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Abstract
Wegive several sufficient conditions for uniform exponential growth in the setting of virtually
torsion-free hierarchically hyperbolic groups. For example, any hierarchically hyperbolic
group that is also acylindrically hyperbolic has uniform exponential growth. In addition,
we provide a quasi-isometric characterization of hierarchically hyperbolic groups without
uniform exponential growth. To achieve this, we gain new insights on the structure of certain
classes of hierarchically hyperbolic groups. Our methods give a new unified proof of uniform
exponential growth for several examples of groups with notions of non-positive curvature.
In particular, we obtain the first proof of uniform exponential growth for certain groups
that act geometrically on CAT(0) cubical spaces of dimension 3 or more. Under additional
hypotheses, we show that a quantitative Tits alternative holds for hierarchically hyperbolic
groups.

1 Introduction

Afinitely generated grouphas (uniform) exponential growth if the number of elements that can
be spelled with words of bounded length grows (uniformly) exponentially fast with respect
to any finite generating set. Exponential growth rates and uniform exponential growth rates
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are of interest in a broad range of areas, including differential geometry, dynamical system
theory, and the theory of unitary representations (see [28] and citations therein).

Gromov asked if every finitely generated group with exponential growth has uniform
exponential growth.However, this is not the case: the first example of a groupwith exponential
growth but not uniform exponential growth was constructed by Wilson [73], and additional
counterexamples have since been constructed [5, 60, 72]. However, Gromov’s question is
still open for finitely presented groups.

Many classes of groups are known to either be virtually nilpotent or have uniform expo-
nential growth. This formof growth gapwas shown for linear groups byEskin,Mozes, andOh
[31]; for hyperbolic groups by Koubi [53]; for fundamental groups of manifolds with pinched
negative curvature by Besson, Coutois, and Gallot [7]; for finitely generated subgroups of the
mapping class group by Mangahas [55] and, more generally, automorphism groups of one-
ended hyperbolic groups by Kropholler, Lyman, and Ng [51]; for finitely generated special
groups with trivial center by Kerr [49]; for linearly growing subgroups of Out(Fn) by Bering
[10]; and for groups acting without global fixed points on 2–dimensional CAT(0) cube com-
plexes, with some generalizations to higher dimensions, by work of Gupta, Jankiewicz, and
Ng [36]. We note that the full mapping class group was known to have uniform exponential
growth (via its action on homology) by Anderson, Aramayona, and Shackleton [1], and the
torsion-free case of 2-dimensional cubical groups was shown by Kar and Sageev [54].

In the case of torsion-free cubical groups, it is remarkable that all known proofs rely
heavily on the assumption that the cube complex has low dimension or that it has isolated
flats, a strong form of relative hyperbolicity. Indeed, the authors are not aware of any general
proof that works in dimensions higher than 2. Moreover, some of the more curious cubical
groups do not act geometrically on CAT(0) cube complexes with isolated flats. For example,
the genus 2 handlebody group acts geometrically on a CAT(0) cube complex [43], but Dehn
twist flats can intersect along infinite subgroups, so this cube complex cannot have isolated
flats.

Our main contribution, a combination of the main body of the paper and the appendix, is
the following.

Theorem 1.1 Let G be a group virtually acting freely and cocompactly on a locally finite,
finite-dimensional CAT(0) cube complex X, and assume that X has a factor system. Then
exactly one of the following holds: G has uniform exponential growth or G is virtually
abelian.

Any group acting geometrically on a CAT(0) cube complex with a factor systems is a
hierarchically hyperbolic group [44, Theorem A]. This is a starting point for results such
as Theorem 1.1 and, for example, an alternative proof of rank-rigidity for CAT(0) cube
complexes with a factor system by Durham, Hagen, and Sisto [25, Corollary 9.24], a result
originally proved by Caprace and Sageev [21]. Beyond hierarchical hyperbolicity, factor
systems also appear in work of Incerti-Medici and Zalloum [47] and implicitly in work of
Genevois [34]. Many cube complexes admitting a cocompact group action have factor sys-
tems;Hagen andSusse provide several sufficient conditions [44].However, recently Shepherd
constructed the first example of a cube complexwithout a factor systembut admitting a proper
cocompact group action [67]. It is unknown whether this group admits a different cubulation
with a factor system, or whether it is hierarchically hyperbolic.

The main technical result of this paper is an analogue of Theorem 1.1 for the larger class
of hierarchically hyperbolic groups. This is a broad class of groups introduced by Behrstock,
Hagen, and Sisto [13] whose structure is similar to that of mapping class groups and CAT(0)
cubical groups. This class of groups includes hyperbolic groups, mapping class groups, many
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CAT(0) cubical groups, fundamental groups of most 3–manifolds, and various combinations
of the above groups, including direct products, certain quotients, and graph products [13,
17].

Hierarchically hyperbolic groups and, more generally, hierarchically hyperbolic spaces
are defined axiomatically, generalizing the Masur–Minsky hierarchy machinery for mapping
class groups [58]. Roughly speaking, a hierarchically hyperbolic space (HHS) consists of
a metric space X along with the following data: an index set S of domains with three
relations (nesting, transversality, and orthogonality), δ–hyperbolic spaces CU associated to
each domain U ∈ S, and projection maps X → CU and CU → CV (defined for certain
U , V ∈ S) satisfying certain conditions. We denote this entire package of information by
(X ,S). In some sense, this set of hyperbolic spaces can be thought of as a set of coordinate
spaces. We are used to understanding the space R

n by associating to a point a n–tuple of
elements ofR, which is a hyperbolic space.A simplistic but useful viewpoint on hierarchically
hyperbolic space is to think of the hierarchical structure as nothing but a more complicated
coordinate system on the metric space X . We discuss this in more detail in Sect. 2.5. A
hierarchically hyperbolic group (HHG) is essentially a group whose Cayley graph is an HHS
such that the action of the group on the Cayley graph is compatible with the HHS structure;
we use (G,S) to denote a HHG.

The following is a structure theorem for virtually torsion-free hierarchically hyperbolic
groups providing a sufficient condition for uniform exponential growth.

Theorem 1.2 Let (G,S) be an infinite virtually torsion-free hierarchically hyperbolic group.
Then either G has uniform exponential growth, or there is a space E such that the Cayley
graph of G is quasi-isometric to Z × E.

Wenote that the two possible outcomes in the theorem are notmutually exclusive: a simple
example is given by the group Z × F2, where F2 is a free group of rank two. Such a group is
clearly a product of the form Z× E , but it has uniform exponential growth because it surjects
onto F2.

Remark 1.3 The virtually torsion-free hypothesis can be replaced by the weaker condition
that every generating set admits an infinite order element with uniformly short word length
(see Theorem 4.1).

When G is a group virtually acting freely and cocompactly on a locally finite, finite-
dimensional CAT(0) cube complex with a factor system and G is not directly decomposable,
then Theorem 1.1 follows immediately from Theorem 1.2. In the case that G is directly
decomposable, Theorem 1.1 follows from applying Theorem 1.2 and Theorem A.1 from the
appendix.

1.1 HHGwith uniform exponential growth

The first consequence of Theorem 1.2 is that if the Cayley graph of a hierarchically hyperbolic
group G is not quasi-isometric to a (nontrivial) product, then G has uniform exponential
growth. We state several corollaries giving conditions under which this is the case. There
is significant overlap in the situations covered by these corollaries; our goal is simply to
highlight a wide variety of conditions that imply uniform exponential growth.

A subsetY of ametric space X isMorse if every (λ, ε)–quasi-geodesic in X with endpoints
on Y is contained in a uniform neighborhood (depending on λ, ε) of the subset Y .
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Corollary 5.1 Every non-virtually cyclic virtually torsion-free hierarchically hyperbolic
group which has an asymptotic cone containing a cut-point has uniform exponential growth.
In particular, if the Cayley graph of a virtually torsion-free hierarchically hyperbolic group
G contains an unbounded Morse quasi-geodesic, then G has uniform exponential growth.

One particularly nice class of hierarchically hyperbolic groups to which Corollary 5.1
can be applied is those which are acylindrically hyperbolic. The action of a group G on a
metric space X is acylindrical if for all ε > 0 there exist constants R, N � 0 such that for
all x, y ∈ X with d(x, y) � R,

#{g ∈ G | d(x, gx) � ε and d(y, gy) � ε} � N .

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a
hyperbolic space, that is, such that the limit set of the action contains at least three points.1 It is
unknown if all acylindrically hyperbolic groups have uniform exponential growth. However,
it follows from Sisto [68] that every acylindrically hyperbolic group contains an infinite order
Morse element, that is, an infinite order element g such that the quasi-geodesic 〈g〉 in the
Cayley graph of G is Morse. Thus we immediately obtain the following result.

Corollary 1.4 Virtually torsion-free hierarchically hyperbolic groups which are acylindri-
cally hyperbolic have uniform exponential growth.

The following gives another way of using Morse subspaces to determine that G is not
quasi-isometric to a product with unbounded factors.

Corollary 5.2 Every virtually torsion-free hierarchically hyperbolic group which is not virtu-
ally cyclic and contains an infinite Morse subgroup of infinite index has uniform exponential
growth.

For any hierarchically hyperbolic space (X ,S), the index setS contains a domain which
is largest under the nesting relation; we will always denote this domain S and its associated
hyperbolic space CS. Given a hierarchically hyperbolic group, we can use the geometry of the
hyperbolic space CS to determine that G is not quasi-isometric to a product with unbounded
factors.

Corollary 5.3 Let (G,S) be a virtually torsion-free hierarchically hyperbolic group such
that CS is a non-elementary hyperbolic space. Then G has uniform exponential growth.

Under the assumptions of Corollary 5.3, we actually obtain more information than what is
stated inTheorem1.2.Wecan additionally show thatG satisfies aquantitative Tits alternative.
We will make this precise in the next subsection.

Example 1.5 In addition to proving uniform exponential growth for a large class of cubical
groups including right-Angled Artin and Coxeter groups and uniform lattices in products
of hyperbolic cube complexes, Theorem 1.2 gives a single, unified proof that the following
groups have uniform exponential growth.

(1) Non-elementary virtually torsion-free hyperbolic groups. These groups are acylindrically
hyperbolic [63], so we may apply Corollary 1.4. Uniform exponential growth was first
shown for these groups by Gromov [37] and Delzant [22] (see [35, Theorem(vii)] for a
precise statement) and generalized by Koubi [53] (without the torsion-free hypothesis).

1 Equivalently, a group is acylindrically hyperbolic if it is not virtually cyclic and admits an acylindrical action
on a hyperbolic space with unbounded orbits.
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(2) Non-exceptional mapping class groups. These groups are acylindrically hyperbolic [16,
57] and virtually torsion-free [46, Corollary 1.5]. Uniform exponential growth was first
shown by Anderson, Aramayona, and Shackleton [1].

