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Conjugator lengths in hierarchically hyperbolic groups
Carolyn Abbott and Jason Behrstock

Abstract. In this paper, we establish upper bounds on the length of the shortest conjugator between
pairs of infinite order elements in a wide class of groups. We obtain a general result which applies
to all hierarchically hyperbolic groups, a class which includes mapping class groups, right-angled
Artin groups, Burger—-Mozes-type groups, most 3-manifold groups, and many others. In this set-
ting, we establish a linear bound on the length of the shortest conjugator for any pair of conjugate
Morse elements. For a subclass of these groups, including, in particular, all virtually compact special
groups, we prove a sharper result by obtaining a linear bound on the length of the shortest conjugator
between a suitable power of any pair of conjugate infinite order elements.

The conjugacy length function is the minimal function which bounds the length of a short-
est conjugator between any two conjugate elements of a given group, in terms of the sum
of the word lengths of the elements. When a set of elements in a group has a linear conju-
gacy length function, we say that set has the linear conjugator property. For any subset of
a group satisfying the linear conjugator property, and given two elements of that subset,
there is an exponential-time algorithm which determines whether or not the given elements
are conjugate. One of Dehn’s classic decision problems is the conjugacy problem, which
asks if there is an algorithm to decide conjugacy given any pair of elements in a given
group. Even in groups where the conjugacy problem is unsolvable for arbitrary pairs of
elements, establishing the linear conjugator property for a particular subset allows one to
solve the conjugacy problem for that subset.

An early established result about hyperbolic groups is they have the linear conjugacy
property [24], thereby providing a quantitative certification of how complicated a con-
jugator needs to be. Exploiting the parallels between pseudo-Anosovs in the mapping
class group and loxodromic elements in a hyperbolic group, Masur and Minsky proved
the analogous result that the set of pseudo-Anosov elements satisfies the linear conju-
gator property [25]. These results beg the question of whether shortest conjugators of
“hyperbolic-like” elements should be linear in the length of the elements being conju-
gated (see Conjecture B for a precise formulation).

In the presence of non-positive curvature, the linear conjugator property is surpris-
ingly common, as we show in this paper, extending an already interesting class of known
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examples. Previously established cases of the linear conjugator property include the fol-
lowing: mapping class groups (established for pseudo-Anosovs in [25], generalized to all
elements in [34]; see also [2] for a later, unified proof); hyperbolic elements in semisimple
Lie groups [30]; arbitrary elements in lamplighter groups [31]; non-peripheral elements in
a relatively hyperbolic group [12]; Morse elements in groups acting on CAT(0) spaces [2];
and Morse elements in a prime 3-manifold [2]. Additionally, right-angled Artin groups
enjoy the linear conjugator property; this result is not explicitly stated in the literature, but
it follows from work in [32] (and we give a new proof below).

In light of this, we will work in the general setting of hierarchically hyperbolic groups,
introduced by Behrstock, Hagen and Sisto [5]. This class of groups is quite large, encom-
passing many groups of interest, including: mapping class groups [3]; right-angled Artin
groups, and more generally fundamental groups of compact special cube complexes [5]
and other CAT(0) cube complexes [21]; 3-manifold groups with no Nil or Sol compo-
nents [3]; and lattices in products of trees, i.e., as constructed by Burger and Mozes,
Wise, and others, see [5, 13-15, 23,26, 35]. There are a number of other examples, as
well, for instance, groups obtained from combination theorems, including taking graphs of
hierarchically hyperbolic groups and graph products of hierarchically hyperbolic groups
[3,7,33], or by taking certain quotients of a hierarchically hyperbolic group [4].

The first theorem is new for most hierarchically hyperbolic groups; it also provides
a unified proof for the previously known cases. An element in a finitely generated group
is called Morse if its orbit in the group is a quasigeodesic with the property that any
(A, ¢)-quasigeodesic beginning and ending on this orbit is completely contained within
a uniformly bounded neighborhood of this orbit. We note that Morse elements in a group
are ones whose geometry in the Cayley graph is similar to that of the axis of a loxodromic
isometry of a hyperbolic space (via the Morse lemma); in a hierarchically hyperbolic
group, the Morse elements can be characterized in several equivalent ways, see [1, Theo-
rem B].

Theorem A. Let (G, ) be a hierarchically hyperbolic group. There exist constants K, C
such thatifa,b € G are Morse elements which are conjugate in G, then there exists g € G
with ga = bg and

gl = K(la| + [b]) + C.

One special case of the above theorem is a new proof that conjugate pseudo-Anosov
elements in the mapping class group have a linear bound on the length of their shortest
conjugator; this case was the main theorem of [25].

A natural conjecture arising from Theorem A is the following generalization:

Conjecture B. In a finitely generated group, the set of Morse elements satisfy the linear
conjugator property.

Understanding exactly how the linear conjugator property is related to hyperbolic
properties in a group remains a rich question, and with Theorem A, hierarchically hyper-
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bolic groups provide a good place to study this. For instance, we conjecture that there
exist hierarchically hyperbolic groups where the conjugacy length function is exponen-
tial. Accordingly, we do not believe the linear conjugator property holds for all elements
in all hierarchically hyperbolic groups, but it does in a number of important examples,
which leads us to ask:

Question C. Under what conditions does a hierarchically hyperbolic group satisfy the
linear conjugator property for all elements?

In Section 3, we introduce a family of hierarchically hyperbolic groups in which the
notion of orthogonality carries with it not just geometric implications, but also a useful
algebraic structure. The way in which the algebraic structure is related to orthogonality
in these groups generalizes the relationship between commutativity and orthogonality in
mapping class groups and compact special groups. This family is defined through a series
of conditions called the F stabilizers, orthogonal decomposition, and commutative prop-
erties (see Section 3 for the precise definitions).

After showing in Proposition 3.10 that many groups satisfy the properties we intro-
duce and that being in this family is preserved by various combination theorems, we then
study conjugators in these groups. The following generalizes Theorem A by removing the
hypothesis that the elements are Morse:

Theorem D. Let (G, ©) be a hierarchically hyperbolic group satisfying the ¥y stabiliz-
ers, orthogonal decomposition, and commutative properties. There exist constants K, C
and N such that if a,b € G are infinite order elements which are conjugate in G, then
there exists g € G with ga® = b g and

gl = K(lal + 1b]) + C.

In particular, compact special groups (i.e., fundamental groups of compact cube com-
plexes which are special in the sense of Haglund—Wise [22]) satisfy the Fy stabilizers,
orthogonal decomposition, and commutative properties. Therefore, Theorem D holds for
all virtually compact special groups. We note that [ 17] established a linear time solution to
the conjugacy problem for fundamental groups of compact special cube complexes. This
result does not a priori establish the linear conjugator property of Theorem D, although
we believe that their approach could be used to do so.

We believe that the linear conjugator property will in general fail for cubulated groups
without the hypothesis that the cube complex is special. Our proof relies heavily on the
close relationship between orthogonality and commutation, something which can fail for
CAT(0) cubical groups which are not special, even though they may be hierarchically
hyperbolic groups. The Burger—-Mozes groups [13, 14], for instance, are plausibly a coun-
terexample; see [5, Section 8.2.2], or Wise’s construction [35].
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1. Background

1.1. Hyperbolic geometry

We begin by gathering several facts about §-hyperbolic metric spaces and refer the reader
to [11] for further details.

A map of metric spaces f:(X,dx) — (Y, dy) is a (A, ¢)-quasi-isometric embedding
ifforallx,y € X

1
Fdx(x.y) —e =dy (f(x). f()) = Adx (x.y) +c.

A (A, c)-quasigeodesic is a (A, ¢)-quasi-isometric embedding of an interval I C R into X,
and a geodesic is an isometric embedding of I into X . In both cases, we allow f to be
a coarse map, that is, a map which sends points in / to uniformly bounded diameter sets
in X. A (coarse) map f:[0, T] — X is an unparametrized (A, c)-quasigeodesic if there
exists a strictly increasing function g: [0, T’] — [0, T'] such that the following hold:

+ g(0) = f(0),

© () = J(D),

e fog:0,T'] > X isa (4, c)-quasigeodesic, and

» foreach j €[0,7’] N N, we have the diameter of f(g(j)) U f(g(j + 1)) is at most c.

If Y € X is a subspace, then for any constant K > 0, we denote the closed K-
neighborhood of Y in X by

Ne(Y)={xe X |dx(x,Y) < K}.

We may write N, Ig (Y) to emphasize that the neighborhood is being taken in X .

A subspace Y C X is o-quasiconvex if any geodesic in X with endpoints in Y is
contained in Ny (Y). The subspace Y is called quasiconvex if it is o-quasiconvex for
some 0.

If X is a geodesic metric space and x, y € X, we let [x, y] denote a geodesic from x
to y. If we want to emphasize the metric space X, we write [x, y]x.

Definition 1.1 (§-hyperbolic space). Fix § > 0. A metric space X is §-hyperbolic if given
any x, y,z € X and any geodesics «, 8, y between them, we have @ U § C N;(y). If the
particular choice of § is not important, we simply say that X is hyperbolic.

Quasi-geodesics in a hyperbolic spaces satisfy two important properties: a local-to-
global property and the Morse lemma. A path p is an L-local (A, ¢)-quasigeodesic if
every subpath p of length at most L is a (4, ¢)-quasigeodesic.

Lemma 1.2 (Local-to-global property). Let X be a §-hyperbolic metric space and fix
Lo > 0. There exists L = L({g, 8) depending only on & and £y such that if £ € [0, £y] and
y: I — X is an L-local (1, £)-quasigeodesic, then y is a global (2, {)-quasigeodesic.
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Lemma 1.3 (Morse lemma). Let X be a §-hyperbolic metric space, and fix A > 1 and
¢ > 0. There exists a constant ¢ depending only on 8, A, and ¢ such that if y1 and y, are
(A, ¢)-quasigeodesics in X with the same endpoints, then y1 S Ng(y2).

We say o is the Morse constant associated to (1, ¢)-quasigeodesics in a §-hyperbolic
space.
Let G act by isometries on a §-hyperbolic metric space X. Then € G is

* elliptic if it has bounded orbits;

* loxodromic if the map Z — X defined by n + h"x is a quasi-isometric embedding
for some (equivalently, any) x € X;

* parabolic otherwise.

