrounding the source on their time
structure.

The paper is organized as follows. In Sec. II, we present the
fundamental equations that govern the propagation of strong
electromagnetic waves. We study the fast oscillations of the
physical quantities on the timescale of the wave period, and
their secular evolution on much longer timescales. In Sec. III,
we derive the equation that governs the evolution of the wave
envelope. We present exact analytical solutions where the
wave intensity is constant and study their stability. In Sec. IV,
we discuss the implications of our results for fast radio bursts
and summarize our conclusions.

II. FUNDAMENTAL EQUATIONS

We consider a quasimonochromatic wave packet of ar-
bitrary polarization that propagates in a cold unmagnetized
plasma. In the frame where the particles ahead of the wave
packet are at rest (hereafter, the “lab frame”), the wave fre-
quency is wy and the wave vector is kpe,. We work in units
where the speed of light is ¢ = 1.

The electromagnetic fields can be presented as E =
—(m/le|) (V¢ + da/ot) and B = (m/|e|)V x a, where m is
the electron mass and e is the charge. We work in the Coulomb
gauge, namely, V -a = 0. The equation of motion can be
presented as [8]

0
(s nsa) - 2E IV x (us £ yea)]
t Y+
= —V(y+ £ n+0), (1
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where u, and u_ are the ion and electron four-velocities, and

v+ = /1 +uZ is the Lorentz factor. We defined n_ = 1 and

ny+ = m/M, where M is the ion mass. We consider both pair
plasmas (74 = 1) and electron-proton plasmas (1 < 1). The
continuity equation is

0
g(yﬂli) +V . (niuy) =0, (2)

where ny is the proper number density. We adopt the most
natural definition of the plasma frequency, namely, wp =
Var (1 + N4 )nge? /m, where ny is the electron proper density
ahead of the wave packet. The electromagnetic fields are gov-
erned by Gauss’s law, which can be presented as

- y”), 3)

no no

Vi =

. 0)1% (V+n+
L+ny

and by Ampere’s law, which can be presented as

9%a . 09 _ wh  (niug _onous) @
at? ot 1+ne\ no ny

We work in the frame that moves with the group velocity
ko/wo (hereafter, the “wave frame”). As discussed by Clem-
mow [9], in this frame the wave vector vanishes and the wave
frequency is w = «/a)(z) - k%. We solve Egs. (1)-(4) by sep-
arating the fast oscillations of the physical quantities, which
occur on the timescale 1/w, from their secular evolution,
which occurs on much longer timescales.

Before entering the details of the calculation, we anticipate
some important facts. Since the wave vector vanishes, the
spatial derivatives do not affect the fast oscillations. Then,
Egs. (1) and (2) give uy+ ~ Fn+a, and y4ny =~ const, showing
that the current nyu is proportional to a/y.. Particles ahead
of the wave packet have a large Lorentz factor, yy = wo/w.
We focus on the regime in which the particle Lorentz factor
inside the wave packet is nearly constant (i.e., y+ =~ ). In
this regime, nonlinear effects are weak, as the current be-
comes proportional to a (when y+ >~ yy, one has ny =~ ny,
from which it follows that nLuy >~ Fninpa). Since the spatial
derivatives do not affect the fast oscillations, the left-hand
side of Eq. (4) can be approximated as —w”a. Substituting
niy >~ Fninpa into the right-hand side of Eq. (4), one
finds the dispersion relation of the wave, which is w? = wp,
or, equivalently, wg - kg = a)fz, in the laboratory frame. This
implies Yy = wo/wp. We will show that the key condition
¥+ = Y can be satisfied even in the regime ag >> 1 when the
plasma is sufficiently tenuous.

A. Fast oscillations

When nonlinear effects are weak, high-order harmonics of
the fields can be neglected. Then, the vector potential can be
presented as

a=1vy,+ %aoe_i“" +c.c., 5

where c.c. is the complex conjugate of the fast oscillating term
proportional to e, The complex function a, describes the
envelope of the wave packet. The real function ¥, describes
the secular evolution of the vector potential.