(3) Many orientable 3-manifold groups. Specifically, ifM is geometric then it suffices thatM
admits a complete metric locally isometric toH

3 orH
2×R. In the non-geometric case, it

suffices to haveM be a flip graph 3–manifold or certainmixed 3–manifolds. These groups
are torsion-free and acylindrically hyperbolic [59], so we may apply Corollary 1.4. The
class of hierarchically hyperbolic 3-manifold groups to which our theorem applies is
broader than stated here, but rather technical. For example, the manifold need not be
prime, but cannot have any Nil or Sol components (see [13, Remark 10.2]). Uniform
exponential growth is already known for 3–manifold groups (see for example [23] and
references therein). For non-geometric 3–manifolds, this follows from the action on its
JSJ–tree and work of Bucher and de la Harpe [8]. In the geometric case, this follows
from work of Besson, Courtois, and Gallot [7] for hyperbolic 3–manifolds and from
the fact that uniform exponential growth is inherited from quotients for Seifert fibered
manifolds.

(4) Graph products of virtually torsion-free hierarchically hyperbolic groups. Such groups
are hierarchically hyperbolic by [17] and virtually torsion-free by [48, Corollary 3.4].
When the defining graph is not a join and G � Z2 ∗ Z2, the space CS is non-elementary
by work of Berlyne and Russell [18] extending work of Berlai and Robbio [17], and
thus we may apply Corollary 5.3. This class includes free products and direct products
of virtually torsion-free hierarchically hyperbolic groups. Uniform exponential growth
for graph products of this form is known to follow from work of Bucher and de la Harpe
[8], as long as the underlying graph is not complete, and from Antolín and Minasyan in
the general case [4, Corollary 1.5].

(5) A virtually torsion-free tree of hierarchically hyperbolic groups satisfying the conditions
of [13, Corollary 8.24] or [17]. For instance, groups of the form G1 ∗C G2, where Gi

is hyperbolic and C is 2–ended, are hierarchically hyperbolic [65]. For the standard
hierarchical structure on such groups, CS is a tree (which is not a quasi-line), and so
we may apply Corollary 5.3. Uniform exponential growth follows for such groups by
Bucher and de la Harpe [8].

So far we have only provided conditions that are sufficient to guarantee that an HHG
is not quasi-isometric to a non-trivial product, whereas Theorem 1.2 gives a more precise
characterization of the product structure. Thus, Theorem1.2 allows us to conclude that certain
hierarchically hyperbolic groups which are quasi-isometric to a product still have uniform
exponential growth. One example is the following.

Example 1.6 (Burger-Mozes) Consider the groupG constructed by Burger andMozes in [15]
as the first example of a torsion-free simple group which acts cocompactly on the product
of two trees. It is known that G is quasi-isometric to the product of two trees (which are not
lines). Moreover, G was shown to be a hierarchically hyperbolic group by Behrstock, Hagen,
and Sisto [12, Section 8]. However, there is no space E such that G is quasi-isometric to
Z× E . Indeed, such a space E would have to be a quasi-tree by work of Fujiwara andWhyte
[33, Theorem 0.1] together with bounds on the asymptotic (Assouad-Nagata) dimension
[30, Theorem 4.3], [9, Theorem 2.4]. Such a quasi-isometry would induce a bi-Lipschitz
homeomorphism on asymptotic cones, contradicting a result of Kapovich and Leeb on the
nonexistence of certain bi-Lipschitz maps from products of two trees [50, Corollary 2.15].
By applying Theorem 1.2, we obtain a new proof that G has uniform exponential growth.
This result also follows from the structure of G as an amalgamated free product of two free
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groups and work of Bucher and de la Harpe [8]. Theorem A.1 in the appendix gives another
proof that G has uniform exponential growth.

This example can be extended to give a new proof of uniform exponential growth for all
BMW-groups (this terminology is introduced and described in [19]). This class of groups,
generalizes the original construction of Burger and Mozes. A group G is a BMW-group if it
acts by isometries on the product of two trees T1 × T2 such that every element preserves the
product decomposition and the action on the vertex set of T1 × T2 is free and transitive.

1.2 A quantitative Tits alternative

Most known proofs of uniform exponential growth, including the proof of Theorem 1.2,
demonstrate that one can produce a pair of elements with bounded word length with respect
to any generating set that generate a free semigroup. In light of this, one can ask under what
conditions one can find a pair of uniformly short elements which freely generate an actual
subgroup. In groups which satisfy a Tits alternative, producing a free basis with bounded
word length can be seen as a quantitative Tits alternative.

In our proof of Theorem 4.1, we use work of Breuillard and Fujiwara [11] to produce
short elements that generate a free semigroup. Under the additional assumption of hierarchi-
cal acylindricity, discussed in Sect. 5, we can upgrade our argument using earlier work of
Fujiwara [32] to produce a genuine free subgroup, showing the following quantitative Tits
alternative holds for many hierarchically hyperbolic groups.

Proposition 5.5 Let (G,S) be a virtually torsion-free hierarchically hyperbolic group such
that G is not quasi-isometric to Z × E for any metric space E. Suppose that either

(1) CS is non-elementary, or
(2) G is hierarchically acylindrical.

Then for any generating set X of G, there exists a free subgroup of G generated by two
elements whose word length with respect to X is uniformly bounded.

We remark that existence of uniformly short free subgroups in Proposition 5.5 proves that
G has uniform non-amenability (see, for example, [62]), which implies uniform exponential
growth. Amenability can be formulated in terms of existence of Følner sets, which allows for
averaging over the group. Heuristically, uniform non-amenability means that non-existence
of Følner sets can be witnessed by balls of uniformly bounded radius in any Cayley graph.

1.3 HHGs without uniform exponential growth

We now turn our attention to the class of hierarchically hyperbolic groups that do not have
uniform exponential growth. Since every finitely generated abelian group is hierarchically
hyperbolic, this provides a large class of examples that lack even (non-uniform) exponential
growth. On the other hand, HHGs are finitely presented and satisfy a Tits alternative: every
finitely generated subgroup of a hierarchically hyperbolic group either contains a non-abelian
free group or is virtually abelian [26]. In light of this, we ask the following question.

Question 1.7 Does there exist a hierarchically hyperbolic group that is not virtually abelian
and does not have uniform exponential growth?

Either a positive or negative answer to this question would be of significant interest. A
positive answer would prove that all hierarchically hyperbolic groups are either virtually
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abelian or have uniform exponential growth, while a negative answer would provide an
example of a finitely presented group which has exponential but not uniform exponential
growth, answering a question of Gromov. Although our techniques do not allow us to answer
Question 1.7, we obtain a structural classification of the cases where uniform exponential
growth does not (or may not) hold. We obtain rather restrictive conditions on the hierarchical
structure a group must satisfy in order to answer Question 1.7 in the affirmative.

Theorem 1.8 Let G be a virtually torsion-free hierarchically hyperbolic group which is not
virtually abelian and does not have uniform exponential growth. Then there exists a virtually
G–invariant set of pairwise orthogonal domainsW such that for each U ∈ W the space CU
is uniformly a quasi-line, and for each V /∈ W either CV is uniformly bounded, or V⊥U for
all U ∈ W .

1.4 About the proof of Theorem 1.2

The proof of Theorem 1.2 has a similar structure toMangahas’s proof of uniform exponential
growth for finitely generated subgroups of themapping class groupof a surface [55].However,
in this more general setting one needs to handle certain difficult behavior not present in the
action of the mapping class group on the hierarchy of subsurface curve graphs. In particular,
a general HHG does not contain a pure subgroup in the sense of Ivanov [46], that is, a finite
index torsion-free subgroup such that for every domainU , elements that stabilizeU act on the
space CU either loxodromically or trivially. Indiscrete BMW-groups (see Example 1.6) give
one class of examples of such phenomena. Indeed Caprace, Kropholler, Reid, and Wesolek
[20, Corollary 32(i), (iv)] show that in these groups every finite index subgroup contains
infinite order elements which are non-trivial elliptic isometries with respect to the action on
one of the tree factors.

The proof of Theorem 1.2 splits into two cases. In the first case, we assume that there
exist short words that act loxodromically on the hyperbolic spaces associated to two non-
orthogonal domains. In this case we produce uniformly short powers that generate a free
subgroup by playing ping-pong in the Cayley graph. If the first case doesn’t hold, then we
show that the action of (a finite index subgroup of) G on the set of domains must fix a
collectionW of pairwise orthogonal domains pointwise. In this case, we show that eitherW
is a singleton or the top-level curve graph CS has bounded diameter. If W is a singleton, we
conclude that G has uniform exponential growth by finding uniformly short elements of G
which are independent loxodromic isometries of CS, and thus have short powers generating
a free subgroup. If CS has bounded diameter, we conclude that G is quasi-isometric to a
product, and we next consider whether there are independent loxodromic isometries of CU
for each U ∈ W . If there are, then G has uniform exponential growth. Otherwise, we argue
that each such CU is quasi-isometric to a line and use this to give a more explicit description
of the product structure of G.

Organization: In Sect. 2 we review background material for uniform exponential growth,
hierarchically hyperbolic groups, and tools to produce free (semi)groups. In Sect. 3, we
give several structural results for when a hierarchically hyperbolic group contains invariant
domains whose associated hyperbolic spaces are quasi-lines. This is followed by the proof
of Theorem 1.2 in Sect. 4, where we also prove Theorem 1.8. In Sect. 5, we prove all of the
corollaries and Proposition 5.5.

In the appendix, Gupta and Petyt prove Theorem A.1, a strengthening of Theorem 1.2
in the case of certain CAT(0) cubical groups which states that such groups either have uni-
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form exponential growth or are virtually abelian. Together, Theorems 1.2 and A.1 prove
Theorem 1.1.

2 Background and past results

We begin by recalling some preliminary notions about metric spaces, maps between them,
and group actions. Given metric spaces X , Y , we use dX , dY to denote the distance functions
in X , Y , respectively. A map f : X → Y is:

• K–Lipschitz if there exists a constant K � 1 such that for every x, y ∈ X ,
dY ( f (x), f (y)) � KdX (x, y);

• (K ,C)–coarsely Lipschitz if for every x, y ∈ X , dY ( f (x), f (y)) � KdX (x, y) + C .
• a (K ,C)–quasi-isometric embedding if there exist constants K � 1 and C � 0 such that

for all x, y ∈ X ,

1

K
dX (x, y) − C � dY ( f (x), f (y)) � KdX (x, y) + C,

• a (K ,C)–quasi-isometry if it is a (K ,C)–quasi-isometric embedding and, coarsely sur-
jective, that is, Y is contained in the C–neighborhood of f (X). In this case, we say X
and Y are quasi-isometric.

For any interval I ⊆ R, the image of an isometric embedding I → X is a geodesic and the
image of a (K ,C)–quasi-isometric embedding I → X is a (K ,C)–quasigeodesic. A space
X is a quasi-line if it is quasi-isometric to R.

If any two points in X can be connected by a (K ,C)–quasigeodesic, then we say X is a
(K ,C)–quasigeodesic space. If K = C , we may simply say that X is a K–quasigeodesic
space. For all of the above notions, if the particular constants K ,C are not important, we
may drop them and simply say, for example, that a map is a quasi-isometry.

Throughout this paper, we will assume that all group actions are by isometries. The action
of a group G on a metric space X is proper if the set {g ∈ G | gB ∩ B 
= ∅} is finite for
every bounded subset B ⊆ X . The action is cobounded (respectively, cocompact) if there
exists a bounded (respectively, compact) subset B ⊆ X such that X = ⋃

g∈G gB. If a group
G acts on metric spaces X and Y , we say a map f : X → Y is G–equivariant if for every
x ∈ X , f (gx) = g f (x).

