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Abstract
The set of equivalence classes of cobounded actions
of a group 𝐺 on different hyperbolic metric spaces
carries a natural partial order. Following Abbott–
Balasubramanya–Osin, the group 𝐺 is -accessible if
the resulting poset has a largest element. In this paper,
we prove that every nongeometric 3-manifold has a
finite cover with-inaccessible fundamental group and
give conditions under which the fundamental group of
the original manifold is -inaccessible. We also prove
that every Croke–Kleiner admissible group (a class of
graphs of groups that generalizes fundamental groups
of three-dimensional graphmanifolds) has a finite index
subgroup that is-inaccessible.
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1 INTRODUCTION

A fixed group 𝐺 will admit many different cobounded actions on different hyperbolic metric
spaces. Abbott, Balasubramanya, and Osin in [1] show that the set of equivalence classes of
cobounded hyperbolic actions of a group 𝐺 carries a natural partial order; see Section 2.1. The
resulting poset is called the poset of hyperbolic structures on 𝐺, denoted as (𝐺). Roughly speak-
ing, one action is larger than another if the smaller space can be formedby equivariantly collapsing
some subspaces of the larger. The motivation is that the larger an action is in this partial order,
the more information about the geometry of the group it should provide.
The posets (𝐺) remain mysterious, especially for groups with features of nonpositive cur-

vature, which tend to have uncountable posets of hyperbolic structures [1]. First steps toward
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understanding these posets were made in [4, 8] and [5]. While [8] and [5] give complete descrip-
tions of(𝐺) for the groups in question, it appears essentially impossible to do this, given current
technology, for groups with strong features of nonpositive curvature. One measure of how com-
plicated the poset (𝐺) is the (non)-existence of a largest element of (𝐺), that is, an element
that is greater than or equal to every other element of the poset. When a largest element exists,
we say that the group 𝐺 is-accessible; otherwise, the group is-inaccessible. The first and third
authors show thatmany groups with features of nonpositive curvature are-inaccessible, includ-
ing Anosov mapping tori [5]. In this paper, we extend these results to a large class of 3-manifold
groups: up to possibly taking a twofold cover of the manifold, we show that all 3-manifold groups
are -inaccessible. This is further evidence that the poset (𝐺) is quite complicated, even for
reasonably nice groups; see Section 1.1 for further discussion.
We first consider fundamental groups of nongeometric 3-manifolds with empty or toroidal

boundary. If𝑀 is a compact, orientable, irreducible nongeometric 3-manifold, then there exists a
nonempty minimal union  of disjoint essential tori in𝑀 such that each connected component
of𝑀 ⧵  is Seifert-fibered or hyperbolic. This is called the torus decomposition of𝑀, and the con-
nected components of 𝑀 ⧵  are called pieces. Our first result shows that if 𝑀 contains certain
types of pieces, then 𝜋1(𝑀) is -inaccessible. To describe these pieces, we introduce the class of
nonelementary Seifert-fiberedmanifolds, which are those whose base orbifolds are orientable and
hyperbolic. Nonelementary graph manifolds are those whose Seifert pieces are nonelementary,
and amixedmanifold is nonelementary if all of its Seifert-fibered pieces andmaximal graphman-
ifold components are nonelementary. Any graph manifold or Seifert-fibered manifold is finitely
covered by a nonelementary one. See Section 4 for a more in-depth discussion.

Theorem 1.1. Let𝑀 be a nongeometric 3-manifold with empty or toroidal boundary. If the torus
decomposition of𝑀 contains any of the following, then 𝜋1(𝑀) is-inaccessible:

(1) a hyperbolic piece that contains a boundary torus of𝑀;
(2) two hyperbolic pieces glued along a torus;
(3) an isolated nonelementary Seifert-fibered piece; or
(4) a nonelementary maximal graph manifold component.

We note a straightforward corollary of Theorem 1.1.

Corollary 1.2. If𝑀 is one of the following types of 3-manifolds, then 𝜋1(𝑀) is-inaccessible:

(a) a finite nontrivial connected sum of finite volume cusped hyperbolic 3-manifolds;
(b) a nonelementary mixed manifold.

Proof. Part (a) follows from Theorem 1.1(1). For part (b), observe that a mixed manifold must con-
tain either: two hyperbolic pieces glued along a torus, an isolated nonelementary Seifert-fibered
piece, or a nonelementary graph manifold component with boundary. In these cases, we apply
Theorem 1.1 (2), (3), or (4), respectively. □

The first and third authors give a straightforward criterion to show that a group is -
inaccessible [4, Lemma 1.4]; see Lemma 2.3. In this paper, we show in Lemma 4.3 that if a
peripheral subgroup of a relatively hyperbolic group satisfies this criterion, then the group itself
also satisfies the criterion. There is a natural relatively hyperbolic structure on 𝜋1(𝑀) in which
the peripheral subgroups are fundamental groups of certain tori, Seifert-fibered pieces, and graph
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3092 ABBOTT et al.

manifolds. The proof Theorem 1.1 proceeds by showing that, in each case, there is a peripheral
subgroup that is -inaccessible because it satisfies Lemma 2.3, and then applying Lemma 4.3.
The key step is the following theorem.

Theorem1.3. If𝑀 is a nonelementary graphmanifold or a nonelementary Seifert-fiberedmanifold,
then 𝜋1(𝑀) is-inaccessible.

Theorem 1.3 generalizes [4, Theorem 1.1], in which the first and third authors show that flip
graph manifold groups, a special class of graph manifold groups, are-inaccessible.
The class of nonelementary graphmanifold groups belongs to a larger class of graphs of groups

calledCroke–Kleiner admissible groups thatwere introduced byCroke andKleiner in [15]. Roughly
speaking, Croke–Kleiner admissible groups are modeled on the JSJ structure of graph manifolds
where the (fundamental groups of the) Seifert-fibered pieces are replaced by central extensions 𝐺
of general hyperbolic groups 𝐻:

1 → 𝑍(𝐺) = ℤ → 𝐺 → 𝐻 → 1.

In some sense, Croke–Kleiner admissible groups are the simplest interesting groups constructed
algebraically from a finite number of hyperbolic groups. The-inaccessibility of nonelementary
graph manifold groups follows from the following result for Croke–Kleiner admissible groups.

Theorem 1.4. Every Croke–Kleiner admissible group has a subgroup of index at most 2 which is
-inaccessible.

A nongeometric 3-manifold 𝑀 always has a double cover in which all Seifert-fibered pieces
are nonelementary, and hence passing to a further finite cover if necessary, we obtain a finite
cover𝑀′ → 𝑀 such that𝑀′ is either a nonelementary graphmanifold or a nonelementary mixed
manifold. Combining Theorems 1.1 and 1.3 yields the following corollary.

Corollary 1.5. If𝑀 is a nongeometric 3-manifold, then 𝜋1(𝑀) has a finite index subgroup 𝐻 such
that every finite index subgroup 𝐾 ⩽ 𝐻 is-inaccessible.

So far, we have only discussed nongeometric 3-manifolds. In some cases, we can also
understand the-accessibility of (finite-index subgroups of) geometric 3-manifold groups.

Proposition 1.6. Every 3-manifold with Nil or Sol geometry has a finite cover whose fundamental
group is -inaccessible. The fundamental group of a closed hyperbolic 3-manifold is -accessible,
while the fundamental group of a finite-volume cusped hyperbolic 3-manifold is-inaccessible.

Proof. If a 3-manifold𝑀 has the geometry of Sol, then𝑀 is a torus bundle over a one-dimensional
orbifold (an interval with reflection boundary points or a circle), and thus,𝑀 has a double cover
that is a torus bundle with Anosov monodromy. The-inaccessibility of the fundamental group
of this bundle then follows from work of the first and third authors [4].
If the geometry of 𝑀 is Nil, 𝑀 is a Seifert-fibered 3-manifold, and 𝑀 is finitely covered by a

torus bundle𝑀′ with unipotent monodromy, and the only possible hyperbolic actions are lineal
and elliptic. On the other hand, the abelianization of𝜋1(𝑀′) is virtuallyℤ2, so this yields infinitely
many homomorphisms ℤ2 → ℝ modulo scaling, and infinitely many inequivalent actions on
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3093

ℝ by translations. Since such lineal actions are incomparable by [1, Theorem 2.3], 𝜋1(𝑀′) is
-inaccessible.
The fundamental group of a closed hyperbolic 3-manifold is a hyperbolic group, and so is -

accessible. The result for a finite-volume cusped hyperbolic 3-manifold is Corollary 4.4. □

In Section 4.4, we consider general finitely generated 3-manifold groups. This includes fun-
damental groups of reducible 3-manifolds, certain geometric 3-manifolds, and 3-manifolds with
nontoroidal boundary. In Proposition 4.10, we characterize the 𝐻-accessibility of many such
3-manifold groups. In particular, any finitely generated fundamental group of a hyperbolic
3-manifold without rank-1 cusps is-accessible.
Many basic questions about posets of hyperbolic structures are still open. Surprisingly, it is

still unknown whether -inaccessibility of a finite index normal subgroup of 𝐺 passes to -
inaccessibility of the ambient group 𝐺. In the setting of nongeometric 3-manifolds, the only cases
in which we are unable to determine the-(in)accessibility of the fundamental group are a man-
ifold all of whose Seifert-fibered pieces are elementary and a graph manifold whose underlying
graph contains a single vertex.

Question 1.7. Let 𝑀 be a graph manifold whose underlying graph contains only one vertex. Is
𝜋1(𝑀)-inaccessible?

We suspect that the answer to this question is yes, but the techniques in this paper do not apply.
See Section 4.5 for a more thorough discussion of these manifolds.

1.1 Implications for the poset(𝑮)

There is no known example of a finitely generated nonhyperbolic groupwith a (nontrivial) largest
hyperbolic action. This paper is further evidence that if such an example exists, it is unlikely to be
straightforward. In particular, it is unlikely to be found among hierarchically hyperbolic groups,
a generalization of mapping class groups that includes many 3-manifold groups.

Question 1.8. Does there exist a finitely generated nonhyperbolic group whose poset of
hyperbolic structures is nontrivial and has a largest element?

This is in stark contrast to the subposet (𝐺) ⊆ (𝐺) of acylindrindrically hyperbolic struc-
tures, consisting of the equivalence classes of all cobounded acylindrical actions on a hyperbolic
space. There are many examples of nonhyperbolic groups that have a largest element in(𝐺),
including all hierarchically hyperbolic groups and hence many 3-manifold groups [1, 2]. This
paper, along with [4, 5, 8], shows that the collection of cobounded hyperbolic actions, without
any additional assumptions, is perhaps too complicated to hope for a single action to capture all
the negative curvature of the group. Indeed, even all of the negative curvature of the (very non-
hyperbolic) group ℤ2, which can been seen via its many actions on lines, cannot be captured
in a single hyperbolic space. Our main tool for proving -inaccessibility shows this same phe-
nomenon holds formore complicated groups: having a pair of commuting elements with opposite
dynamical behavior in two hyperbolic actions is enough to obstruct the existence of a largest
action.
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3094 ABBOTT et al.

However, one could still ask about whether there are other nice structural properties of the
poset (𝐺) for certain groups. For example, does the poset have any symmetries? What is the
structure of meets and joins in(𝐺)? While containing a largest element is not possible for most
3-manifold groups𝐺, one could instead ask about the set ofmaximal elements of the poset. For
example, does every chain in (𝐺) have a maximal element? If so, then collectively, the set 
should capture all of the information about the hyperbolicity in 𝐺.