The fast oscillations of the four-velocity can be determined
by substituting Eq. (5) into Eq. (1). The spatial derivatives can
be neglected if V|ay| < wag in the wave frame. Since we will
find that @ = wp, the longitudinal size of the wave packet in
the laboratory frame should be longer than a few wavelengths,
and the transverse size should be longer than the plasma skin
depth (these conditions are satisfied by radio bursts of GHz
frequency and millisecond duration that illuminate a substan-
tial fraction of the solid angle). Then, one finds

uy = —ugpe; + SugsL F %niaoe_i‘“’ +c.c., 6)

where uy = v y02 — 1 = ky/w is the four-velocity ahead of the
wave packet, and Sug, describes the secular evolution of the
four-velocity. The wave strength parameter, which is defined
as the peak transverse component of #_ in units of the speed
of light, is given by ay = max[|ay|].

Keeping corrections of the order of Suo/yy and a3/ v, the
Lorentz factor can be presented as

2 2 2.2
nilaol nia 2ot

+c.c., (1)
4yo 870

U
Y+ = Yo — —Oup+
Yo
where we neglected a term proportional to ay,. Since the
Coulomb gauge implies aq, /I, ~ ao. /I, the longitudinal size
of the wave packet should be shorter than its transverse size
(i.e., I, < I, in the wave frame, which is satisfied when the
radio burst illuminates a substantial fraction of the solid an-
gle).
The fast oscillations of the proper number density can be
determined by substituting Eq. (7) into Eq. (2). Neglecting the
spatial derivatives, one finds

2
N31ayNo o2t

+ c.c., 8)
8v¢

ny = np + dngx —
where dngy describes the secular evolution of the proper den-
sity. We will keep corrections of the order of dng. /ng.

B. Secular evolution

Now we derive the equations that govern the secular evo-
lution of the physical quantities. Here, retaining the spatial
derivatives is crucial. For example, the gradient of the ra-
diation intensity affects the dynamics of the plasma via the
ponderomotive force [1]. We refer the reader who is not inter-
ested in the details of the calculation to our final results, which
are Eqgs. (18), (19), and (22).

The secular evolution of the four-velocity can be deter-
mined substituting Eqs. (5)—(7) into Eq. (1). Averaging over
the fast oscillations, one finds

d
5(8110:{: En1V¥y) +e; x [V x Buor £ n+9y)]

2 2

nilaol

=V<8u0d —~ *4 :FTIﬂPo), )
Yo

where ¢ describes the secular evolution of the scalar
potential. In the derivation of Eq. (9), we approximated
uy/yo = 1 as appropriate because yy > 1. It is convenient to
define the variables (1 + ny)dv = dugy + n4+dup— and
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yo(1 4+ n4)dq = Supy — Sup— 4+ (1 + n4+)Y,, which are gov-
erned by

asv  ddv lao|?
— - = Ve (10)
ot 0z 4y
98 98 1— 2
05q _3%q _ o Yot ( 77+2)|a0| o an
ot 0z Yo 4)/0

In the derivation of Egs. (10) and (11), we used the identity
e, x (V x8v) =V _ 6v, —ddv,/dz. The right-hand side of
Eq. (10) is the ponderomotive force.

The secular evolution of the proper number density can be
determined by substituting Egs. (6)—(8) into Eq. (2), and av-
eraging over the fast oscillations. It is convenient to introduce
a new variable, (1 + ny)8p = dngy/ng + nydng_/ng — (1 +
n+)8v,, which is governed by

asp 3 laol®> 98p
g —— - —2 =V, -5v,. 12
TR TIVIVRT P Loon 12)

Now we study the secular evolution of the electromagnetic
fields and derive Eq. (17). Substituting Egs. (5), (6), and (8)
into Eq. (4), and averaging over the fast oscillations, one finds

L+ (82% — VY, + V%)

yowd \ 012 ot

1 <5n0+ Sl”l()_ )
23/0 no no

Sup_ (8 Snp_
_ —< oy _ oMo >e (13)
Yo Yo n

dugy

In the derivation of Eq. (13), we approximated uy/yy >~ 1 —
1/ 2;/02. Here one should keep corrections of the order of 1/ y02
because the leading terms cancel, as we show below. Since
the average physical quantities vary on a scale comparable to
the length of the wave packet, which in the wave frame is
much longer than 1/wp, one has, for example, V2, /a)lz, <
¥,- Then, the terms on the right-hand side of Eq. (13) should
nearly balance, as they are much larger than the terms on the
left-hand side. The transverse and longitudinal components of
Eq. (13) give, respectively, 6q, = ¥, /yo and