Given a metric space X and a subspace Y , we define the A–neighborhood of Y to be

NA(Y ) = {x ∈ X | dX (x, Y ) � A}.
Let X be a geodesic metric space and let x, y, z ∈ X . We denote by [x, y] a geodesic segment
between x and y. A geodesic triangle with vertices x, y, z is δ–slim if there is a constant δ � 0
such that for any point p ∈ [x, y], there is a pointm ∈ [y, z]∪[x, z] such that dX (p,m) � δ.
The space X is δ–hyperbolic if there is a constant δ � 0 such that every geodesic triangle is
δ–slim.

2.1 Uniform exponential growth

Given a finite collection of elements X containing the identity in a group, the growth function
of X is

βX (n) = ∣
∣Xn

∣
∣ ,
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where Xn = {x1 . . . xn | xi ∈ X}. This function βX (n) counts the number of elements that
can be expressed as words in the alphabet X with length at most n. The exponential growth
rate of a finite subset X of a group is

λ(X) := lim
n→∞

log(βX (n))

n
.

Definition 2.1 ((Uniform) Exponential growth) A finitely generated group is said to have
exponential growth if there is a finite generating set X such that

λ(X) > 0.

Such a group has uniform exponential growth if the infimum over all finite generating sets is
bounded away from 0, that is,

λ0 := inf
〈X〉=G|X |<∞

λ(X) > 0.

Remark 2.2 One can also use the function

ω(X) := lim
n→∞

n
√

βX (n)

in place of λ(X) to give an equivalent characterization of exponential growth rate. In this
case, the growth is uniform if it is uniformly bounded above 1.

If G = F2 is a free group of rank two and X = {1, a, b} is a generating set, then it
is easy to see that |Xn | � 2n . Hence, λ(X) � log(2). In fact, since any generating set
contains a pair of noncommuting elements and nonabelian subgroups of a free group are
free, we have λ(X ′) � log(2) for any generating set X ′. Therefore, λ0 � log 2 > 0, and so
F2 has uniform exponential growth. By the same reasoning, free semigroups have uniform
exponential growth.

In light of this, most known proofs of uniform exponential growth make use of the fol-
lowing observation.

Observation 2.3 (Short free semigroups witness uniform exponential growth) If there is a
constant N depending only on the group G such that for any generating set X there exists
two elements with X–length at most N whose positive words generate a free semigroup, then
G has uniform exponential growth with λ0 � log(2)

N .

The following result of Shalen andWagreich gives bounds on the growth of a group given
the growth of a finite index subgroup.

Lemma 2.4 ([70, Lemma 3.4]) Let G be a group with finite generating set X, and let H be
a finite index subgroup with [G : H ] = d. Then there exists a generating set for H all of
whose elements of have X–length at most 2d − 1.

This implies that if [G : H ] = d then

λ0(G) � 1

2d − 1
λ0(H),

thus, uniform exponential growth passes to finite index supergroups.
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2.2 Finding free (semi)groups

In this section, we give multiple ways to find free (semi)groups given an action of a group
on a hyperbolic metric space. We will assume all actions on metric spaces are by isometries.
Together with Observation 2.3, these will be our key tools to show uniform exponential
growth.

The first is a version of the standard ping-pong lemma.

Lemma 2.5 Let G be a group acting on a set X, and let a, b ∈ G have infinite order. Suppose
there exist disjoint non-empty subsets X1, X2 ⊆ X such that an .X2 ⊆ X1 and bn .X1 ⊆ X2

for all n 
= 0. Then 〈a, b〉 is a free group of rank 2.

Let G be a group acting on a hyperbolic metric space X with basepoint x0 ∈ X , and let
g ∈ G. The (stable) translation length of g is defined to be τ(g) = limn→∞ d(x0,gnx0)

n . If
τ(g) > 0, then g is a loxodromic isometry of X . Equivalently, g is loxodromic if it fixes
exactly two points in the boundary ∂X of X . Such isometries act as translation along a quasi-
geodesic axis in X . Two loxodromic isometries are independent if their fixed point sets in
∂X are disjoint.

The following result gives a method for producing free semigroups from an action on a
hyperbolic space. While the statement is likely well-known, Breuillard and Fujiwara give an
explicit proof in this context [11]. Their proof generalizes the analogous result for simplicial
trees due to Bucher and de la Harpe [8]. When the hyperbolic space is a Hadamard manifolds
with K � −1, the result is due to Besson, Courtois, and Gallot [7].

Proposition 2.6 ([11, Proposition 11.1]) For δ � 0 let X be a δ–hyperbolic space, and
g, h ∈ Isom(X). Suppose g and h are loxodromic isometries whose fixed point sets in ∂X
are not equal and τ(g), τ (h) > 10000δ. Then some pair in

{
g±1, h±1

}
generates a free

semigroup.

In particular, this result shows that given a pair of elements with stable translation length
bounded from below, there are powers depending only on the displacement bound that gen-
erate a free semigroup. While it would be sufficient to use Proposition 2.6 to show uniform
exponential growth, under the additional assumption that the action is acylindrical, we can
construct genuine free subgroups generated by short conjugates of a single loxodromic.

Theorem 2.7 ([32, Proposition 2.3(2)]) If G acts acylindrically on a δ–hyperbolic space
containing elements a, b ∈ G such that a acts loxodromically and banb−1 
= a±n for any
n 
= 0 then there is a constant power p depending on δ and the acylindricity constants such
that

〈
ak, bakb−1

〉 = F2 < G for all k � p.

We note that the requirement that banb−1 
= a±n for any n ensures that ak and bakb−1

are independent loxodromic isometries.

2.3 Definition of a hierarchically hyperbolic group

We begin this subsection by recalling the definition of a hierarchically hyperbolic space (see
[13], [25, Proposition 1.16]).

Definition 2.8 (Hierarchically hyperbolic space) The quasigeodesic space (X , dX ) is a
hierarchically hyperbolic space (HHS) if there exists δ � 0, an index set S, and a set
{CW : W ∈ S} of δ–hyperbolic spaces (CW , dW ), such that the following conditions are
satisfied:
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(1) (Projections.) There is a set {πW : X → 2CW | W ∈ S} of projections sending points in
X to sets of diameter bounded by some ξ � 0 in the various CW ∈ S. Moreover, there
exists K so that each πW is (K , K )–coarsely Lipschitz and NK (πW (X )) = CW .

(2) (Nesting.)S is equipped with a partial order�, and eitherS = ∅ orS contains a unique
�–maximal element; when V � W , we say V is nested in W . (We emphasize that
W � W for all W ∈ S.) For each W ∈ S, we denote bySW the set of V ∈ S such that
V � W . Moreover, for all V ,W ∈ S with V properly nested in W there is a specified
subset ρV

W ⊂ CW with diamCW (ρV
W ) � ξ . There is also a projection ρW

V : CW → 2CV .
(3) (Orthogonality.) S has a symmetric and anti-reflexive relation called orthogonality:

we write V⊥W when V ,W are orthogonal. Also, whenever V � W and W⊥U , we
require that V⊥U . We require that for each T ∈ S and each U ∈ ST for which
{V ∈ ST | V⊥U } 
= ∅, there exists W ∈ ST − {T }, so that whenever V⊥U and
V � T , we have V � W . Finally, if V⊥W , then V ,W are not �–comparable.

(4) (Transversality and consistency.) If V ,W ∈ S are not orthogonal and neither is nested
in the other, then we say V ,W are transverse, denoted V � W . There exists κ0 � 0 such
that if V � W , then there are sets ρV

W ⊆ CW and ρW
V ⊆ CV each of diameter at most ξ

and satisfying:

min
{
dW (πW (x), ρV

W ), dV (πV (x), ρW
V )

}
� κ0

for all x ∈ X . For V ,W ∈ S satisfying V � W and for all x ∈ X , we have:

min
{
dW (πW (x), ρV

W ), diamCV (πV (x) ∪ ρW
V (πW (x)))

}
� κ0.

The preceding two inequalities are the consistency inequalities for points in X .
Finally, if U � V , then dW (ρU

W , ρV
W ) � κ0 whenever W ∈ S satisfies either that V is

properly nested in W or that V � W and W 
⊥ U .
(5) (Finite complexity.) There exists n � 0, the complexity of X (with respect toS), so that

any set of pairwise–�–comparable elements has cardinality at most n.
(6) (Large links.) There exist λ � 1 and E � max{ξ, κ0} such that the following holds.

Let W ∈ S and let x, x ′ ∈ X . Let N = λdW (πW (x), πW (x ′)) + λ. Then there exists
{Ti }i=1,...,�N� ⊆ SW − {W } such that for all T ∈ SW − {W }, either T ∈ STi for some

i , or dT (πT (x), πT (x ′)) < E . Also, dW (πW (x), ρTi
W ) � N for each i .

(7) (Bounded geodesic image.) There exists E > 0 such that for all W ∈ S, all V ∈
SW −{W }, and all geodesics γ of CW , either diamCV (ρW

V (γ )) � E or γ ∩NE (ρV
W ) 
= ∅.

(8) (Partial Realization.) There exists a constant α with the following property. Let {Vj } be
a family of pairwise orthogonal elements ofS, and let p j ∈ πVj (X ) ⊆ CVj . Then there
exists x ∈ X so that:

• dVj (x, p j ) � α for all j ,

• for each j and each V ∈ S with Vj � V , we have dV (x, ρ
Vj
V ) � α, and

• if W � Vj for some j , then dW (x, ρ
Vj
W ) � α.

(9) (Uniqueness.) For each κ � 0, there exists θu = θu(κ) such that if x, y ∈ X and
dX (x, y) � θu , then there exists V ∈ S such that dV (x, y) � κ .

For ease of readability, given U ∈ S, we typically suppress the projection map πU

when writing distances in CU , that is, given x, y ∈ X and p ∈ CU we write dU (x, y) for
dU (πU (x), πU (y)) and dU (x, p) for dU (πU (x), p).

Heuristically, a hierarchically hyperbolic structure on a space X is a means of organizing
the space by the coarse geometry of the product regions in X and their interactions. Nesting
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gives a notion of sub-product regions and subspaces. Transversality gives a notion of separate
or isolated subspaces. Orthogonality gives a notion of independent subspaces that together
span a product region in X . An excellent explanation of the intuition behind hierarchically
hyperbolic spaces can be found in [69].

An important consequence of being an HHS is the existence of a distance formula, which
relates distances in X to distances in the hyperbolic spaces CU . The notation {{x}}s means
include x in the sum if and only if x > s.

Theorem 2.9 (Distance formula; [13, Theorem 4.5]) Let (X ,S) be a hierarchically hyper-
bolic space. Then there exists s0 such that for all s � s0, there exist C, K so that for all
x, y ∈ X ,

d(x, y) �
K ,C

∑

U∈S
{{dU (x, y)}}s .

Wewill now define the main object of this paper, hierarchically hyperbolic groups (HHG).
Intuitively, a hierarchically hyperbolic group is a group whose Cayley graph is an HHS such
that the action of the group on its Cayley graph is compatible with the HHS structure. The
compatibility of the action is a key requirement, as can be seen by the fact that being an HHG
is not a quasi-isometry invariant [64], though being an HHS is.

Definition 2.10 A group G said to be hierarchically hyperbolic if its Cayley graph X can be
equipped with a hierarchically hyperbolic structure S such that the following hold.