2 PRELIMINARIES

2.1 -accessibility

In this section, we review the partial order on cobounded group actions introduced in [1]. Fix a
group 𝐺. If 𝐺 acts coboundedly on two metric spaces 𝑋 and 𝑌, we say 𝐺 ↷ 𝑋 is dominated by
𝐺 ↷ 𝑌, written 𝐺 ↷ 𝑋 ⪯ 𝐺 ↷ 𝑌, if there exists a coarsely 𝐺-equivariant coarsely Lipschitz map
𝑌 → 𝑋. The preorder ⪯ induces an equivalence relation 𝐺 ↷ 𝑋 ∼ 𝐺 ↷ 𝑌 if and only if 𝐺 ↷ 𝑋 ⪯

𝐺 ↷ 𝑌 and𝐺 ↷ 𝑌 ⪯ 𝐺 ↷ 𝑋. It descends to a partial order≼ on the set of equivalence classes. We
denote the equivalence class of an action by [𝐺 ↷ 𝑋].

Definition 2.1. Given a group 𝐺, the poset of hyperbolic structures on 𝐺 is defined to be

(𝐺) ∶= {[𝐺 ↷ 𝑋] ∣ 𝐺 ↷ 𝑋 is cobounded and 𝑋 is hyperbolic},

equipped with the partial order ≼.

By [1, Proposition 3.12], this is equivalent to the original definition of(𝐺) in terms of generat-
ing sets. We say that an element of a poset is largestwhen it is greater than or equal to every other
element of the poset. Such an element is unique.

Definition 2.2. A group 𝐺 is -accessible if the poset (𝐺) has a largest element. Otherwise, it
is-inaccessible.

The following lemma gives a simple criterion to check if a group is-inaccessible.

Lemma 2.3 [4, Lemma 1.4]. Let 𝐺 be a group. Suppose that there are commuting elements 𝑎, 𝑏 ∈ 𝐺

and hyperbolic actions 𝐺 ↷ 𝑋 and 𝐺 ↷ 𝑌 such that

(1) 𝑎 acts loxodromically and 𝑏 acts elliptically in the action 𝐺 ↷ 𝑋; and
(2) 𝑏 acts loxodromically in the action 𝐺 ↷ 𝑌.

Then, there does not exist a hyperbolic action 𝐺 ↷ 𝑍 such that 𝐺 ↷ 𝑋 ⪯ 𝐺 ↷ 𝑍 and 𝐺 ↷ 𝑌 ⪯

𝐺 ↷ 𝑍.

We will typically apply this lemma to spaces 𝑋 and 𝑌 that are quasi-isometric to lines. These
actions on quasi-lines will be constructed using quasi-morphisms, which, in turn, will be con-
structed using hyperbolic actions of 𝐺 with very weak proper discontinuity properties (see
[9]).
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3095

Definition 2.4. Let 𝐺 ↷ 𝑋 be a hyperbolic action and g ∈ 𝐺 be loxodromic with fixed points
{g±} ⊂ 𝜕𝑋. The element g isWWPD if the orbit of the pair (g+, g−) is discrete in the space 𝜕𝑋 ×

𝜕𝑋 ⧵ Δ, where Δ = {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝜕𝑋} is the diagonal subset. AWWPD element g isWWPD+ if any
ℎ ∈ 𝐺 that stabilizes {g±} as a set also fixes {g±} pointwise.

The following proposition follows from [10, Corollary 3.2].

Proposition 2.5. Suppose that𝐺 ↷ 𝑋 is a hyperbolic action with aWWPD+ element g ∈ 𝐺. There
is a homogeneous quasi-morphism 𝑞∶ 𝐺 → ℝ such that 𝑞(g) ≠ 0 and 𝑞(ℎ) = 0 for any element ℎ ∈

𝐺 that acts elliptically on 𝑋.

Homogeneous quasi-morphisms, in turn, give rise to actions on quasi-lines.

Proposition 2.6 [1, Lemma 4.15]. Let 𝑞∶ 𝐺 → ℝ be a nonzero homogeneous quasi-morphism. Then
there is an action of 𝐺 on a quasi-line  such that 𝑞(g) ≠ 0 if and only if g acts loxodromically on .

2.2 Projection axioms

We will use the Bestvina–Bromberg–Fujiwara projection complex machinery developed in [9] to
obtain actions on quasi-trees. In this section, we review this machinery.

Definition 2.7. Let 𝕐 be a collection of geodesic spaces equipped with projection maps

{𝜋𝑌 ∶ 𝕐 ⧵ {𝑌} → 𝑌}𝑌∈𝕐.

Let 𝑑𝑌(𝑋, 𝑍) = diam(𝜋𝑌(𝑋) ∪ 𝜋𝑌(𝑍)) for 𝑋 ≠ 𝑌 ≠ 𝑍 ∈ 𝕐. The pair (𝕐, {𝜋𝑌}𝑌∈𝕐) satisfies the
projection axioms for a projection constant 𝜉 ⩾ 0 if

(1) diam(𝜋𝑌(𝑋)) ⩽ 𝜉 whenever 𝑋 ≠ 𝑌;
(2) if 𝑋,𝑌, 𝑍 are distinct and 𝑑𝑌(𝑋, 𝑍) > 𝜉, then 𝑑𝑋(𝑌, 𝑍) ⩽ 𝜉; and
(3) for 𝑋 ≠ 𝑍, the set {𝑌 ∈ 𝕐 ∣ 𝑑𝑌(𝑋, 𝑍) > 𝜉} is finite.

For a fixed𝐾 > 0 and a pair (𝕐, 𝜋𝑌) satisfying the projection axioms for some constant 𝜉, Bestv-
ina, Bromberg, and Fujiwara construct a quasi-tree of spaces 𝐾(𝕐) in [9]. If 𝕐 admits an action
of the group 𝐺 so that 𝜋g𝑌(g𝑋) = g𝜋𝑌(𝑋) for any g ∈ 𝐺 and 𝑋,𝑌 ∈ 𝕐, then 𝐺 acts by isometries
on 𝐾(𝕐); see [9, Section 4.4]. Moreover, they show that if 𝐾 > 4𝜉 and 𝕐 is a collection of metric
spaces uniformly quasi-isometric to ℝ, then 𝐾(𝕐) is an unbounded quasi-tree [9, Theorem 4.14].
The following is a useful example to keep in mind throughout the paper and is discussed in

detail in the introduction of [9].

Example 2.8. Let 𝐺 be a discrete group of isometries of ℍ2 and g1, … , g𝑘 ∈ 𝐺 a finite collection
of independent loxodromic elements with axes 𝛾1, … , 𝛾𝑘, respectively. Let 𝕐 be the set of all 𝐺-
translates of 𝛾1, … , 𝛾𝑘, and given 𝑌 ∈ 𝕐, define 𝜋𝑌 to be closest point projection in ℍ2. Since all
translates of each 𝛾𝑖 are convex, this is a well-defined 1-Lipschitz map, and it follows from hyper-
bolicity that the projection of one translate of an axis onto another has uniformly bounded diam-
eter. In [9], it is verified that the pair (𝕐, 𝜋𝑌) satisfies the projection axioms for some constant 𝜉.
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3096 ABBOTT et al.

Given a pair (𝕐, {𝜋𝑌}𝑌∈𝕐) satisfying the projection axioms and three domains𝑋,𝑌, 𝑍 ∈ 𝕐, there
is a notion of distance between a point of𝑋 and a point of 𝑍 from the point of view of𝑌, which we
now describe. Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑍. If 𝑋,𝑌, 𝑍 are all distinct, then define 𝑑𝑌(𝑥, 𝑧) ∶= 𝑑𝑌(𝑋, 𝑍).
If 𝑌 = 𝑋 and 𝑌 ≠ 𝑍, then define 𝑑𝑌(𝑥, 𝑧) ∶= diam({𝑥} ∪ 𝜋𝑌(𝑧)), where the diameter is measured
in 𝑌. Finally, if 𝑋 = 𝑌 = 𝑍, then let 𝑑𝑌(𝑥, 𝑧) be the distance in 𝑌 between 𝑥 and 𝑧. The spaces
𝑌 ∈ 𝕐 naturally embed into 𝐾(𝕐), so the distance 𝑑𝐾(𝕐)(𝑥, 𝑧) is also defined.
We have the following upper bound on distance in 𝐾(𝕐). Set [𝑡]𝐾 = 𝑡 if 𝑡 ⩾ 𝐾 and [𝑡]𝐾 = 0 if

𝑡 < 𝐾.

Proposition 2.9 [9, Lemma 4.4]. Let (𝕐, 𝜋𝑌∈𝕐) satisfy the projection axioms with constant 𝜉. For
any 𝐾 sufficiently large,

𝑑𝐾(𝕐)(𝑥, 𝑧) ⩽ 6𝐾 + 4
∑
𝑌∈𝕐

[𝑑𝑌(𝑥, 𝑧)]𝐾.

This distance formula was originally stated with a modified distance function. In [9], the dis-
tance defined above was denoted as 𝑑𝜋

𝑌
, and the modified distance was denoted as 𝑑𝑌 . However,

since 𝑑𝑌(𝑥, 𝑧) ⩽ 𝑑𝜋
𝑌
(𝑥, 𝑧) for all point 𝑥, 𝑧, the inequality holds with the distance 𝑑𝜋

𝑌
as well. As

we will not need the modified distance function in this paper, we use the simpler notation 𝑑𝑌 for
𝑑𝜋
𝑌
and choose to state the proposition with this distance.

2.3 Croke–Kleiner-admissible groups

In this section, we review Croke–Kleiner admissible groups [15] and the associated Bass–Serre
space, a notion defined in [17].

Definition 2.10. A graph of groups  = (Γ, {𝐺𝜇}, {𝐺𝛼}, {𝜏𝛼}) is a connected graph Γ together with
a group 𝐺𝜎 for each 𝜎 ∈ 𝑉(Γ) ∪ 𝐸(Γ) (here 𝑉(Γ) and 𝐸(Γ) denote vertices and edges), and an
injective homomorphism 𝜏𝛼 ∶ 𝐺𝛼 → 𝐺𝜇 for each oriented edge 𝛼, where 𝜇 denotes the terminal
vertex of 𝛼.

Definition 2.11. A graph of groups  = (Γ, {𝐺𝜇}, {𝐺𝛼}, {𝜏𝛼}) is called admissible if the following
hold.

(1)  is a finite graph with at least one edge.
(2) Each vertex group 𝐺𝜇 has center 𝑍𝜇 ∶= 𝑍(𝐺𝜇) ≅ ℤ, 𝐻𝜇 ∶= 𝐺𝜇∕𝑍𝜇 is a nonelementary

hyperbolic group, and every edge group 𝐺𝛼 is isomorphic to ℤ2.
(3) Let 𝛼1 and 𝛼2 be distinct edges oriented toward a vertex 𝜇, and for 𝑖 = 1, 2, let 𝐾𝑖 ⊂ 𝐺𝜇

be the image of the edge homomorphism 𝐺𝛼𝑖
→ 𝐺𝜇. Then for every g ∈ 𝐺𝜇, g𝐾1g

−1 is
not commensurable with 𝐾2, and for every g ∈ 𝐺𝜇 ⧵ 𝐾𝑖 , g𝐾𝑖g

−1 is not commensurable
with 𝐾𝑖 .

(4) For every edge group 𝐺𝛼 with 𝛼 = [𝛼−, 𝛼+] (oriented from 𝛼− to 𝛼+), the subgroup of 𝐺𝛼
generated by 𝜏−1𝛼 (𝑍𝛼+)) and 𝜏−1𝛼 (𝑍𝛼−)) has finite index in 𝐺𝛼.

