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1 | INTRODUCTION

A fixed group G will admit many different cobounded actions on different hyperbolic metric
spaces. Abbott, Balasubramanya, and Osin in [1] show that the set of equivalence classes of
cobounded hyperbolic actions of a group G carries a natural partial order; see Section 2.1. The
resulting poset is called the poset of hyperbolic structures on G, denoted as H(G). Roughly speak-
ing, one action is larger than another if the smaller space can be formed by equivariantly collapsing
some subspaces of the larger. The motivation is that the larger an action is in this partial order,
the more information about the geometry of the group it should provide.

The posets H(G) remain mysterious, especially for groups with features of nonpositive cur-
vature, which tend to have uncountable posets of hyperbolic structures [1]. First steps toward
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understanding these posets were made in [4, 8] and [5]. While [8] and [5] give complete descrip-
tions of H(G) for the groups in question, it appears essentially impossible to do this, given current
technology, for groups with strong features of nonpositive curvature. One measure of how com-
plicated the poset H(G) is the (non)-existence of a largest element of H(G), that is, an element
that is greater than or equal to every other element of the poset. When a largest element exists,
we say that the group G is H-accessible; otherwise, the group is H-inaccessible. The first and third
authors show that many groups with features of nonpositive curvature are H-inaccessible, includ-
ing Anosov mapping tori [5]. In this paper, we extend these results to a large class of 3-manifold
groups: up to possibly taking a twofold cover of the manifold, we show that all 3-manifold groups
are H-inaccessible. This is further evidence that the poset H(G) is quite complicated, even for
reasonably nice groups; see Section 1.1 for further discussion.

We first consider fundamental groups of nongeometric 3-manifolds with empty or toroidal
boundary. If M is a compact, orientable, irreducible nongeometric 3-manifold, then there exists a
nonempty minimal union 7" of disjoint essential tori in M such that each connected component
of M \ T is Seifert-fibered or hyperbolic. This is called the torus decomposition of M, and the con-
nected components of M \ 7 are called pieces. Our first result shows that if M contains certain
types of pieces, then 7; (M) is H-inaccessible. To describe these pieces, we introduce the class of
nonelementary Seifert-fibered manifolds, which are those whose base orbifolds are orientable and
hyperbolic. Nonelementary graph manifolds are those whose Seifert pieces are nonelementary,
and a mixed manifold is nonelementary if all of its Seifert-fibered pieces and maximal graph man-
ifold components are nonelementary. Any graph manifold or Seifert-fibered manifold is finitely
covered by a nonelementary one. See Section 4 for a more in-depth discussion.

Theorem 1.1. Let M be a nongeometric 3-manifold with empty or toroidal boundary. If the torus
decomposition of M contains any of the following, then 7,(M) is H-inaccessible:

(1) a hyperbolic piece that contains a boundary torus of M;
(2) two hyperbolic pieces glued along a torus;

(3) anisolated nonelementary Seifert-fibered piece; or

(4) a nonelementary maximal graph manifold component.

We note a straightforward corollary of Theorem 1.1.

Corollary 1.2. If M is one of the following types of 3-manifolds, then 7,(M) is H-inaccessible:

(a) a finite nontrivial connected sum of finite volume cusped hyperbolic 3-manifolds;
(b) a nonelementary mixed manifold.

Proof. Part (a) follows from Theorem 1.1(1). For part (b), observe that a mixed manifold must con-
tain either: two hyperbolic pieces glued along a torus, an isolated nonelementary Seifert-fibered
piece, or a nonelementary graph manifold component with boundary. In these cases, we apply
Theorem 1.1 (2), (3), or (4), respectively. O

The first and third authors give a straightforward criterion to show that a group is H-
inaccessible [4, Lemma 1.4]; see Lemma 2.3. In this paper, we show in Lemma 4.3 that if a
peripheral subgroup of a relatively hyperbolic group satisfies this criterion, then the group itself
also satisfies the criterion. There is a natural relatively hyperbolic structure on 7;(M) in which
the peripheral subgroups are fundamental groups of certain tori, Seifert-fibered pieces, and graph
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3092 | ABBOTT ET AL.

manifolds. The proof Theorem 1.1 proceeds by showing that, in each case, there is a peripheral
subgroup that is H-inaccessible because it satisfies Lemma 2.3, and then applying Lemma 4.3.
The key step is the following theorem.

Theorem 1.3. If M is a nonelementary graph manifold or a nonelementary Seifert-fibered manifold,
then (M) is H-inaccessible.

Theorem 1.3 generalizes [4, Theorem 1.1], in which the first and third authors show that flip
graph manifold groups, a special class of graph manifold groups, are H-inaccessible.

The class of nonelementary graph manifold groups belongs to a larger class of graphs of groups
called Croke—Kleiner admissible groups that were introduced by Croke and Kleiner in [15]. Roughly
speaking, Croke-Kleiner admissible groups are modeled on the JSJ structure of graph manifolds
where the (fundamental groups of the) Seifert-fibered pieces are replaced by central extensions G
of general hyperbolic groups H:

1-Z(G)=Z—-G—->H->1.

In some sense, Croke-Kleiner admissible groups are the simplest interesting groups constructed
algebraically from a finite number of hyperbolic groups. The H-inaccessibility of nonelementary
graph manifold groups follows from the following result for Croke-Kleiner admissible groups.

Theorem 1.4. Every Croke-Kleiner admissible group has a subgroup of index at most 2 which is
H-inaccessible.

A nongeometric 3-manifold M always has a double cover in which all Seifert-fibered pieces
are nonelementary, and hence passing to a further finite cover if necessary, we obtain a finite
cover M’ — M such that M’ is either a nonelementary graph manifold or a nonelementary mixed
manifold. Combining Theorems 1.1 and 1.3 yields the following corollary.

Corollary 1.5. If M is a nongeometric 3-manifold, then (M) has a finite index subgroup H such
that every finite index subgroup K < H is H-inaccessible.

So far, we have only discussed nongeometric 3-manifolds. In some cases, we can also
understand the H-accessibility of (finite-index subgroups of) geometric 3-manifold groups.

Proposition 1.6. Every 3-manifold with Nil or Sol geometry has a finite cover whose fundamental
group is H-inaccessible. The fundamental group of a closed hyperbolic 3-manifold is H-accessible,
while the fundamental group of a finite-volume cusped hyperbolic 3-manifold is H-inaccessible.

Proof. If a 3-manifold M has the geometry of Sol, then M is a torus bundle over a one-dimensional
orbifold (an interval with reflection boundary points or a circle), and thus, M has a double cover
that is a torus bundle with Anosov monodromy. The H-inaccessibility of the fundamental group
of this bundle then follows from work of the first and third authors [4].

If the geometry of M is Nil, M is a Seifert-fibered 3-manifold, and M is finitely covered by a
torus bundle M’ with unipotent monodromy, and the only possible hyperbolic actions are lineal
and elliptic. On the other hand, the abelianization of 7, (M”) is virtually Z?, so this yields infinitely
many homomorphisms Z> — R modulo scaling, and infinitely many inequivalent actions on
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS | 3093

R by translations. Since such lineal actions are incomparable by [1, Theorem 2.3], 7;(M’) is
H-inaccessible.

The fundamental group of a closed hyperbolic 3-manifold is a hyperbolic group, and so is H-
accessible. The result for a finite-volume cusped hyperbolic 3-manifold is Corollary 4.4. O

In Section 4.4, we consider general finitely generated 3-manifold groups. This includes fun-
damental groups of reducible 3-manifolds, certain geometric 3-manifolds, and 3-manifolds with
nontoroidal boundary. In Proposition 4.10, we characterize the H-accessibility of many such
3-manifold groups. In particular, any finitely generated fundamental group of a hyperbolic
3-manifold without rank-1 cusps is H-accessible.

Many basic questions about posets of hyperbolic structures are still open. Surprisingly, it is
still unknown whether H-inaccessibility of a finite index normal subgroup of G passes to H-
inaccessibility of the ambient group G. In the setting of nongeometric 3-manifolds, the only cases
in which we are unable to determine the H-(in)accessibility of the fundamental group are a man-
ifold all of whose Seifert-fibered pieces are elementary and a graph manifold whose underlying
graph contains a single vertex.