• G acts cofinitely on S preserving the three relations.
• Given g ∈ G and a domain U ∈ S, there is an isometry g : CU → CgU , and these

isometries are compatible with the group structure, in the sense that g ◦ h = gh.
• For all U 
= V satisfying either V � U or V � U , and for all g ∈ G and x ∈ X , the

projection are equivariant with respect to the group action, meaning gπU (x) = πgU (gx)

and gρV
U = ρ

gV
gU .

The last item differs from the original definition but can be assumedwithout loss of generality
by [26, Section 2.1].

Remark 2.11 By the definition of a hierarchically hyperbolic group, there is finite set of
domains U1, . . . ,Uk such that for every W ∈ S, there is some i = 1, . . . , k such that CW
is isometric to CUi . It follows that for every W ∈ S, the diameter of CW is either infinite or
uniformly bounded.

In what followswewill consider anHHG (G,S)with respect to different finite generating
sets. Let X and Y be two finite generating sets for a group G, and suppose that an HHG
structure (G,S) is given, where distances in G are measured with dX . Then the identity
provides an equivariant quasi-isometry between (G, dX ) and (G, dY ). Note that this provides
a hierarchically hyperbolic group structure on (G, dY ), where all the constants of the hierarchy
axioms are the same, except the ones that involve distances in G. In particular, the only two
such constants are the K of the projections of Axiom 1, and the constant θu of Axiom 9.

Remark 2.12 We say a constant k depends only on (G,S) when k depends only on the con-
stants in the definition of the hierarchically hyperbolic structure on G which are independent
of the generating set. Further, we will frequently refer to D = max {δ, ξ, κ0, n, E} as the
hierarchy constant, which is also independent of the generating set.
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Lemma 2.13 LetU ,W , V ∈ S be such thatU andW properly nest into V . If dV (ρU
V , ρW

V ) >

2D, then U � W.

Proof If U � W or W � U , then dV (ρU
V , ρW

V ) � D by the transversality and consistency
axiom, which contradicts our assumption. If U ⊥ W , then there is a partial realization point
x ∈ X such that dV (x, ρU

V ) � D and dV (x, ρW
V ) � E . It follows that dV (ρU

V , ρW
V ) � 2D,

which contradicts our assumption. Therefore U � W . ��

2.4 Preliminaries on hierarchically hyperbolic groups

In this section, we recall the classification of hierarchical automorphisms from [25] and
related results.

Definition 2.14 (Big set) For anHHG (G,S), the big set of an element g ∈ G is the collection
of all domains such that the orbit map to the associated hyperbolic spaces is unbounded, that
is, given a base point x ∈ X the big set is

Big (g) = {U ∈ S | diamCU (〈g〉 .x) is unbounded} .

Note that this collection is independent of base point.

Remark 2.15 There is a constant N , depending only on the hierarchy constant D such that any
collection of pairwise non-transverse domains has cardinality at most N [14, Lemma 2.2].
Since the elements of Big (g) must all be pairwise orthogonal (and hence pairwise non-
transverse), it follows that |Big (g) | is bounded by N for all g ∈ G. We fix this constant N
for the remainder of the paper.

Definition 2.16 An element of a hierarchically hyperbolic group G is elliptic if it acts with
bounded orbits on theCayley graph X ofG. It isaxial if its orbitmap induces a quasi-isometric
embedding of a line in X .

Proposition 2.17 ([25, Lemma 6.3, Proposition 6.4, & Theorem 7.1]) Let (G,S) be a hier-
archically hyperbolic group. Then there exists a constant M between 0 and N ! depending
only on D so that for all g ∈ G the following hold.

(1) g is either elliptic or axial;
(2) g is elliptic if and only if Big (g) = ∅;
(3) for every U ∈ Big (g), we have gM (U ) = U.

Remark 2.18 An element g ∈ G is finite order if and only if Big (g) = ∅ [2, Lemma 1.7].
Therefore, if G is a torsion-free HHG, then every element of G has a non-empty big set.

If g ∈ G has non-empty big set and fixes a domain U ∈ Big (g), then g is a loxodromic
isometry of CU . In particular, it follows from Proposition 2.17 (3) that gM is a loxodromic
isometry of CU for any domains U ∈ Big (g).

Given an infinite order element g ∈ G and a domain U ∈ S such that g is loxodromic
with respect to the action on CU , we let τU (g) denote the (stable) translation length of g in
this action. In order for our proofs to produce words that are uniformly short with respect
to any generating set of and HHG G, we would like to have a uniform lower bound on the
translation lengths τU (g) for all U ∈ Big (g). Unfortunately, this is not always the case [3,
Theorem 1.4], but the followingweaker condition does hold and is sufficient to prove uniform
exponential growth.
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Lemma 2.19 ([3]) Let (G,S) be a hierarchically hyperbolic group. There exists a constant
τ0 > 0 such that for every infinite order element g ∈ G that fixes Big(g) pointwise, there
exists a domain U ∈ Big(g) with τU (g) � τ0.

Throughout the paper, it will be important for us to pass to certain finite index subgroups
while maintaining the hierarchical structure of the group. We do this with the following
lemma.

Lemma 2.20 Let (G,S) be a hierarchically hyperbolic group, and let H be a finite index
subgroup of G. Then (H ,S) is a hierarchically hyperbolic group with the same hierarchical
structure as G.

Proof Since H is a finite index subgroup of G,H is finitely generated. In particular, for each

U ∈ S themap H ↪→ G
πU−→ CU is a composition of two quasi-surjective, coarsely Lipschitz

maps, and hence quasi-surjective coarsely Lipschitz itself. As the rest of the structure is
unchanged, it is straightforward to verify that (H ,S) is an HHS structure for H , possibly
with different constants.

We will show that the three conditions from Definition 2.10 are satisfied. First, H acts on
S because G does and H � G. The action of H on S still has finitely many orbits because
H is finite index in G. As the other two conditions are concerned with single elements, they
hold as every element of H is an element of G. ��

2.5 Hierarchical structures as coordinate systems

In this section, we will describe a product decomposition ofG. More precisely, given an HHS
(X ,S) there is a map π : X → ∏

W∈S 2CW defined by associating to each x ∈ X the tuple
{πW (x)}W∈S. Our goal is to investigate the image of π into

∏
W∈S 2CW , and determine

when we can use the product structure of
∏

W∈S 2CW to induce a product structure on X .
We begin by recalling the definition of a κ–consistent tuple.

Definition 2.21 ([13, Definition 1.17]) Let (X ,S) be a hierarchically hyperbolic space, fix
κ � 0, and let �b ∈ ∏

W∈S 2CW be a tuple such that for each W ∈ S, the coordinate bW is a
subset of CW of diameter at most κ . The tuple �b is κ–consistent if:

(1) min
{
dW (bW , ρV

W ), dV (bV , ρW
V )

}
� κ , whenever V � W ;

(2) min
{
dW (bW , ρV

W , diamCV (bV ∪ ρW
V (bW ))

}
� κ , whenever V � W .

We denote the subset of
∏

W∈S 2CW consisting of κ–consistent tuples by �κ .

Remark 2.22 Note that for κ large enough, the first condition holds automatically since πW

is surjective by Axiom 1.

We want to prove a sufficient condition on the index set S under which the group G
quasi-isometrically decomposes as a product. This result can be deduced from discussions
in [13, Sections 3 & 5]; we restate it here, along with its justification, for the sake of clarity
and completeness.

Proposition 2.23 Let (X ,S) be a hierarchically hyperbolic space and let S̄ consist of all
W ∈ S such that CW has infinite diameter. Suppose that S̄ can be partitioned asT1�· · ·�Tn

where Ti 
= ∅ for all i and every element of Ti is orthogonal to every element of T j for
i 
= j . Then there are infinite diameter metric spaces Yi such that X is quasi-isometric to
Y1 × · · · × Yn. Moreover, each Yi can be equipped with an HHS structure.
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Themain technical ingredient to prove the proposition is to establish a connection between
G and the set of consistent tuples. As noted, there is a map π : X → ∏

W∈S 2CW defined
by associating to each x ∈ X the tuple {πW (x)}W∈S. Thus, by setting κ1 = max{κ0, ξ},
Axioms 1 and 4 of Definition 2.8 give that for each κ � κ1, the map π has image in �κ . The
following theorem should be thought of as saying that the projection π has a quasi-inverse.

Theorem 2.24 ([13, Theorem 3.1]) For each κ � 1 there exist θe, θu � 0 such that the
following holds. Let �b ∈ �κ be a κ–consistent tuple, and for each W let bW denote the CW–
coordinate of �b. Then the set �(�b) ⊆ X defined as all x ∈ X so that dW (bW , πW (x)) � θe
for all CW ∈ S is non empty and has diameter at most θu.

The reason why "� is a quasi-inverse of π" is not a precise statement is because we did not
equip �κ with a metric. The distance formula (Theorem 2.9) gives a constant s0 such that
for each s � s0 there is a map fs : �κ × �κ → R defined as

fs(�a, �b) =
∑

W∈S
{{dW (aW , bW )}}s ,

such that for every x, y ∈ X , the quantities fs(π(x), π(y)) and dX (x, y) are comparable.
However, note that the map fs is not a distance: it does not satisfy the triangle inequality and
there exists �a 
= �b such that fs(�a, �b) = 0. To remedy this, we equip �κ with the subspace
metric coming from �, which we denote by dX with an abuse of notation.

The next ingredient in the proof of Proposition 2.23 is to show that one needs only focus on
domainswhose associated hyperbolic spaces have sufficiently large diameter.Wefirst concern
ourselves with subdividingS into blocks. LetS′ ⊆ S be any subset. It is straightforward to
see that concept of a consistent tuple (Definition 2.21) can be generalized to

∏
W∈S′ 2CW .

Let �S′
κ be the set of κ–consistent tuples of

∏
W∈S′ 2CW .

Definition 2.25 Let (X ,S) be a hierarchically hyperbolic space and suppose that a basepoint
x ∈ X is fixed. For C < κ0 consider the set SC consisting of all W ∈ S such that
diam(CW ) > C . Given �a ∈ �

SC
κ we define �SC (�a) = �(�b), where �b ∈ �κ coincides with

�a on SC and bU := πU (x) for U ∈ S − SC .

Remark 2.26 The choice of basepoint is not very important: the distance formula shows that
the Hausdorff distance between the images of �SC under different choices of basepoints is
bounded in terms of C . For this reason, we will suppress the dependence.

Lemma 2.27 Let (X ,S) be a hierarchically hyperbolic space. Then for each 0 � C < κ the
spaces �κ and �

SC
κ equipped with the subspace metric are quasi-isometric.

Proof Setting s > C , the coordinates associated to the elements ofS−SC do not contribute
to the distance formula. Thus the conclusion follows. ��

Lemma 2.27 is particularly useful when an HHS satisfies the bounded domain dichotomy,
that is, when there exists C such that for eachU ∈ S either diam(CU ) � C or diam(CU ) =
∞. Notably, Remark 2.11 states that all HHGs satisfy the bounded domain dichotomy. The
following corollary is immediate.