8n0+ (S}’l(),

=1+ 77+)(5qz - %) (14)
Yo

no np

Substituting Egs. (7) and (8) into Eq. (3), and averaging over
the fast oscillations, one finds

1+ 1 [bu Sug,—
772+V2¢0+_2( 0z4  OlUo; )
Yoy 2%\ » 70
_ (1 - 771)|a0|2 _ 8qu+ . (SM()Z_ _ (Si’l(H_ 51’10_
4ys Yo Yo no ny
(15)

One should combine the longitudinal component of Eq. (13)
and Eq. (15) to eliminate the large terms on the right-hand
sides. Then, one can use the approximate expression given by

Eq. (14). This procedure gives

1 (9% v, » Yoz + do 3* ¢o
S\oz e Vo T
wp dt Yo Y0 010z Y0
1 1— ao|?
——2<5q1—&>+ﬂ=0~ (16)
Yo Yo 4y()

In order to eliminate the spatial derivatives in the transverse
direction, one should substitute 8q, = ¥, /o into the trans-
verse component of Eq. (11), take the divergence of both
sides, and use the gauge condition V| - ¥, = —09v./0z.
Then, isolate the term Vi(lﬂoz + ¢0)/y0 and substitute it into
Eq. (16). This procedure gives

1<azx/f0z 0 ¢

R\ yy 922y

82 ¢0 - 1,//01
019z Yo

1 Yo\ (1 —ny)laol®
——2<5qz——7>+4—+2:o. (17)
Yo Yo Yo

The equations that govern the secular evolution of the
physical quantities [i.e., Egs. (10), (11), (12), and (17)] can
be significantly simplified by neglecting the time derivative of
lap|?. This approximation is justified because we work in the
frame that moves with the group velocity of the wave, where
the time evolution of the wave envelope is slow.! More for-
mally, one can show that d|ag|?/dt < V|ag|?> from Egs. (24)
and (25) below. In this approximation, the longitudinal com-
ponent of Eq. (10) gives 8v, = nl|ag|*/4y;. The transverse
component of Eq. (10) and Eq. (12) gives, respectively,

d8s  38s lao)?
=g VI 18
ot aZ N+ 1 4]/02 ( )
06 B
g9op _ 99p _ —8s. (19)
ot 9z

where §s =V -6v,.

One cannot neglect the time derivatives in Eqs. (11) and
(17). The reason becomes clear after a Fourier transform.
Defining 8¢, = [ d*KdS2 6, expli(K - x — Qt)], the longitu-
dinal component of Eq. (11) gives

5 — K {%ﬁ«ﬁo_(l—mnaoﬂ] 0,

K +Q Yo 4y

where we dropped the tilde. Since the time evolution is slow,
one may neglect the second-order time derivatives, and ap-
proximate K, /(K; + Q) ~ 1 — Q/K; in Eq. (20). Substituting
the resulting expression into the Fourier transform of Eq. (17),
and neglecting the second-order time derivative of ., one

'Our approximation is similar to the classical quasistatic approxi-
mation [10-12]. However, we retain the time derivative of the fluid
variables in Egs. (18) and (19), and the time derivative of the elec-
tromagnetic fields in Eq. (22). As we show below, this is crucial to
study the instabilities.
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finds
1 QK w3
(_2 ¢0 2z <1 + - P 2> @
Yo Yo wp Yo Kz Yo
QK. 1 - 2
21 <1 2>w02 _ ( 77+2)|a0| . (21)
wp Yo K Yo 470

In the derivation of Eq. (21), we neglected terms of the order
of a% / yé , which are much smaller than the term on the right-
hand side of Eq. (21) because yy > 1.