Question 1.7. Let M be a graph manifold whose underlying graph contains only one vertex. Is
(M) H-inaccessible?

‘We suspect that the answer to this question is yes, but the techniques in this paper do not apply.
See Section 4.5 for a more thorough discussion of these manifolds.

1.1 | Implications for the poset H(G)

There is no known example of a finitely generated nonhyperbolic group with a (nontrivial) largest
hyperbolic action. This paper is further evidence that if such an example exists, it is unlikely to be
straightforward. In particular, it is unlikely to be found among hierarchically hyperbolic groups,
a generalization of mapping class groups that includes many 3-manifold groups.

Question 1.8. Does there exist a finitely generated nonhyperbolic group whose poset of
hyperbolic structures is nontrivial and has a largest element?

This is in stark contrast to the subposet AH(G) C H(G) of acylindrindrically hyperbolic struc-
tures, consisting of the equivalence classes of all cobounded acylindrical actions on a hyperbolic
space. There are many examples of nonhyperbolic groups that have a largest element in AH(G),
including all hierarchically hyperbolic groups and hence many 3-manifold groups [1, 2]. This
paper, along with [4, 5, 8], shows that the collection of cobounded hyperbolic actions, without
any additional assumptions, is perhaps too complicated to hope for a single action to capture all
the negative curvature of the group. Indeed, even all of the negative curvature of the (very non-
hyperbolic) group 72, which can been seen via its many actions on lines, cannot be captured
in a single hyperbolic space. Our main tool for proving H-inaccessibility shows this same phe-
nomenon holds for more complicated groups: having a pair of commuting elements with opposite
dynamical behavior in two hyperbolic actions is enough to obstruct the existence of a largest
action.
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3094 | ABBOTT ET AL.

However, one could still ask about whether there are other nice structural properties of the
poset H(G) for certain groups. For example, does the poset have any symmetries? What is the
structure of meets and joins in H(G)? While containing a largest element is not possible for most
3-manifold groups G, one could instead ask about the set M of maximal elements of the poset. For
example, does every chain in H(G) have a maximal element? If so, then collectively, the set M
should capture all of the information about the hyperbolicity in G.

2 | PRELIMINARIES
2.1 | H-accessibility

In this section, we review the partial order on cobounded group actions introduced in [1]. Fix a
group G. If G acts coboundedly on two metric spaces X and Y, we say G ~ X is dominated by
G Y, written G ~ X < G Y, if there exists a coarsely G-equivariant coarsely Lipschitz map
Y — X. The preorder < induces an equivalence relation G » X ~ G ~ Y ifand only if G » X <
G YandG ~ Y <G ~ X. Itdescends to a partial order < on the set of equivalence classes. We
denote the equivalence class of an action by [G ~ X].

Definition 2.1. Given a group G, the poset of hyperbolic structures on G is defined to be
H(G) :={[G ~» X]| G ~ X is cobounded and X is hyperbolic},
equipped with the partial order <.

By [1, Proposition 3.12], this is equivalent to the original definition of H(G) in terms of generat-
ing sets. We say that an element of a poset is largest when it is greater than or equal to every other
element of the poset. Such an element is unique.

Definition 2.2. A group G is H-accessible if the poset H(G) has a largest element. Otherwise, it
is H-inaccessible.

The following lemma gives a simple criterion to check if a group is H-inaccessible.

Lemma 2.3 [4, Lemma 1.4]. Let G be a group. Suppose that there are commuting elements a,b € G
and hyperbolic actions G ~ X and G ~ Y such that

(1) a acts loxodromically and b acts elliptically in the action G ~ X; and
(2) b acts loxodromically in the action G ~ Y.

Then, there does not exist a hyperbolic action G ~ Z such that G X <G~NZand G Y <
GNZ.

We will typically apply this lemma to spaces X and Y that are quasi-isometric to lines. These
actions on quasi-lines will be constructed using quasi-morphisms, which, in turn, will be con-
structed using hyperbolic actions of G with very weak proper discontinuity properties (see

[9D.
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS | 3095

Definition 2.4. Let G ~ X be a hyperbolic action and g € G be loxodromic with fixed points
{g*} C 8X. The element g is WWPD if the orbit of the pair (¢*, g7) is discrete in the space X X
0X \ A, where A = {(x, x) | x € 8X}is the diagonal subset. A WWPD element g is WWPD™ if any
h € G that stabilizes {g*} as a set also fixes {g*} pointwise.

The following proposition follows from [10, Corollary 3.2].

Proposition 2.5. Suppose that G ~ X is a hyperbolic action witha WWPD* element g € G. There
is a homogeneous quasi-morphism q : G — R such that q(g) # 0 and q(h) = 0 for any element h €
G that acts elliptically on X.

Homogeneous quasi-morphisms, in turn, give rise to actions on quasi-lines.

Proposition 2.6 [1, Lemma4.15]. Let g : G — R be a nonzero homogeneous quasi-morphism. Then
there is an action of G on a quasi-line L such that q(g) # 0 if and only if g acts loxodromically on L.

2.2 | Projection axioms

We will use the Bestvina-Bromberg-Fujiwara projection complex machinery developed in [9] to
obtain actions on quasi-trees. In this section, we review this machinery.

Definition 2.7. Let Y be a collection of geodesic spaces equipped with projection maps
{my : Y\{Y} > Yoy

Let dy(X,Z) = diam(wy(X) U y(Z2)) for X #Y # Z € Y. The pair (Y, {7y}yey) satisfies the
projection axioms for a projection constant £ > 0 if

(1) diam(zy (X)) < £ whenever X #7Y;
(2) ifX,Y, Z are distinct and dy (X, Z) > &, then dx (Y, Z) < &; and
(3) for X # Z,theset{Y € Y | dy(X,Z) > £} is finite.

For a fixed K > 0 and a pair (Y, 7y ) satisfying the projection axioms for some constant &, Bestv-
ina, Bromberg, and Fujiwara construct a quasi-tree of spaces Cx(Y) in [9]. If Y admits an action
of the group G so that 7y (9X) = g7y (X) forany g € G and X, Y €V, then G acts by isometries
on Cr(Y); see [9, Section 4.4]. Moreover, they show that if K > 4£ and Y is a collection of metric
spaces uniformly quasi-isometric to R, then Cr(Y) is an unbounded quasi-tree [9, Theorem 4.14].

The following is a useful example to keep in mind throughout the paper and is discussed in
detail in the introduction of [9].

Example 2.8. Let G be a discrete group of isometries of H? and g, ..., gy € G a finite collection
of independent loxodromic elements with axes y, ..., ¥, respectively. Let Y be the set of all G-
translates of y,, ..., 7y, and given Y € V, define 7y to be closest point projection in H?. Since all
translates of each y; are convex, this is a well-defined 1-Lipschitz map, and it follows from hyper-
bolicity that the projection of one translate of an axis onto another has uniformly bounded diam-
eter. In [9], it is verified that the pair (V, 7y ) satisfies the projection axioms for some constant .
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3096 | ABBOTT ET AL.

Given a pair (Y, {7y }y <y ) satisfying the projection axioms and three domains X, Y, Z € V, there
is a notion of distance between a point of X and a point of Z from the point of view of Y, which we
now describe. Let x € X and z € Z. If X, Y, Z are all distinct, then define dy(x, z) : = dy(X, Z).
IfY = X and Y # Z, then define dy(x, z) : = diam({x} U 7y (2)), where the diameter is measured
in Y. Finally, if X = Y = Z, then let dy(x, z) be the distance in Y between x and z. The spaces
Y € Y naturally embed into Cx(Y), so the distance dCK(V)(x, z) is also defined.

We have the following upper bound on distance in Ci(Y). Set [t]x = tif t > K and [t]x = 0if
t<K.

Proposition 2.9 [9, Lemma 4.4]. Let (Y, Ty <y ) satisfy the projection axioms with constant §. For
any K sufficiently large,

depon)(6,2) 6K +4 Y [dy(x, 2)]k.
Yevy

This distance formula was originally stated with a modified distance function. In [9], the dis-
tance defined above was denoted as dg, and the modified distance was denoted as dy.. However,
since dy(x, z) < di(x, z) for all point x, z, the inequality holds with the distance df as well. As
we will not need the modified distance function in this paper, we use the simpler notation dy- for
d¥ and choose to state the proposition with this distance.