Corollary 2.28 LetX be an HHS satisfying the bounded domain dichotomy, and let S̄ consist
of all W ∈ S such that CW has infinite diameter. Then there is a constant κ > 0 such that
�S̄ : �S̄

κ → X is coarsely surjective, and so�S̄
κ with the subspacemetric is quasi-isometric

to X .
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We refer to U ∈ S as being a(n) (un)bounded domain when its associated hyperbolic
space CU is (un)bounded. The last ingredient missing to Proposition 2.23 is a criterion to
determine when a subspace of an HHS is itself an HHS.

Definition 2.29 Let (X ,S) be a hierarchically hyperbolic space. A subset Y ∈ X is hierar-
chically quasi-convex if:

(1) the projection πU (Y ) are uniformly quasi-convex for all U ∈ S; and
(2) for each r there is an R such that if x ∈ X satisfies dU (x, πU (Y )) � r for all U , then

dX (x, Y ) � R.

By [13, Proposition 5.6] every hierarchically quasi-convex subset of an HHS can be equipped
with an HHS structure. We can now prove Proposition 2.23.

Proof of Proposition 2.23 By assumption, S̄ can be partitioned as T1 � · · · �Tn where every
element of Ti is orthogonal to every element of T j when i 
= j . By consistency (see Defini-

tion 2.21), the set�S̄
κ can be written as�

T1
κ ×· · ·×�

Tn
κ . Fix a basepoint x ∈ X , and for each

�
Ti
κ consider the map�Ti : �

Ti
κ → X defined by�Ti (�a) = �S̄(�b), where �b coincides with

�a on Ti and is defined to be πU (x) otherwise. Let Yi denote the resulting metric space. The

distance formula yields that Y1×· · ·×Yn is quasi-isometric to�S̄

(
�S̄

κ

)
. By Corollary 2.28,

the latter coarsely coincides with G. We are left with proving that each Yi is hierarchically
quasi-convex. By definition, πW (Yi ) coarsely coincides with πW (X ) for W ∈ Ti and it
coarsely coincides with πW (x) otherwise. This proves the first item of Definition 2.29. For
the second, let y ∈ X be such that dW (y, x) � r for allW /∈ Ti . Let z ∈ Yi be the realization
point of the tuple defined as πW (y) for W ∈ Ti and as πW (x) for W /∈ Ti . By definition of
Ti , such a tuple is consistent. By the distance formula, we can bound the distance between
z and y in terms of r , which shows the second item of hierarchical quasi-convexity. ��

3 Structural results

In this section, we give several structural results which will be useful in the proof of Theo-
rem 1.2.

Lemma 3.1 Let (G,S) be a hierarchically hyperbolic group. Suppose U is a G–invariant
collection of pairwise orthogonal domains such that CU has infinite diameter for eachU ∈ U .
If there exists a domain V /∈ U with diam(CV ) = ∞, then for any U ∈ U , we have U 
� V .

Proof Suppose by way of contradiction that there exists a domain U ∈ U such that U � V .
For each W ∈ U , fix any point pW ∈ CW , and let p ∈ G be given by partial realization
(Axiom 8 of Definition 2.8). Pick any g ∈ G, and consider the points πV (g) and πV (p). By
the choice of p,

dV (p, ρU
V ) � α.

Now apply the isometry pg−1 : CV → C(pg−1V ). It follows that

dpg−1V (pg−1πV (p), pg−1ρU
V ) � α.

Since pg−1ρU
V uniformly coarsely coincides with ρ

pg−1U
pg−1V

, we have that pg−1πV (p) uni-

formly coarsely coincides with ρ
pg−1U
pg−1V

.
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CU
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Fig. 1 A schematic of the spaces and projections in the proof of Proposition 3.2

As the action of G on S fixes U setwise, it follows that pg−1U ∈ U . Moreover,
pg−1U � pg−1V . Thus, by using partial realization as above, we have that πpg−1V (p)

uniformly coarsely coincides with ρ
pg−1U
pg−1V

, and so pg−1πV (p) uniformly coarsely coin-

cides with πpg−1V (p), as well. Moreover, πpg−1V (p) = πpg−1V (pg−1g), hence applying
the inverse isometry gp−1 shows that the distance between πV (p) and πV (g) is uniformly
bounded. Since g was arbitrary and πV is coarsely surjective, it follows that CV has finite
diameter, which contradicts our assumption on V . ��

The following proposition shows that any G–invariant domain whose associated hyper-
bolic space is a quasi-line that contains the axis of a loxodromic must be nest minimal.

Proposition 3.2 Let (G,S) be a hierarchically hyperbolic group, and suppose there exists
U ∈ S such that G.U = U and CU is Q–quasi-isometric to R. If G contains an element
acting by translation on CU, then for all V Ĺ U, diam(CV ) < ∞.

Proof We remark that since we are solely concerned with understanding the spaces CW for
W ∈ S, we can fix an arbitrary generating set to work with for the proof of this proposition.
This assumption is only needed to prove Claim 2 below.

Let D be the hierarchy constant introduced in Remark 2.12, and let κ1 be the constant
from [13, Proposition 1.8]. Let ∂CU = {α+, α−}. For any domain V which properly nests
into U , the nesting axiom (Axiom 2) gives that diamCU (ρV

U ) � D. The hyperbolic space
CU is a Q–quasi-line for some constant Q; we may assume without loss of generality that
Q > 1/

√
2. It follows that there is a constant R1 > 2D + κ1 such that the neighborhood

NR1(ρ
V
U ) disconnects CU . Let A+(V ) and A−(V ) be the two connected components of

CU � NR1(ρ
V
U ) containing α+ and α−, respectively, and let A±(V ) = A+(V )

⋃
A−(V )

denote their union. See Fig. 1. Since CU is a path connected Q–quasi-line by assumption,
we have diamCU (CU � (A±(V ))) � 2

(
Q2R1 + Q2 + Q

)
. Let R2 = 2(Q2R1 + Q2 +

Q), and note that R2 > D + κ1. The bounded geodesic image axiom (Axiom 7) states
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that every geodesic segment in A+ or A− projects to CV with diameter at most D. Thus
diamCV (ρU

V (A+(V ))) � 2D and diamCV (ρU
V (A−(V ))) � 2D. Since the map ρV

U is G–
equivariant, we have A±(V ′) = hA±(V ) whenever V ′ = hV .

The proof follows by contradiction using the following two claims, each relying on the
assumption that there is a domain properly nested into U whose curve graph has infinite
diameter.

Claim 1 If V ′ Ĺ U and CV ′ is unbounded, then for all L > 0 there is an unbounded
domain V Ĺ U such that

dV
(
1, ρU

V (A±(V ))
)

> L. (1)

Claim 2 If V Ĺ U and CV is unbounded, then for all L > 0 there is an element h ∈ G
such that

dV
(
h, ρU

V (A±(V ))
)

> L and dU
(
ρhV
U , ρV

U

)
> L. (2)

We complete the proof assuming the claims, which will be addressed later. Take L = R2,
and suppose there is a domain V that properly nests into U such that CV has unbounded
diameter. ByClaim1,wemay assumewithout loss of generality thatV satisfies (1). Let h ∈ G
be the element fromClaim 2. The second statement of (2) and Lemma 2.13 give that V � hV .
Since G.U = U , every element of G acts on CU by isometries; in particular, hU = U . We
have diamCU (CU � A±(V )) = diamCU (CU �hA±(V )) � R2, and consequently the second
statement of Claim 2 implies that ρhV

U ⊂ A±(V ) and ρV
U ⊂ hA±(V ).

The second statement of Claim 2 and [13, Proposition 1.8] show that diamCV (ρhV
V ∪

ρU
V (ρhV

U )) � κ1. As ρU
V (ρhV

U ) ⊆ ρU
V (A±(V )), we thus have

dV
(
h, ρhV

V

)
� dV

(
h, ρU

V (A±(V ))
)

− κ1 > R2 − κ1 � D, (3)

where the second to last inequality follows from the first statement of Claim 2. Applying the
fact that the projections ρ are G–equivariant to (1) yields

dhV
(
h, ρU

hV (hA±(V ))
)

> L = R2.

Since ρV
U ⊆ hA±(V ) and dV (1, ρU

V (A±(V )) = dhV (h, ρU
hV (hA±(V )) > R2, an analogous

argument yields

dhV
(
h, ρV

hV

)
� dhV

(
h, ρU

hV (hA±(V ))
)

− κ1 > R2 − κ1 � D. (4)

However, the inequalities (3) and (4) contradict the transversality and consistency axiom
(Axiom 4) applied to h projected to V and hV , which states that

min
{
dV

(
h, ρhV

V

)
, dhV

(
h, ρV

hV

)}
� D.

It remains to prove the two claims.

Proof of Claim 1 Let L > 0 be fixed, and consider A±(V ′). We have that ρU
V ′(A±(V ′))

has bounded diameter. If dV ′
(
1, ρU

V ′(A±(V ′))
)

> L then we are done by taking V = V ′.
Otherwise,dV ′

(
1, ρU

V ′(A±(V ′))
)

� L . SinceρU
V ′(A±(V ′)) is bounded andπV ′ is D–coarsely

surjective, there is an element g−1 ∈ G so that dV ′
(
g−1, ρU

V ′(A±(V ′))
)

> L + D. By

equivariance, we can apply g to obtain dgV ′
(
1, ρU

gV ′(gA±(V ′))
)

> L+D. Taking V = gV ′

completes the claim.
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Proof of Claim 2 Let L > D be fixed exceeding the hierarchy constant and t ∈ G be an
element acting by translation on CU , which exists by assumption. Let γ be any isometry of
CU that fixes the endpoints and moves some point x0 ∈ CU less than L . Then there is a
constant L̄ � L depending only on the quasi-line constants of CU (and not on the choice of
γ ) such that γ moves every point of CU by at most L̄ .
Let Ĝ � G be the index 2 subgroup of G that fixes ∂CU pointwise. Note that t acts as
translation, and so t ∈ Ĝ. Moreover, since G coarsely surjects onto CU , so does Ĝ. Pick
M > 0 so that Mτ0 > 2L̄ + D, where τ0 is as in Lemma 2.19.

As before, the coarse surjectivity of the K–coarsely Lipschitz map πV guarantees the
existence of an element h′ ∈ Ĝ satisifying

dV (h′, ρU
V (A±(V ))) > L̄ + KM |t | + K ,

where |t | is the word length of t in the fixed generating set. If dU (ρh′V
U , ρV

U ) > L , then we

are done by taking h = h′, so assume dU (ρh′V
U , ρV

U ) � L .
Consider h = h′t M . Using the fact that πV is Lipschitz and the triangle inequality, we

have

dV
(
h, ρU

V (A±(V ))
)

� dV
(
h′, ρU

V (A±(V ))
)

− dV
(
h′t M , h′)

� (L̄ + KM |t | + K ) − (KM |t | + K )

� L̄ � L.

Thus thefirst statement of the claimholds.By the choice of L̄, we have thatdU (x, h′x) � L̄
for all x ∈ CU . Thus

dU
(
ρV
U , ρhV

U

)
� dU

(
ρV
U , h′t MρV

U

)
− D

� dU
(
ρV
U , t MρV

U

)
− dU

(
t MρV

U , h′t MρV
U

)
− D

� (2L̄ + D) − L̄ − D

� L̄ � L,

completing the proof of Claim 2. ��
Next, we give a sufficient condition for when a collection of pairwise orthogonal domains

have associated hyperbolic spaces that are quasi-lines.