Isometries of a hyperbolic space can also be characterized by their limit sets in the Gromov
boundary X of X. An element & € G is elliptic, parabolic, or loxodromic if the limit set
of h has cardinality 0, 1, or 2, respectively. If the limit set of / has cardinality 2, we call
these limit points 7.

Loxodromic isometries will play a particularly important role in this paper, and we
discuss them in more depth. For the rest of the subsection, fix a group G acting by isome-
tries on a -hyperbolic space X, and fix an element 1 € G that is loxodromic with respect
to this action. The translation length of h is [h]x := infyex dx (x, hx), or simply [A] if the
space X is clear. The stable translation length of h in X is

tx (h) := lim dx (x0. h"x0)

n—o00 n
for some (equivalently, any) xo € X. These two quantities are related by tx (h) < [h]xy <
tx (h) + 166.

The element & acts on X as translation along a quasigeodesic axis which connects the
two limit points 2 of 1 in 39X . Up to passing to powers, such an axis can be chosen to
be a uniform quality quasigeodesic, that is, with quasigeodesic constants which depending
only on é and not on the choice of loxodromic isometry. As this will be important in this
paper, we now describe the construction of such an axis. The following lemma summarizes
results from [16, Section 3].

Lemma 1.4 (Construction of an £-nerve). Let G act on a §-hyperbolic space X. Suppose
h € G is loxodromic and tx (h) > Ls8 — 168, where L depends only on § (and is more
explicitly described in [16, Definition 2.8]). Then for any £ € [0, 8], there exists a (2, {)-
quasigeodesic y,f( in X which connects the limit points h**° of h in 01X, called the £-nerve
of h. The L-nerve of h is (£ + 88)-quasiconvex and preserved by h.

We briefly recall the construction of the £-nerve and refer the reader to [16, Defini-
tion 3.3 and subsequent remark] for further details. Fix £ € [0, §]. By the definition of the
translation length [/], there exists x € X such that dx (x, hx) < [h] + £/2. Thus we can
find a (1, £/2)-quasigeodesic y from x to hx.If y haslength T, then [h] < T < [h] + £/2.
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Extend y to a bi-infinite path y,{( using the action of (h); that is, y}ff is the concatenation
of the segments /'y for i € Z. In particular, for any & for which tx (h) > Lgé — 168, we
have that y is an L gd-local (1, £)-quasigeodesic. By Lemma 1.2, )/f is therefore a global
(2, £)-quasigeodesic.

Definition 1.5 (Quasi-geodesic axis). Let G act on a §-hyperbolic space X, and fix the
constant Lg from Lemma 1.4 and a constant £ € [0, §]. Suppose & € G is a loxodromic
isometry of X, and let k € N be such that 7y (k%) > Lg8 — 168. A (2, £)-quasigeodesic
axis of h¥ in X is an {-nerve y}f‘,’(. If the quasigeodesic constants are not important, we

simply call y}ﬁ an axis of h¥.

Suppose h, g € G and h is loxodromic with respect to the action of G on a hyper-
bolic metric space X with ty(h) > Lsd — 166 and a (2, £)-quasigeodesic axis y}f( . Then
ghg™! is also loxodromic with respect to the action of G on X with translation length
tx(ghg™') = x(h), and it follows from the construction of the ¢-nerve that gy}f( is

a (2, £)-quasigeodesic axis of ghg 1.

1.2. Hierarchically hyperbolic spaces

We recall the definition of a hierarchically hyperbolic space as given in [3]. The definition
is in the setting of a quasigeodesic metric space, that is, a metric space in which any two
points can be connected by a uniform quality quasigeodesic.

Definition 1.6 (Hierarchically hyperbolic space). The quasigeodesic space (X, dyx) is
a hierarchically hyperbolic space (HHS) if there exist § > 0, an index set &, and a set
{€W:W e &} of §-hyperbolic spaces (€W, dw ), satisfying the following conditions:

(1) Projections. Thereis a set {mry: X — 2€W | W € @} of projections sending points
in X to sets of diameter bounded by some & > 0 in the various €W € &. Moreover, there
exists K such that each my is (K, K)-coarsely Lipschitz and 7y (X) is K-quasiconvex
in€wW.

(2) Nesting. © is equipped with a partial order =, and either © = & or © contains
aunique =-maximal element; when V E W, we say V is nested in W. (We emphasize that
W E W forall W € &.) For each W € ©, we denote by @y the set of IV € & such that
V E W. Moreover, for all V, W € & with V & W, there is a specified subset pg[, cew
with diamgw(p},/v) < &. There is also a projection pB’: €W — 2°Y . We call the elements
of the index set @ domains.

(3) Orthogonality. © has a symmetric and anti-reflexive relation called orthogonality:
we write VLW when V and W are orthogonal. Also, whenever V E W and W _LU,
we require that V. LU. We require that for each 7 € @ and each U € &7 for which
{Ve@r|VLU} # o, there exists W € G — {T}, so that whenever VLU and V E T,
we have V' E W. The domain W is called the container associated to U in T . Finally, if
V LW, then V and W are not =-comparable.
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(4) Transversality and consistency. If V, W € @ are not orthogonal and neither is
nested in the other, then we say V and W are transverse, denoted V th W. There exists
ko > 0 such thatif V th W, then there are sets p},{, C €W and pE’ C €V each of diameter
at most £ and satisfying

min {dW(nW(x), p;/), dy (y (x), PID/V)} = Ko

forall x € X.
For V, W € & satisfying V E W and for all x € X, we have

min {dw (7w (x), pyy ), diamey (v (x) U py/ (7w (x)))} < o,

The preceding two inequalities are the consistency inequalities for points in X.
Finally, if U E V, then dW(pI(,{,, pKV) < ko whenever W € © satisfies either V T W
orVAhWandW Y U.

(5) Finite complexity. There exists n > 0, the complexity of X (with respect to @), so
that any set of pairwise-=-comparable elements has cardinality at most 7.

(6) Large links. There exist A > 1 and E > max{£, k¢ } such that the following holds.
Let W € @ and let x,x’ € X. Let N = Adw (ww (x), 7w (x')) + A. Then there exists
{Ti}i=1,.,N] € Gw —{W}suchthatforall T € &y — {W},either T € G, for some i,
ordr (7 (x), 77 (x")) < E. Also, dw (rw (x), pai) < N foreach i.

(7) Bounded geodesic image. There exists E > 0 such that forall W € &, all V €
Gw — {W}, and all geodesics y of €W, either diamgv(p‘lﬁ/()/)) <EoryN~Ng (pg,) *O.

(8) PFartial realization. There exists a constant « with the following property. Let {V}}
be a family of pairwise orthogonal elements of &, and let p; € ry; (X)) € €V;. Then there
exists x € X so that

¢ dy;(y;(x), pj) < forall j,
» foreach j and each VV € @ with V; £ V, we have dV(nV(x),pI‘;f) < «, and
o if W h V; for some j, then dw (7w (x), p;ﬁ) <a.

(9) Uniqueness. For each k > 0, there exists 6,, = 6, («x) such that if x, y € X and
dx(x,y) > 6y, then there exists V € & such that dy (y (x), 7ty (y)) > «.

For ease of readability, given U € &, we typically suppress the projection map wy
when writing distances in €U, i.e., given x,y € X and p € €U, we write dy (x, y) for
dy (wy (x), 7y (y)) and dy (x, p) for dy (wy (x), p). When necessary for clarity, we may
also write €(U) instead of €U .

An important consequence of being a hierarchically hyperbolic space is the following
distance formula, which relates distances in X to distances in the hyperbolic spaces €U
for U € ©. Give a, b € R, the notation {a}}; denotes the quantity which is a if a > b
and is 0 otherwise. Given C, D, we say a <c,p b if Cla—D<b<Ca+ D.Weuse
ax<pbifla—b| <D,andweusea <¢,p bifa <Cb + D.
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Theorem 1.7 (Distance formula for HHS, [3]). Let (X, &) be a hierarchically hyperbolic
space. Then there exists so such that for all s > s, there exist C, D so that forall x,y € X,

dx(x,y) =e,0 Y Adu(x, y)hs.

UeG

The distance formula says that the distance between two points in X can be approxi-
mated by measuring the distances between their projections to the hyperbolic spaces, and,
moreover, that we only need to consider hyperbolic spaces for which that projection is
sufficiently large.

Definition 1.8 (Relevant domains). For any constant R > s¢ and any two points x, y € X,
we say U € @ is relevant (with respect to x, y, R) if dy(x, y) > R; if we want to empha-
size the constant R, we say that U is R-relevant (with respect to x, y). We denote the set
of R-relevant domains by Rel(x, y; R).

In other words, the set of R-relevant domains for a pair of points x, y € X are the
domains which appear in the distance formula for x and y with the threshold s = R.

Notation 1.9. Given a hierarchically hyperbolic space (X, @), we let E denote a con-
stant greater than any of the constants occurring in Definition 1.6 and greater than the
constant 5o from Theorem 1.7.

Definition 1.10 (Hierarchy path). Given a hierarchically hyperbolic space (X, ©) and
aconstant A > 1, a (A, A)-hierarchy path y C X is a (A, 1)-quasigeodesic in X with the
property that for each U € & the path 7y () is an unparametrized (A, A)-quasigeodesic
in€U.

By [3, Theorem 4.4], for any sufficiently large A, any two points x, y € X are con-
nected by a (4, A)-hierarchy path. We fix such a constant A > E, and let u(x,y) € X
denote a (A, A)-hierarchy path from x to y.

Definition 1.11 (Hierarchically hyperbolic group). A finitely generated group G is a hier-
archically hyperbolic group if some (hence any) Cayley graph of G is a hierarchically
hyperbolic space, and the hierarchically hyperbolic structure is G-invariant. In particular,
a hierarchically hyperbolic group is a finitely generated group G, equipped with a specific
choice of finite generating set, such that there is a hierarchically hyperbolic space (G, &)
satisfying the following properties:
e G acts cofinitely on &, preserving the relations =, th and L.
 Foreach U € @ and g € G, there is an isometry g: €U — €(gU), and if h € G,
h
then the isometry gh: €U — €(ghU) is equal to the composition €U — € (hU) LN
€(ghU).
* ForeachU € @ and g, x € G, we have gy (x) = mou(gx).
e ForeachU,V € @suchthat U h V or U & V and each g € G, we have pgg = gpg.
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Given a hierarchically hyperbolic group (G, @), we use dg to denote the distance in
the group G with respect to some (fixed) finite generating set.