2.3 | Croke-Kleiner-admissible groups

In this section, we review Croke-Kleiner admissible groups [15] and the associated Bass-Serre
space, a notion defined in [17].

Definition 2.10. A graph of groups G = (I',{G,},{G,}, {r,}) is a connected graph I' together with
a group G, for each o € V(I')) U E(T') (here V(I') and E(T') denote vertices and edges), and an
injective homomorphism 7, : G, — G, for each oriented edge a, where u denotes the terminal
vertex of a.

Definition 2.11. A graph of groups G = (I, {G},{G,}, {z.}) is called admissible if the following
hold.

(1) Gisa finite graph with at least one edge.

(2) Each vertex group G, has center Z, := Z(G,) = Z, H, :=G,/Z, is a nonelementary
hyperbolic group, and every edge group G, is isomorphic to Z2.

(3) Let a; and «, be distinct edges oriented toward a vertex u, and for i = 1,2, let K; C GM
be the image of the edge homomorphism G, — G,. Then for every g € G,, gk, gl is
not commensurable with K,, and for every g € G, \ K;, ¢K; g~! is not commensurable
with K;.

(4) For every edge group G, with a = [a~,a™] (oriented from a~ to a*), the subgroup of G,
generated by 7_(Z,+)) and T;(Zaf )) has finite index in G,,.

A group G is admissible if it is the fundamental group of an admissible graph of groups. Such
groups are often called Croke-Kleiner admissible groups.
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS | 3097

Lemma2.12 (17, Lemma4.2]. Let G = (T, {G,}, {G,}, {r}) be a Croke-Kleiner admissible group. For
each edge a = [a~,a't] of G, denote

Co =174 (Tg(l (Za*)) ,

which is a subgroup of G.+. Each vertex group G, has an infinite generating set S, so that the
following holds.

€] Cay(GM, S M) is quasi-isometric to a line.
(2) Theinclusion map Z, — Cay(G,,S,) is a Z,-equivariant quasi-isometry.
(3) Foreach edge a with a* = p, we have that C,, is uniformly bounded in Cay(G,,S,)-

Remark 2.13. The quasi-line Cay(G,, S,,) satisfies the following.

* The center Z,, of G, acts loxodromically on Cay(G,, S,,).
* If w is an adjacent vertex to u in T, then each cyclic subgroup of G, conjugate to Z,, acts
elliptically on Cay(G,, S,,).

Let G be a graph of finitely generated groups, and let G ~ T be the action of G = 7,(G) on the
associated Bass—Serre tree of G (we refer the reader to [15, Section 2.5] for a brief discussion). For
each vertex v of the Bass-Serre tree T, let U denote the vertex u of T' so that v represents ¢G,, for
some g in G. For each vertex group G, and edge group G, fix once and for all finite symmetric
generating sets J, and J,, respectively, such thatJ, = J5 and 7, (J,) C Jo+.

We briefly sketch the description of the Bass—Serre space X for the graph of groups G and refer
the reader to [17, Definition 2.10] for a full description of the space. Given a vertex v of T, the
associated vertex space X, of X is a graph isometric to Cay(Gy,J;). If e is a (directed) edge in T,
then the associated edge space X, is isometric to Cay(G;, J;). Edges are added between the vertex
and edge spaces so that the maps 7; induce isometric embeddings of the edge spaces into the
vertex spaces, which we denote by 7, : X, = X,+ and 7, : X, = X,-.

Suppose that G is an admissible graph of groups with Bass—Serre tree T and Bass—Serre space X.
For each vertex u of T, let S, be given by Lemma 2.12. Without loss of generality, we can assume
thatJ,, is contained in S,,, where J , is the fixed generating set of G,.

Definition 2.14 (Subspaces L, and H,,). Suppose that the vertex v € T represents gG;. Let L, be
the graph with vertex set G and with an edge connecting x,y € gG; if x~'y € S;. In particular,
L, is isometric to Cay(Gy, Sy), which is a quasi-line by Lemma 2.12.

Let H, be the graph with vertex set ¢G; and with an edge connecting x,y € gG; if x 1y €
J5 U Zs. Tt is isometric to Cay(Gy, J; U Zy).

Since L, and H, are each obtained from X, by adding extra edges, there are distance nonin-
creasing maps p, : X, — L, and i, : X, - H, that are the identity on vertices. The space H,, is
constructed to represent the geometry of Hy; = G5/Z; and is relatively hyperbolic:

Lemma 2.15 [17, Lemma 2.15]. H,, is hyperbolic relative to the collection

P, ={¢, :=1i,(t,(X,)) | e € E(T) such that e™ = v}.
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3098 | ABBOTT ET AL.

It follows from [30] that there is a coarse closest point projection map
projf’e : HU - fe’
which is coarsely Lipschitz with constants independent of e and v.

Remark 2.16. As peripheral subsets in a relatively hyperbolic space, the sets {¢;|f €
E(T) and f* = v} together with the maps proj ¢ satisfy the projection axioms for a constant &,.

We now show that if e is an edge from u to v, the various maps defined above can be composed
to form a quasi-isometry between the quasi-line #, € P, and the quasi-line L,. Let ¢, : £, — L,
be the map from [17, Lemnma 6.16] that is defined as the restriction to £, of the composition

-1 _.—1
P,OT, 0T, oi . @

In [17, Lemma 6.16], the authors prove that 1, is coarsely Lipschitz and note that 1, is, in fact, a
quasi-isometry. Here, we provide details for why it follows that ¥, is a quasi-isometry. First, we
prove a more general result.

Lemma 2.17. Let ¢, 7, be two quasi-lines, and suppose that a group G acts coboundedly on both
¢, and ¢,. Any G-equivariant coarsely Lipschitz map iy : £, — ¢, is a quasi-isometry.

Proof. Since there is a G-equivariant coarsely Lipschitz map from #; to Z,, we have [G ~ 7] =
[G ~ 7,]in the poset H(G). However, since G ©~ £, and G ~~ ¢, are both lineal, [1, Theorem 4.22]
implies that these actions must be equivalent. Thus, there is a coarsely G-equivariant quasi-
isometry ® : ¢, — ¢,. We will show that ® and ¢ differ by a uniformly bounded amount, which
will then show that 7 is also a quasi-isometry.

Fix a basepoint x, € #,. Since G ~ ¢, is cobounded, there is a constant B such that for any
X € ¢, there is some g € G such that dfl (x, gxy) < B. Since © is coarsely Lipschitz and ® is a
quasi-isometry, there is a constant A, depending on B and the coarse Lipschitz constants for ®
and ¢, such that d, (®(x), ®(gx,)) < A and d,, (), p(gx,)) < A. Moreover, since ® is coarsely
G-equivariant, there is a constant C such that dfz(d)(gxo), g®P(x,)) < C.LetD = dfz (D(xg), P(x))-

By the triangle inequality and G-equivariance of ¢, we have

d (@), Y1) < d, (@(x), g8(x)) + d, (99(x), 99(x0)) + dyr, Blg0). Y(x))

<SA+C)+D+A,
completing the proof. O
We now complete the proof that ¢, is a quasi-isometry.

Lemma2.18. Thereare constants A > 1and c > 0depending only on G such that the following holds.
For any oriented edge e in the Bass-Serre tree T of G, themap ¥, . ¢; — L, is a (4, c)-quasi-isometry.

Proof. In [17, Lemma 6.16], the authors prove that the map ¥, is coarsely Lipschitz. Moreover,
from the definitions of Z, and L, as Cayley graphs with respect to infinite generating sets, G, acts
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS | 3099

by isometries on both, and i, is Gs-equivariant. Therefore, ¥, is a quasi-isometry by Lemma 2.17.
As there are only finitely many G-orbits of edges in T, we can choose the constants of these quasi-
isometries to be independent of the edge e. [l

3 | CROKE-KLEINER ADMISSIBLE GROUPS AND
H-INACCESSIBILITY

In this section, we prove Theorem 1.4: every Croke—Kleiner admissible group has a finite index
subgroup that is H{-inaccessible.