Proposition 3.3 Let (G,S) be a hierarchically hyperbolic group and U ∈ S a domain
such that there is a pair of points α, β ∈ ∂CU which are fixed pointwise by G. Then CU is
quasi-isometric to a line.

Proof Let γ be a geodesic between the points α, β ∈ ∂CU , and let h ∈ G. We want to
uniformly bound dU (h, γ ). Since there exists C = C(S) such that πU is C–coarsely sur-
jective, this would prove the result. Let g ∈ G be such that dU (g, γ ) � C , and consider
hg−1γ . Since all the generators fix α, β ∈ ∂CU , we have that hg−1γ is a geodesic of CU
with the same endpoints as γ . By the hyperbolicity of CU , the Hausdorff distance between
γ and hg−1γ is uniformly bounded. Moreover, by equivariance of the map πU we have
dU (h, hg−1γ ) = dU (g, γ ) � C , which implies that dU (h, γ ) is uniformly bounded, con-
cluding the proof. ��

We end this section by describing domains which are transverse to a G–invariant domain
whose associated hyperbolic space has infinite diameter.
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Proposition 3.4 Let (G,S) be a hierarchically hyperbolic group, and suppose there is a
G–invariant domain U ∈ S such that diam(CU ) = ∞. For any W ∈ S satisfying W � U,
the space CW has uniformly bounded diameter.

Proof If there is no W transverse to U , the proposition is trivial. So assume it is not the
case. Let �κ ⊂ �W∈S2CW and � : �κ → 2X be as in Sect. 2.5. Let κ � κ1, and let Y
be the subset of �κ consisting of all tuples whose W–coordinate is ρU

W for each W � U .
Since CU has infinite diameter, �(Y ) is an infinite diameter subset of G. Moreover, since
U is G–invariant, so are Y and �(Y ). Since G acts coboundedly on itself, we have that
�(Y ) coarsely coincides with G. Since � is a quasi-isometry, we conclude that Y coarsely
coincides with �κ . Thus, the spaces CW are uniformly bounded for every W � U . ��

4 Proof of main theorem

Recall that for any generating set X and any n � 1, we denote by Xn the ball of radius n
about the identity in the Cayley graph of G with respect to X .

Theorem 4.1 Let (G,S) be a hierarchically hyperbolic group such that every generating set
of G contains an infinite order element. There exists a constant M > 0 depending only on
(G,S) such that one of the following occurs.

(a) G is virtually abelian.
(b) For any generating set X, there are elements u, w ∈ XM which form a basis for a free

sub-semigroup.
(c) There is a G–invariant collection W of pairwise orthogonal domains such that G is

quasi-isometric to Z
|W| × E, where E is a non-elementary space.

Before turning to the proof of Theorem 4.1, we show how it implies Theorem 1.2.

Proof of Theorem 1.2 Let X be an arbitrary finite generating set for G. Consider the finite-
index torsion-free subgroup H of G. Then (H ,S) is an HHG by Lemma 2.20, there is
a generating set X ′ for H , all of whose elements have X–length at most 2d − 1, where
d = [G : H ] by Lemma 2.4. Moreover, since H is torsion-free, every generating set contains
an infinite order element. By Theorem 4.1 and Observation 2.3, the subgroup H either has
uniform exponential growth or is quasi-isometric to Z × E for some space E . Since H is
finite index, it follows that the theorem holds for G. ��

For the remainder of the section, fix a generating set X for G with the convention that
X contains the identity. Recall that N is the maximal number of pairwise non-transverse
domains in S, which depends only on the hierarchy constants. By hypothesis, there is an
infinite order generator s′ ∈ X . Let s = (s′)N !, so that s fixes Big(s) pointwise. Let τ0 > 0
and W ∈ Big(s) be the constant and domain provided by Lemma 2.19, so that τW (s) > τ0.

Let

W = XN .W (5)

be the set of images of W under words of length at most N . Since X is finite, W is a finite
set.

The proof of Theorem 4.1 will be divided into two main cases using the following propo-
sition.
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Proposition 4.2 Let (G,S) be a hierarchically hyperbolic group such that every generating
set of G contains an infinite order element, and let X be a generating set for G as above
containing both 1 ∈ X and an infinite order element s ∈ X. Then one of the following holds.

(1) The set W defined in (5) contains two transverse domains. In particular, there is an
element g ∈ X2N such that W � gW.

(2) The set W is a G–invariant collection of pairwise orthogonal domains.

Moreover, if Item 2 holds, then there is a finite index subgroup Ĝ � G of index at most N !
fixing W pointwise.

Proof First, suppose there exist V1, V2 ∈ W with V1 � V2. Then for i = 1, 2 there are
elements gi ∈ XN such that Vi = giW . By premultiplying by g−1

2 , we may assume that
V1 = W and V2 = gW for some g ∈ X2N . Thus the second statement of Item 1 holds.

Now suppose Item 1 does not hold, so that every pair of domains inW is non-transverse.
Suppose that W is not G–invariant. Then X does not fix W = XN .W setwise, and thus X
does not fix Xk .W setwise for any 1 � k � N . Hence for each 1 � k � N ,

Xk .W 
= Xk+1.W .

Since the identity is contained in X , we have

Xk .W � Xk+1.W .

In particular, this implies that |XN .W | � N + 1. However, this is a contradiction, as there
can be at most N pairwise non-transverse elements, and so W is G–invariant.

Let U , V ∈ W . Since U and V are not transverse, either U � V or U ⊥ V . Suppose
U � V , and consider the subcollection U = {gU | g ∈ G} ⊆ W . This subcollection is
G–invariant by construction, and since gU � U would imply gU = U for any g ∈ G, the
set U consists of pairwise orthogonal domains. However, Lemma 3.1 applied to U and V /∈ U
implies that U 
� V , which is a contradiction. Therefore W is a G–invariant collection of
pairwise orthogonal domains, and Item 2 holds.

For the moreover statement, we have |W| � N by definition of N . This induces a map to
the symmetric group G → Sym(N ) whose kernel is a subgroup of G of index at most N !
fixing W pointwise. ��

We address the two cases of Proposition 4.2 in separate subsections.

4.1 Case 1

Assume that Item 1 of Proposition 4.2 holds, that is, there is an element g ∈ X2N such that
W � gW . If | · |X denotes the word length with respect to the finite generating set X , then
we have |s|X � N ! and

|gsg−1|X � |g|X + |s|X + |g−1|X � 4N + N !.
We will show that there are uniform powers of s and gsg−1 that generate a free subgroup of
G.

Proposition 4.3 Let (G,S) by any hierarchically hyperbolic group satisfying the hypotheses
of Case 1. There exists a constant k1 depending only on (G,S) such that

〈
sk1 , (gsg−1)k1

〉 ∼=
F2.
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Proof Let t = gsg−1 and V = gW . Notice that t is loxodromic with respect to the action on
CV and τV (t) > τ0, since s and t are conjugate and τW (s) > τ0 by the choice of W .

Let κ0 be the constant from Axiom 4 (Transversality) of Definition 2.8. We will apply the
ping-pong lemma to the following subsets of G:

Ys =
{
x ∈ G : dW

(
πW (x), ρV

W

)
> κ0

}
and Yt =

{
x ∈ G : dV

(
πV (x), ρW

V

)
> κ0

}
.

Transversality and consistency imply that these sets are disjoint.Note that for all Z , T ∈ S,
the projection map πZ : G → CZ is coarsely surjective and ρT

Z is a bounded subset of CZ
whenever T � Z . Since CW and CV are infinite diameter, this implies that Ys and Yt are
non-empty.

Fix a constant k � 2κ0τ
−1
0 and a point x ∈ Ys . By transversality and consistency, we have

dV (x, ρW
V ) � κ0. Using this fact in addition to Lemma 2.19 and the triangle inequality, we

have

dV
(
ρW
V , tk(2N+1)!.x

)
� dV

(
x, tk(2N+1)!.x

)
− dV

(
x, ρW

V

)

� τ0 |k| − dV
(
x, ρW

V

)

� 2κ0 − κ0

= κ0.

Thus tk(2N+1)!.x ∈ Yt , and so tk(2N+1)!(Ys) ⊆ Yt . Observe that the only requirement for
k was k � 2κ0τ

−1
0 . In particular, the conclusion holds for multiples of k. The same argument

works with negative powers, so t−k(2N+1)!(Ys) ⊆ Yt . By a symmetric argument, it follows
that s±k(2N+1)!(Yt ) ⊆ Ys . Thus

〈
sk(2N+1)!, tk(2N+1)!〉 ∼= F2 by the ping-pong lemma. Setting

k1 = 2κ0τ
−1
0 (2N + 1)! completes the proof. ��

We note that in the previous proposition (and in many of the later results), if we allow s
and t to have different exponents, then we can find smaller constants k1,s and k1,t such that〈
sk1,s , tk1,t

〉 ∼= F2. In particular, we may take k1,s = 2κ0τ
−1
0 ms and k1,t = 2κ0τ

−1
0 mt , for

some ms,mt � N . Also, the stabilization power (2N + 1)! is not optimal since it is given
by the kernel of a map from a copy of Z to a cyclic subgroup of Sym(2N + 1), which can
have size at most LCD(1, 2, . . . , 2N + 1), which grows slower than factorial. For ease of
notation, however, we choose to use the larger uniform exponent.

4.2 Case 2

We now assume that Item 2 of Proposition 4.2 holds, that is, W ⊆ S (as in 5) is a finite
collection of pairwise orthogonal domains that is stabilized by the action ofG onS and fixed
pointwise by the action of Ĝ := ker (G → Sym(N )) on S.

Proposition 4.4 Let (G,S) be any hierarchically hyperbolic group satisfying the hypotheses
of Case 2. Suppose CS has infinite diameter. Then either G is virtually cyclic or there exists a
constant k2 depending only on (G,S) and an element t ∈ X such that 〈sk2 , tsk2 t−1〉 ∼= F2.

Proof Let U ∈ W . Then, by definition, there exists h ∈ G with |h|X � N , such that
U = h.W . As CW has infinite diameter and h acts as an isometry on the associated hyperbolic
spaces, CU must have infinite diameter, as well.

Since CS has infinite diameter by assumption and U � S, it follows from Lemma 3.1
applied with U = W that S ∈ W . By definition, S ∈ W implies that S = g.W for some
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g ∈ G with |g|X � N . However, the map g preserves the �–levels of elements of S, and S
is the unique �–maximal domain in S. Thus, S = g.W if and only if W has the same level
as S, and we conclude that W = S. This implies that S ∈ Big (s). (In fact, this implies that
S = Big (s) by [25, Lemma 6.7], but we will not need this stronger statement.)

The action of G on CS is cobounded and acylindrical by [12, Corollary 14.4]. Let E(s)
denote the stabilizer of the endpoints of the axis of s in ∂CS. If for every generator r ∈ X we
have r ∈ E(s), then G is virtually cyclic by [24, Lemma 6.5].

Otherwise, there exists a generator t ∈ X \ {s} such that t /∈ E(s), and hence t does
not stabilize the endpoints of the axis of s in ∂CS. In particular, |∂CS| � 3, that is, CS is a
non-elementary hyperbolic space.