A group 𝐺 is admissible if it is the fundamental group of an admissible graph of groups. Such
groups are often called Croke–Kleiner admissible groups.
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3097

Lemma2.12 [17, Lemma 4.2]. Let = (Γ, {𝐺𝜇}, {𝐺𝛼}, {𝜏𝛼}) be aCroke–Kleiner admissible group. For
each edge 𝛼 = [𝛼−, 𝛼+] of , denote

𝐶𝛼 = 𝜏𝛼
(
𝜏−1𝛼̄ (𝑍𝛼−)

)
,

which is a subgroup of 𝐺𝛼+ . Each vertex group 𝐺𝜇 has an infinite generating set 𝑆𝜇 so that the
following holds.

(1) Cay(𝐺𝜇, 𝑆𝜇) is quasi-isometric to a line.
(2) The inclusion map 𝑍𝜇 → Cay(𝐺𝜇, 𝑆𝜇) is a 𝑍𝜇-equivariant quasi-isometry.
(3) For each edge 𝛼 with 𝛼+ = 𝜇, we have that 𝐶𝛼 is uniformly bounded in Cay(𝐺𝜇, 𝑆𝜇).

Remark 2.13. The quasi-line Cay(𝐺𝜇, 𝑆𝜇) satisfies the following.

∙ The center 𝑍𝜇 of 𝐺𝜇 acts loxodromically on Cay(𝐺𝜇, 𝑆𝜇).
∙ If 𝜔 is an adjacent vertex to 𝜇 in Γ, then each cyclic subgroup of 𝐺𝜇 conjugate to 𝑍𝜔 acts
elliptically on Cay(𝐺𝜇, 𝑆𝜇).

Let  be a graph of finitely generated groups, and let 𝐺 ↷ 𝑇 be the action of 𝐺 = 𝜋1() on the
associated Bass–Serre tree of  (we refer the reader to [15, Section 2.5] for a brief discussion). For
each vertex 𝑣 of the Bass–Serre tree 𝑇, let 𝑣 denote the vertex 𝜇 of Γ so that 𝑣 represents g𝐺𝜇 for
some g in 𝐺. For each vertex group 𝐺𝜇 and edge group 𝐺𝛼, fix once and for all finite symmetric
generating sets 𝐽𝜇 and 𝐽𝛼 respectively, such that 𝐽𝛼 = 𝐽𝛼̄ and 𝜏𝛼 (𝐽𝛼) ⊆ 𝐽𝛼+ .
We briefly sketch the description of the Bass–Serre space 𝑋 for the graph of groups  and refer

the reader to [17, Definition 2.10] for a full description of the space. Given a vertex 𝑣 of 𝑇, the
associated vertex space 𝑋𝑣 of 𝑋 is a graph isometric to Cay(𝐺𝑣, 𝐽𝑣). If 𝑒 is a (directed) edge in 𝑇,
then the associated edge space 𝑋𝑒 is isometric to Cay(𝐺𝑒, 𝐽𝑒). Edges are added between the vertex
and edge spaces so that the maps 𝜏𝑒 induce isometric embeddings of the edge spaces into the
vertex spaces, which we denote by 𝜏𝑒 ∶ 𝑋𝑒 → 𝑋𝑒+ and 𝜏𝑒 ∶ 𝑋𝑒 → 𝑋𝑒− .
Suppose that  is an admissible graph of groups with Bass–Serre tree 𝑇 and Bass–Serre space𝑋.

For each vertex 𝜇 of Γ, let 𝑆𝜇 be given by Lemma 2.12. Without loss of generality, we can assume
that 𝐽𝜇 is contained in 𝑆𝜇, where 𝐽𝜇 is the fixed generating set of 𝐺𝜇.

Definition 2.14 (Subspaces 𝐿𝑣 and𝑣). Suppose that the vertex 𝑣 ∈ 𝑇 represents g𝐺𝑣. Let 𝐿𝑣 be
the graph with vertex set g𝐺𝑣 and with an edge connecting 𝑥, 𝑦 ∈ g𝐺𝑣 if 𝑥−1𝑦 ∈ 𝑆𝑣. In particular,
𝐿𝑣 is isometric to Cay(𝐺𝑒, 𝑆𝑒), which is a quasi-line by Lemma 2.12.
Let 𝑣 be the graph with vertex set g𝐺𝑣 and with an edge connecting 𝑥, 𝑦 ∈ g𝐺𝑣 if 𝑥−1𝑦 ∈

𝐽𝑣 ∪ 𝑍𝑣. It is isometric to Cay(𝐺𝑣, 𝐽𝑣 ∪ 𝑍𝑣).

Since 𝐿𝑣 and 𝑣 are each obtained from 𝑋𝑣 by adding extra edges, there are distance nonin-
creasing maps 𝑝𝑣 ∶ 𝑋𝑣 → 𝐿𝑣 and 𝑖𝑣 ∶ 𝑋𝑣 → 𝑣 that are the identity on vertices. The space 𝑣 is
constructed to represent the geometry of𝐻𝑣 = 𝐺𝑣∕𝑍𝑣 and is relatively hyperbolic:

Lemma 2.15 [17, Lemma 2.15].𝑣 is hyperbolic relative to the collection

𝑣 = {𝓁𝑒 ∶= 𝑖𝑣(𝜏𝑒(𝑋𝑒)) | 𝑒 ∈ 𝐸(𝑇) such that 𝑒+ = 𝑣}.
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3098 ABBOTT et al.

It follows from [30] that there is a coarse closest point projection map

proj𝓁𝑒 ∶ 𝑣 → 𝓁𝑒,

which is coarsely Lipschitz with constants independent of 𝑒 and 𝑣.

Remark 2.16. As peripheral subsets in a relatively hyperbolic space, the sets {𝓁𝑓 |𝑓 ∈

𝐸(𝑇) and 𝑓+ = 𝑣} together with the maps proj𝓁𝑓 satisfy the projection axioms for a constant 𝜉0.

We now show that if 𝑒 is an edge from 𝑢 to 𝑣, the various maps defined above can be composed
to form a quasi-isometry between the quasi-line 𝓁𝑒 ∈ 𝑢 and the quasi-line 𝐿𝑣. Let 𝜓𝑒 ∶ 𝓁𝑒 → 𝐿𝑣
be the map from [17, Lemnma 6.16] that is defined as the restriction to 𝓁𝑒 of the composition

𝑝𝑣◦𝜏𝑒◦𝜏
−1
𝑒 ◦𝑖−1𝑢 . (1)

In [17, Lemma 6.16], the authors prove that 𝜓𝑒 is coarsely Lipschitz and note that 𝜓𝑒 is, in fact, a
quasi-isometry. Here, we provide details for why it follows that 𝜓𝑒 is a quasi-isometry. First, we
prove a more general result.

Lemma 2.17. Let 𝓁1,𝓁2 be two quasi-lines, and suppose that a group 𝐺 acts coboundedly on both
𝓁1 and 𝓁2. Any 𝐺-equivariant coarsely Lipschitz map 𝜓∶ 𝓁1 → 𝓁2 is a quasi-isometry.

Proof. Since there is a 𝐺-equivariant coarsely Lipschitz map from 𝓁1 to 𝓁2, we have [𝐺 ↷ 𝓁1] ≽
[𝐺 ↷ 𝓁2] in the poset(𝐺). However, since𝐺 ↷ 𝓁1 and𝐺 ↷ 𝓁2 are both lineal, [1, Theorem 4.22]
implies that these actions must be equivalent. Thus, there is a coarsely 𝐺-equivariant quasi-
isometry Φ∶ 𝓁1 → 𝓁2. We will show that Φ and 𝜓 differ by a uniformly bounded amount, which
will then show that 𝜓 is also a quasi-isometry.
Fix a basepoint 𝑥0 ∈ 𝓁1. Since 𝐺 ↷ 𝓁1 is cobounded, there is a constant 𝐵 such that for any

𝑥 ∈ 𝓁1, there is some g ∈ 𝐺 such that 𝑑𝓁1 (𝑥, g𝑥0) ⩽ 𝐵. Since 𝜓 is coarsely Lipschitz and Φ is a
quasi-isometry, there is a constant 𝐴, depending on 𝐵 and the coarse Lipschitz constants for Φ
and 𝜓, such that 𝑑𝓁2 (Φ(𝑥), Φ(g𝑥0)) ⩽ 𝐴 and 𝑑𝓁2 (𝜓(𝑥), 𝜓(g𝑥0)) ⩽ 𝐴. Moreover, since Φ is coarsely
𝐺-equivariant, there is a constant𝐶 such that𝑑𝓁2 (Φ(g𝑥0), gΦ(𝑥0)) ⩽ 𝐶. Let𝐷 = 𝑑𝓁2 (Φ(𝑥0), 𝜓(𝑥0)).
By the triangle inequality and 𝐺-equivariance of 𝜓, we have

𝑑𝓁2 (Φ(𝑥), 𝜓(𝑥)) ⩽ 𝑑𝓁2 (Φ(𝑥), gΦ(𝑥0)) + 𝑑𝓁2 (gΦ(𝑥0), g𝜓(𝑥0)) + 𝑑𝓁2 (𝜓(g𝑥0), 𝜓(𝑥))

⩽ (𝐴 + 𝐶) + 𝐷 + 𝐴,

completing the proof. □

We now complete the proof that 𝜓𝑒 is a quasi-isometry.

Lemma2.18. There are constants𝜆 ⩾ 1and 𝑐 ⩾ 0depending only on such that the followingholds.
For any oriented edge 𝑒 in the Bass–Serre tree 𝑇 of , themap𝜓𝑒 ∶ 𝓁𝑒 → 𝐿𝑣 is a (𝜆, 𝑐)-quasi-isometry.

Proof. In [17, Lemma 6.16], the authors prove that the map 𝜓𝑒 is coarsely Lipschitz. Moreover,
from the definitions of 𝓁𝑒 and 𝐿𝑣 as Cayley graphs with respect to infinite generating sets, 𝐺𝑒 acts
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3099

by isometries on both, and 𝜓𝑒 is 𝐺𝑒-equivariant. Therefore, 𝜓𝑒 is a quasi-isometry by Lemma 2.17.
As there are only finitely many 𝐺-orbits of edges in 𝑇, we can choose the constants of these quasi-
isometries to be independent of the edge 𝑒. □

3 CROKE–KLEINER ADMISSIBLE GROUPS AND
-INACCESSIBILITY

In this section, we prove Theorem 1.4: every Croke–Kleiner admissible group has a finite index
subgroup that is-inaccessible.
Fix a Croke–Kleiner admissible group  = (Γ, {𝐺𝜇}, {𝐺𝛼}, {𝜏𝛼}). We partition the vertex set 𝑇0

of the Bass–Serre tree into two disjoint collections of vertices 1 and 2 such that if 𝑣 and 𝑣′ are
in 𝑖 , then 𝑑𝑇(𝑣, 𝑣′) is even. Since any automorphism of 𝑇 either preserves 1 and 2 setwise or
interchanges them, we have the following.

Lemma 3.1 [23, Lemma 4.6]. Let  = (Γ, {𝐺𝜇}, {𝐺𝛼}, {𝜏𝛼}) be a Croke–Kleiner admissible group.
There exists a subgroup 𝐺′ ⩽ 𝐺 = 𝜋1() of index at most 2 in 𝐺 so that 𝐺′ preserves 1 and 2 and
𝐺′ is also a Croke–Kleiner admissible group.