Fix a Croke-Kleiner admissible group G = (I, {G,},{G}, {r.}). We partition the vertex set T
of the Bass-Serre tree into two disjoint collections of vertices V; and V, such that if v and v’ are
in V;, then d;(v,v’) is even. Since any automorphism of T either preserves V; and V, setwise or
interchanges them, we have the following.

Lemma 3.1 [23, Lemma 4.6]. Let G = (T, {G#}’ {G,},{r,}) be a Croke-Kleiner admissible group.
There exists a subgroup G' < G = 7,(GQ) of index at most 2 in G so that G’ preserves V; and V, and
G' is also a Croke-Kleiner admissible group.

Let G’ be the finite index subgroup of G given by Lemma 3.1. In light of Lemma 2.3, to show that
G’ is H-inaccessible, it suffices to construct commuting g; € G’ and actions G’ ~ X; fori = 1,2
such that g; is elliptic with respect to the action G’ ~ X;_; and loxodromic with respect to the
action G’ ~ X;. Our spaces X; will be quasi-trees of metric spaces.

3.1 | Construction of group actions

For notational simplicity, we replace G by its index < 2 subgroup G’. For each vertex v in the
Bass-Serre tree T, let L, be the quasi-line from Definition 2.14. Recall that gL, = L, for any group
element ¢ in G.

Let L; be the collection of quasi-lines {L,},cy, and L, be the collection of quasi-lines {L } ¢y, -
We define a projection of L, to L, in L; as follows.

Definition 3.2 (Projection maps in L;). For any two distinct vertices v, v” € V,, lete’ = [w, u] and
e = [u,v] denote the last two (oriented) edges in [v’, v]. The projection from L, into L,, is

HLU(LU’) = lpe(projp”é(fe/))’
where 9, : £; — L, and proj,, : H, — ¢, are the maps introduced in Section 2.

The fact that d(v, v") is even is not necessary for Definition 3.2, only that d(v,v’) > 2.
We will verify that the L; with these projection maps satisfy the projection axioms (see
Definition 2.7) for i = 1,2. Let d; _(Lj, L.) be the projection distance diam(I'ILa (Ly) VI (Lyp)).

Lemma 3.3. There exists a constant A > 0 such that diam(I'ILU (L)) < A for any distinct v,V €
V; for i = 1,2. Moreover, if a,b,c € V; are distinct vertices with dr(a, [b,c]) > 2, then I'[La(LC) =
I (L)
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3100 | ABBOTT ET AL.

Proof. By Remark 2.16, there is a uniform bound on the diameter of proj, (#,/). Combined with
the fact that ¢, is uniformly coarsely Lipschitz, this gives the constant 1. Considering the convex
hull of {a} U [b, c], we see that, orienting [c, a] and [b, a] toward a, the last two edges of [c, a] are
the same as the last two edges of [b, a]. Hence, by definition, I, L) = I, (Lp). O

Let v be a vertex of the Bass—Serre tree T. By Remark 2.16, the collection {# =1, (t ¥ (0¢ f)) | f €
E(T) suchthat f* = v} satisfies the projection axioms with a constant &,. Let d, denote the
projection distances with respect to proj,. The following lemma follows immediately from
Lemma 2.18 and the definitions of d, and d; .

Lemma 3.4. There exists a constant 1 > 0 such that the following holds. Let u, v, w be distinct ver-
tices in V; contained in Lk(o) for some vertex o in V,. Let e = [w, 0], e; = [u,0], and e, = [v,0].
Then

1
zdfe(fel, C,)—A<dy (L, L) <Ad, (€, ,C,) + A
‘We are now ready to verify the projection axioms.

Proposition 3.5. There exists § > 0such thatforeachi € {1, 2}, L; together with the projection maps
proj, satisfies the projection axioms.

Proof. We verify the projection axioms for L. The case for L, is identical. The constant & will be
defined explicitly during the proof.

Axiom 1: This follows from Lemma 3.3.

Axiom 2: Let u, v, w be distinct vertices in V,. In the course of the proof, we will compute a
constant § > O such thatifd; (L,,L,) > &, thend; (L,,L,) <.

Sinced; (L,,L,)> 0,itfollowsfrom Lemma 3.3 that either w lies on [u, v] or dr(w, [u,v]) = 1.
If w lies on [u, v], then since u, w, v € V;, we have dr(u, [w, v]) > 2 and d;(v, [u, w]) > 2. Axiom
2 thus follows from Lemma 3.3.

On the other hand, suppose that d(w, [u,v]) = 1. Let o € [u,v] be adjacent to w and con-
sider the vertices u’, v’ € Lk(o) N [u, v] that lie in [u,0] and [o, v], respectively. If u # u’, then
dLu(Lw,LU) =0, and so, we may assume without loss of generality that u = u’. Furthermore,
ny, (L) = 7y, (L) by definition. Thus, to prove the upper bound on d; (L,,L,), it suffices to
assume that v = v/, in which case u, v, w all lie in Lk(0), where 0 € V,.

Lete = [w, 0], e; = [u,0], and e, = [v, 0]. It follows from Lemma 3.4 that

1
zdfe(fel , fez) - A< de(Lu,LU) < /ldfe(fel , KEZ) + A
Again applying Lemma 3.4 with the roles of u, v, w exchanged, we have that
1
deel (" fez) 1< dLu(Lw,LU) < Adfel ,, fez) + A
Since {¢ | f € E(T) and f * = o} satisfies the projection axioms with constant &, it follows that

dy,(¢e,.Ce,) > &, implies that dfel (e ¢e,) < & Since there are finitely many choices for o up
to the action G’, the constant &, may be chosen independently of 0. Thus, setting £ = 1§, + 4,
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS | 3101

the above inequalities show that d; (L,,L,) > ¢ implies that d; (L,,L,) < §. This verifies
Axiom 2.
Axiom 3: For distinct u, v € V;, we will prove the set

{w € vl I de(Lu’LU) > g}

is finite. By Lemma 3.3, any such vertex w is either contained in the interior of [u, v] or satisfies
d(w, [u, v]) = 1. The first case yields at most d(u, v) — 1 choices for w.

Suppose d(w, [u,v]) = 1. As in the proof of Axiom 2, we can assume that u, v, w lie in Lk(o)
for some vertex o in V,. Let e; = [u,0],e, = [v,0], and e = [w,0]. By Lemma 3.4, we have
dp (L, L,) < Ady (¢,,¢,,) + 2. Since § = 4§, + 4, it follows that

{w € Lk(o) | dp, (L, L) > §} € {w € Lk(o) | dy (CeCe,) > o}

The projection axioms for {# | f € E(T) and f* = v} imply that the latter set is finite, and so,
the former set must also be finite. Since there are finitely many possibilities for o, this verifies
Axiom 3. O

Lemma 3.6. Foreachi = 1,2, the action of G = 7,(G) on the collection L; = {L, | v € V;} satisfies
HgLU(gLu) = gHLU (Lu)
foranyv € V,andany g € G.

Proof. This follows immediately from the definition of IT and the fact that the maps proj and ¥
are G-equivariant in the sense that proj (¢, ) = g - projo(¢ ;) and 9 ,,(gx) = gh,(x). O

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let G’ be the finite index subgroup of G given by Lemma 3.1, which is also
a Croke-Kleiner admissible group. Without loss of generality, we replace G by G’ for the rest of
the proof.

By Proposition 3.5, the collection of quasi-lines L; = {L, | v € V;}satisfies the projection axioms
with a constant £ fori = 1,2. Fix K > 4£. The unbounded quasi-trees of metric spaces Cr (L) and
Ck(L,) are themselves quasi-trees, and they admit unbounded isometric actions G ~ Cg(L;) and
G ~ Cr(Ly).

Since the underlying graph of G is bipartite, we can choose an edge ¢ in I" which is not a
loop. Choosing the orientation of & correctly, © = é~ and w = é* have lifts in T belonging to V;
and V,, respectively. By construction, elements of Z, and Z,, are loxodromic and elliptic in the
action on Cg(L,), respectively, and elliptic and loxodromic in the action on Cg(L,), respectively.
By Lemma 2.3, we conclude that the group G is H-inaccessible. 1

Every graph manifold has a finite cover that is a graph manifold N containing at least two
Seifert-fibered spaces such that each Seifert-fibered piece has orientable, hyperbolic base orb-
ifold. We call such a graph manifold nonelementary in Section 4. Since 7; (N) is a Croke-Kleiner
admissible group, the following corollary is immediate from Theorem 1.4.
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3102 | ABBOTT ET AL.