1.3. Gate maps and standard product regions

In analogy with quasiconvex subspaces of hyperbolic spaces, there is a notion of a hierar-
chically quasiconvex subspace of a hierarchically hyperbolic space X .

Definition 1.12 (Hierarchically quasiconvex). Let (X, ©) be a hierarchically hyperbolic
space. A subspace Y of X is k-hierarchically quasiconvex for some k: [0, co) — [0, co)
if the following hold:

(1) Forall U € @, the projection 7y (¥) is a k(0)-quasiconvex subspace of €U.

(2) For every k > 0 and every point x € X satisfying dy (wy (x), 7y (¥Y)) < k for all
U € G, we have dy(x,Y) < k(k).

The first condition says that the subspace ¥ projects to a (uniformly) quasiconvex
subspace in every hyperbolic space, while the second condition ensures that all points
in X which project near ¥ in every hyperbolic spaces are near ¥ in X.

As is the case for quasiconvex subspaces of hyperbolic spaces, if ¥ is a hierarchically
quasiconvex subspace of a hierarchically hyperbolic space X, then there is a well-defined
“nearest point projection” from X to Y, called a gate map.

Definition 1.13 (Gate maps). If (X, @) is a hierarchically hyperbolic group and ¥ is
a hierarchically quasiconvex subspace of X, then the gate map is a coarsely-Lipschitz
map gy: X — 2Y, so that for each x € X, the image gy(x) is a subset of the points in ¥
with the property that for each U € & the set 7y (gy(x)) uniformly coarsely coincides
with the closest point projection in €U of 7y (x) to my (¥).

The following lemma shows that gate maps are uniformly coarsely equivariant.

Lemma 1.14 ([29, Lemma 4.16]). Let (G, ©) be a hierarchically hyperbolic group, and
let Y be a k-hierarchically quasiconvex subspace of G. Then there exists a constant A
depending on (G, ©) and k such that for every g, x € G, we have

de(gay(x). ggy(gx)) < A.

We now recall an important family of hierarchically quasiconvex subspaces in a hier-
archically hyperbolic space called standard product regions introduced in [5, Section 13]
and studied further in [3]. The definition we give can be found in [28, Definition 2.20] and
is also discussed in [4, Section 1.2.1] .

Definition 1.15 (Standard product region). Let (X, &) be a hierarchically hyperbolic
space, and let U € &. The standard product region for U is the set

Py ={x e X |dy(x,pY) < Eforall V € GwithV h UorV 2U}.

Note that if S € © is C-maximal, then Pg = X.
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In other words, given U € @ and V € & satisfying V th U or V 2 U, the product
region Py is precisely the set of points which project near pg in €V It thus follows from
this definition that for such U, V', we have pg =g ny (Py); that is, the projection pg is
coarsely equal to the projection of the product region Py € X into €V.

Though it is not obvious from this definition, the product region Py is quasi-isometric
to a space with decomposes as a direct product of two factors, Fy and Ey. As these
factors will be important in this paper, we describe them in detail. See [3, Section 5.2]
for additional details. We first define Fyy and Ey as abstract spaces. In the paragraphs
following the definitions, we explain that these spaces admit embeddings into X. Unless
otherwise noted, we will always think of these embeddings, rather than the abstract spaces
themselves.

Definition 1.16 (Nested partial tuple (Fy)). Let Gy ={V € @ | V EU}. Fixk > E
and let Fyy be the set of «x-consistent tuples in HVE@U 2%V (i.e., tuples satisfying the
consistency inequalities of Definition 1.6 (4)).

Definition 1.17 (Orthogonal partial tuple (Ey)). Let 6{; ={Ve®|VLIU}U{W},
where W is a E-minimal element such that V = W for all V_LU. Fix k > E, and let Ey
be the set of k-consistent tuples in I—[VG@#_{A} 28V,

Remark 1.18. The particular choice of constant x will not be important in this paper. For
simplicity, given a hierarchically hyperbolic group, we fix x = E, and for each domain U
we consider only spaces Fy and Ey defined using E-consistent tuples.

Given X and U € G, there is a well-defined map ¢y :Fy x Ey — X. The precise
definition of this map is not necessary for this paper; we refer the interested reader to [3,
Construction 5.10]. The product region Py defined in Definition .15 is coarsely equal to
the image ¢y (Fy x Ey) in X. In this paper, we will only work with Py and Fy . For all
results that we state for Fy, analogous statements also hold for Ey;.

Fixing any e € Ey restricts ¢y to amap ¢=:Fy x {e} — X. In general, this map ¢p=
depends on the choice of e € Eyy. When the basepoint is immaterial (or understood), we
abuse notation and consider Fy to be a subspace of X, that is, Fy = im ¢=.

It is proven in [3, Lemma 5.5] that standard product regions Py and their factors
Fy x {e} for each e € Ey (considered as subspaces of X') are uniformly hierarchically
quasiconvex. Therefore, there are well-defined gate maps gp,, : X — Py and gg,, xfe): X —
Fy x {e} foreach U € @ and each e € Ey.

Remark 1.19. We note that the gate map gg, x{e) depends on the choice of e € Ey.
However, the image of the gate map in €V for any V' E U is independent of this choice
(see [4, Remark 1.16]). That is, if e, ¢’ € Ey, then for any x € X, we have

Ty (QFU x{e}(x)) =Tny (QFU x{e’} (x)).

In statements where we only consider the image of the gate map in the hyperbolic spaces,
we simplify notation and write gy, .
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The following lemma provides a formula for computing the distance between a point
and a product region. It is an immediate consequence of [6, Corollary 1.28]; we give
a sketch of the proof here for completeness.

Lemma 1.20 ([6]). Let (X, ©) be a hierarchically hyperbolic space. Fix U € & and let
Y={YeG|YhUorY 2U}. Thenforall s > so and any x € X,

d(x.Py) <c.p Y _{dy (x.p§)}s.
Yey

where so, C, and D are the constants from Theorem 1.7.

Sketch of proof. To each bounded set A C X, we associate a tuple (A )y eg Whose com-
ponents are the projections of 4 to €V for each V € &, i.e., Ay = my(A). We will
consider the case 4 = gp, (x) C Py. By [4, Remark 1.16],if V E U or V L U, we have
v (gpy (X)) = my (x). Combining this with the definition of Py (Definition 1.15), we
have

v ifV ey
oy ifVed,

wy(x) otherwise.

(gpy (X))y = {
There is a constant K¢ depending only on (G, ©) such that

dx (x,Py) =k, dx(x, gpy (X))

by [6, Lemma 1.27]. From the above discussion, we see that the only components of the
tuple (xy)yeg associated to x and the tuple (gp, (x))veg associated to gp,, (x) which
differ in €V occur when V' € ¥. Thus the distance from x to gp, (x) in X can be approx-
imated using only the domains V € ¥. ]

Lemma 1.20 gives the following geometric picture. Let x,y € X and U € &, and
consider x’ = gp,, (x) and y’ = gp, (¥). Let VV be a domain that is relevant for x and y.
Then any distance in €V contributes either to the distance from x or y to the product
region Py or to the distance within Py, but not both (see Figure 1). In particular, if V th U
or V 21 U, then V is relevant for either x, x’ or y, y’ but not for x’, y’. Any other V is
relevant for x’, y’ but not for x, x" or y, y’.

1.4. Axial elements in hierarchically hyperbolic groups

Let (G, ©) be a hierarchically hyperbolic group, and fix the constant L g from Lemma 1.4
and ¢ € [0, §]. (Note that the constant § is part of the definition of (G, ©); see Defini-
tion 1.6.) Following [18], for an element 2 € G we define

Big(h) = {U € & | wy ({h)) is unbounded}.

Lemma 1.21. Let (G, ©) be a hierarchically hyperbolic group. An element h € G is finite
order if and only if Big(h) = @.
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Py

Figure 1. Geometric picture of Lemma 1.20. Domains which are relevant for x, y are relevant for
either the horizontal red segment or (at least one of) the vertical red segments.

Proof. In [18, Proposition 6.4], it is proven that an element & € G is elliptic if and only
if Big(h) = @. The result follows from this since a group element acts elliptically on its
Cayley graph if and only if the element is of finite order. ]

Definition 1.22 (Axial element). An element 7 € G with Big(h) # @ is called axial.

Lemma 1.21 shows that every infinite order element of a hierarchically hyperbolic
group is axial. By [18, Lemma 6.7], the elements of Big(k) are pairwise orthogonal.
As the number of pairwise orthogonal domains in a hierarchically hyperbolic group is uni-
formly bounded by the constants in the definition of a hierarchically hyperbolic space [3,
Lemma 2.1], it follows that |Big(#)| is uniformly bounded independently of the choice
of h. As noted in [18], since h: €U — €(hU) is an isometry, we have hU € Big(h)
whenever U € Big(h). Moreover, by [18, Lemma 6.3], there is a constant M depending
only on the constants in the definition of a hierarchically hyperbolic space such that for
allh € G and U € Big(h), we have "M U = U. In other words, by passing to a uniform
power, we may assume that % fixes its big set elementwise. Moreover, by passing to this
uniform power, we may assume that / is a loxodromic isometry of €U for any U € Big(h)
by [19, Theorem 3.1]. We let 7y (1) denote the stable translation length of % in this action
and let y}lj be a (2, £)-quasigeodesic axis of & in €U (see Definition 1.5).

Remark 1.23 (Acylindrical actions). The action of a group G on a metric space X is
acylindrical if for all &€ > 0, there exist constants R(¢g), N(¢) > 0 such that forall x,y € X
satisfying dx (x, y) > R(¢), there are at most N(g) elements g € G for which

dy(x,gx) <e and dx(y.gy) <e.

By [5, Theorem K], G acts acylindrically on €S, where S is the E-maximal element of ©.
An immediate consequence of this is a lower bound on the translation length tg (%) that
depends only on the hierarchy constants [10, Lemma 2.2].