Let𝐺′ be the finite index subgroup of𝐺 given by Lemma 3.1. In light of Lemma 2.3, to show that
𝐺′ is -inaccessible, it suffices to construct commuting 𝑎𝑖 ∈ 𝐺′ and actions 𝐺′ ↷ 𝑋𝑖 for 𝑖 = 1, 2

such that 𝑎𝑖 is elliptic with respect to the action 𝐺′ ↷ 𝑋3−𝑖 and loxodromic with respect to the
action 𝐺′ ↷ 𝑋𝑖 . Our spaces 𝑋𝑖 will be quasi-trees of metric spaces.

3.1 Construction of group actions

For notational simplicity, we replace 𝐺 by its index ⩽ 2 subgroup 𝐺′. For each vertex 𝑣 in the
Bass–Serre tree𝑇, let 𝐿𝑣 be the quasi-line fromDefinition 2.14. Recall that g𝐿𝑣 = 𝐿g𝑣 for any group
element g in 𝐺.
Let 𝕃1 be the collection of quasi-lines {𝐿𝑣}𝑣∈1 and 𝕃2 be the collection of quasi-lines {𝐿𝑣}𝑣∈2 .

We define a projection of 𝐿𝑣 to 𝐿𝑣′ in 𝕃𝑖 as follows.

Definition 3.2 (Projection maps in 𝕃𝑖). For any two distinct vertices 𝑣, 𝑣′ ∈ 𝑖 , let 𝑒′ = [𝑤, 𝑢] and
𝑒 = [𝑢, 𝑣] denote the last two (oriented) edges in [𝑣′, 𝑣]. The projection from 𝐿𝑣′ into 𝐿𝑣 is

Π𝐿𝑣
(𝐿𝑣′) ∶= 𝜓𝑒(proj𝓁𝑒 (𝓁𝑒′ )),

where 𝜓𝑒 ∶ 𝓁𝑒 → 𝐿𝑣 and proj𝓁𝑒 ∶ 𝑢 → 𝓁𝑒 are the maps introduced in Section 2.

The fact that 𝑑(𝑣, 𝑣′) is even is not necessary for Definition 3.2, only that 𝑑(𝑣, 𝑣′) ⩾ 2.
We will verify that the 𝕃𝑖 with these projection maps satisfy the projection axioms (see

Definition 2.7) for 𝑖 = 1, 2. Let 𝑑𝐿𝑎 (𝐿𝑏, 𝐿𝑐) be the projection distance diam
(
Π𝐿𝑎

(𝐿𝑏) ∪ Π𝐿𝑎
(𝐿𝑏)

)
.

Lemma 3.3. There exists a constant 𝜆 > 0 such that diam(Π𝐿𝑣
(𝐿𝑣′)) ⩽ 𝜆 for any distinct 𝑣, 𝑣′ ∈

𝑖 for 𝑖 = 1, 2. Moreover, if 𝑎, 𝑏, 𝑐 ∈ 𝑖 are distinct vertices with 𝑑𝑇(𝑎, [𝑏, 𝑐]) ⩾ 2, then Π𝐿𝑎
(𝐿𝑐) =

Π𝐿𝑎
(𝐿𝑏).
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3100 ABBOTT et al.

Proof. By Remark 2.16, there is a uniform bound on the diameter of proj𝓁𝑒 (𝓁𝑒′ ). Combined with
the fact that 𝜓𝑒 is uniformly coarsely Lipschitz, this gives the constant 𝜆. Considering the convex
hull of {𝑎} ∪ [𝑏, 𝑐], we see that, orienting [𝑐, 𝑎] and [𝑏, 𝑎] toward 𝑎, the last two edges of [𝑐, 𝑎] are
the same as the last two edges of [𝑏, 𝑎]. Hence, by definition, Π𝐿𝑎

(𝐿𝑐) = Π𝐿𝑎
(𝐿𝑏). □

Let 𝑣 be a vertex of the Bass–Serre tree 𝑇. By Remark 2.16, the collection {𝓁𝑓 = 𝑖𝑣(𝜏𝑓(𝑋𝑓)) |𝑓 ∈

𝐸(𝑇) such that 𝑓+ = 𝑣} satisfies the projection axioms with a constant 𝜉0. Let 𝑑𝓁 denote the
projection distances with respect to proj𝓁 . The following lemma follows immediately from
Lemma 2.18 and the definitions of 𝑑𝓁𝑒 and 𝑑𝐿𝑣 .

Lemma 3.4. There exists a constant 𝜆 > 0 such that the following holds. Let 𝑢, 𝑣, 𝑤 be distinct ver-
tices in 1 contained in Lk(𝑜) for some vertex 𝑜 in 2. Let 𝑒 = [𝑤, 𝑜], 𝑒1 = [𝑢, 𝑜], and 𝑒2 = [𝑣, 𝑜].
Then

1

𝜆
𝑑𝓁𝑒 (𝓁𝑒1 ,𝓁𝑒2 ) − 𝜆 ⩽ 𝑑𝐿𝑤(𝐿𝑢, 𝐿𝑣) ⩽ 𝜆𝑑𝓁𝑒 (𝓁𝑒1 ,𝓁𝑒2 ) + 𝜆.

We are now ready to verify the projection axioms.

Proposition 3.5. There exists 𝜉 > 0 such that for each 𝑖 ∈ {1, 2},𝕃𝑖 together with the projectionmaps
proj𝓁 satisfies the projection axioms.

Proof. We verify the projection axioms for 𝕃1. The case for 𝕃2 is identical. The constant 𝜉 will be
defined explicitly during the proof.
Axiom 1: This follows from Lemma 3.3.
Axiom 2: Let 𝑢, 𝑣, 𝑤 be distinct vertices in 1. In the course of the proof, we will compute a

constant 𝜉 > 0 such that if 𝑑𝐿𝑤(𝐿𝑢, 𝐿𝑣) > 𝜉, then 𝑑𝐿𝑢(𝐿𝑤, 𝐿𝑣) ⩽ 𝜉.
Since 𝑑𝐿𝑤(𝐿𝑢, 𝐿𝑣) > 0, it follows fromLemma 3.3 that either𝑤 lies on [𝑢, 𝑣] or 𝑑𝑇(𝑤, [𝑢, 𝑣]) = 1.

If 𝑤 lies on [𝑢, 𝑣], then since 𝑢,𝑤, 𝑣 ∈ 1, we have 𝑑𝑇(𝑢, [𝑤, 𝑣]) ⩾ 2 and 𝑑𝑇(𝑣, [𝑢, 𝑤]) ⩾ 2. Axiom
2 thus follows from Lemma 3.3.
On the other hand, suppose that 𝑑(𝑤, [𝑢, 𝑣]) = 1. Let 𝑜 ∈ [𝑢, 𝑣] be adjacent to 𝑤 and con-

sider the vertices 𝑢′, 𝑣′ ∈ Lk(𝑜) ∩ [𝑢, 𝑣] that lie in [𝑢, 𝑜] and [𝑜, 𝑣], respectively. If 𝑢 ≠ 𝑢′, then
𝑑𝐿𝑢(𝐿𝑤, 𝐿𝑣) = 0, and so, we may assume without loss of generality that 𝑢 = 𝑢′. Furthermore,
𝜋𝐿𝑢(𝐿𝑣) = 𝜋𝐿𝑢(𝐿𝑣′ ) by definition. Thus, to prove the upper bound on 𝑑𝐿𝑢(𝐿𝑤, 𝐿𝑣), it suffices to
assume that 𝑣 = 𝑣′, in which case 𝑢, 𝑣, 𝑤 all lie in Lk(𝑜), where 𝑜 ∈ 2.
Let 𝑒 = [𝑤, 𝑜], 𝑒1 = [𝑢, 𝑜], and 𝑒2 = [𝑣, 𝑜]. It follows from Lemma 3.4 that

1

𝜆
𝑑𝓁𝑒 (𝓁𝑒1 ,𝓁𝑒2 ) − 𝜆 ⩽ 𝑑𝐿𝑤(𝐿𝑢, 𝐿𝑣) ⩽ 𝜆𝑑𝓁𝑒 (𝓁𝑒1 ,𝓁𝑒2 ) + 𝜆.

Again applying Lemma 3.4 with the roles of 𝑢, 𝑣, 𝑤 exchanged, we have that

1

𝜆
𝑑𝓁𝑒1

(𝓁𝑒,𝓁𝑒2 ) − 𝜆 ⩽ 𝑑𝐿𝑢(𝐿𝑤, 𝐿𝑣) ⩽ 𝜆𝑑𝓁𝑒1
(𝓁𝑒,𝓁𝑒2 ) + 𝜆.

Since {𝓁𝑓 |𝑓 ∈ 𝐸(𝑇) and 𝑓+ = 𝑜} satisfies the projection axioms with constant 𝜉0, it follows that
𝑑𝓁𝑒 (𝓁𝑒1 ,𝓁𝑒2 ) > 𝜉0 implies that 𝑑𝓁𝑒1 (𝓁𝑒,𝓁𝑒2 ) ⩽ 𝜉0. Since there are finitely many choices for 𝑜 up
to the action 𝐺′, the constant 𝜉0 may be chosen independently of 𝑜. Thus, setting 𝜉 = 𝜆𝜉0 + 𝜆,
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3101

the above inequalities show that 𝑑𝐿𝑊(𝐿𝑢, 𝐿𝑣) > 𝜉 implies that 𝑑𝐿𝑢(𝐿𝑤, 𝐿𝑣) ⩽ 𝜉. This verifies
Axiom 2.
Axiom 3: For distinct 𝑢, 𝑣 ∈ 1, we will prove the set

{𝑤 ∈ 1 ∣ 𝑑𝐿𝑤 (𝐿𝑢, 𝐿𝑣) > 𝜉}

is finite. By Lemma 3.3, any such vertex 𝑤 is either contained in the interior of [𝑢, 𝑣] or satisfies
𝑑(𝑤, [𝑢, 𝑣]) = 1. The first case yields at most 𝑑(𝑢, 𝑣) − 1 choices for 𝑤.
Suppose 𝑑(𝑤, [𝑢, 𝑣]) = 1. As in the proof of Axiom 2, we can assume that 𝑢, 𝑣, 𝑤 lie in Lk(𝑜)

for some vertex 𝑜 in 2. Let 𝑒1 = [𝑢, 𝑜], 𝑒2 = [𝑣, 𝑜], and 𝑒 = [𝑤, 𝑜]. By Lemma 3.4, we have
𝑑𝐿𝑤(𝐿𝑢, 𝐿𝑣) ⩽ 𝜆𝑑𝓁𝑒 (𝓁𝑒1 ,𝓁𝑒2 ) + 𝜆. Since 𝜉 = 𝜆𝜉0 + 𝜆, it follows that

{𝑤 ∈ Lk(𝑜) || 𝑑𝐿𝑤(𝐿𝑢, 𝐿𝑣) > 𝜉} ⊂ {𝑤 ∈ Lk(𝑜) || 𝑑𝓁𝑒 (𝓁𝑒1 ,𝓁𝑒2 ) > 𝜉0}.

The projection axioms for {𝓁𝑓 |𝑓 ∈ 𝐸(𝑇) and 𝑓+ = 𝑣} imply that the latter set is finite, and so,
the former set must also be finite. Since there are finitely many possibilities for 𝑜, this verifies
Axiom 3. □

Lemma 3.6. For each 𝑖 = 1, 2, the action of 𝐺 = 𝜋1() on the collection 𝕃𝑖 = {𝐿𝑣 ∣ 𝑣 ∈ 𝑖} satisfies

Πg𝐿𝑣
(g𝐿𝑢) = gΠ𝐿𝑣

(𝐿𝑢)

for any 𝑣 ∈ 𝑖 and any g ∈ 𝐺.