Corollary 3.7. Every graph manifold has a finite cover whose fundamental group is H-inaccessible.

It is still unknown whether H-inaccessibility of a finite index normal subgroup of G passes
to H-inaccessibility of the ambient group G. Thus, it is natural to ask whether the “finite
cover” condition in Corollary 3.7 can be removed. We will address this question in the following
section.

4 | H-ACCESSIBILITY OF 3-MANIFOLD GROUPS

The goal of this section is to prove Theorem 1.1, which gives conditions under which the
fundamental group of a nongeometric 3-manifold is H-inaccessible.

We begin by recalling some definitions and facts about 3-manifolds. Let M be a compact, con-
nected, orientable, irreducible 3-manifold with empty or toroidal boundary. By the geometrization
theorem for 3-manifolds of Perelman [24-26] and Thurston, either

(1) the manifold M is geometric, in the sense that its interior admits one of the following
geometries: S3, E3, H?, S? X R, H? X R, SL(2, R), Nil, and Sol; or

(2) the manifold M is nongeometric. In this case, the torus decomposition of 3-manifolds yields
a nonempty minimal union 7" C M of disjoint essential tori, unique up to isotopy, such that
each component of M\T is either a Seifert-fibered piece or a hyperbolic piece.

We refer the reader to [29] for background on geometric structures on 3-manifolds. A Seifer-
fibered piece is called nonelementary if its base orbifold is orientable and hyperbolic, and it is
called isolated if it is not glued to any other Seifert-fibered piece.

The manifold M is called a graph manifold if all the pieces of M\T are Seifert-fibered. A graph
manifold is nonelementary if it contains at least two pieces and all pieces are nonelementary.
In other words, a nonelementary graph manifold is obtained by gluing at least two and at most
finitely many nonelementary Seifer-fibered manifolds, where the gluing maps between the Seifert
components do not identify (unoriented) Seifert fibers up to homotopy.

We will call a nongeometric manifold M a mixed manifold if it is not a graph manifold. If there
is a subcollection 7’/ of 7 and a connected component of M\7” that is a graph manifold, then
this connected component is called a graph manifold component of the mixed manifold M. A
graph manifold component is maximal if it is not properly contained in another graph manifold
component. A mixed manifold is nonelementary if all maximal graph manifold components and
Seifert-fibered pieces are nonelementary.

Remark 4.1. Every graph (respectively, mixed) manifold is finitely covered by a nonelementary
graph (respectively, mixed) manifold (see, e.g., [27, Lemma 3.1], [19, Lemma 2.1]).

Our starting point for proving Theorem 1.1 is the following lemma, which describes when 7; (M)
is relatively hyperbolic.

Lemma 4.2 [12,16]. Let M1, ..., M. be the maximal graph manifold components and Seifert-fibered
Dpieces of the torus decomposition of M. Let Sy, ..., S, be the tori in the boundary of M that bound
a hyperbolic piece, and let T4, ..., T, be the tori in the torus decomposition of M that separate two
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3103

hyperbolic components. Then m,(M) is hyperbolic relative to
P = {m (M), Ulmy (S¥_, Ui (T,

This relatively hyperbolic structure on 7, (M) is useful because of the following result, which
gives a criterion for relatively hyperbolic groups to be H-inaccessible.

Lemma 4.3. Let (G, P) be a relatively hyperbolic group. If there is a peripheral subgroup P € P that
satisfies the hypotheses of Lemma 2.3, then G is H-inaccessible.

Before proving the lemma, we state an immediate corollary, which gives a different proof of [4,
Theorem 6.2].

Corollary 4.4 [4, Theorem 6.2]. The fundamental group of a finite-volume cusped hyperbolic 3-
manifold is H-inaccessible.

We now turn to the proof of Lemma 4.3.

Proof of Lemma 4.3. To see that H(G) does not contain a largest element, we will construct two
actions of G on hyperbolic spaces with commuting elements a, b € G that satisfy the hypotheses
of Lemma 2.3. To do this, we will apply the machinery of induced actions from [3].

Since P satisfies the hypotheses of Lemma 2.3 by assumption, there are commuting elements
a,b € P and isometric actions P ~ X and P ~ Y on hyperbolic spaces such that a and b act lox-
odromically and elliptically, respectively, in the action P ~ X, and b acts loxodromically in the
action P ~ Y. For all Q € P\ {P}, fix the trivial action of Q on a point. By [3, Corollary 4.11(a)],
there exist hyperbolic spaces Zy, Zy on which G acts by isometries, associated to the collection of
actions {Q ~x| Q € P\ {P}} U{P ~ X} and the collection of actions {Q ~*| Q € P\ {PH}U{P ~
Y}, respectively. Moreover, there are coarsely P-equivariant quasi-isometric embeddings X — Zy
and Y — Zy. Therefore, a acts loxodromically and b acts elliptically in the action G ~ Zy, while
b acts loxodromically in the action G ~ Zy.. This completes the proof. O

In light of Lemmas 4.2 and 4.3, to prove the H-inaccessibility of 7z, (M), it suffices to understand
its peripheral subgroups. In Section 4.1, we analyze the fundamental groups of the Seifert-fibered
pieces. The more difficult subgroups to understand are the fundamental groups of the maximal
graph manifold components. We consider these in Section 4.2 and give conditions under which
they satisfy Lemma 2.3; see Proposition 4.8. In Section 4.3, we put these results together and prove
Theorem 1.1. Up to this point, we have been assuming that M has empty or toroidal boundary.
Finally, in Section 4.4, we consider 3-manifolds with higher genus boundary components.

4.1 | Seifert-fibered manifolds

In this section, we analyze Seifert-fibered pieces.

Lemma4.5. Letl - Z % G5 H — 1beashort exact sequence where Z is central in G and H is
a nonelementary hyperbolic group. Then, G is H-inaccessible.
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3104 | ABBOTT ET AL.

Proof. Choose a finite generating set J of H and consider the hyperbolic action G ~ Cay(H,J).
Let a be a generator of the group Z, and let b be an element of G such that 7(b) is loxodromic in
H ~ Cay(H,J). The element b is thus loxodromic in the action G ~ Cay(H,J), as well, while the
element a is elliptic (in fact, trivial) in this action.

Since every integral cohomology class of a hyperbolic group is bounded (see [22]), the central
extension Z — G — H corresponds to a bounded element of H*(H, Z). Hence, [17, Lemma 4.1]
provides a quasi-morphism ¢ : G — Z that is unbounded on i(Z). By [1, Lemma 4.15], there
exists a generating set S for G such that L := Cay(G, S) is a quasi-line and the inclusion Z — L
induced by i is a Z-equivariant quasi-isometry. We thus obtain a hyperbolic action G ~ L for
which a is loxodromic. Since a € Z(G), the elements a and b commute. By Lemma 2.3, G is
H-inaccessible. O

Corollary 4.6. Let M be a nonelementary Seifert-fibered manifold. Then, 7r;(M) is H-inaccessible.

Proof. Let ¢ : M — X be a Seifert fibration. Since S' — M — X is a circle bundle over Z, there is
a short exact sequence

157 - nm M) - mQE) -1,

where Z is the normal cyclic subgroup of 7, (M) generated by a fiber. The group Z is central in
(M) since X is orientable (see, e.g., [20, Proposition 10.4.4]). By Lemma 4.5, the group 7, (M) is
H-inaccessible. O

4.2 | H-accessibility of nonelementary graph manifolds

Let M be a three-dimensional nonelementary graph manifold with Seifert-fibered pieces
M,, ..., Mj in its torus decomposition. There is an induced graph-of-groups structure G on 7, (M)
with underlying graph I' as follows. There is a vertex of I' for each M;, with vertex group
7,(M;). Each edge group is 72, the fundamental group of a torus in the decomposition. The
edge monomorphisms come from the two different gluings of the torus into the two adja-
cent Seifert-fibered components. With this graph of groups structure, 7;(M) is a Croke-Kleiner
admissible group.