Let U € @&, and let H be a subgroup of G which fixes U, so that H acts on €U.
IfU # S, itis not necessarily the case that H acts acylindrically on €U, and it remains an
open question whether there is a uniform lower bound on 7y () in general. We deal with
this issue in the present paper by assuming such a uniform lower bound as a hypothesis.



Conjugator lengths in hierarchically hyperbolic groups 817

Hierarchical acylindricity is a standard assumption requiring that the action of H on €U
is acylindrical for all such U this would also ensure a uniform lower bound on translation
length.

The following lemma is a straightforward consequence of the hyperbolicity of the
spaces €U.

Lemma 1.24. Let (X, ©) be a hierarchically hyperbolic space, and let G be a group
acting geometrically on X.. Fix a basepoint xo € X, the constant Lg from Lemma 1.4,
and £ € [0, 8]. Then there exist constants Ko, L > 0 such that the following holds. Let
h € G be an axial element so that hU = U for each U € Big(U) and ty(h) > Lgé.
For any k > Kq let x', y’ € €U be the closest points on y,fj to y (xo) and wy (h*xo),
respectively.

There exists a point & on the subpath of y;? from x’ to y' such that dy (§,x") < L and

dy (§. mu (u(x. y))) = L.

Proof. Recall that the image of any (A4, A)-hierarchy path in €U is a (unparametrized)
(A, A)-quasigeodesic. Since the axis of 4 in €U is a (2, £)-quasigeodesic, the concatena-
tion (in the appropriate order) of 7wy (1 (xo, h*x0)), [mv (x0). X'lev, [ru (¥ x0), y'ev,
and a subpath of y,(lj forms a (2, £)-quasigeodesic quadrilateral Q in €U. Let M be the
Morse constant associated to (2, £)-quasigeodesics in a §-hyperbolic space. Fix K¢ so that
LséKo > 48 +4M + 1, and let k > Kj. Note that K is independent of the choice of
axial element /.

The quadrilateral Q is (2M + 2§)-thin, that is, given any point z on a side of Q, there
is a point on one of the other three sides of Q at distance at most 2§ + 2M from z. Let v
and w be points on the subpath of y' between x” and y’ so that dg (x', v) = [48 + 4M +1]
and ds(y’, w) = [48 + 4M + 1]. We claim that the subpath 8 of y}? from v to w is
contained in the (26 + 2 M )-neighborhood of 7y (1 (x, v)). Let z be a point on the subpath
of y,? from x’ to y’. Then there is a point z’ on one of the other three sides satisfying
dy(z,z') < 2M + 25. Suppose z’ lies on the geodesic [y (x), x']. As x’ is the nearest
point on y,? to x (hence also to z’), we must have

dy(z',x") <dy(z',z) <2M + 26.

The same holds if z’ lies on the geodesic [y (), ¥']. Thus if z lies on B, then z” must lie
on 7y (U(x,y)), as desired.

Since the map 7y is G-equivariant and, in particular, h* 7y (xo) = 7y (h¥ xo), we also
have y’ = h*x’. Thus

dy(x’,y") > kty(h) > KoLgd > 45 +4M + 1.

It follows that S is non-empty. We let £ be the point on 8 closest to x’, so that dy (£, x') =
[45 +2M + 1]. Taking L = [48 + 2M + 1] completes the proof. L]
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2. Proof of Theorem A

Let (G, @) be a hierarchically hyperbolic group. The authors and Durham show in [1,
Corollary 3.8] that by possibly changing the hierarchy structure on G, we may assume
that (G, &) has unbounded products. In this paper, we do not directly use the definition
of unbounded products, rather we only need the following consequence about Morse ele-
ments in the structure (G, ©), which follows from [1, Theorem 4.4 and Corollary 5.5]: if
h € G is an infinite order Morse element, then £ is axial and Big(h) = {S}, where S is
the E-maximal element of &.

We begin by fixing the constants that will be used throughout the proof. Definition 1.6
provides a constant § such that €U is §-hyperbolic for all U € &. Let Lg be the constant
from Lemma 1.4, and fix £ € [0, §]. Let E be as in Notation 1.9; in particular, £ is larger
than any of the hierarchy constants for G. Let T be the lower bound on translation length
in the acylindrical action on €S noted in Remark 1.23. Fix A > max{2, £} so that any two
points x, y € G are connected by a (A, A)-hierarchy path. Let K¢, L be the constants from
Lemma 1.24, and fix a constant R > 2F.

Finally, set

4L +3E
K = max {28,R, Ko, [L]

+2, 2L}. @.1)
This constant K is uniform, in the sense that it depends only on the hierarchy constants
for (G, ©).

Leta, b € G be two infinite order Morse elements and suppose there exists g € G such
that ga = bg. Since (G, ©) has unbounded products, we have Big(a) = Big(b) = {S}.
For simplicity of notation, we denote the asymptotic translation length of b in €S by t(b).
Note that S is fixed by the action of G on &. Since g conjugates a’ to b’ for any i € Z,
we first replace a and b by sufficiently high powers so that t(b) > Lg§. By Remark 1.23,
such a power can be chosen uniformly (that is, depending only on the hierarchy constants,
and not the choice of elements a and b).

Let yp = )/lf be a (2, £)-quasigeodesic axis of b in €S. Then y, = y5 = g7y, is
a (2, £)-quasigeodesic axis of a in €S. We now fix a quadrilateral of (A, A)-hierarchy
pathsin G: u(1.g), w(1,6%), bX (1. g) = w(bX.b¥g), and gu(1,b%) = (g, gb*) =
n(g.a¥g).

Our first step is to replace g with a different conjugator whose length we are able
to bound in G. Since K > Ky, we may apply Lemma 1.24 to each of the axes Y, ¥p
in €S and the points 1,aX € G and 1, X € G, respectively. This yields a point z’ € y,
and a point w’ € y, such that z' € N (s(iu(1, aX))) and w’' € N (s (u(1, bX))).
Moreover, if x is a point on y, nearest to ws(1) and y is a point on y, nearest to
75 (1), then dg(z’, x) < L and ds(w’, y) < L. See Figure 2. Let z € g (u(1,aX)) and
w € ws(u(1, bX)) be points nearest to z’ and w’, respectively. Since g fixes S, we have
gzens(u(g, ga®)) =ns(u(g,hbXg)) C€S and gz’ € gy, = yp. Since g is an isometry,
we have dg(gz’, gx) = ds(z/,x) < L.
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<L+8 75 (gb%) = m5(aKg)

Figure 2. The geometry of the axes of ¢ and b in €.

By possibly premultiplying g by a power of b, we may assume that ds (gz’, w’) < t(b)
(while still conjugating a to b). Thus we have

ds(y,gx) <ds(y,w') +ds(w’, gz') + ds(gz’, gx) < v(b) + 2L. (2.2)

Our goal is to bound the length of this new conjugator, which, by abuse of notation,
we will still call g.
We will show that for each U € &, we have

du(1,g) <2Kdy(1,b) +du(g.b%g) + K, (2.3)

where K is asin (2.1). After establishing this bound for each U € &, we apply the distance
formula (Theorem 1.7) with threshold R to obtain

de(1,g) <c,p 2Kdg(1,b) + dg(g,h%g) + K.

Finally, we use the fact that dg (g, hX g) = dg (g, ga®) = dg(1,aX) < Kdg(1,a), which
establishes that
dg (1, g) =c.D 2Kdg(1, b) + Kdg(l,a) + K,

where C, D are the constants given by the distance formula (Theorem 1.7). (Note that by
assumption, R is sufficiently large to serve as a threshold in the distance formula.) This
will provide the desired bound in G.

FixU € G.If U ¢Rel(1, g; R), then we have dy (1, g) < R < K, and (2.3) holds. Thus
we assume for the rest of the proof that U € Rel(1, g; R). There are two cases to consider:
either U = S or U = S. We will deal with each of these possibilities individually.

Case 1: U = S. In this case, we have (as seen in Figure 2):
ds(1,g) < ds(l,w) 4+ ds(w,w’) +ds(w’, gz') + ds(gz’, gz) + ds(gz. g)
<ds(1,b%) + 2L + t5(b) + ds(g,b% g)
< 2Kds(1,b) + ds(g.6%g) + K,
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where the final inequality follows from the fact that dg (1, 5) > t5(b) and (2.1). Therefore,
(2.3) holds in this case.

Case2: U = S. Aswe are assuming that U is R-relevant for 1, g, we must have pg ces
is contained in the E-neighborhood of a geodesic in €S from n5(1) to ws(g) by the
bounded geodesic image axiom (Definition 1.6 (7)). As geodesic quadrilaterals in §-hy-
perbolic spaces are 2§-thin, it follows that pg is contained in the (E + 26)-neighborhood
of [rs(1), y] U [y, gx] U [gx, ms(g)], where these are geodesics in €S. Since x and gx
are the nearest point projections of wg(1) and 7g(g) onto yp, respectively, it follows
from (2.2) that the projection of [rs(1), y] U [y, gx] U [gx, ms(g)] onto yp has diam-
eter at most 7(b) + 2L. In particular, since nearest point projection maps in hyperbolic
spaces are Lipschitz, the nearest point on yp to plS] is distance at most t(b) + 2L + E
from y.

By an analogous argument, if U is also R-relevant for bk, bk g, we must have that
pg is contained in the (E + 28)-neighborhood of [rs (bX), bk y] U [b¥y, b¥gx] U [bF gx,
w5 (b¥ g)]. In particular, the nearest point on y; to pg is at distance at most 7(b) + 2L + E
from bKy.

However, our choice of K in (2.1) ensures that

ds(y.6%y) = Kt(b) > ([ﬂ} + 2)f(b) > 4L + 3E + 21(b),

which is a contradiction. Thus U is not R-relevant for bX, hX g, and so
duy (b%,p%g) < R.
Therefore,

du(l,g) < du(1,b%) + dy 0%, p%g) + du (¥ g.g)
< Kdy(1,b) + dy (0%, b%g) + R
< Kdy(1,b) + dy (bX,bXg) + K,

where the final inequality follows from our choice of K in (2.1).
Hence (2.3) holds in this case, which completes the proof of Theorem A. [

3. A family of hierarchically hyperbolic groups

In this section, we highlight three properties which isolate some of the nice features of
compact special groups and which appear in many other contexts as well. We will show in
Proposition 3.10 that many hierarchically hyperbolic groups satisfy these three properties,
which we call Fy stabilizers, orthogonal decomposition, and commutativity.