Substituting 2 = 0 into Eq. (21) would be incorrect near
the resonance K2 = wfz, / yoz, where the first term on the left-
hand side vanishes. Instead, one should substitute Kz2 =
a)l% / yoz into the second and third terms. Then, the inverse
Fourier transform of Eq. (21) gives

2 g 1B, L (nol

a)l% atdz yo a)fz, 072 Yo )/02 Y0 4)/02 '

In pair plasmas (ny = 1), one has ¢y =0, whereas in
electron-proton plasmas (174 < 1), a nonvanishing average
electric field is generated. Since the time evolution is slow,
the terms on the right-hand side should nearly balance. Then,
Eq. (22) is analogous to a forced harmonic oscillator. The
solutions of the homogeneous equation are plasma waves. In
the laboratory frame, the phase velocity of the plasma waves is
equal to the group velocity of the electromagnetic pulse [13].

When 1y > 1/wp, where 19 = [,/ is the pulse duration
in the laboratory frame, Eq. (22) has the approximate so-
lution ¢o/yo = lag|?/4. There is no wakefield, as ¢y = 0 in
the region behind the pulse where ay = 0. In contrast, when
7o < 1/wp, the forcing term proportional to |ag|* is practi-
cally impulsive. The strength of the potential within the pulse
is ¢o/vo ~ aoa)fz,rg and reaches its maximum in the tail of
the pulse. The strength of the potential in the wake is equal
to the value of the derivative immediately behind the pulse,
(0/92)(¢o/v0) ~ ajwato/yo, times the period of the plasma
wave, yp/wp, which gives ¢o/yo ~ Cl%a)pl’o. In short pulses
where 79 < 1/wp, the wakefield potential is much larger (by a
factor of 1/wptp) than the maximal potential within the pulse.

C. When are nonlinear effects weak?

Our results are valid when the particle Lorentz factor is
nearly constant in the wave frame, so that nonlinear effects
are weak. Equation (7) shows that the condition yi =~ yy
requires agp <K Yo and Sup,+ <K yp. Since Sug,+ = Enido +
nZlaol?/4yo, one needs ap < yo and ¢ <K yo. In pair plasmas
(ny+ = 1), one has ¢y = 0. Then, nonlinear effects are weak
for? ay < yo = wo/wp. When ay = yy, particles are trapped
within the pulse, as their longitudinal velocity in the labora-
tory frame becomes comparable with the group velocity of the
wave [15].

2Kennel and Pellat studied the propagation of plane waves in pair
plasmas [14]. They found that the plane wave is a sine function for
ayp < Yo, whereas it has a sawtooth profile for ag > yy. Plane-wave
solutions in the strongly nonlinear regime a, >> ), may have limited
practical importance, as particles would be trapped within a pulse of
finite size.

In electron-proton plasmas (4 < 1), nonlinear effects are
weak in the nonrelativistic limit ap << 1. The duration of the
pulse is crucial when ap > 1. For short pulses with 79 <
1/wp, the strength of the potential is ¢o/yo ~ aéa)%rg within
the pulse, and ¢g/yp ~ Cl(z)a)pl'() in the wake (these estimates
are valid for ¢yp < ). When 79 < 1 /a(z)a)p, our model de-
scribes both the pulse and the wakefield. When 1 /a%(,()p <
79 < 1/apwp, the condition ¢y K yy is satisfied within the
pulse, whereas the wakefield is strongly nonlinear.® Electrons
trapped in the nonlinear plasma wave can be accelerated to
Lorentz factors 57/02 in the laboratory frame [13,16]. Our
model describes the evolution of the pulse, but not the wake-
field acceleration. When 79 > 1/agwp, our model describes
only the leading portion of the pulse, of duration ~1/aywp, as
the condition ¢y < yy is violated in the tail of the pulse.

III. EVOLUTION OF THE WAVE ENVELOPE

Equations (18), (19), and (22) should be complemented
with the equation that governs the evolution of the wave
envelope. Substituting Egs. (5), (6), and (8) into Eq. (4), and
considering the resonant terms (i.e., the terms proportional to
e~ one finds

8a0

2ia)? = (a)f, — a)z)ao — V2a,

¢o | L+ laol
+a)p|:5p—(1—)7+)—0 + 20 a,.