The universal cover M of M is tiled by a countable collection of copies of the universal covers
M, ..., M. We call these subsets vertex spaces. We refer to boundary components of vertex spaces
as edge spaces. Two vertex spaces are either disjoint or intersect along an edge space. Let T be the
Bass-Serre tree of C.

Applying Theorem 1.4 to the Croke-Kleiner admissible group 7z, (M), we obtain a cover M’ —
M of degree 2 such that 7, (M) is not H-accessible. However, this is not enough to conclude H-
inaccessibility of 7r;(M), as it is unknown whether H-inaccessibility of a finite index subgroup
passes to the ambient group. In this section, we will show that 7r; (M) itself is H-inaccessible; see
Proposition 4.8.

We begin with a lemma. Let 7 () be the closest point projection of a line 8 to a line « in a
hyperbolic space. Let d, (-, -) be in the resulting projection distances.

Lemma 4.7. Let F be a two-dimensional hyperbolic orbifold with nonempty boundary and univer-
sal cover F, and let L be the collection of boundary lines of F. For any a € L and any loxodromic
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS | 3105

y € m,(F) whose axis in F is also a line in L, the following holds. There exists a constant A > 0 such
that forany n € 7 and any line 8 € L \ {a,y" ()}, we have

dala, (o)) < 4.

The proof of this lemma is very similar to that of [4, Lemma 5.6]. We refer the reader to that
paper for some figures that may be helpful; see, in particular, [4, Figure 8].

Proof of Lemma 4.7. Since L is a 7, (F)-invariant collection of axes in the hyperbolic plane H?
with disjoint limit sets, it follows from Example 2.8 that (L, 7,) satisfies the projection axioms
for some constant &. In particular, there exists a constant & > 1 such that diam(z,(¢")) < & for
distinct elements # and #’ in L. Let

A = max{€, d(a, y(@)) + 2, d(at, (@) + 2&}.
Let # € L denote the axis of y in F. If # = «, then
dg(a,y" (@) = dgla,a) < £ < 4,

and the result holds. For the remainder of the proof, we assume # # o and consider two cases.

Casel: B & {y*(a) |k € Z}

In this case, there exists a unique k, € Z such that g lies between y*o(a) and y*o+!(a). That
is, 9H? minus the endpoints of y*o(a) and y*o*!(a) consists of four intervals, one containing the
endpoints of 3, one containing the endpoints of all y'(«) for i & {k,,k, + 1}, and the other two
disjoint from all endpoints of lines in L. Fixing an appropriate orientation on 5, we partially
order subintervals I = [x,y] and J = [z, w] of 8 (with x < y and z € w in the orientation) by
I <Jif x < z and y < w. Then, the projections of the lines y*(a) onto 8 occur in the following
order:

nﬁ(yko(oc)) < (Yo () < g (Yo 2(@) < .. < m5(£)
and
mg(6) < ... < mg (Y o3 (@) < mp (Yot (@) < mp(vot(a)).
Thus,
dg(a, 7"(@) < dg (Y*(@), 70 (@) < d(y (), "ot () + 2€,

where d(y*o(a), y%0*1(«)) denotes the distance between y*o(a) and y*o*!(«) in the hyperbolic
plane. The final inequality follows from the fact that the nearest point projection is a 1-
Lipschitz map and that 7,(#’) has diameter at most & for any distinct lines #,#’ € L. Since

dy*o(a), y*ot1(a))) = d(a, y(a)), it follows that

dg(a, y" (@) < d(a,y(@)) +2§ < 4.
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Case 2: = y¥(a) for some integer k # 0, n. Using an analogous argument to Case 1, we see that
dﬁ((x, y"(a)) is bounded above by

ds(/* (00,7 (@) < dl@, yA(@)) + 26 < 4. -
Proposition 4.8. The fundamental group of a nonelementary graph manifold is H-inaccessible.

Proof. Let G be the graph-of-groups structure on 77, (M) with underlying graph I' described at the
beginning of this section. The assumption that the graph manifold M is nonelementary ensures
that there are at least two vertices in the graph I'. We divide the proof into two cases, depending
on the location of loops in T.

Fix an edge a in T that is not a loop, and label the vertex ¢~ by u and the vertex a* by w. Let
T, be the torus in M associated to the edge «. Let v and w be two adjacent vertices in the tree T
such that M, and M, are the universal covers of the Seifert pieces M . and M, respectively. Let
z, and z,, be the generators of Z, and Z,,, respectively.

Case I: Suppose that there is no loop in I" based at the vertex u. Let

W, := {L, | M, is alift of the Seifert-fibered piece M, }

If L, and L, are two distinct elements in W, then d(v, V") > 2 (though they are not necessarily
an even distance apart). In this case, the techniques in Section 3 apply to define projection maps
between L, and L,,. Note that the assumption d(v,v’) > 2 is necessary in order to make such a
definition. The proof of Proposition 3.5 applies to show that the projection axioms are satisfied for
W,,. This yields a cobounded action 7z, (M) ~ Cg(W,,) such that z,, is loxodromic and z,, is elliptic.

Case 2: Suppose that there is a loop in I based at the vertex u.

As in Section 3, we partition the vertex set T into two disjoint collections of vertices V; and V,
such thatif z and z’ both lie in V;, then d(z, z") is even. Applying Theorem 1.4 to the Croke-Kleiner
admissible group 7; (M), we obtain a degree 2 cover M’ — M such that 7z;(M’) is H-inaccessible
and 7z;(M’) preserves V; and V,.

Assume without loss of generality that v isin V; and w isin V,. Let

Q, :={L,|u €V, and M, is a lift of M, }.

As in the previous case, the techniques of Section 3 suffice to define projection maps for @, and
the proof of Proposition 3.5 shows that the projection axioms are satisfied by Q,,, and thus, we
obtain quasi-trees of spaces Cx (Q,,) for sufficiently large K. Since 7z, (M ") preserves Q ,» We obtain
an action 7, (M’) ~ CK(@#) as in Section 3.

Passing to a power of two if necessary, we may assume that z,, z,, € 7;(M "). As shown in
the proof of Theorem 1.4, the element z, acts loxodromically on Cx(Q,), while z,, acts ellipti-
cally on Cg(Q,). By the construction of Cx(Q,), and since vertex groups are central extensions
of Z, the element z,, is a WWPD? element in the action 7;(M’) ~ CK(QM). Hence, Proposi-
tion 2.5 provides a homogeneous quasi-morphism gy : 7,;(M’) — R satisfying gx(z,,) = 0 and
qx(z,) # 0.

Our goal is to extend g to a homogeneous quasi-morphism 7;(M) — R while ensuring that
z,, and z,, still have trivial and nontrivial image, respectively. Let h € 7, (M) be a representative
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3107

of the nontrivial coset of 7z;(M') in 7z;(M). Define a function q% : my(M') - Rby

g (x) 1= qg(x) + gg(hxh™).

Note that q}< is constant on conjugacy classes of 77,(M), that is, q%(yxy_l) = q%(x) for any
y € 7 (M) and x € 7;(M")). Hence, it follows from the proof of [11, Lemma 7.2] that q% extends
to a homogeneous quasi-morphism py : 7;(M) — R defined by pr(x) := q%(xz) / 2foreachx €
7 (M).

Lemma 4.9. Suppose that there is a loop in T based at u. For K large enough, we have pg(z,,) =0
and pK(zM) #0.

We defer the proof of the lemma for the moment and assume this result to complete the
proof of Proposition 4.8. Since pg : 7;(M) — R is a nonzero homogeneuous quasi-morphism,
we obtain from Proposition 2.6 an action 77, (M) ~ £ on a quasi-line. Moreover, since p K(zu) #0
and pg(z,,) = 0, the element z,, is loxodromic, while z, is elliptic in this action.

Now, consider the other endpoint w of . Suppose first there is not a loop in I" based at w.
Interchanging the roles of u and w in Case 1 above produces an action 7;(M) ~ Cx(W,,) such
that z, is elliptic and z,, is loxodromic. On the other hand, if there is a loop in I based at w, then
interchanging the roles of u and w in Case 2 above produces an action 7z; (M) ~ £’ on a quasi-line
in which (after possibly passing to a power of 2) z,, is elliptic and z,, is loxodromic.