Fix a hierarchically hyperbolic group (G, ©). If U € & is a collection of pairwise
orthogonal domains, we denote the container of U in S by Cq (Definition 1.6 (3)); by
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definition, each domain V' which is orthogonal to every U € U is nested into Cq. We
say G has clean containers if for every collection of pairwise orthogonal domains U, the
container Cyy is orthogonal to every U € U. If U = {U}, we write Cy instead of Cyy;.

Recall that for any domain U € &, we identify Py with Fyy x Ey (see the discussion
after Definition 1.17). If a subgroup H < G fixes a domain U € & (in the action of G
on @), then whenever V E U or V 1 U, wehave hV = U or hV L U, respectively, for
each h € H. It follows that H stabilizes the product region Py and each of its factors
FU and EU.

Definition 3.1. For any U € @, let Gy be the subgroup of G that fixes U in the action
of G on © and that stabilizes Fyy x {e} for each ¢ € Ey.

Equivalently, Gy is the subgroup which stabilizes each factor of Fyy x Eyy and acts as
the identity on the second factor. We note that when G has clean containers, the second
factor Ey is isometric to F¢, by Lemma 3.6.

Example 3.2. Right-angled Artin groups and, more generally, compact special groups,
provide a good example to have in mind when reading this section. With the standard hier-
archically hyperbolic group structure given in [5], such groups are hierarchically acylin-
drical, and have clean containers [1, Proposition 7.2]. One nice property of right-angled
Artin groups is that two elements commute if and only if all the generators in a cycli-
cally reduced factorization of one of the elements commute with all the generators in
a cyclically reduced factorization of the other element. Hence, in the Salvetti complex of
a right-angled Artin group, G, we have that two elements span a periodic plane if and
only if they commute. Similarly, if a group is compact special it embeds as a quasiconvex
subgroup of a right-angled Artin group and thus inherits this property as well. Further, if
a group is virtually compact special, then, up to taking powers, two elements commute
if and only if they span a periodic plane. For these groups U, V € & are orthogonal if
and only if they have associated subcomplexes of the cube complex which span a direct
product. Hence, it follows that given U, V' € @ which are orthogonal, the subgroup which
fixes U in the action on & and which stabilizes the subset Fy x {e} for each e € Ey
has the property that it commutes with the similarly defined subset for V. In other words,
elements of Gy and Gy commute. In particular, if g € G fixes each U; € Big(G), then g
can be written as a product of elements in Gy, .

3.1. The Fy stabilizers, orthogonal decomposition, and commutative properties

We will now extract and formalize the properties which we described above for right-
angled Artin groups.

3.1.1. The Fy stabilizers property. Since (G, ©) is a hierarchically hyperbolic group,
there is a finite fundamental domain & for the action of G on &. We may choose &’ to
have the property that for each U € @', there exists e € Ey such that 1 € Fyy x {e}, where 1
is the identity element of G. We denote this copy of Fy by Fy. For such domains U,
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we always have Gy < Fy. To see this, consider any f ¢ Fy. Since 1 € Fy and f =
f -1 €Fy, the element f does not stabilize Fy, so f & Gy.
The first property says that for all U € &', the sets Fyy and Gy are coarsely equal.

Definition 3.3 (Fy stabilizers). A hierarchically hyperbolic group (G, ©) satisfies the Fyy
stabilizers property if there exists a constant v depending only on the hierarchy constants
such that dg (f, Gy) < v foreach U € & and any f € Fy.

The Fy stabilizers property implies that for domains U € &', the subgroup G inherits
many geometric properties from Fy, including hierarchical quasiconvexity. In a hierar-
chically hyperbolic group, there is a function k: [0, o) — [0, 0co) so that for any U € ©,
the subspace Fy is k-hierarchically quasiconvex [3, Construction 5.10]. If the group has
the Fy stabilizers property, then since Gy and Fy are at uniformly bounded distance
whenever U € &', there is a function k’: [0, o0) — [0, 00) depending only on k and E so
that the subgroup Gy is also hierarchically quasiconvex for any U € &’. It then follows
from [3, Lemma 5.5] that there is a well-defined gate map g, : G — Gy . Moreover, for
any g € G, each coset gGy of Gy is also k’-hierarchically quasiconvex in G, so we also
have a well-defined gate map ggG,: G — gGy. These gate maps will be important for
defining the two additional properties we introduce in this section.

The next lemma says that (Gy7, ©y ) is a hierarchically hyperbolic group, where ©y =
{Ves|VEU}.

Lemma 3.4. Let (G, &) be a hierarchically hyperbolic group satisfying the Fy stabilizers
property. Forany U € @', (Gy, @y ) is a hierarchically hyperbolic group.

Proof. The Fy stabilizers property says that the subgroup Gy is at uniformly bounded
distance from Fy . In particular, Fyy and Gy are quasi-isometric. Since (Fy, ©y ) is a hier-
archically hyperbolic space [3, Proposition 5.11], this immediately implies that (Gy, ©y)
is a hierarchically hyperbolic space, where the associated hyperbolic spaces and maps are
the same as those for (Fy, ©y). It remains to show that (Gy, Sy) is a hierarchically
hyperbolic group. For this, note that Gy stabilizes ©y by definition. Since (G, &) is
a hierarchically hyperbolic group and Gy < G, the four additional conditions from Def-
inition 1.11 hold because they hold for the action of G on &. For example, since G acts
cofinitely on @ and preserves the relations =, M, and L, so does Gy . Similar arguments
show the other three conditions hold. ]

3.1.2. The orthogonal decomposition property. The next property allows any infinite
order element which fixes a collection of pairwise-orthogonal domains {Uj, ..., U} to
be decomposed into a product of elements in Gy, . Before defining this property, the fol-
lowing lemma establishes that for eachi = 1,.. ., k, there is a preferred Fy, x {e;} which
we denote by Fy,. The careful reader will note that if U; is already in the fundamental
domain &', then the choice given by the lemma is consistent with our previous choice
of F U;-
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Lemma 3.5. Let (G, ©) be a hierarchically hyperbolic group with the ¥y stabilizers
property, and let U = {Uy, ..., U} be a maximal collection of pairwise-orthogonal
domains in @. Then there exist t € G and copies Fy, x {e;} such that the following hold
foralli:

* U; =tU] for some U] € &@';

* Fy x{ei} = 1Fy;

* Gy, =tGyt™;

* dg(t, gpy (1)) < Ev, where v is the constant from Definition 3.3.

Proof. Consider the product region Py associated to U, and let ¢’ be any point in gp,, (1).
For the first part of the proof, it will be convenient to distinguish between the abstract
product region Pyy = Fy, x --- x Fy, and its image ¢91(Py) € G (see the discussion after
Definition 1.17). Let (¢{,...,#;) € Py be such that ¢y (¢, ...,7;) = t". We will adjust
each ¢/ individually to find a new point (¢1, ..., fx), which will determine the points e; in
the statement. At the i th stage, we change the ith coordinate of the point in Pq; to ensure
that it lies in a coset of Gy, that is completely contained in the associated copy of Fy;,.
In subsequent steps, we will adjust later coordinates: this may change which coset of Gy,
the point lies in, but it will simultaneously translate the copy of Fy, so that this new coset
is still contained in the new copy of Fy,, as desired. After changing all coordinates, the
desired element ¢ will be ¢ (t1, ..., t%)-

We begin with i = 1. Since @’ is a fundamental domain, there are some f; € G and
U{ € & such that ¢y (Fy, .15, ..., t,’c) = fl/IFUl/. Since GU{ C IFUl/, we have fl/GU{ C
ouFu,, té, o t,’(). By the Fy stabilizers property, there is an element #; € Fy, with
de(t',pu(tr,ty, ... 1)) < vand py(tr, 45, ... 1) € f{Gyy.

We fix t; from the previous paragraph and consider i = 2. The point ¢ (t1.15, . ..., 1;)

is in ¢y (t1, Fu,. 15, . .., t,/(). Again, as above, there are some f, € G and Uy € @' for
which ¢y (11, Fu,. 15, ..., t,’() = fz/IFUZ/. Also, as above, we can find an element 7, € Fy,
with dg (Pu(ti. ty, . ... 1), pulti t2. 15, . ... 1)) < vand py (i1, 12,13, ..., 1) € f,Gy;.
Continuing in this way for each i yields a point (t1,%,...,%) € Fy, x--- x Fy,.

Letting t = ¢ (t1,- .., tx), it follows from the triangle inequality that
dg(t’,t) <kv < Ev, 3.1

where the final inequality holds because any collection of pairwise orthogonal domains
has cardinality bounded by E.

We now return to our convention of identifying P with its image ¢q,(Py) € G. We
have shown that, for each i, we have t € Fy, x {e;} for some e;. Precisely,

J_ ~
e; =¢U(l‘1,...,ti,...,tk),

where #; indicates that the term #; does not appear in the tuple.
We now show that Fy, x {e;} satisfies the conclusion of the lemma for each i. The
final bullet point holds by (3.1).
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There is an element f; € G such that Fy, x {e;} = f,-IFUI/, where U; = f;U/, and
t € fiGy,. Thus fiGUi’ =1Gy,, and Gy; = tGy,t™!, so the third bullet point holds.
Also, since t = f;qg; for some g; € GUir, we have

tFy; = fiqiFy; = fiFy,,

so the second bullet point holds. Finally, tU/ = fiq;U/ = f;U; = U;, which shows that
the first bullet point holds and concludes the proof of the lemma. ]

The following lemma is presumably well known, but is not in the literature. An imme-
diate corollary of this is that an axial element fixes the container associated to its big set.

Lemma 3.6. Let (G, ©) be a hierarchically hyperbolic group with clean containers, and
let {Uy, ..., U} be a (non-maximal) collection of pairwise orthogonal domains. There
exists a unique C € & such that if for each i, a domain V € & satisfies V 1L U;, then
VEC.