1+ny 8)/0
(23)

In the derivation of Eq. (23), we used the relations éno /ng +
n+dno-/no = (1 +n8p + nylaol*/4y5] and Snoy/ng —
8no—/no = (1 +n)ldo/vo — (1 — ny)laol?/4y;1, where the
latter relation follows from Egs. (14) and (20). We also ne-
glected the second-order time derivative of ay, as appropriate
because the time evolution of the wave envelope is slow.

The first term on the right-hand side of Eq. (23) is much
larger than the other terms and therefore should vanish. This
condition gives the dispersion relation of the wave, which
is w? = w}, or, equivalently, ®§ = k3 + wj in the laboratory
frame. This implies yy = wo/wp.

Equation (23) can be simplified considering specific cases.
In pair plasmas (4 = 1), one has

LTI S SR P . i 24)
- T = a a .
wp O I M I T

In electron-proton plasmas (74 < 1), one has
i 8(10 1 2 1 1¢0
—— = ——V7ay+ -épayp — - —ay. 25
wp Ot 207 TP T o (25)

In the derivation of Eq. (25), we took into account that
#o/vo > a}/v¢. This condition is satisfied because the
strength of the scalar potential within the pulse is ¢o/yo ~

3Sprangle, Esarey, and collaborators studied the pulse propagation
in the limit n, = 0 [10-12]. Relativistic optical guiding of short
pulses was found to be suppressed when 7y < 1/agwp, in agreement
with our results.
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min[a}, wajt?]. Since in the laboratory frame the pulse is
longer than a few wavelengths, one has ypywpty = wo19 > 1,

which implies w3alt? > a3/v3.

Instabilities

The effect of modulation/filamentation instabilities and
stimulated scattering processes has been originally considered
for laser plasma interaction [17-21] and, subsequently, for
pulsar radio emission [22-25] and fast radio bursts [26-31].
These instabilities can be studied within our framework. One
should find a plane-wave solution of Egs. (18), (19), (22),
(24), and (25), and then study the evolution of a small per-
turbation of the wave intensity. We discuss the limiting cases
n+ = 1 and n4 = 0. Previous studies focusing on the nonrel-
ativistic limit ag < 1 suggest that a kinetic model would give
the same growth rate of the instabilities as our fluid model
[17,29].

In pair plasmas (74 = 1), one has ¢y = 0. Then, the evo-
lution of the wave envelope is governed by Egs. (18), (19),
and (24). We study the evolution of a small perturbation of the
wave intensity by defining

2
agp = i(l + Sa)agexp | —i % 5wl |, (26)
16y,

where da < 1, and 71 is a unit vector (i.e., |7]| = 1). The
dispersion relation can be determined by substituting Eq. (26)
into Egs. (18), (19), and (24), and neglecting terms of the order
of (8a)* (note that §a = 8s = §p = 0 is an exact solution of
these equations). It is convenient to use the variables §a + §a*
and da — §a*, where §a* is the complex conjugate of da.
Assuming that these variables are proportional to exp[i(K -
x — Qt)], one finds

(Q +Kz)2<

42 K A ) _ @K} 27

K a2
Substituting 2 = —K, + AQ into Eq. (27), and considering
long wavelengths in the longitudinal direction (i.e., K, < K,
and K, < |A]), one finds the growth rate of the filamen-
tation instability. The maximal rate is given by (AQ)? =
—(ag /27/02)0)%, and it is achieved for wave numbers Ki >
(ao/vo0)wp. The instability develops if the duration of the
radiation pulse is longer than the inverse of the growth rate.
When |AQ|l, > 1 or, equivalently, apwpty > 1, the pulse is
broken into filaments parallel to the direction of propagation.
Our framework cannot be used to study the saturation of the
instability, as the density fluctuations become large [32-34].

In the limit of infinitely massive ions (74 = 0), one has
ds = 8p = 0. Then, the evolution of the wave envelope is
governed by Egs. (22) and (25). We study the evolution of
a small perturbation of the wave intensity by defining

2
ay = i(1 + 8a)ag exp [i%wpt}, (28)

and ¢o/y0 = (a§/4)(1 + §¢), where da < 1 and §¢ < 1 (this
solution is valid for ay < 1). The derivation of the dispersion

relation is analogous to the case of a pair plasma. One finds

. GK2  23K.Q\ (49 K? _ a} 29)
w? w? K2 ®}) 2

The filamentation instability (K, = 0) develops for Ki <
a(z)a)l% /2. The maximal growth rate is given by Q’=
—aga)l%/64 and it is achieved for K? = a(z)wlz,/4. Consider
a plasma shell of width AR in the laboratory frame. The
instability develops if the shell crossing time in the wave
frame, AR/yy, is longer than the inverse of the growth rate.
When [Q2]AR/yy > 1 or, equivalently, aéwlz,AR/wo > 1, the
radiation pulse is broken into filaments of transverse size,
~1 / apwp.