Regardless of which combination of cases holds for the vertices u and w, we have produced two
actions on hyperbolic spaces and two commuting elements z,, and z,, that satisfy the conditions
of Lemma 2.3, which concludes the proof. O

‘We now prove Lemma 4.9.

Proof of Lemma 4.9. Recall that v € V,. As h € 7;(M) is a representative of the nontrivial coset
of 7;(M") in 7r, (M), we have hv € V,. Note that M, is also a lift of M, even though hv is not in
V. Fix a vertex v adjacent to hv such that M, isalift of M, in M. This ensures that L, isin Q.
Let [ € L, be the boundary line of F,,, corresponding to the edge [v,, hv].

We will first show that pg(z,) = 0. Since gy is a homogeneous quasi-morphism and z, €
7, (M"), we have that

pr(2) = Qi (2,) = 4k (2,) + a(hz,h ™) = 0+ g (hz, h ™).

By Proposition 2.5, to show px(z,,) = qx(hz, h~') = 0, it suffices to show that hz, h~! is elliptic
in the action 77; (M) ~ Cx(Q,). Let € > 0 be the projection constant of the projection complexes
Q; and Q,. Since M,,,, is a Seifert-fibered piece, we have M, = F,, X R, where F,,,, is the base
orbifold of M. Applying Lemma 4.7 to the space F},, the collection of boundary lines of F),,,
the fixed boundary line [, and the chosen element y = hz, h~!, we obtain a constant 1 > 0. We
further enlarge A so that it satisfies Lemma 3.4.

Choose K > 4£ + 4 + 21 + A% large enough to apply Proposition 2.9, and let y, be a point in the
projection of Ly, ,-1,, to L, . We will show that dc, (q,)(Vo, ¥"' (o)) < 6K for alln € Z, which will
imply that y is elliptic in the action 7z;(M’) ~ C(Q;), as desired.
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3108 | ABBOTT ET AL.

Fix n € Z. By Proposition 2.9, we have

de@apWo 7" 0o <4 D [dr, 0o, 7" o))k + K. @)

uey;
L,€Q

Thus, it suffices to show that d;, (y,,7"(y)) < K forallu € V, such thatL, € @,.Since L, € Qy,
M, is alift of M,,.

We divide the proof into several cases, depending on the location of the vertex u.

Case I: u € {v,, y"(v,)}. We assume that u = v, as the case u = y"(v,) is proved similarly.

By assumption, y, € L, , and so Y (yy) € Lyn(yy)- BY definition,

dLUO (yO’ Vn (yO)) = dlam({yo} U 1_ILUU (Ly"(uo)))
and

dr, Ly Lynwy) = diam(l‘[Lvo (Ly ) VT, Lyn(oy))-

Asy €T1p, (Lyy

0)) and the diameter of IT; (Ly(UO)) is no more than &, it follows that
Yo

|dLU0 (y()’ yn(y())) - dLvo (L]/(U())’ Ly"(vo))| < 2§ (3)

The line  is the boundary line of F,, associated to the edge [v,, hv]. Recall that z,, is an element
of the edge group Gy, ), and so, it fixes the vertex v. Thus, y(hv) = hz,h~1(hv) = hz,(v) = hv,
and so, the lines y(!) and y"(I) are the boundary lines in F, associated to the edges [hv, y(v,)]
and [hv, y"(v,)], respectively.

Combining (3) with Lemmas 3.4 and 4.7 implies that

dLuo 007" (o)) < dLvo (L}’(Uo)’ L}’"(Uo)) +2¢
<A (yD, 7" D) + A+ 2§

=Ad, (LY T )+ A+ 28 <22+ 2+ 28 <K.

Case 2: u € Lk(hv) but u & {v,,y"(vy)}. Let b be the boundary line of F o corresponding to the
edge [u, hv], so that b & {I,y"(I)}. By Lemma 4.7, we have that d,(l,y"(l)) < 4. It follows from
Lemma 3.4 that

dLu o, 7" o)) = dLM (LU()! Ly"(vo))
<Ady(Ly"(D)) + 4

<A+ 1<K
Case 3: u ¢ Lk(hv). In this case, d(u, [vy, ¥ (vy)]) = 2, and so,

dLu(yO’ ynyo) = dLu(Lvo’LV"(Uo)) SA<K.

A ‘01 ‘$T0T ‘07126971

£q 811€1'SWIQ/T111°01/10p/wod KapiaA:

SU-<YIR[0qqIYS>

suonIpu0)) pue swiv] 3y 998 “[$707/40/p1] U0 A181qrT SUITUQ K91 MPO'SIOpURIGHIOqUE

1 JO So[n1 10§ AIIqI] QUIUQ KD[TAY O (s

opne v s

19A05 2IE S

suowwion) 2anEa1) djquoydde oy Aq pou

asuaor]
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We have shown that d;, (yy,7"(¥y)) <K forallu € V), such that L, € Q,. Therefore, (2) shows
that d¢, (q,)(Vo, 7" () < 6K for all n. It follows that y is elliptic in the action 7z;(M") ~ Cr(Q,),
and so, g(z,,) = 0.

To complete the proof, we need to verify that

pK(zy) = CI%(ZM) = qK(ZM) + qK(hZ‘uh_l) 75 0.

Since hz,h~! is a central element in G, = Stabg (hv), it follows from Remark 2.13 that hz,h~"
acts elliptically on L, , and thus, also on Cx(Q;). By Proposition 2.5, we have qK(thh_l) =0.
Since qK(zM) # 0, it follows that ,oK(z#) #0. O

Theorem 1.3 now follows immediately from Corollary 4.6 and Proposition 4.8.

4.3 | Theorem1.1

In this section, we put together the above results and prove Theorem 1.1, whose statement we
recall for the convenience of the reader.

Theorem 1.1. Let M be a nongeometric 3-manifold with empty or toroidal boundary. If the torus
decomposition of M contains any of the following, then 7,(M) is H-inaccessible:

(1) a hyperbolic piece that contains a boundary torus of M;
(2) two hyperbolic pieces glued along a torus;

(3) anisolated nonelementary Seifert-fibered piece; or

(4) a nonelementary maximal graph manifold component.

Proof. Let My, ..., M, be the maximal graph manifold components and isolated Seifert-fibered
pieces of the torus decomposition of M. Let S, ..., S, be the tori in the boundary of M that bound
a hyperbolic piece, and let T4, ..., T, be the tori in the torus decomposition of M that separate two
hyperbolic components of the torus decomposition. By Lemma 4.2, 7, (M) is hyperbolic relative
to

P = {ﬂl(Mp)}llf,zl U {ﬂl(Sq)}Zzl Ui (TL,-

In all of the cases (1)-(4), the collection P is nonempty.

In case (1), the collection {S, ..., S,} # @, while in case (2), {T}, ..., T,,,} # #. Both of these col-
lections consist of tori. Note that Z? is H-inaccessible: the projections of Z? onto each factor yield
two actions on lines to which Lemma 2.3 applies. Thus, if {7, (S;)} U {7, (T,)} is nonempty, then
(M) is H-inaccessible by Lemma 4.3, proving the theorem in cases (1) and (2).

Next suppose that (3) holds, so that there is an isolated nonelementary Seifert-fibered piece M ,.
By the proof of Corollary 4.6, we see that 77, (M ) has two actions to which Lemma 2.3 applies. By
Lemma 4.3, 7r;(M) is H-inaccessible.

Finally, suppose that (4) holds, so that there is a nonelementary maximal graph manifold com-
ponent M ,. By the proof of Proposition 4.8, there are two commuting elements a,b € 7,(M)
and two actions on hyperbolic spaces (in fact, quasi-trees) 7, (M p) ~ X and 7, (M p) ~ Y such
that a and b are elliptic and loxodromic, respectively, in 7,(M,) ~ X and a is loxodromic in
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3110 | ABBOTT ET AL.