Proof. First, by Definition 1.6 (3), some C exists with the desired property, what is needed
is to prove uniqueness. So suppose that both C and C”’ satisfy this property. Since the
containers are clean, each of C and C’ is orthogonal to U; for each i. Thus, since C is
a container and since C’ is orthogonal to all the U;, we must have that C’ £ C. Similarly,
C C C'.Thus C = C’, as desired. n

Definition 3.7 (Orthogonal decomposition). Let (G, @) be a hierarchically hyperbolic
group with clean containers which satisfies the Fy; stabilizers property, and let 2 € G be an
infinite order element. Let {U1, . .., Ui 41} be a maximal collection of pairwise orthogonal
domains of & so that Big(h) = {Uy, ..., Ux} and Uy is the container associated to
Big(h) in S. Suppose i € G fixes Big(h) elementwise. By Lemma 3.5, there exist t € G
and, for each i = 1,...,k, a domain U/ € & with U; = tU]. The label of the vertex
8:Gy, (h) is th; for some h} € G,; € Fy;. Define

hy, == thit™" € 1Gy;t™! = Gy, (3.2)

The group (G, @) satisfies the orthogonal decomposition property if the following
two properties hold for all axial elements 4 € G. First, there is a uniform lower bound on
the translation length ty, (h) for each U; € Big(h) (this uniformity only depends on the
hierarchy constants and not the choice of /). Second, after possibly relabeling the domains
of Big(h), we have

h=hyhy, ... hy, = thll .. .h;cl‘_l.

We say hy, hu, . . . hy, is a decomposition of h.

This decomposition may depend on the order of the factors. In particular, it may be
the case that iy, does not commute with hU]., because elements of Gy, and GUj may
not commute. However, the final property we discuss will require that such elements do
commute, and so the order of the factors will not be important for the groups we consider.
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3.1.3. The commutative property. The final property ensures that Gy and Gy commute
whenever U L V.

Definition 3.8 (Commutative property). A hierarchically hyperbolic group (G, @) with
the Fy stabilizers property satisfies the commutative property if [Gy, Gy] = 1 whenever
ulv.

The following lemma is a consequence of the commutative property.

Lemma 3.9. Letr G be a hierarchically hyperbolic group satisfying the ¥y stabilizers,
orthogonal decomposition, and commutative properties. Let h € G be an axial element
which fixes Big(h) = {H1, ..., Hi} elementwise, and let C be the clean container asso-
ciated to Big(h). Then there exists a uniform constant K such that (hX)c = 1, where
(h®)¢ is the factor corresponding to C in the decomposition of hX with respect to
{Hy,...,Hy,C} and 1 is the identity element of G¢ < G.

Proof. First, note that by Lemma 3.6, & fixes {Hy, ..., Hi, C} elementwise, and so the
decomposition h = hy, ... hg hc of h with respect to this set is well defined. Recall
that hc € G¢ is an element of the hierarchically hyperbolic group (G¢, ©G¢). Since
C ¢ Big(h), hc is not an axial element of G¢. Therefore, ic must be finite order by
Lemma 1.21. By [20, Theorem G], there are finitely many conjugacy classes of finite order
elements in a hierarchically hyperbolic group, and therefore there is a uniform constant K
such that hg is the identity element of G¢.

By the commutative property, we have

WK = (g, .. hahe)® = (p)X . ()X (he)® = ()X ... (hm)X.
From this decomposition, it is clear that (h1X)¢c = 1. [

3.1.4. Examples. We now give several examples of hierarchically hyperbolic groups sat-
isfying the three properties defined above. Moreover, additional examples can be built
using combination theorems, of which there are several in the literature (see, for instance,
[3,7,8,27]).

Proposition 3.10. Let E be the set of hierarchically hyperbolic groups with clean contain-
ers which satisfy the Fy stabilizers, orthogonal decomposition, and commutative proper-
ties. Then the following groups are in E:

(1) hyperbolic groups,
(2) compact special groups,
(3) groups hyperbolic relative to a collection of groups in &, and
(4) direct products of groups in E.
Proof. We consider each class of groups in turn.

(1) The statement is immediate for hyperbolic groups G, as they all admit hierarchi-
cally hyperbolic structures with a single domain S, and the action on €. is acylindrical.
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For this domain, F is a Cayley graph of the group and Gs = G. As there is no orthogo-
nality, the orthogonal decomposition and commutative properties vacuously hold.

(2) For compact special groups, we use the standard structure described in [3]. This
structure satisfies the three properties by a completely analogous argument to the one
given for right-angled Artin groups in Example 3.2.

(3) Let G be a group which is hyperbolic relative to a collection & of hierarchi-
cally hyperbolic groups with clean containers satisfying the Fy stabilizers, orthogonal
decomposition, and commutative properties. Then G is a hierarchically hyperbolic group
by [3, Theorem 9.1] and has clean containers by [1, Proposition 7.4]. For each P € 7, let
(P, ©p) be a hierarchically hyperbolic group structure for P, and for each left coset gP,
let ©, p be a copy of Gp, with the associated hyperbolic spaces and projections. Let G be
the hyperbolic space formed from G by coning off each left coset of each P € #. Then
the hierarchically hyperbolic group structure on G is given by & = {G} Ugpegp Ggp.
The domain G is the unique E-maximal domain, and if U € Ggp and V € G4/ pr, where
gP # g’ P’ then U M V. We refer the reader to [3, Section 9] for details of this structure,
but note one important feature of the structure (G, ©): any pair of orthogonal domains are
contained in some gP € G&P.

We first check that the Fy stabilizes property holds. A fundamental domain for the
action of G on & is given by @ = {G} Upep Gp.LetU € &.1fU = G, thenFy = G
and Gy = G, so the property holds for this domain. Now suppose U € Gp for some
PeP. ThenFy C P.If g & P,then gFy C gP # P,and so g &€ Gy . Therefore, Gy is
a subgroup of P in this case. Since (P, G p) satisfies the Fy stabilizers property, it follows
that (G, @) does, as well.

We now check the orthogonal decomposition property. Since G is hyperbolic relative
to J#, every infinite order element & € G is either loxodromic with respect to the action
of G on G, in which case Big(h) = {@} or is conjugate into some P € &, in which case
we consider the conjugate ghg ™! € P. In the first case, the action of G on G is acylindri-
cal, and so there is a uniform lower bound on the translation length of /4, and we have the
trivial orthogonal decomposition of /. In the second case, there is a uniform lower bound
on the translation length of ghg™! in each domain in Big(ghg~!) by the assumption
that each P satisfies the orthogonal decomposition property. Translation length is invari-
ant under conjugacy, and so we obtain a uniform lower bound on the translation length
of & in each domain in Big(/). There is also an orthogonal decomposition of ghg™!
coming from the assumption on (P, Gp). Since Big(h) = g~ ! Big(ghg™!), conjugating
each term in the decomposition of ghg™! by g~! yields an orthogonal decomposition
for h.

Finally, the commutative property follows immediately from the construction of the
orthogonal decomposition in the previous paragraph and the fact that (P, Sp) satisfies the
commutative property for each P € £.

(4) Assume G = G x G, and suppose (G1, ©1), (G2, S,) are hierarchically hyper-
bolic groups with clean containers which satisfy the Fy stabilizers, orthogonal decom-
position, and commutative properties. Then G is a hierarchically hyperbolic group by [3,
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Proposition 8.27] and has clean containers by [1, Proposition 7.3]. The hierarchy structure
on G isgivenby © = {S,U;, U} UG, UG, U{Vy | U € ©; U &,}, where S is the
unique E-maximal element, U; is a domain into which all domains in &; nest, and for
each U € &;, the domain Vy is a domain into which all domains in &; with j # i and all
domains in &; orthogonal to U nest. The only important relation between domains for this
proof is orthogonality. In addition to any orthogonality among domains in &; or &,, we
have that all domains in &; are orthogonal to all domains in &,, U; L Uz, and Vy L U
for each U € &; U &,. By construction, (G, ©) has clean containers. See [3, Section 8]
for further details on this structure.

When we refer to subsets of G; or the (G;, &;) structure, we append a superscript i to
the notation. For example, if U € &;, then F’U is the corresponding subset of G;.

We first check the Fy stabilizers property. If U = S, there is nothing to check, so sup-
pose first that U € @;. Let G}, denote the subgroup from the structure (G1, &) which
stabilizers F%] x {e} foreache € Eb In the structure (G, @), there are additional domains
orthogonal to U; in particular, every domain in &, is orthogonal to U. We have Fy = F}],
but now Ey = Eb x G,. Therefore, we have (g1, g2) € Gy if and only if g; € Gllj and
g2 = 1. Thus Gy ~ G, x {1}. Since (G, ;) satisfies the Fy stabilizers property, G, is
coarsely equal to F%, The above discussion then implies that G is coarsely equal to Fyy.
Similarly, if U € &, then Gy ~ {1} x G2, and we again have that Gy is coarsely equal
to Fy.

Suppose next that U = U;. Then Fy = Gy, and Ey = G,. Since G is the direct
product of G and G,, we have that Gy, = G, and so Gy, is coarsely equal to Fyy. The
analogous argument holds if U = U,.

Finally, fix U € &, and consider the domain V. Let Cy be the container associated
to U in the C-maximal domain of ;. Then Fy, = Ey = E}, x G, = FICU x G,, and
Ey, = Eg,, . It follows that Gy, ~ G x Gs. Since Fg, is coarsely equal to G, , we
also have that Fy,, is coarsely equal to Gy,,, as desired. An analogous argument holds if
we fix U € &,. Therefore, (G, ©) satisfies the Fy stabilizers property.

The orthogonal decomposition and commutative properties both follow immediately
because they hold in each (G;, ©;) and G and G, commute. [

The Fy stabilizers, orthogonal decomposition, and commutative properties all involve
orthogonality and properties of product regions. Hence, intuitively, if a combination the-
orem does not add any additional orthogonality relations (or only in a trivial way, such
as by adding domains whose associated hyperbolic space is bounded diameter), then such
a combination of groups in E should, in general, yield a group in E. For example, we
expect that trees of groups in E satisfying the hypotheses of the combination theorem
in [3, Theorem 8.6] are also in E. In particular, combined with Proposition 3.10 (3), (4),
this would show that for hierarchically hyperbolic groups 71 (M) where M is the funda-
mental group of compact 3-manifolds with no Nil or Sol in its prime decomposition, then

mp(M)isin E.
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3.2. A non-example: the mapping class group

We briefly explain why the standard hierarchy structure on the mapping class group fails
to satisfy the Fy stabilizers property. Notwithstanding this fact, we believe that a mod-
ification of the properties from this section can be used to make the present approach
work for the mapping class group, as well. We do not carry this out, though, because the
approaches we see for doing so are all technical, and the present results are already known
for mapping class groups. We record this fact for those using these properties in the future
with an eye towards other applications.