The modulational instability (K; = 0) can develop in
electron-proton plasmas. When apwy < wp, wave numbers
K? < ajw} /2 are unstable and the maximal growth rate is the
same as the filamentation instability. In the laboratory frame,
the longitudinal size of the radiation intensity modulations
is ~1/apwy. When apwg > wp, the growth rate is given by
Q? = —ajK?/8 and large wave numbers (K? > wg/y;) are
stabilized. The modulational instability merges with stimu-
lated Raman scattering, which develops for KZ2 = wh V3.

IV. DISCUSSION

We introduced a framework to study the propagation of
strong electromagnetic waves in tenuous plasmas where wp
wo. We showed that in pair plasmas, nonlinear effects are
weak for ap <« wp/wp. Instead, in electron-proton plasmas,
one needs either ay < 1/wpty, Where t is the duration of
the radiation pulse in the laboratory frame, or ¢y < 1. In the
weakly nonlinear regime, the evolution of the wave envelope
is governed by Egs. (18), (19), (22), (24), and (25).

Our results have important implications for the modeling
of fast radio bursts (FRBs). For a typical luminosity L ~
10%? erg s~ and frequency vy = wy/27 ~ 1 GHz, the FRB
strength parameter is ay ~ 200 Rl_ll, where R = 101'R;; cm
is the distance from the source (most likely a magnetar) [6,7].
The composition of the plasma surrounding the magnetar
is uncertain. A relativistic wind is formed outside the light
cylinder, which is located at the distance R ~ 10'° ¢cm assum-
ing a rotation period of a few seconds. Magnetar winds are
magnetized and likely composed of electron-positron pairs
[35]. On the other hand, magnetar flares can eject a significant
amount of protons with mildly relativistic speeds [36—38]. The
ejected electron-proton shell becomes weakly magnetized as
it expands [39]. Below we argue that the composition of the
plasma surrounding the source affects the observed properties
of FRBs.

FRBs may be unable to propagate on astrophysically rel-
evant scales when nonlinear effects are strong, as particles
can be trapped within the pulse. Then, the kinetic energy
of the trapped particles would eventually exceed the pulse
electromagnetic energy. A smooth pulse of duration 7y ~
1 ms should be produced in a proton-free environment, as the
condition ay < 1/wpty would require an unrealistically small
density, np < 1078R?, cm ™3,

An electron-proton shell near the source may affect the
FRB time structure. Nonlinear effects are weak in the
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leading portion of the pulse, of typical duration 1/agwp ~
90 n, 1/ 2R11 ns. We envision two alternative scenarios. (i) The
leading portion detaches from the rest of the pulse, which
is therefore continuously eroded. This would produce a se-
quence of short pulses of duration ~1/agwp, consistent with
the ultrafast variability of some radio bursts [40—42]. (ii) The
leading portion does not detach. The rest of the pulse may be
unable to propagate on astrophysically relevant scales. This
would produce a single short pulse, which could explain the
recently discovered ultrafast radio bursts [43]. Fully kinetic
simulations can be used to study the propagation of FRBs in
the strongly nonlinear regime.

Millisecond duration bursts with a smooth profile must
be produced in a proton-free environment, where nonlinear
effects are weaker. In unmagnetized pair plasmas, nonlin-
ear effects are weak for ay < wp/wp, which requires ng <
10°R?}, cm~2. We will show elsewhere that when the magne-
tization is large (i.e., when wp, > wp, where w, is the Larmor
frequency in the background magnetic field), nonlinear effects

are weak for ap < wp/wr. The latter condition implies that
the magnetic field strength should be B < 1 Ry} G. We will
discuss elsewhere the implications of this constraint for FRB
models.
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