By [24, Corollary 6.6], t /∈ E(s) if and only if tsnt−1 
= s±n for any n 
= 0. There-
fore, by the choice of t , Theorem 2.7 guarantees the existence of a constant k2 such that〈
sk2 , tsk2 t−1

〉 ∼= F2. ��
Notice that the proof of Proposition 4.4 shows that whenever Item 2 of Proposition 4.2

holds and CS has infinite diameter, there exist two uniformly short elements which are inde-
pendent loxodromic elements with respect to the action on CS. Such elements are necessarily
Morse [68]. On the other hand, when Item 1 of Proposition 4.2 holds, the uniformly short
elements we find are not necessarily Morse. We ask if it is always possible to find uniformly
shortMorse elements in a hierarchically hyperbolic group which generate a free group.

4.3 Proof of Theorem 4.1

Let k1 be the constant from Proposition 4.3, k2 the constant from Proposition 4.4, and δ the
hyperbolicity constant of CU for any U ∈ S. Let X be an arbitrary generating set for G, let
s′ ∈ X be an infinite order element, and let s = (s′)N !. LetW ∈ Big(s) and τ0 be the domain
and constant from Lemma 2.19; note that τ0 is independent of the choice of generating set
X . Also let

k3 = ⌈
10000δτ−1

0

⌉
,

and

M � max{k1, k2 + 2, 3(k3 + 2)(N + 1)!}.
Our goal is to show that one of the following occurs:

(a) G is virtually abelian;
(b) there exist two words of length at most M that generate a free semigroup; or
(c) G is quasi-isometric to a product Z

|W| × E , where E has infinite diameter and is not
quasi-isometric to Z

n .

One of the two cases of Proposition 4.2 must hold. If Item 1 holds, then (b) holds by Propo-
sition 4.3. So, suppose Item 2 holds and the set

W = XN .W

defined in (5) is fixed setwise by G.
If S ∈ W , then CS has infinite diameter, and so (a) or (b) holds by Proposition 4.4. If

S /∈ W , then diam(CS) < ∞ (in particular, it is uniformly bounded) by applying Lemma 3.1
with U = W .

By passing to a further finite index subgroup, we can assume that W is fixed pointwise
by G. Indeed, consider the subgroup Ĝ = ker(G → Sym(W)) of index at most N ! which
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fixes W pointwise. By Lemma 2.4, there is a generating set Y ′ for Ĝ all of whose elements
have X–length at most 2N ! − 1. This means that if we can prove the desired trichotomy for
Ĝ, it will follow for G. By definition, every domain U ∈ W supports the axis of at least one
element in X2N+1. Observe also that, by Proposition 2.17 there is a constant K between 0
and N ! such that gK ∈ Ĝ. Expand the generating set for Ĝ to be

Y = Y ′ ⋃{
gK : g ∈ X2N+1

}
.

Elements of Y have X–length at most (2N + 1)N ! < 3(N + 1)!. Since each domain of W
was in the big set of some element of X2N+1, each domain is also in the big set of some
element of Y .

For the rest of the proof, we restrict our attention to Ĝ, which acts on CU for eachU ∈ W .
For each gW = U ∈ W , there exists an element sU = gsg−1 ∈ G with |sU |X � 2N+N ! that
acts loxodromically on CU . Thus sKU ∈ Ĝ also acts loxodromically on CU , and |sKU |Y = 1,
by the definition of Y . Let s±

U be the fixed point of sKU on ∂CU . We claim that either (b)
holds or all the generators fix {s+

U , s−
U } setwise. Indeed, if t is an element of Y that does

not fix {s+
U , s−

U }, the conjugate t−1sKU t is an independent loxodromic with respect to the
action on CU . By Lemma 2.19, there is a uniform lower bound on the translation length
of sKU = gskg−1 (which is equal to the translation length of t−1sKU t) with respect to the
action on CU . Therefore, Proposition 2.6 implies that for k3 defined as above, some pair in
{(sKU )±k3 , t−1(sKU )±k3 t} generates a free semigroup, and hence (b) holds.

Thus, we may assume that for each U ∈ W , the set {s+
U , s−

U } is Ĝ–invariant. By Proposi-
tion 3.3, we conclude that CU is a quasi-line for each U ∈ W . Let W = {W1, . . . ,Wn} for
some n, and let S̄ = {V ∈ S | diam(CV ) = ∞}. We claim that Z⊥Wi for each Z ∈ S−W
and for all i . To see this, suppose that CZ is unbounded. Then Lemma 3.1 and Proposition 3.2
imply that for each i , either Z⊥Wi or Z � Wi . Since Wi is Ĝ–invariant, by Proposition 3.4,
we must have Z⊥Wi . Thus, we can partition S̄ into pairwise orthogonal sets as follows:

S̄ = {W1} � · · · � {Wn} � (
S̄ − W)

.

Let �S
κ be as in Sect. 2.5. By Proposition 2.23, we conclude that Ĝ (and therefore G) is

quasi-isometric to Z
|W| × �S̄−W

κ . If �S̄−W
κ is quasi-isometric to Z

m for some m, then (a)

holds. Otherwise, (c) holds with respect to the initial generating set, X , and E = �S̄−W
κ ,

completing the proof of Theorem 4.1.
Theorem 1.8 follows immediately from the proof of Theorem 4.1.

5 Applications

We begin by proving Corollaries 5.1, 5.2, and 5.3 from the introduction, whose statements
we recall for the convenience of the reader.

Corollary 5.1 Every non-virtually cyclic virtually torsion-free hierarchically hyperbolic
group which has an asymptotic cone containing a cut-point has uniform exponential growth.
In particular, if the Cayley graph of a virtually torsion-free hierarchically hyperbolic group
G contains an unbounded Morse quasi-geodesic, then G has uniform exponential growth.

Proof of Corollary 5.1 Let G be a non-virtually cyclic virtually torsion-free hierarchically
hyperbolic group. It follows from [29, Proposition 1.1] that having a cut-point in an asymptotic
cone of G is equivalent to G having super-linear divergence. However, this cannot occur if
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G is quasi-isometric to a product with unbounded factors, and therefore G has uniform
exponential growth by Theorem 1.2.

The second statement follows from [29, Proposition 3.24], which shows that if a geodesic
metric space X has an unbounded Morse quasi-geodesic, then every asymptotic cone of X
has a cut-point. ��
Corollary 5.2 Every virtually torsion-free hierarchically hyperbolic group which is not virtu-
ally cyclic and contains an infinite Morse subgroup of infinite index has uniform exponential
growth.

Proof of Corollary 5.2 Let G be a non-virtually cyclic virtually torsion-free hierarchically
hyperbolic group, and let H � G be an infinite Morse subgroup of infinite index. If G is
quasi-isometric to a product with unbounded factors, then either H is quasi-isometric to the
Cayley graph of G or H has bounded diameter in the Cayley graph of G. In the first case, we
reach a contradiction with the fact that H is infinite index, and in the second case we reach
a contradiction with the fact that H is infinite. Thus G has uniform exponential growth by
Theorem 1.2. ��
Corollary 5.3 Let (G,S) be a virtually torsion-free hierarchically hyperbolic group such
that CS is a non-elementary hyperbolic space. Then G has uniform exponential growth.

Proof of Corollary 5.3 Let (G,S) be a virtually torsion-free hierarchically hyperbolic group
such that CS is a non-elementary hyperbolic space. The result follows immediately from
Proposition 4.4. ��

We now turn our attention to the quantitative Tits alternative described in Proposition 5.5.
Under the additional assumption that (G,S) is hierarchically acylindrical, our proof of The-
orem 4.1 can be adjusted to generate free subgroups rather than free semigroups. Hierarchical
acylindricity was introduced by Durham, Hagen, and Sisto in [25] to generalize the follow-
ing property of mapping class groups: for any non-annular subsurface � ⊆ S, the subgroup
MCG(�) � MCG(S) acts acylindrically on domains corresponding to �.

To make this precise in the HHG setting, let

Stab (U ) = {g ∈ G : gU = U } .

By definition of HHG, Stab (U ) acts on CU . Let KU be the kernel of the action, namely the
subgroup {g ∈ Stab (U ) : g.x = x ∀x ∈ CU }.
Definition 5.4 A hierarchically hyperbolic group is hierarchically acylindrical if Stab (U ) /

KU acts acylindrically on CU , for all U ∈ S.

For example, right-angled Artin groups are hierarchically acylindrical because parabolic
subgroups act acylindrically on the contact graph corresponding to the associated subgraph of
the defining graph. More generally, fundamental groups of compact special cube complexes
are hierarchically acylindrical. However, not all hierarchically hyperbolic group structures are
hierarchically acylindrical. An example is given by the group constructed by Burger–Mozes
(see Example 1.6); for further discussion see [26] and [3].

Proposition 5.5 Let (G,S) be a virtually torsion-free hierarchically hyperbolic group such
that G is not quasi-isometric to Z × E for any metric space E. Suppose that either

(1) CS is non-elementary, or

123



18 Page 26 of 33 C. R. Abbott et al.

(2) G is hierarchically acylindrical.

Then for any generating set X of G, there exists a free subgroup of G generated by two
elements whose word length with respect to X is uniformly bounded.

Proof of Proposition 5.5 Fix constants as in the proof of Theorem 4.1. The only time that free
semigroups are produced in the proof of Theorem 4.1 is when Item 2 of Proposition 4.2 holds
and CS is an elementary hyperbolic space. Equivalently, this occurs when two elements have
independent axes in an infinite diameter domain that properly nests into S. In this case, we
pass to a subgroup Ĝ with finite generating set Y which fixesW pointwise, and find elements
s, t ∈ Y such that s and t−1st are independent loxodromic isometries of CU for someU Ĺ S.
By hierarchical acylindricity, Ĝ/KU acts nonelementarily and acylindrically on CU . Let s̄
and t̄ be the images of s and t in the quotient. Applying Theorem 2.7, there exists a constant
k4 such that

〈
s̄k4 , t̄ s̄k4 t̄−1

〉 ∼= F2 in Ĝ/KU . Since free groups are Hopfian, this lifts to a free

subgroup of Ĝ. In particular, the constant M in Theorem 4.1 can be updated to be

M � max{k1, k2 + 2, 3(k4 + 2)(N + 1)!}.
��

Remark 5.6 The proof of Proposition 5.5 shows that the conclusion of Proposition 5.5 also
holds in slightly more generality. In particular, it holds for any virtually torsion-free HHG in
which Item 1 of Proposition 4.2 holds for every finite generating set X .
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Appendix A: Uniform exponential growth for cocompactly cubulated
groups By Radhika Gupta and Harry Petyt

The aim of this appendix is to show that cubical groups that admit a factor system (see Sect. 1)
either have uniform exponential growth or are virtually abelian. This extends the work of
the main body of the paper, in which this is shown to hold when the cube complex does
not split as a direct product (Theorem 1.2). The arguments here show that this irreducibility
assumption can be dropped.

Theorem A.1 Let G be a group virtually acting freely cocompactly on a locally finite, finite
dimensional CAT(0) cube complex X, and assume that X has a factor system. Then either G
has uniform exponential growth or G is virtually abelian.

Since the arguments of Sect. 4 require that the groups involved are (virtually) torsion-free,
we consider free actions only, as any proper action of a torsion-free group on a CAT(0) cube
complex is free.