The standard hierarchically hyperbolic group structure & on the mapping class group
of a surface S is described in [3, Theorem 11.1]. The domains U € & correspond to
homotopy classes of essential, not necessarily connected, open subsurfaces U C S. Two
domains are orthogonal if the corresponding subsurfaces are disjoint. In particular, the
annuli about the boundary curves of a subsurface do not intersect the subsurface; thus
an annulus around a boundary curve is a domain orthogonal to the subsurface. A finite
fundamental domain &’ for the action of ME€E(S) on & is provided by taking a collec-
tion of subsurfaces, one for each homeomorphism type of subsurface. For each U € &',
Fy is coarsely equal to the mapping class group of the subsurface associated to U, and
Ey is coarsely equal to the mapping class group of the complementary closed subsur-
face S - U.

One subtlety in the hierarchically hyperbolic structure on mapping class groups is
that while elements of ME€E(S) supported on disjoint subsurfaces commute, elements
supported on disjoint closed subsurfaces are distinct, while two elements supported on
disjoint open surfaces may coincide. A simple example of this is found by taking a product
of elements in a once-punctured torus which generate the Dehn twists along the boundary.
Taking the genus two surface obtained by doubling along the boundary curve, we see
that we can generate the same Dehn twist by a product of elements on either of the open
once-punctured tori separated by that curve.

Associated to a closed subsurface V', which includes its boundary components, is an
element of & consisting of the disjoint union of the interior of V', which we will denote
by I;, with annuli around the elements o, . . ., o of V. The Dehn twist about a boundary
curve in dV can be represented as a product of mapping class elements supported on the
interior of V', even those these are orthogonal domains. Accordingly the stabilizer of I;
in the action of G on G, is (p0551bly up to finite index if V' is homeomorphic to S — V')
a central extension of M‘€‘§(V) X MEEG(S — V) by Z*, where Zk is generated by Dehn
twists along the boundary curves «;, see, e.g., [9]. The domains V S — V, and the annuli
around each ¢; form a maximal collection of pairwise orthogonal domains. If this was
a semidirect product instead of a central extension, this would yield the Fy stabilizers
and orthogonal decomposition properties. However, the fact that M‘Cﬁ(f}) does not act
cocompactly on Fyy means that the Fy stabilizers property does not hold in this structure.

We note, though, that any open subsurface U is contained in a larger subsurface U
obtained by taking the union of U and all the annuli which bound U. For this sub-
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surface U, the subgroup Gy of the mapping class group of S which stabilizes Fyy and
fixes Ey pointwise can be identified with MEE(U). This is a weaker version of the Fy
stabilizers property. We expect that this weaker version might be useful in future work.'

3.3. Conjugators in hierarchically hyperbolic groups
We are now ready to prove Theorem D, which we restate for the convenience of the reader.

Theorem D. Let (G, ©) be a hierarchically hyperbolic group satisfying the ¥y stabiliz-
ers, orthogonal decomposition, and commutative properties. There exist constants K, C
and N such that if a,b € G are infinite order elements which are conjugate in G, then
there exists g € G with ga® = bN g and

gl = K(la| + 1b]) + C.

Proof. Fix a hierarchically hyperbolic group (G, @) and a finite fundamental domain &’
for the action of G on @ as at the beginning of this section. Assume that (G, ©) satis-
fies the Fy stabilizers, orthogonal decomposition, and commutative properties. For each
U € &, we fix Fy = Fy x {e} as described in Lemma 3.5.

We fix the same constants as in the beginning of the proof of Theorem A, and let o
be the Morse constant for (A, A)-quasigeodesics in a §-hyperbolic space. Fix the func-
tion k’: [0, c0) — [0, 00) so that Gy is k’-hierarchically quasiconvex whenever U € &',
and let A be the constant from Lemma 1.14 applied to k’-hierarchically quasiconvex sub-
spaces. We further increase R so that R > max{3E + A, E + Ev + A+ v,s0} and K
so that

AL + 48 + E
K = max {25, 3R, Ko, {L] +2,2L + 26,
6E + A 1
%35 +20—}. (3.3)

Let a, b € G be two infinite order elements, and suppose there exists g € G such that
ga = bg. Then g Big(a) = Big(b). Let C be the container associated to Big(b) in S,
so that Big(b) U {C} = {By,..., Bx, C} is a maximal collection of pairwise orthogonal
domains. Since g conjugates a’ to b’ for any i, we first replace a and b by sufficiently
high powers so that the following conditions are satisfied:

(a) Big(a) and Big(b) are fixed pointwise by a and b, respectively;

(b) b has the decomposition b = by - - - by with respect to Big(h) = {By,..., Bx,C},

where b; = bp, is as in (3.2);
(¢) y(b) = Lgé forevery V e Big(b).

'We note that a related property to this is studied in forthcoming work of Montse Casals-Ruiz, Mark
Hagen, and Ilya Kazachkov.
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Such powers exist and can be chosen uniformly (that is, depending only on the hierarchy
constants, and not on the choice of elements @ and b) by the discussion after Defini-
tion 1.22 in the first case, the orthogonal decomposition property and Lemma 3.9 in the
second case, and the assumed bound on translation length in the orthogonal decomposi-
tion property in the third case. Lemma 3.5 applied to Big(b) provides an element t € G
such that b; = tb;, where b; € Gy € Fyy for U] € @ and U; = tU] foralli =1.... k.

For each Z € Big(b), let be be a (2, £)-quasigeodesic axis of b in € Z. Then y§ iz, =
g Vb is a (2, £)-quasigeodesic axis of a in €(g~!Z). We now fix a quadrilateral of
(A, A)-hierarchy paths (1, g), u(1, b%), bXu(1, g) = n(bX,bXg), and gu(1, b¥) =
n(g, gb%) = p(g,aXg) in G.

Step 1: Changing the conjugator. Our first step is to replace g by a (possibly) different
conjugator whose length we are able to bound in G. We will do this by first premulti-
plying g by a power of b; € Gp, for each B; € Big(bh). By the commutative property,
any power of b; commutes with b, and so this new element will still conjugate a to b.
This is analogous to how we changed the conjugator in the proof of Theorem A, when
Big(a) = Big(h) = {S}. In that situation, the orthogonal decomposition of b was simply
b = bg, and we premultiplied the conjugator by a power of b. In the current situation,
we need to be a bit more careful because not only may b have more than one term in
its orthogonal decomposition, but now Big(a) and Big(h) may be different collections
of domains. Because of this, we will need to estimate distances in multiple hyperbolic
spaces. Finally, we will alter g in the clean container C associated to Big(b).

Fix Z € Big(b) and let bz = Qng?) Since K > Ky, we may apply Lemma 1.24
to each of the axes yb in ©Z and y5 Zin ‘C(g_IZ) and the pomts 1,aX € G and
1,b% e G, respectively. This ylelds a point 2/ € y& 'z and a point w’ € yb such that
2" € Np(mg-17(u(l, a®))) and w’ € N (w7 ((1,bX))), where these nelghborhoods are
taken in €g~!Z and €Z, respectively. Moreover, if x is a nearest point on yZ 'z to
Te-17(1)in €(g~ 1Z) and y is a nearest point on yb to rz(1) in €Z, then

dg-1z(x,z') <L and dz(y,w’) < L.

Let z € mg—17(u(l, a®)) and w € 7z (u(1, bX)) be nearest points to z’ and w’, respec-
tively, so that dg-17(z,z") < L and dz(w, w’) < L. See Figure 3.

C(g'2)

Jlg—lz(l) ﬂg—lz(aK)

wz(1)

Figure 3. The geometry of the axes of @ and b in €g~1 Z and € Z, respectively.
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Since the isometry g maps €(g~'Z) to €Z, we have gz’ € gyf;rlz

grg-1z(u(1,a%)) = nz(u(g, ga®)) = nz(u(g. b g)). Moreover,

= be and gz €

dZ(ng gZ/) = dg_IZ(Z»Z/) E L and dZ(gZ/a gx) = dg_lz(z/vx) E L

By possibly premultiplying g by a power of bz, we may assume that dz(gz’, w’) <
7z(b). Moreover, this new element also conjugates a to b, because bz commutes with b
by the commutative property.

We perform the above procedure for each Z € Big(b) and possibly premultiply g by
a (possibly different) power mz of each bz .

We now alter g in the clean container C associated to Big(b). Let £ € G be as in
Lemma 3.5 applied to {Bj,..., By, C}, so that C = tC’ for some C’ € &'. The label of
the vertex g;G.(g) istgc’, where gc» € Ge» € Fer. Let gc 1= tgcit™! € Ge.

We claim that gglg conjugates a to b and dy (1, gElg) < A for each V E C. The
commutative property and condition (b) ensure that gEl commutes with b, hence gal g
conjugates a to b.

We have

Fc (8¢'8) =<4 8¢ BgcFe(8) =18/t gFc (8).
where the first estimate follows from Lemma 1.14 and the second from the definition

of gc and the fact that gcF¢c = Fc.
By the Fy stabilizers property, dg (aF. (g). a6 (g)) < v. We also have

tgcit g6 (g) = tgott T (tger) = t.
Thus

dg (1. gFc(8¢'8)) < dg(t.1gc/ 17 grc (8)) + da (18!t are (8). 8 (8¢ 8))
<v+A. 3.4

By [4, Remark 1.16] and Remark 1.19, we have 7y (gr. (gc'¢)) = 7v (gc' ). Since the
projection maps 7 are Lipschitz, it thus follows from (3.4) that dy (¢, gElg) <A+ v for
alV EC.

By Lemma 3.5, we have dg (¢, gpo, (1)) < Ev, where U = {Bj, ..., By, C}. The only
domains which are E-relevant for 1, gp,, (1) are those which are transverse to some ele-
ment of U or into which some element of U properly nests by Lemma 1.20. In particular,
dy (1,gpq, (1)) < E forall V £ C. By the triangle inequality and the fact that the maps 7y
are Lipschitz, we have forall V = C

dy(1.g¢'g) < dy(1.gpy (1)) +dy(gpy, (1).1) +dy(t.gc'e) <E+Ev+A+v <R.