Proof. This follows immediately from the definition of Π and the fact that the maps proj and 𝜓
are 𝐺-equivariant in the sense that projg𝑒(𝓁g𝑓) = g ⋅ proj𝑒(𝓁𝑓) and 𝜓g𝑒(g𝑥) = g𝜓𝑒(𝑥). □

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let 𝐺′ be the finite index subgroup of 𝐺 given by Lemma 3.1, which is also
a Croke–Kleiner admissible group. Without loss of generality, we replace 𝐺 by 𝐺′ for the rest of
the proof.
By Proposition 3.5, the collection of quasi-lines 𝕃𝑖 = {𝐿𝑣 ∣ 𝑣 ∈ 𝑖} satisfies the projection axioms

with a constant 𝜉 for 𝑖 = 1, 2. Fix𝐾 > 4𝜉. The unbounded quasi-trees of metric spaces 𝐾(𝕃1) and
𝐾(𝕃2) are themselves quasi-trees, and they admit unbounded isometric actions 𝐺 ↷ 𝐾(𝕃1) and
𝐺 ↷ 𝐾(𝕃2).
Since the underlying graph of 𝐺 is bipartite, we can choose an edge 𝑒 in Γ which is not a

loop. Choosing the orientation of 𝑒 correctly, 𝜇 = 𝑒− and 𝜔 = 𝑒+ have lifts in 𝑇 belonging to 1
and 2, respectively. By construction, elements of 𝑍𝜇 and 𝑍𝜔 are loxodromic and elliptic in the
action on 𝐾(𝕃1), respectively, and elliptic and loxodromic in the action on 𝐾(𝕃2), respectively.
By Lemma 2.3, we conclude that the group 𝐺 is-inaccessible. □

Every graph manifold has a finite cover that is a graph manifold 𝑁 containing at least two
Seifert-fibered spaces such that each Seifert-fibered piece has orientable, hyperbolic base orb-
ifold. We call such a graph manifold nonelementary in Section 4. Since 𝜋1(𝑁) is a Croke–Kleiner
admissible group, the following corollary is immediate from Theorem 1.4.
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3102 ABBOTT et al.

Corollary 3.7. Every graphmanifold has a finite cover whose fundamental group is-inaccessible.

It is still unknown whether -inaccessibility of a finite index normal subgroup of 𝐺 passes
to -inaccessibility of the ambient group 𝐺. Thus, it is natural to ask whether the “finite
cover” condition in Corollary 3.7 can be removed. We will address this question in the following
section.

4 -ACCESSIBILITY OF 3-MANIFOLD GROUPS

The goal of this section is to prove Theorem 1.1, which gives conditions under which the
fundamental group of a nongeometric 3-manifold is-inaccessible.
We begin by recalling some definitions and facts about 3-manifolds. Let𝑀 be a compact, con-

nected, orientable, irreducible 3-manifoldwith empty or toroidal boundary. By the geometrization
theorem for 3-manifolds of Perelman [24–26] and Thurston, either

(1) the manifold 𝑀 is geometric, in the sense that its interior admits one of the following
geometries: 𝑆3, 𝔼3, ℍ3, 𝑆2 × ℝ, ℍ2 × ℝ, ˜𝑆𝐿(2,ℝ), Nil, and Sol; or

(2) the manifold 𝑀 is nongeometric. In this case, the torus decomposition of 3-manifolds yields
a nonempty minimal union  ⊂ 𝑀 of disjoint essential tori, unique up to isotopy, such that
each component of𝑀∖ is either a Seifert-fibered piece or a hyperbolic piece.

We refer the reader to [29] for background on geometric structures on 3-manifolds. A Seifer-
fibered piece is called nonelementary if its base orbifold is orientable and hyperbolic, and it is
called isolated if it is not glued to any other Seifert-fibered piece.
The manifold𝑀 is called a graph manifold if all the pieces of𝑀∖ are Seifert-fibered. A graph

manifold is nonelementary if it contains at least two pieces and all pieces are nonelementary.
In other words, a nonelementary graph manifold is obtained by gluing at least two and at most
finitelymany nonelementary Seifer-fiberedmanifolds, where the gluingmaps between the Seifert
components do not identify (unoriented) Seifert fibers up to homotopy.
We will call a nongeometric manifold𝑀 amixed manifold if it is not a graph manifold. If there

is a subcollection  ′ of  and a connected component of 𝑀∖ ′ that is a graph manifold, then
this connected component is called a graph manifold component of the mixed manifold 𝑀. A
graph manifold component is maximal if it is not properly contained in another graph manifold
component. A mixed manifold is nonelementary if all maximal graph manifold components and
Seifert-fibered pieces are nonelementary.

Remark 4.1. Every graph (respectively, mixed) manifold is finitely covered by a nonelementary
graph (respectively, mixed) manifold (see, e.g., [27, Lemma 3.1], [19, Lemma 2.1]).

Our starting point for provingTheorem 1.1 is the following lemma,which describeswhen𝜋1(𝑀)

is relatively hyperbolic.

Lemma 4.2 [12, 16]. Let𝑀1,… ,𝑀𝑘 be the maximal graphmanifold components and Seifert-fibered
pieces of the torus decomposition of 𝑀. Let 𝑆1, … , 𝑆𝓁 be the tori in the boundary of 𝑀 that bound
a hyperbolic piece, and let 𝑇1, … , 𝑇𝑚 be the tori in the torus decomposition of 𝑀 that separate two
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3103

hyperbolic components. Then 𝜋1(𝑀) is hyperbolic relative to

ℙ = {𝜋1(𝑀𝑝)}
𝑘
𝑝=1 ∪ {𝜋1(𝑆𝑞)}

𝓁
𝑞=1 ∪ {𝜋1(𝑇𝑟)}

𝑚
𝑟=1.

This relatively hyperbolic structure on 𝜋1(𝑀) is useful because of the following result, which
gives a criterion for relatively hyperbolic groups to be-inaccessible.

Lemma 4.3. Let (𝐺, ℙ) be a relatively hyperbolic group. If there is a peripheral subgroup 𝑃 ∈ ℙ that
satisfies the hypotheses of Lemma 2.3, then 𝐺 is-inaccessible.

Before proving the lemma, we state an immediate corollary, which gives a different proof of [4,
Theorem 6.2].

Corollary 4.4 [4, Theorem 6.2]. The fundamental group of a finite-volume cusped hyperbolic 3-
manifold is-inaccessible.

We now turn to the proof of Lemma 4.3.

Proof of Lemma 4.3. To see that (𝐺) does not contain a largest element, we will construct two
actions of 𝐺 on hyperbolic spaces with commuting elements 𝑎, 𝑏 ∈ 𝐺 that satisfy the hypotheses
of Lemma 2.3. To do this, we will apply the machinery of induced actions from [3].
Since 𝑃 satisfies the hypotheses of Lemma 2.3 by assumption, there are commuting elements

𝑎, 𝑏 ∈ 𝑃 and isometric actions 𝑃 ↷ 𝑋 and 𝑃 ↷ 𝑌 on hyperbolic spaces such that 𝑎 and 𝑏 act lox-
odromically and elliptically, respectively, in the action 𝑃 ↷ 𝑋, and 𝑏 acts loxodromically in the
action 𝑃 ↷ 𝑌. For all 𝑄 ∈ ℙ ⧵ {𝑃}, fix the trivial action of 𝑄 on a point. By [3, Corollary 4.11(a)],
there exist hyperbolic spaces 𝑍𝑋, 𝑍𝑌 on which 𝐺 acts by isometries, associated to the collection of
actions {𝑄 ↷∗∣ 𝑄 ∈ ℙ ⧵ {𝑃}} ∪ {𝑃 ↷ 𝑋} and the collection of actions {𝑄 ↷∗∣ 𝑄 ∈ ℙ ⧵ {𝑃}} ∪ {𝑃 ↷

𝑌}, respectively. Moreover, there are coarsely 𝑃-equivariant quasi-isometric embeddings 𝑋 → 𝑍𝑋
and 𝑌 → 𝑍𝑌 . Therefore, 𝑎 acts loxodromically and 𝑏 acts elliptically in the action 𝐺 ↷ 𝑍𝑋 , while
𝑏 acts loxodromically in the action 𝐺 ↷ 𝑍𝑌 . This completes the proof. □

In light of Lemmas 4.2 and 4.3, to prove the-inaccessibility of𝜋1(𝑀), it suffices to understand
its peripheral subgroups. In Section 4.1, we analyze the fundamental groups of the Seifert-fibered
pieces. The more difficult subgroups to understand are the fundamental groups of the maximal
graph manifold components. We consider these in Section 4.2 and give conditions under which
they satisfy Lemma 2.3; see Proposition 4.8. In Section 4.3, we put these results together and prove
Theorem 1.1. Up to this point, we have been assuming that 𝑀 has empty or toroidal boundary.
Finally, in Section 4.4, we consider 3-manifolds with higher genus boundary components.

4.1 Seifert-fibered manifolds

In this section, we analyze Seifert-fibered pieces.

Lemma 4.5. Let 1 → ℤ
𝑖
~→ 𝐺

𝜋
~→ 𝐻 → 1 be a short exact sequence where ℤ is central in 𝐺 and𝐻 is

a nonelementary hyperbolic group. Then, 𝐺 is-inaccessible.
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3104 ABBOTT et al.

Proof. Choose a finite generating set 𝐽 of 𝐻 and consider the hyperbolic action 𝐺 ↷ Cay(𝐻, 𝐽).
Let 𝑎 be a generator of the group ℤ, and let 𝑏 be an element of 𝐺 such that 𝜋(𝑏) is loxodromic in
𝐻 ↷ Cay(𝐻, 𝐽). The element 𝑏 is thus loxodromic in the action𝐺 ↷ Cay(𝐻, 𝐽), as well, while the
element 𝑎 is elliptic (in fact, trivial) in this action.
Since every integral cohomology class of a hyperbolic group is bounded (see [22]), the central

extension ℤ → 𝐺 → 𝐻 corresponds to a bounded element of 𝐻2(𝐻,ℤ). Hence, [17, Lemma 4.1]
provides a quasi-morphism 𝜙∶ 𝐺 → ℤ that is unbounded on 𝑖(ℤ). By [1, Lemma 4.15], there
exists a generating set 𝑆 for 𝐺 such that 𝐿 ∶= Cay(𝐺, 𝑆) is a quasi-line and the inclusion ℤ → 𝐿

induced by 𝑖 is a ℤ-equivariant quasi-isometry. We thus obtain a hyperbolic action 𝐺 ↷ 𝐿 for
which 𝑎 is loxodromic. Since 𝑎 ∈ 𝑍(𝐺), the elements 𝑎 and 𝑏 commute. By Lemma 2.3, 𝐺 is
-inaccessible. □

Corollary 4.6. Let𝑀 be a nonelementary Seifert-fibered manifold. Then, 𝜋1(𝑀) is-inaccessible.