7 (M,) ~ Y. Applying Lemma 4.3 to P = 7;(M,), we conclude that H(z,(M)) contains no
largest element. L]

4.4 | H-accessibility of finitely generated 3-manifold groups

In this section, we explain how one might reduce the study of H-accessibility of all finitely gen-
erated 3-manifold groups to the case of compact, orientable, irreducible, d-irreducible 3-manifold
groups. In particular, we show that for any hyperbolic 3-manifold M without rank-1 cusps, if
(M) is finitely generated then it is H-accessible.

Let M be an orientable 3-manifold with finitely generated fundamental group. It follows from
Scott’s Core Theorem that M contains a compact codimension zero submanifold whose inclusion
map is a homotopy equivalence [28], and thus, also an isomorphism on fundamental groups. We
thus can assume that our 3-manifolds are compact.

The sphere-disk decomposition provides a decomposition of a compact, orientable 3-manifold
M into irreducible, d-irreducible pieces My, ..., M. In particular, 7, (M) is a free product r; (M, ) *
i (My) * - % m;(M}). Let G; := m;(M;). Note that 7, (M) is hyperbolic relative to the collection
P ={G,, ..., Gi;}. In light of Lemma 4.3, the H-inaccessibility of 7, (M) follows whenever some G;
satisfies the conditions of Lemma 2.3. Hence, it suffices to investigate the H-accessibility of the
groups G;.

If M has empty or toroidal boundary, then H-accessibility of 7r; (M) is understood, except for a
few sporadic cases, by Theorem 1.1. The following proposition addresses certain manifolds with
higher genus boundary.

Proposition 4.10. Let M be a compact, orientable, irreducible, 0-irreducible 3-manifold that has
at least one boundary component of genus at least 2. Then, 7r,(M) is H-inaccessible under either of
the following hypotheses:

(1) M has trivial torus decomposition and at least one torus boundary component; or
(2) M has nontrivial torus decomposition.

On the other hand, if M has trivial torus decomposition and all boundary components have genus at
least 2, then 7r,(M) is H-accessible.

Proof. Asin [31, Section 6.3], we can paste compact hyperbolic 3-manifolds with totally geodesic
boundaries to the higher genus boundary components of M to obtain a finite volume hyperbolic
manifold N (in case M has trivial torus decomposition) or a mixed 3-manifold (in case M has
nontrivial torus decomposition).

If (1) holds, then the manifold N has toroidal boundary, and, by assumption, there is a boundary
torus T for N that is also a boundary torus of M.

The subgroup P := m,(T) & 7> satisfies Lemma 2.3 and is a peripheral subgroup in the rela-
tively hyperbolic structure on 77, (). The proof of Lemma 4.3 shows that there are commuting
elements a, b € P and hyperbolic actions 77,(N) ~ Zy and 7;(N) ™~ Zy such that a and b act lox-
odromically and elliptically, respectively, in the action 7, (N) ~ Zx, and b acts loxodromically in
the action G ~ Zy. As 7, (M) is a subgroup of 77, (IN), we obtain induced actions 7, (M) ~ Zy and
(M)~ Zy. Since a, b € 7, (M), we see that 7r,(M) is H-inaccessible by Lemma 2.3.

If (2) holds, then N has either empty or toroidal boundary and has the following properties:
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(i) M is a submanifold of N with incompressible toroidal boundary;
(ii) cutting N along the tori in the torus decomposition of M yields the torus decomposition of
N; and
(iii) each piece of M with a boundary component of genus at least 2 is contained in a hyperbolic
piece of N.

In particular, it follows from (ii) and (iii) that N is a mixed 3-manifold, and hence, 7;(N) is H-
inaccessible by Theorem 1.1.

In the proof of Theorem 1.1, we prove the H-inaccessibility of 7;(N) by showing that there
are two commuting elements a,b € 7;(T) for some torus T in the torus decomposition of N
and isometric actions 7;(N) ~ Zy and 7;(N) ~ Zy on hyperbolic spaces, and then applying
Lemma 2.3.

By (ii), T is also a torus in the torus decomposition of M. Thus, the induced actions 7r; (M) ~ Zx
and 7,(M) ~ Zy satisfy the hypotheses of Lemma 2.3, and so, ; (M) is H-inaccessible.

We now turn our attention to the final statement of the theorem. In this case, the manifold N is
closed. A finitely generated subgroup H of N is a virtual surface fiber subgroup if N admits a finite
cover N’ — N such that H is a subgroup of 77, (N") and H is a surface fiber subgroup of 7z, (N"). Any
finitely generated subgroup H of 77;(N) is either a geometrically finite Kleinian group or a virtual
surface fiber subgroup in 7, (N) by the Covering Theorem (see [13]) and the Subgroup Tameness
Theorem (see [6, 14] or [7, Theorem 4.1.2] for a statement). In particular, 7z, (M) is either a virtual
surface fiber subgroup, in which case it is hyperbolic, or it is geometrically finite in 77, (N). In the
latter case, 7r; (M) is undistorted in 7, (V) [18, Corollary 1.6], and we again conclude that 7z, (M) is
hyperbolic, since undistorted subgroups of hyperbolic groups are hyperbolic. As a result, in either
case, 7, (M) is H-accessible. O

4.5 | Graph manifolds with one vertex

Asmentioned in the introduction, our methods do not apply to graph manifolds whose underlying
graphs contain only one vertex. Our main tool is Lemma 4.7, a criterion for the nonexistence of a
largest action. Intuitively, the idea is to find a Z2-subgroup of 77, (M) and extend two incompatible
actions of Z? on lines to two incompatible actions of 77;(M) on hyperbolic spaces. In general,
extending actions from subgroups to groups is difficult (and not always possible) [3]. When
the underlying graph of the graph manifold has more than one vertex, we apply the Bestvina-
Bromberg-Fujiwara projection complex machinery developed in [9] and a certain construction
of quasi-morphisms to overcome this difficulty in Section 4.2. These methods require that the
graph has more than one vertex in an essential way: when the graph has a single vertex, we
are not able to define projections between adjacent lifts of Seifert-fibered pieces to the universal
cover.

Despite this, we expect that, in general, all graph manifold groups are H-inaccessible. In one
of the simplest examples where the underlying graph has only one vertex, we can show that this
is the case.

Example 4.11. Let M be the 3-manifold that is the mapping torus over a punctured torus defined
by a Dehn twist. This is a graph manifold consisting of a single Seifert-fibered space with three
boundary components, two of which are identified; see [21]. As described in [21, Lemma 2.2], the
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fundamental group of M has presentation
7,(M) = {a,b,t | [a,b] = 1,a" = b).

We will show that 7z, (M) is H-inaccessible.

First, notice that the abelianization of 7r; (M) is 7; (M) = (a,t | [a,t] = 1) & Z>. Thus, by first
composing with the quotient map 7z, (M) — 7r;(M)*?, we obtain uncountably many incomparable
actions of 77,(M) on lines; see [1, Example 4.23]. The elements a and b have the same image in
(M )Ab, and so, in each of these lineal actions, they are either both loxodromic or both elliptic.
In all but one of these actions, a and b are both loxodromic. Fix one such action 7z;(M) ~ £.

Now, suppose that 7;(M) ~ Z is a cobounded action on a hyperbolic space, and suppose
T, (M)~ Z > m (M)~ ¢. Since a and b are both loxodromic with respect to the action on 7,
they must both be loxodromic with respect to the action on Z, as well. Since they commute and
are conjugate in 7; (M), they must have the same fixed points in the boundary dZ and the same
translation length. Moreover, the element ¢ must also stabilize (setwise) the two fixed points of a
in 0Z, ast conjugates a to b. Thus, all of 77, (M) stabilizes these two pointsin 6Z, and so,G ~ Zisa
lineal action. Since lineal actions are always minimal [1, Corollary 4.12], we must have 7; (M) ~ Z
is equivalent to 77, (M) ~ £ in H(7r;(M)). In particular, no element of H(7;(M)) can dominate all
of the lineal actions, and so, 7r; (M) is H-inaccessible.

Our proof that this 3-manifold group is H-inaccessible depended on properties of a particular
presentation of the group. It is not clear that the methods used in this example will generalize to all
graph manifold groups with one vertex in the underlying graph. It is possible that a collection of ad
hoc methods could be used to show that these remaining 3-manifold groups are H-inaccessible.
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