This yields a new element (]_[ZEBig(b) bgz)gglg, which also conjugates a to b. We
have shown that this new conjugator, which by an abuse of notation we still call g, satisfies
the following properties:

dz(y,gx) <dz(y,w') +dz(w’, gz') +dz(gz'.gz) < tz(b) +2L  (3.5)
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for each Z € Big(b), and
dy(l,g) <R (3.6)

whenever V C C.

Step 2: Bounding the length of g. Our goal is to bound the length of g in G. As in the
proof of Theorem A, we will show that for each U € &, we have

du(l.g) <2Kdy(1,b) +dy(g.b%g) + K, (3.7)

where K is as in (3.3). After establishing this bound for each U € &, we then apply
the distance formula with threshold R and the fact that dg (g, bXg) = dg (g, ga®) =
dg (1, a%), which, as in the proof of Theorem A, establishes that

dg(1,8) Zc,p 2Kdg(1,b) + Kdg(1,a) + K,

where C, D are the constants given by the distance formula (Theorem 1.7). (Note that by
assumption, R is sufficiently large to serve as a threshold in the distance formula.) This
will provide the desired bound in G.

Fix U € G. If U ¢ Rel(1, g; R), then we have dy (1, g) < R < K, and (3.7) holds.
Thus we assume for the rest of the proof that U € Rel(1, g; R). There are five cases to
consider: there is some Z € Big(b) such that U = Z; there is some Z € Big(b) such that
U = Z; there is some Z € Big(b) such that U 23 Z; there is some Z € Big(b) such that
UhZ,andU L Z forall Z € Big(b).

Cases 1 and 2. There is some Z € Big(bh) suchthat U = Zor U & Z.

These two cases follow almost exactly as in the proof of Theorem A, the distinction
being that Z plays the role of S and we measure distances in both €(g~!Z) and €Z.
In case 2, one must also use (3.5) in place of (2.2).

Case 3. There is some Z € Big(b) suchthat U 22 Z.

By our choice of K, we have KT > E, and thus dz(1,bX) > E. Applying the
bounded geodesic image axiom (Definition 1.6 (7)) to 7y (u(1, b%)) in €U, we obtain
,05 C Neto(my(u(1,bX))) in €U, and hence

du(1, p%) <dy(1,b%) + E + 0. (3.8)
Additionally, g7 Z € Big(a) and g7'U 22 g~ Z. The choice of K ensures that
dg-1z(1.a®) > E.
so applying the bounded geodesic image axiom to 7y (1 (1, aX)) in €(g~1U) yields
pgﬂU C Ne4o(mu (u(l,a®)))
in€(g7U). Applying the isometry g, we obtain

gps_ _1U C Neto(gmg-1p(n(1.a%))) = Neso(ru (n(g. b5 g)))
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7y (g) my (bKg) = ny (gak)

Figure 4. Case 3.

in €U. See Figure 4. Morggwer, projection maps in a hierarchically hyperbolic group are
G-equivariant, and so gpg ,15 = ,05. Thus
-1
du(g. pf) = du (g, 80%17) < du(g.bXe) + E +o. (3.9)
Therefore, by the triangle inequality, (3.8), and (3.9), we have
du(1,g) < dy (1, pZ) + diamey (pZ) + d(pZ. g)
< dy(1,6%) +3E + 20 +du(g.0%g)
< Kdy(1.b) + dy(g.6%¢) + K.
where the final inequality follows because K > 3FE + 20.

Case 4. There is some Z € Big(b) such that U th Z.
Consider the product region Pz, and let £ = gp,(g) and v = gp,(g). See Figure 5.

bkg — gak

Figure 5. Conjugate elements a and b, with conjugator g, in G. Solid segments are hierarchy paths,
while dotted segments are geodesics.

Since we are assuming that U is relevant for 1, g and U h Z, it follows from Lem-
ma 1.20 that U € Rel(1, &; R) U Rel(g, v; R). As b is loxodromic with respect to the
action on € Z for all Z € Big(h), we have dz (v, bXv) > Ktz(h) > KT > R. Thus Z €
Rel(v, bXv; R). Similarly, Z € Rel(&,bX&; R). Note that this implies Z € Rel(1,5%; R) N
Rel(1,5X&; R) N Rel(g, bXg; R) N Rel(g, bXv; R), as well.
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Claim 3.11. IfU is R-relevant for g, gv, then U is not R-relevant for bXv, bX g. If U is
R-relevant for 1, £, then U is not R-relevant for bX &, bX.

Proof. We will prove the first statement. The proof of the second statement is completely
analogous.

Since U is relevant for g, v, the domain bXU € @ is relevant for bXv, bX g. More-
over, since b fixes Big(h) pointwise, we have bXZ = Z. As U i Z, we must also have
bKU h Z. From this, we apply the G-equivariance of the projections maps in a hierar-
chically hyperbolic group to conclude that bX pg = p%KU in €Z. Thus we have

K
dz(p5.p% V) =dz(p5.b%pY) =g Krz(b) = KT.

Since Z € Big(b), Lemma 1.20 implies that Z is not s-relevant for g, v for any s > 5.
In particular, since £ > s, the distance between 7wz (g) and 7z (v) in €Z is bounded
by E. On the other hand, since U is R-relevant for g and v, it follows from [3, Proposi-
tion 5.17] that any hierarchy path (g, v) in G has a subpath which is contained in the
E-neighborhood of Py . Since the projection maps 7 are Lipschitz, we have

dz(nz(Py),nz(u(g,v))) < E. (3.10)

Recall that plZ] =g 7z (Py) (see comments after Definition 1.15). Thus (3.10) implies

dz(pg. w2z (1u(g.v))) < 2E.

Since 7z (i(g, v)) is an unparametrized (A, 1)-quasigeodesic, it is contained in the o-
neighborhood of a geodesic in €Z from wz(g) to wz(v). By the above discussion, such
a geodesic necessarily has length at most E. Therefore,

dz(05.g) <3E +o.

By the triangle inequality, we have

dz(p%.b%g) > dz(g.b%g) —dz (0. 8) = Ktz(h) —dz(p5. )
> KT —(RE +0)>3E + 4,

where the final inequality follows from our choice of K > M;"“. See Figure 6.
Therefore, d Z(plZ], bXg) is large enough to apply the consistency inequalities (Defini-
tion 1.6 (4)), yielding

du (o5, 0% g) < E. (3.11)

The same argument bounding the distance in € Z between g and v applies to show
that Z is not E-relevant for bX g, gp, (bX g). By Lemma 1.14, we have bXv =<4 gp, (bKyg).
Therefore, Z is not (E + A)-relevant for v, b*v, and so 7wz (bXg) <pi4 nz(bXV)
in € Z. It follows that

dz(0%.b%v) =2p 14 dz (05,05 g) > 3E + 4,
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nz(g) S KT nz(bKg) = nz(gak)
=E+to < E
¥ , ?
U e nz(g gv]) 7 (0K gv)
- mz(g)
<FE

Figure 6. The arrangement of points in €Z in the proof of Claim 3.11 in case 4.

from which we conclude d Z(pg, bKv) > E. Thus we may again apply the consistency
inequalities, yielding
du (pf.b¥v) < E.

Combining this with (3.11) and applying the triangle inequality yields
dy (b® g, b%v) < dy(b® g, pf) + diamey (0f) + du (o, b*v) < E+ E + E = 3E.
Since R > 3F,we have U ¢ Rel(bK, bKv: R). This completes the proof of the claim. =

Suppose first that U € Rel(1, &; R) N Rel(g, v; R). Then by the claim, we have that
U ¢ Rel(bX,bKE; R) URel(hX g, h%v; R). By Lemma 1.20 and the fact that U th Z, this
is equivalent to U ¢ Rel(hX,hXg: R). Thus dy (bX,bKg) < R, and so we have,

du(1,8) < du(1,6%) +dy(g.6%¢) + R < Kdy(1,b) +dy(g.b%¢g) + K.

Now suppose that U ¢ Rel(1, &; R) N Rel(g, v; R). Since, as previously noted, it fol-
lows from Lemma 1.20 that U € Rel(1, &; R) U Rel(g, v; R), we must have either U €
Rel(1,&; R) or U € Rel(g, v; R). Suppose without loss of generality that U € Rel(1,£; R)
but U ¢ Rel(g, v; R). It follows from the claim that U ¢ Rel(bX, hX&; R). Moreover, by
Lemma 1.20, we have dU(bK &,v) < R. Therefore,

du(1,8) < dy(1,6%) + dy (X, bKE) + dy (bXE,v) +du (v, g)
< Kdy(1,b)+ R+ R+ R
< Kdy(1,b) + K,

where the final inequality follows because K > 3R. Thus (3.7) holds regardless of whether
U € Rel(1,&; R) NRel(g, v; R).

Case 5. U L Z forall Z € Big(b).

Note that U L Z for all Z € Big(b) if and only if U = C, where C is the container
associated to Big(h) = {Bj, ..., B }. Thus the bound dy (1, g) < R follows immediately
from (3.6).

This completes the proof of Theorem D. ]
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Remark 3.12. Theorem D establishes the linear conjugator property for suitable powers
of pairs of conjugate infinite order elements. In particular, the conjugator whose length
we bound in these theorems may not conjugate a to b. There are two additional steps
necessary to extend the ideas in these proofs to show the linear conjugator property holds
for all pairs of conjugate infinite order elements. First, one would have to deal with the
fact that an element may permute the elements in its big set, an issue we avoid by passing
to a power to assume that the big set is fixed elementwise. This is likely not a serious
problem. Second, one would need to understand the conjugator length function for finite
order elements. Recall that in the decomposition of b in the proof of Theorem D, the
factor b¢ corresponding to the container associated to the big set of b was a finite order
element of the corresponding sub-hierarchically hyperbolic group (G¢, S¢). We passed
to a power so that we could assume this factor was trivial. If we do not pass to a power,
we need a different way to modify the conjugator in that sub-hierarchically hyperbolic
group G¢. To do this, we need to understand conjugators of finite order elements. The
conjugator length function for finite order elements of hierarchically hyperbolic groups is
unknown, hence this second step is currently out of reach.
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