Proof. Let 𝜑∶ 𝑀 → Σ be a Seifert fibration. Since 𝑆1 → 𝑀 → Σ is a circle bundle over Σ, there is
a short exact sequence

1 → ℤ → 𝜋1(𝑀) → 𝜋1(Σ) → 1,

where ℤ is the normal cyclic subgroup of 𝜋1(𝑀) generated by a fiber. The group ℤ is central in
𝜋1(𝑀) since Σ is orientable (see, e.g., [20, Proposition 10.4.4]). By Lemma 4.5, the group 𝜋1(𝑀) is
-inaccessible. □

4.2 -accessibility of nonelementary graph manifolds

Let 𝑀 be a three-dimensional nonelementary graph manifold with Seifert-fibered pieces
𝑀1,… ,𝑀𝑘 in its torus decomposition. There is an induced graph-of-groups structure  on 𝜋1(𝑀)

with underlying graph Γ as follows. There is a vertex of Γ for each 𝑀𝑖 , with vertex group
𝜋1(𝑀𝑖). Each edge group is ℤ2, the fundamental group of a torus in the decomposition. The
edge monomorphisms come from the two different gluings of the torus into the two adja-
cent Seifert-fibered components. With this graph of groups structure, 𝜋1(𝑀) is a Croke–Kleiner
admissible group.
The universal cover 𝑀̃ of𝑀 is tiled by a countable collection of copies of the universal covers

𝑀̃1, … , 𝑀̃𝑘. We call these subsets vertex spaces. We refer to boundary components of vertex spaces
as edge spaces. Two vertex spaces are either disjoint or intersect along an edge space. Let 𝑇 be the
Bass–Serre tree of .
Applying Theorem 1.4 to the Croke–Kleiner admissible group 𝜋1(𝑀), we obtain a cover𝑀′ →

𝑀 of degree 2 such that 𝜋1(𝑀′) is not -accessible. However, this is not enough to conclude -
inaccessibility of 𝜋1(𝑀), as it is unknown whether -inaccessibility of a finite index subgroup
passes to the ambient group. In this section, we will show that 𝜋1(𝑀) itself is-inaccessible; see
Proposition 4.8.
We begin with a lemma. Let 𝜋𝛼(𝛽) be the closest point projection of a line 𝛽 to a line 𝛼 in a

hyperbolic space. Let 𝑑𝛼(⋅, ⋅) be in the resulting projection distances.

Lemma 4.7. Let 𝐹 be a two-dimensional hyperbolic orbifold with nonempty boundary and univer-
sal cover 𝐹, and let 𝕃 be the collection of boundary lines of 𝐹. For any 𝛼 ∈ 𝕃 and any loxodromic
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3105

𝛾 ∈ 𝜋1(𝐹) whose axis in 𝐹 is also a line in 𝕃, the following holds. There exists a constant 𝜆 > 0 such
that for any 𝑛 ∈ ℤ and any line 𝛽 ∈ 𝕃 ⧵ {𝛼, 𝛾𝑛(𝛼)}, we have

𝑑𝛽(𝛼, 𝛾
𝑛(𝛼)) ⩽ 𝜆.

The proof of this lemma is very similar to that of [4, Lemma 5.6]. We refer the reader to that
paper for some figures that may be helpful; see, in particular, [4, Figure 8].

Proof of Lemma 4.7. Since 𝕃 is a 𝜋1(𝐹)-invariant collection of axes in the hyperbolic plane ℍ2

with disjoint limit sets, it follows from Example 2.8 that (𝕃, 𝜋𝓁) satisfies the projection axioms
for some constant 𝜉. In particular, there exists a constant 𝜉 > 1 such that diam(𝜋𝓁(𝓁

′)) ⩽ 𝜉 for
distinct elements 𝓁 and 𝓁′ in 𝕃. Let

𝜆 = max{𝜉, 𝑑(𝛼, 𝛾(𝛼)) + 2𝜉, 𝑑(𝛼, 𝛾2(𝛼)) + 2𝜉}.

Let 𝓁 ∈ 𝕃 denote the axis of 𝛾 in 𝐹. If 𝓁 = 𝛼, then

𝑑𝛽(𝛼, 𝛾
𝑛(𝛼)) = 𝑑𝛽(𝛼, 𝛼) ⩽ 𝜉 ⩽ 𝜆,

and the result holds. For the remainder of the proof, we assume 𝓁 ≠ 𝛼 and consider two cases.
Case 1: 𝛽 ∉ {𝛾𝑘(𝛼) |𝑘 ∈ ℤ}

In this case, there exists a unique 𝑘0 ∈ ℤ such that 𝛽 lies between 𝛾𝑘0(𝛼) and 𝛾𝑘0+1(𝛼). That
is, 𝜕ℍ2 minus the endpoints of 𝛾𝑘0(𝛼) and 𝛾𝑘0+1(𝛼) consists of four intervals, one containing the
endpoints of 𝛽, one containing the endpoints of all 𝛾𝑖(𝛼) for 𝑖 ∉ {𝑘0, 𝑘0 + 1}, and the other two
disjoint from all endpoints of lines in 𝕃. Fixing an appropriate orientation on 𝛽, we partially
order subintervals 𝐼 = [𝑥, 𝑦] and 𝐽 = [𝑧, 𝑤] of 𝛽 (with 𝑥 ⩽ 𝑦 and 𝑧 ⩽ 𝑤 in the orientation) by
𝐼 ⩽ 𝐽 if 𝑥 ⩽ 𝑧 and 𝑦 ⩽ 𝑤. Then, the projections of the lines 𝛾𝑘(𝛼) onto 𝛽 occur in the following
order:

𝜋𝛽
(
𝛾𝑘0(𝛼)

)
< 𝜋𝛽

(
𝛾𝑘0−1(𝛼)

)
< 𝜋𝛽

(
𝛾𝑘0−2(𝛼)

)
< … < 𝜋𝛽(𝓁)

and

𝜋𝛽(𝓁) < … < 𝜋𝛽
(
𝛾𝑘0+3(𝛼)

)
< 𝜋𝛽

(
𝛾𝑘0+2(𝛼)

)
< 𝜋𝛽

(
𝛾𝑘0+1(𝛼)

)
.

Thus,

𝑑𝛽(𝛼, 𝛾
𝑛(𝛼)) ⩽ 𝑑𝛽

(
𝛾𝑘0(𝛼), 𝛾𝑘0+1(𝛼)

)
⩽ 𝑑

(
𝛾𝑘0(𝛼), 𝛾𝑘0+1(𝛼)

)
+ 2𝜉,

where 𝑑(𝛾𝑘0(𝛼), 𝛾𝑘0+1(𝛼)) denotes the distance between 𝛾𝑘0(𝛼) and 𝛾𝑘0+1(𝛼) in the hyperbolic
plane. The final inequality follows from the fact that the nearest point projection is a 1-
Lipschitz map and that 𝜋𝓁(𝓁

′) has diameter at most 𝜉 for any distinct lines 𝓁,𝓁′ ∈ 𝕃. Since
𝑑(𝛾𝑘0(𝛼), 𝛾𝑘0+1(𝛼))) = 𝑑(𝛼, 𝛾(𝛼)), it follows that

𝑑𝛽(𝛼, 𝛾
𝑛(𝛼)) ⩽ 𝑑(𝛼, 𝛾(𝛼)) + 2𝜉 ⩽ 𝜆.
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3106 ABBOTT et al.

Case 2: 𝛽 = 𝛾𝑘(𝛼) for some integer 𝑘 ≠ 0, 𝑛. Using an analogous argument to Case 1, we see that
𝑑𝛽(𝛼, 𝛾

𝑛(𝛼)) is bounded above by

𝑑𝛽(𝛾
𝑘−1(𝛼), 𝛾𝑘+1(𝛼)) ⩽ 𝑑(𝛼, 𝛾2(𝛼)) + 2𝜉 ⩽ 𝜆. □

Proposition 4.8. The fundamental group of a nonelementary graph manifold is-inaccessible.

Proof. Let  be the graph-of-groups structure on 𝜋1(𝑀) with underlying graph Γ described at the
beginning of this section. The assumption that the graph manifold𝑀 is nonelementary ensures
that there are at least two vertices in the graph Γ. We divide the proof into two cases, depending
on the location of loops in Γ.
Fix an edge 𝛼 in Γ that is not a loop, and label the vertex 𝛼− by 𝜇 and the vertex 𝛼+ by 𝜔. Let

𝑇𝛼 be the torus in𝑀 associated to the edge 𝛼. Let 𝑣 and 𝑤 be two adjacent vertices in the tree 𝑇
such that 𝑀̃𝑣 and 𝑀̃𝑤 are the universal covers of the Seifert pieces𝑀𝜇 and𝑀𝜔, respectively. Let
𝑧𝜇 and 𝑧𝜔 be the generators of 𝑍𝜇 and 𝑍𝜔, respectively.
Case 1: Suppose that there is no loop in Γ based at the vertex 𝜇. Let

𝕎𝜇 ∶=
{
𝐿𝑣

|| 𝑀̃𝑣 is a lift of the Seifert-fibered piece𝑀𝜇

}

If 𝐿𝑣 and 𝐿𝑣′ are two distinct elements in𝕎𝜇, then 𝑑(𝑣, 𝑣′) ⩾ 2 (though they are not necessarily
an even distance apart). In this case, the techniques in Section 3 apply to define projection maps
between 𝐿𝑣 and 𝐿𝑣′ . Note that the assumption 𝑑(𝑣, 𝑣′) ⩾ 2 is necessary in order to make such a
definition. The proof of Proposition 3.5 applies to show that the projection axioms are satisfied for
𝕎𝜇. This yields a cobounded action𝜋1(𝑀) ↷ 𝐾(𝕎𝜇) such that 𝑧𝜇 is loxodromic and 𝑧𝜔 is elliptic.
Case 2: Suppose that there is a loop in Γ based at the vertex 𝜇.
As in Section 3, we partition the vertex set 𝑇0 into two disjoint collections of vertices 1 and 2

such that if 𝑧 and 𝑧′ both lie in𝑖 , then 𝑑(𝑧, 𝑧′) is even. Applying Theorem 1.4 to theCroke–Kleiner
admissible group 𝜋1(𝑀), we obtain a degree 2 cover𝑀′ → 𝑀 such that 𝜋1(𝑀′) is-inaccessible
and 𝜋1(𝑀′) preserves 1 and 2.
Assume without loss of generality that 𝑣 is in 1 and 𝑤 is in 2. Let

ℚ𝜇 ∶=
{
𝐿𝑢

||𝑢 ∈ 1 and 𝑀̃𝑢 is a lift of𝑀𝜇 }.

As in the previous case, the techniques of Section 3 suffice to define projection maps for ℚ𝜇 and
the proof of Proposition 3.5 shows that the projection axioms are satisfied by ℚ𝜇, and thus, we
obtain quasi-trees of spaces 𝐾(ℚ𝜇) for sufficiently large 𝐾. Since 𝜋1(𝑀′) preservesℚ𝜇, we obtain
an action 𝜋1(𝑀′) ↷ 𝐾(ℚ𝜇) as in Section 3.
Passing to a power of two if necessary, we may assume that 𝑧𝜇, 𝑧𝜔 ∈ 𝜋1(𝑀

′). As shown in
the proof of Theorem 1.4, the element 𝑧𝜇 acts loxodromically on 𝐾(ℚ𝜇), while 𝑧𝜔 acts ellipti-
cally on 𝐾(ℚ𝜇). By the construction of 𝐾(ℚ𝜇), and since vertex groups are central extensions
of ℤ, the element 𝑧𝜇 is a WWPD+ element in the action 𝜋1(𝑀

′) ↷ 𝐾(ℚ𝜇). Hence, Proposi-
tion 2.5 provides a homogeneous quasi-morphism 𝑞𝐾 ∶ 𝜋1(𝑀

′) → ℝ satisfying 𝑞𝐾(𝑧𝜔) = 0 and
𝑞𝐾(𝑧𝜇) ≠ 0.
Our goal is to extend 𝑞𝐾 to a homogeneous quasi-morphism 𝜋1(𝑀) → ℝ while ensuring that

𝑧𝜔 and 𝑧𝜇 still have trivial and nontrivial image, respectively. Let ℎ ∈ 𝜋1(𝑀) be a representative
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3107

of the nontrivial coset of 𝜋1(𝑀′) in 𝜋1(𝑀). Define a function 𝑞′
𝐾
∶ 𝜋1(𝑀

′) → ℝ by

𝑞′𝐾(𝑥) ∶= 𝑞𝐾(𝑥) + 𝑞𝐾(ℎ𝑥ℎ
−1).