The class to which Theorem A.1 applies is very large [44], although Shepherd recently
found examples of cubulations of groups that do not admit factor systems [67]. More specif-
ically, the class includes: compact special groups [12]; the Burger-Mozes group, and more
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generally BMW-groups in the sense of [19]; certain Artin groups [38]; and any graph product
of these [18]. We get a new proof of uniform exponential growth for some of these groups:

• Compact special groups. These groups are linear [27, 45], and hence satisfy a UEG
alternative by [31] and the Tits alternative [71].

• The mapping class group of the genus-two handlebody. It is a subgroup of the mapping
class group of the closed surface of genus two, which is linear by [6, 52], and hence has
UEG by [31]. Note that in this case, linearity didn’t come from virtual specialness. This
group acts geometrically on a CAT(0) cube complex with a factor system by [56].

• Burger–Mozes group: It acts freely on a 2-dimensional CAT(0) cube complex, so a UEG
alternative follows by [54]. It also appears as Example 1.6, but rather more machinery
is needed there. Our proof does not depend on the 2–dimensionality, and we need little
technology.

Acknowledgements

We are very grateful to Mark Hagen for suggesting the strategy to prove Lemma A.7.

Preliminaries

Let us briefly record a few definitions and recall some lemmas.

Lemma A.2 Let G = G1 × G2 be a finitely generated group. If G1 has uniform exponential
growth, then G has uniform exponential growth.

Proof This is a special case of the simple fact that if G → H is a surjective homomorphism
and H has uniform exponential growth, then so does G. ��

CAT(0) cube complexes

We refer the reader to [66] for an introduction to CAT(0) cube complexes and groups acting
on them. We highlight two points for later use; also see [12, §2]. Firstly, each hyperplane h
has two associated combinatorial hyperplanes. These are parallel copies of h in the carrier
of h that are as far apart as possible. In particular, they are subcomplexes, unlike h itself.
However, like h, they are convex. Secondly, if Y is a convex subcomplex of a CAT(0) cube
complex X and x ∈ X (0), then the gate of x in Y , denoted gY (x), is the unique closest vertex
of Y to x .

The contact graph of a CAT(0) cube complex X , denoted CX , is defined to be the graph
whose 0–skeleton is the set of hyperplanes of X , with an edge (h, h′) whenever the carriers
of h and h′ intersect. See [40, 41] for more information on contact graphs, including a proof
that they are quasitrees, and, in particular, hyperbolic.

Lemma A.3 Let h1, h2, h3 be distinct hyperplanes of a CAT(0) cube complex X, such that
h2 separates h1 from h3. Then any path P in CX from h1 to h3 passes through the 1–
neighbourhood of h2.

Proof The hyperplanes h1 and h3 lie in different components of X � h2, so P must contain
a hyperplane whose carrier intersects the carrier of h2. ��

Note that an action on a CAT(0) cube complex induces an action on the contact graph.
We refer to [21, §3] for the definition of an essential action.
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Lemma A.4 (Double-skewering, [21, p.853], [42, Lem. 2.11, Cor. 4.5]) Suppose G acts
essentially and cocompactly on a locally finite, finite dimensional CAT(0) cube complex X.
If w and v are disjoint hyperplanes with halfspaces ←−w �

←−v , then there is a hyperbolic
isometry g ∈ G such that ←−gv �

←−w . Moreover, if dCX (w, v) > 2, then g can be taken to act
loxodromically on CX.

The contact graph comes with a coarsely Lipschitz projection map from X to CX that
sends each point x ∈ X to the diameter–1 subset of CX consisting of all hyperplanes whose
carriers contain x . More generally, if Y is a convex subcomplex of X , then projection from
X to CY is defined as the composition of the projection Y → CY with gY .

Factor systems

A factor system for a CAT(0) cube complex X is the data of a collection of convex subcom-
plexes satisfying certain conditions. Factor systems were introduced in [12], and any factor
system for X gives it the geometry of a hierarchically hyperbolic space. In general, X may
have many different factor systems, which allow for greater flexibility. However, if X has a
factor system, then it always has a “simplest” factor system, called the hyperclosure [44].
Therefore, when X has a factor system we shall assume that it is the hyperclosure of X .

Definition A.5 (Hyperclosure) For a CAT(0) cube complex X , the hyperclosure of X is the
intersectionF of all setsF ′ of convex subcomplexes of X satisfying the following conditions.

• F ′ contains X and every combinatorial hyperplane of X .
• If Y , Y ′ ∈ F ′, then gY (Y ′) ∈ F ′.
• If Y ∈ F ′ and Y ′ is parallel to Y , in the sense that any hyperplane crossing one crosses

both, then Y ′ ∈ F ′.

If there exists an N > 0 such that for all x ∈ X , there are at most N subcomplexes F ∈ F
with x ∈ F , then the hyperclosureF is a factor system. Moreover, ifF is not a factor system,
then X does not have any factor system [44, Rem. 1.15]. Note that the hyperclosure always
contains the vertices of X .

Given a factor system for X , there is an associated hierarchically hyperbolic structure on
X . This structure includes a hyperbolic space ĈY for the parallelism class of each convex
subcomplex Y in the factor system. The space ĈY is obtained from the contact graph CY
by coning off certain subgraphs, so any projection to CY induces a projection to ĈY . (Note
that the notation here disagrees slightly with that of the main body of the paper, where the
hyperbolic spaces associated to a hierarchically hyperbolic space are always denoted CY . For
cube complexes it is standard to reserve that notation for contact graphs.) When the factor
system is the hyperclosure of X , the hyperbolic space ĈX associated to X is quasi-isometric
to the contact graph CX [12, Rem. 8.18].

If X = ∏n
i=1 Xi is a direct product, then the hyperclosure F of X can be concretely

described in terms of the hyperclosures Fi of the Xi . Indeed, a subcomplex Y of X lies in F
exactly when it decomposes as Y = ∏n

i=1 Yi for some Yi ∈ Fi . From this decomposition it
follows that ĈY is unbounded if and only if exactly one ĈYi is unbounded and all the other Yi
are vertices. Thus, in this case, Y is a subcomplex of some standard factor v1 × · · · × vi−1 ×
Xi × vi+1 · · · × vn . By abuse of notation we say Y is a subcomplex of Xi .
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Main result

In what remains we shall prove Theorem A.1. We begin with a specialisation of Theorem 4.1
to a certain kind of cocompactly cubulated group.

Proposition A.6 Let X = ∏n
i=1 Xi be a direct product of finite dimensional CAT(0) cube

complexes. If X has a factor system and the contact graph of each Xi is unbounded but not a
quasiline, then any group acting freely cocompactly on X has uniform exponential growth.

Proof As discussed in Sect. 1, any element of the hyperclosure F of X whose associated
hyperbolic space is unbounded is a subcomplex of some Xi . Moreover, ĈXi is not a quasiline,
as it is quasi-isometric to CXi . Any group G acting properly cocompactly on X by cubical
automorphisms is a hierarchically hyperbolic group, and the hierarchy structure of G is
the same as that of X . Note that the set of parallelism classes {X1, . . . , Xn} is necessarily
G–invariant (see [21, Prop. 2.6], for instance).

Let N be the constant from Remark 2.15. Let S be a generating set of G, let s ∈ SN ! be
an infinite order element that fixes its bigset pointwise, and let W ∈ Big(s) be the domain
provided by Lemma 2.19. Recall from Sect. 4 thatW = SN .W . This is a subset of parallelism
classes of elements ofF becauseF is G–invariant. By Propositions 4.2 and 4.3, either G has
uniform exponential growth, orW is a G–invariant set of subcomplexes such that

∏
B∈W B

is a subcomplex of X , and each ĈB is unbounded. In this latter case, W ⊂ {X1, . . . , Xn}
by Lemma 3.1, so none of the ĈB are quasilines. This suffices, because the argument of
Theorem 4.1 shows that if none of the ĈB are quasilines, then G has uniform exponential
growth. ��

Lemma A.7 Suppose that a group G acts essentially and cocompactly on a locally finite,
finite dimensional, irreducible CAT(0) cube complex Y . Then the contact graph CY of Y is
unbounded, and if CY is a quasiline, then so is Y .

Proof The contact graph CY is unbounded by [42, Cor. 4.7]. Suppose that CY is a quasiline.
Let h and h′ be two hyperplanes of Y that are at distance at least 3 in CY . The “moreover”
statement of Lemma A.4 provides a corresponding hyperbolic isometry g ∈ G that acts
loxodromically on CY . Perhaps after subdividing Y , an application of [39, Thm 1.4] shows
that g is combinatorially hyperbolic on Y , and is therefore rank-one by [42, Thm 4.1]. Let
A be an axis of g in Y , and let C be the cubical convex hull of A. By [42, Lem. 4.8], C is at
finite Hausdorff distance from A, and thus it is a quasiline. Moreover, since g is loxodromic
on the quasiline CY , the projection of C to CY is coarsely onto.

It suffices to show that C = Y . Since C is convex, it is enough to prove that every
hyperplane of Y crosses C . Suppose h1 is a hyperplane of Y that does not cross C . By the
“implication (3) �⇒ (4)” part of the proof of [42, Thm 4.1], the gate gC (h1) of h1 to C has
uniformly bounded diameter. Since the projection map Y → CY is coarsely Lipschitz and
since CY is a quasiline, there is a ball B ⊂ CY of uniformly bounded diameter that contains
the projection of gC (h1) and disconnects CY .

Let h2 and h3 be hyperplanes of Y that cross C , have dCY (hi , B) > 1+ diam(B), and lie
on opposite sides of B inside CY . Since h1 does not cross C , it cannot separate h2 and h3.
It follows from Lemma A.3 that neither h2 nor h3 separates the other from h1. Thus, the hi
form a facing triple that are pairwise at distance greater than 3 in CY . By LemmaA.4 (Double
skewering), there exists an isometry g that acts loxodromically on CY and has the property
that h1 separates gnh2 from h2, and hence from h3, for all positive n. From Lemma A.3,
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we see that CY must have at least three ends, a contradiction. Thus every hyperplane of Y
crosses C , so Y = C . ��

We are now in a position to prove Theorem A.1. We restate it for convenience, minus the
word “virtually”, as that generalisation is immediate from [70].

Theorem A.1Let G be a group acting freely cocompactly on a locally finite, finite dimen-
sional CAT(0) cube complex X , and assume that X has a factor system. Then either G has
uniform exponential growth or G is virtually abelian

Proof By passing to the essential core, we may assume that X is essential (see [21, §3.2]),
which implies that the action of G on X is essential, by cocompactness. Now, by [21,
Prop. 2.6], there is a decomposition X = X1 × X2, where X1 = ∏n

i=1 Xi is a product
of irreducible non-euclidean complexes, and X2 is euclidean. Since X is essential, if X1

is bounded then it is trivial. In this case, G acts properly cocompactly on a flat, and so is
virtually abelian.

Otherwise, [61, Cor.2.8] provides a finite index subgroup of G that splits as G1 × G2,
where G j acts properly cocompactly on X j . By Lemma A.2, it suffices to show that G1

has uniform exponential growth, and by [70] we may pass to a finite index subgroup G ′
1

of G1 that fixes the factors of X1. According to Lemma A.7, the contact graph of each Xi

is unbounded but not a quasiline. The conditions of Proposition A.6 are therefore met by
X1, on which G ′

1 is acting properly cocompactly. Thus G ′
1 has uniform exponential growth,

completing the proof. ��
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