Note that 𝑞′
𝐾
is constant on conjugacy classes of 𝜋1(𝑀), that is, 𝑞′

𝐾
(𝑦𝑥𝑦−1) = 𝑞′

𝐾
(𝑥) for any

𝑦 ∈ 𝜋1(𝑀) and 𝑥 ∈ 𝜋1(𝑀
′)). Hence, it follows from the proof of [11, Lemma 7.2] that 𝑞′

𝐾
extends

to a homogeneous quasi-morphism 𝜌𝐾 ∶ 𝜋1(𝑀) → ℝ defined by 𝜌𝐾(𝑥) ∶= 𝑞′
𝐾
(𝑥2)

/
2 for each 𝑥 ∈

𝜋1(𝑀).

Lemma 4.9. Suppose that there is a loop in Γ based at 𝜇. For 𝐾 large enough, we have 𝜌𝐾(𝑧𝜔) = 0

and 𝜌𝐾(𝑧𝜇) ≠ 0.

We defer the proof of the lemma for the moment and assume this result to complete the
proof of Proposition 4.8. Since 𝜌𝐾 ∶ 𝜋1(𝑀) → ℝ is a nonzero homogeneuous quasi-morphism,
we obtain from Proposition 2.6 an action 𝜋1(𝑀) ↷  on a quasi-line. Moreover, since 𝜌𝐾(𝑧𝜇) ≠ 0

and 𝜌𝐾(𝑧𝜔) = 0, the element 𝑧𝜇 is loxodromic, while 𝑧𝜔 is elliptic in this action.
Now, consider the other endpoint 𝜔 of 𝛼. Suppose first there is not a loop in Γ based at 𝜔.

Interchanging the roles of 𝜇 and 𝜔 in Case 1 above produces an action 𝜋1(𝑀) ↷ 𝐾(𝕎𝜔) such
that 𝑧𝜇 is elliptic and 𝑧𝜔 is loxodromic. On the other hand, if there is a loop in Γ based at 𝜔, then
interchanging the roles of 𝜇 and𝜔 in Case 2 above produces an action 𝜋1(𝑀) ↷ ′ on a quasi-line
in which (after possibly passing to a power of 2) 𝑧𝜇 is elliptic and 𝑧𝜔 is loxodromic.
Regardless of which combination of cases holds for the vertices 𝜇 and 𝜔, we have produced two

actions on hyperbolic spaces and two commuting elements 𝑧𝜇 and 𝑧𝜔 that satisfy the conditions
of Lemma 2.3, which concludes the proof. □

We now prove Lemma 4.9.

Proof of Lemma 4.9. Recall that 𝑣 ∈ 1. As ℎ ∈ 𝜋1(𝑀) is a representative of the nontrivial coset
of 𝜋1(𝑀′) in 𝜋1(𝑀), we have ℎ𝑣 ∈ 2. Note that 𝑀̃ℎ𝑣 is also a lift of𝑀𝜇, even though ℎ𝑣 is not in
1. Fix a vertex 𝑣0 adjacent to ℎ𝑣 such that 𝑀̃𝑣0

is a lift of𝑀𝜇 in 𝑀̃. This ensures that 𝐿𝑣0 is in ℚ1.
Let 𝑙 ∈ 𝕃ℎ𝑣 be the boundary line of 𝐹ℎ𝑣 corresponding to the edge [𝑣0, ℎ𝑣].
We will first show that 𝜌𝐾(𝑧𝜔) = 0. Since 𝑞𝐾 is a homogeneous quasi-morphism and 𝑧𝜔 ∈

𝜋1(𝑀
′), we have that

𝜌𝐾(𝑧𝜔) = 𝑞′𝐾(𝑧𝜔) = 𝑞𝐾(𝑧𝜔) + 𝑞𝐾(ℎ𝑧𝜔ℎ
−1) = 0 + 𝑞𝐾(ℎ𝑧𝜔ℎ

−1).

By Proposition 2.5, to show 𝜌𝐾(𝑧𝜔) = 𝑞𝐾(ℎ𝑧𝜔ℎ
−1) = 0, it suffices to show that ℎ𝑧𝜔ℎ−1 is elliptic

in the action 𝜋1(𝑀′) ↷ 𝐾(ℚ1). Let 𝜉 > 0 be the projection constant of the projection complexes
ℚ1 and ℚ2. Since 𝑀ℎ𝑣 is a Seifert-fibered piece, we have 𝑀̃ℎ𝑣 = 𝐹ℎ𝑣 × ℝ, where 𝐹ℎ𝑣 is the base
orbifold of 𝑀ℎ𝑣. Applying Lemma 4.7 to the space 𝐹ℎ𝑣, the collection of boundary lines of 𝐹ℎ𝑣,
the fixed boundary line 𝑙, and the chosen element 𝛾 = ℎ𝑧𝜔ℎ

−1, we obtain a constant 𝜆 > 0. We
further enlarge 𝜆 so that it satisfies Lemma 3.4.
Choose𝐾 > 4𝜉 + 4 + 2𝜆 + 𝜆2 large enough to apply Proposition 2.9, and let 𝑦0 be a point in the

projection of 𝐿ℎ𝑧𝜔ℎ−1𝑣0 to 𝐿𝑣0 . We will show that 𝑑𝐾(ℚ1)
(𝑦0, 𝛾

𝑛(𝑦0)) ⩽ 6𝐾 for all 𝑛 ∈ ℤ, which will
imply that 𝛾 is elliptic in the action 𝜋1(𝑀′) ↷ 𝐾(ℚ1), as desired.
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3108 ABBOTT et al.

Fix 𝑛 ∈ ℤ. By Proposition 2.9, we have

𝑑𝐾(ℚ1)
(𝑦0, 𝛾

𝑛(𝑦0)) ⩽ 4
∑
𝑢∈1
𝐿𝑢 ∈ ℚ1

[𝑑𝐿𝑢 (𝑦0, 𝛾
𝑛(𝑦0))]𝐾 + 6𝐾. (2)

Thus, it suffices to show that 𝑑𝐿𝑢(𝑦0, 𝛾
𝑛(𝑦0)) < 𝐾 for all 𝑢 ∈ 1 such that 𝐿𝑢 ∈ ℚ1. Since 𝐿𝑢 ∈ ℚ1,

𝑀̃𝑢 is a lift of𝑀𝜇.
We divide the proof into several cases, depending on the location of the vertex 𝑢.
Case 1: 𝑢 ∈ {𝑣0, 𝛾

𝑛(𝑣0)}. We assume that 𝑢 = 𝑣0 as the case 𝑢 = 𝛾𝑛(𝑣0) is proved similarly.
By assumption, 𝑦0 ∈ 𝐿𝑣0 , and so 𝛾

𝑛(𝑦0) ∈ 𝐿𝛾𝑛(𝑦0). By definition,

𝑑𝐿𝑣0
(𝑦0, 𝛾

𝑛(𝑦0)) = diam({𝑦0} ∪ Π𝐿𝑣0
(𝐿𝛾𝑛(𝑣0)))

and

𝑑𝐿𝑣0
(𝐿𝛾(𝑣0), 𝐿𝛾𝑛(𝑣0)) = diam

(
Π𝐿𝑣0

(𝐿𝛾(𝑣0)) ∪ Π𝐿𝑣0
(𝐿𝛾𝑛(𝑣0))

)
.

As 𝑦0 ∈ Π𝐿𝑣0
(𝐿𝛾(𝑣0)) and the diameter of Π𝐿𝑣0

(𝐿𝛾(𝑣0)) is no more than 𝜉, it follows that

||𝑑𝐿𝑣0 (𝑦0, 𝛾𝑛(𝑦0)) − 𝑑𝐿𝑣0
(𝐿𝛾(𝑣0), 𝐿𝛾𝑛(𝑣0))

|| ⩽ 2𝜉. (3)

The line 𝑙 is the boundary line of𝐹ℎ𝑣 associated to the edge [𝑣0, ℎ𝑣]. Recall that 𝑧𝜔 is an element
of the edge group 𝐺[𝑣,𝑤], and so, it fixes the vertex 𝑣. Thus, 𝛾(ℎ𝑣) = ℎ𝑧𝜔ℎ

−1(ℎ𝑣) = ℎ𝑧𝜔(𝑣) = ℎ𝑣,
and so, the lines 𝛾(𝑙) and 𝛾𝑛(𝑙) are the boundary lines in 𝐹ℎ𝑣 associated to the edges [ℎ𝑣, 𝛾(𝑣0)]
and [ℎ𝑣, 𝛾𝑛(𝑣0)], respectively.
Combining (3) with Lemmas 3.4 and 4.7 implies that

𝑑𝐿𝑣0
(𝑦0, 𝛾

𝑛(𝑦0)) ⩽ 𝑑𝐿𝑣0
(𝐿𝛾(𝑣0), 𝐿𝛾𝑛(𝑣0)) + 2𝜉

⩽ 𝜆𝑑𝑙(𝛾(𝑙), 𝛾
𝑛(𝑙)) + 𝜆 + 2𝜉

= 𝜆 𝑑𝛾−1(𝑙)(𝑙, 𝛾
𝑛−1(𝑙)) + 𝜆 + 2𝜉 ⩽ 𝜆2 + 𝜆 + 2𝜉 < 𝐾.

Case 2: 𝑢 ∈ Lk(ℎ𝑣) but 𝑢 ∉ {𝑣0, 𝛾
𝑛(𝑣0)}. Let 𝑏 be the boundary line of 𝐹ℎ𝑣 corresponding to the

edge [𝑢, ℎ𝑣], so that 𝑏 ∉ {𝑙, 𝛾𝑛(𝑙)}. By Lemma 4.7, we have that 𝑑𝑏(𝑙, 𝛾𝑛(𝑙)) ⩽ 𝜆. It follows from
Lemma 3.4 that

𝑑𝐿𝑢(𝑦0, 𝛾
𝑛(𝑦0)) = 𝑑𝐿𝑢(𝐿𝑣0 , 𝐿𝛾𝑛(𝑣0))

⩽ 𝜆 𝑑𝑏(𝑙, 𝛾
𝑛(𝑙)) + 𝜆

⩽ 𝜆2 + 𝜆 < 𝐾.

Case 3: 𝑢 ∉ Lk(ℎ𝑣). In this case, 𝑑(𝑢, [𝑣0, 𝛾𝑛(𝑣0)]) ⩾ 2, and so,

𝑑𝐿𝑢(𝑦0, 𝛾
𝑛𝑦0) = 𝑑𝐿𝑢(𝐿𝑣0 , 𝐿𝛾𝑛(𝑣0)) ⩽ 𝜆 < 𝐾.
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LARGEST HYPERBOLIC ACTION OF 3-MANIFOLD GROUPS 3109

We have shown that 𝑑𝐿𝑢(𝑦0, 𝛾
𝑛(𝑦0)) < 𝐾 for all 𝑢 ∈ 1 such that 𝐿𝑢 ∈ ℚ1. Therefore, (2) shows

that 𝑑𝐾(ℚ1)
(𝑦0, 𝛾

𝑛(𝑦0)) ⩽ 6𝐾 for all 𝑛. It follows that 𝛾 is elliptic in the action 𝜋1(𝑀′) ↷ 𝐾(ℚ1),
and so, 𝑞(𝑧𝜔) = 0.
To complete the proof, we need to verify that

𝜌𝐾(𝑧𝜇) = 𝑞′𝐾(𝑧𝜇) = 𝑞𝐾(𝑧𝜇) + 𝑞𝐾(ℎ𝑧𝜇ℎ
−1) ≠ 0.

Since ℎ𝑧𝜇ℎ−1 is a central element in 𝐺ℎ𝑣 = Stab𝐺(ℎ𝑣), it follows from Remark 2.13 that ℎ𝑧𝜇ℎ−1
acts elliptically on 𝐿𝑣0 , and thus, also on 𝐾(ℚ1). By Proposition 2.5, we have 𝑞𝐾(ℎ𝑧𝜇ℎ−1) = 0.
Since 𝑞𝐾(𝑧𝜇) ≠ 0, it follows that 𝜌𝐾(𝑧𝜇) ≠ 0. □

Theorem 1.3 now follows immediately from Corollary 4.6 and Proposition 4.8.

4.3 Theorem 1.1

In this section, we put together the above results and prove Theorem 1.1, whose statement we
recall for the convenience of the reader.

Theorem 1.1. Let𝑀 be a nongeometric 3-manifold with empty or toroidal boundary. If the torus
decomposition of𝑀 contains any of the following, then 𝜋1(𝑀) is-inaccessible:

(1) a hyperbolic piece that contains a boundary torus of𝑀;
(2) two hyperbolic pieces glued along a torus;
(3) an isolated nonelementary Seifert-fibered piece; or
(4) a nonelementary maximal graph manifold component.

Proof. Let 𝑀1,… ,𝑀𝑘 be the maximal graph manifold components and isolated Seifert-fibered
pieces of the torus decomposition of𝑀. Let 𝑆1, … , 𝑆𝓁 be the tori in the boundary of𝑀 that bound
a hyperbolic piece, and let 𝑇1, … , 𝑇𝑚 be the tori in the torus decomposition of𝑀 that separate two
hyperbolic components of the torus decomposition. By Lemma 4.2, 𝜋1(𝑀) is hyperbolic relative
to

ℙ = {𝜋1(𝑀𝑝)}
𝑘
𝑝=1 ∪ {𝜋1(𝑆𝑞)}

𝓁
𝑞=1 ∪ {𝜋1(𝑇𝑟)}

𝑚
𝑟=1.

In all of the cases (1)–(4), the collection ℙ is nonempty.
In case (1), the collection {𝑆1, … , 𝑆𝓁} ≠ ∅, while in case (2), {𝑇1, … , 𝑇𝑚} ≠ ∅. Both of these col-

lections consist of tori. Note that ℤ2 is-inaccessible: the projections of ℤ2 onto each factor yield
two actions on lines to which Lemma 2.3 applies. Thus, if {𝜋1(𝑆𝑞)} ∪ {𝜋1(𝑇𝑟)} is nonempty, then
𝜋1(𝑀) is-inaccessible by Lemma 4.3, proving the theorem in cases (1) and (2).
Next suppose that (3) holds, so that there is an isolated nonelementary Seifert-fibered piece𝑀𝑝.

By the proof of Corollary 4.6, we see that 𝜋1(𝑀𝑝) has two actions to which Lemma 2.3 applies. By
Lemma 4.3, 𝜋1(𝑀) is-inaccessible.
Finally, suppose that (4) holds, so that there is a nonelementary maximal graph manifold com-

ponent 𝑀𝑝. By the proof of Proposition 4.8, there are two commuting elements 𝑎, 𝑏 ∈ 𝜋1(𝑀𝑝)

and two actions on hyperbolic spaces (in fact, quasi-trees) 𝜋1(𝑀𝑝) ↷ 𝑋 and 𝜋1(𝑀𝑝) ↷ 𝑌 such
that 𝑎 and 𝑏 are elliptic and loxodromic, respectively, in 𝜋1(𝑀𝑝) ↷ 𝑋 and 𝑎 is loxodromic in
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𝜋1(𝑀𝑝) ↷ 𝑌. Applying Lemma 4.3 to 𝑃 = 𝜋1(𝑀𝑝), we conclude that (𝜋1(𝑀)) contains no
largest element. □

4.4 -accessibility of finitely generated 3-manifold groups

In this section, we explain how one might reduce the study of -accessibility of all finitely gen-
erated 3-manifold groups to the case of compact, orientable, irreducible, 𝜕-irreducible 3-manifold
groups. In particular, we show that for any hyperbolic 3-manifold 𝑀 without rank-1 cusps, if
𝜋1(𝑀) is finitely generated then it is-accessible.
Let𝑀 be an orientable 3-manifold with finitely generated fundamental group. It follows from

Scott’s Core Theorem that𝑀 contains a compact codimension zero submanifold whose inclusion
map is a homotopy equivalence [28], and thus, also an isomorphism on fundamental groups. We
thus can assume that our 3-manifolds are compact.
The sphere-disk decomposition provides a decomposition of a compact, orientable 3-manifold

𝑀 into irreducible, 𝜕-irreducible pieces𝑀1,… ,𝑀𝑘. In particular,𝜋1(𝑀) is a free product𝜋1(𝑀1) ∗

𝜋1(𝑀2) ∗ ⋯ ∗ 𝜋1(𝑀𝑘). Let 𝐺𝑖 ∶= 𝜋1(𝑀𝑖). Note that 𝜋1(𝑀) is hyperbolic relative to the collection
ℙ = {𝐺1, … , 𝐺𝑘}. In light of Lemma 4.3, the-inaccessibility of 𝜋1(𝑀) follows whenever some 𝐺𝑖
satisfies the conditions of Lemma 2.3. Hence, it suffices to investigate the -accessibility of the
groups 𝐺𝑖 .
If𝑀 has empty or toroidal boundary, then-accessibility of 𝜋1(𝑀) is understood, except for a

few sporadic cases, by Theorem 1.1. The following proposition addresses certain manifolds with
higher genus boundary.

Proposition 4.10. Let𝑀 be a compact, orientable, irreducible, 𝜕-irreducible 3-manifold that has
at least one boundary component of genus at least 2. Then, 𝜋1(𝑀) is-inaccessible under either of
the following hypotheses:

(1) 𝑀 has trivial torus decomposition and at least one torus boundary component; or
(2) 𝑀 has nontrivial torus decomposition.

On the other hand, if𝑀 has trivial torus decomposition and all boundary components have genus at
least 2, then 𝜋1(𝑀) is-accessible.

Proof. As in [31, Section 6.3], we can paste compact hyperbolic 3-manifolds with totally geodesic
boundaries to the higher genus boundary components of𝑀 to obtain a finite volume hyperbolic
manifold 𝑁 (in case 𝑀 has trivial torus decomposition) or a mixed 3-manifold (in case 𝑀 has
nontrivial torus decomposition).
If (1) holds, then themanifold𝑁 has toroidal boundary, and, by assumption, there is a boundary

torus 𝑇 for 𝑁 that is also a boundary torus of𝑀.
The subgroup 𝑃 ∶= 𝜋1(𝑇) ≅ ℤ2 satisfies Lemma 2.3 and is a peripheral subgroup in the rela-

tively hyperbolic structure on 𝜋1(𝑁). The proof of Lemma 4.3 shows that there are commuting
elements 𝑎, 𝑏 ∈ 𝑃 and hyperbolic actions 𝜋1(𝑁) ↷ 𝑍𝑋 and 𝜋1(𝑁) ↷ 𝑍𝑌 such that 𝑎 and 𝑏 act lox-
odromically and elliptically, respectively, in the action 𝜋1(𝑁) ↷ 𝑍𝑋 , and 𝑏 acts loxodromically in
the action𝐺 ↷ 𝑍𝑌 . As 𝜋1(𝑀) is a subgroup of 𝜋1(𝑁), we obtain induced actions 𝜋1(𝑀) ↷ 𝑍𝑋 and
𝜋1(𝑀) ↷ 𝑍𝑌 . Since 𝑎, 𝑏 ∈ 𝜋1(𝑀), we see that 𝜋1(𝑀) is-inaccessible by Lemma 2.3.
If (2) holds, then𝑁 has either empty or toroidal boundary and has the following properties:
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(i) 𝑀 is a submanifold of 𝑁 with incompressible toroidal boundary;
(ii) cutting 𝑁 along the tori in the torus decomposition of𝑀 yields the torus decomposition of

𝑁; and
(iii) each piece of𝑀 with a boundary component of genus at least 2 is contained in a hyperbolic

piece of 𝑁.

In particular, it follows from (ii) and (iii) that 𝑁 is a mixed 3-manifold, and hence, 𝜋1(𝑁) is -
inaccessible by Theorem 1.1.
In the proof of Theorem 1.1, we prove the -inaccessibility of 𝜋1(𝑁) by showing that there

are two commuting elements 𝑎, 𝑏 ∈ 𝜋1(𝑇) for some torus 𝑇 in the torus decomposition of 𝑁
and isometric actions 𝜋1(𝑁) ↷ 𝑍𝑋 and 𝜋1(𝑁) ↷ 𝑍𝑌 on hyperbolic spaces, and then applying
Lemma 2.3.
By (ii),𝑇 is also a torus in the torus decomposition of𝑀. Thus, the induced actions𝜋1(𝑀) ↷ 𝑍𝑋

and 𝜋1(𝑀) ↷ 𝑍𝑌 satisfy the hypotheses of Lemma 2.3, and so, 𝜋1(𝑀) is-inaccessible.
We now turn our attention to the final statement of the theorem. In this case, the manifold𝑁 is

closed. A finitely generated subgroup𝐻 of𝑁 is a virtual surface fiber subgroup if𝑁 admits a finite
cover𝑁′ → 𝑁 such that𝐻 is a subgroup of𝜋1(𝑁′) and𝐻 is a surface fiber subgroup of𝜋1(𝑁′). Any
finitely generated subgroup𝐻 of 𝜋1(𝑁) is either a geometrically finite Kleinian group or a virtual
surface fiber subgroup in 𝜋1(𝑁) by the Covering Theorem (see [13]) and the Subgroup Tameness
Theorem (see [6, 14] or [7, Theorem 4.1.2] for a statement). In particular, 𝜋1(𝑀) is either a virtual
surface fiber subgroup, in which case it is hyperbolic, or it is geometrically finite in 𝜋1(𝑁). In the
latter case, 𝜋1(𝑀) is undistorted in 𝜋1(𝑁) [18, Corollary 1.6], and we again conclude that 𝜋1(𝑀) is
hyperbolic, since undistorted subgroups of hyperbolic groups are hyperbolic. As a result, in either
case, 𝜋1(𝑀) is-accessible. □

4.5 Graph manifolds with one vertex

Asmentioned in the introduction, ourmethods do not apply to graphmanifoldswhose underlying
graphs contain only one vertex. Our main tool is Lemma 4.7, a criterion for the nonexistence of a
largest action. Intuitively, the idea is to find aℤ2-subgroup of 𝜋1(𝑀) and extend two incompatible
actions of ℤ2 on lines to two incompatible actions of 𝜋1(𝑀) on hyperbolic spaces. In general,
extending actions from subgroups to groups is difficult (and not always possible) [3]. When
the underlying graph of the graph manifold has more than one vertex, we apply the Bestvina–
Bromberg–Fujiwara projection complex machinery developed in [9] and a certain construction
of quasi-morphisms to overcome this difficulty in Section 4.2. These methods require that the
graph has more than one vertex in an essential way: when the graph has a single vertex, we
are not able to define projections between adjacent lifts of Seifert-fibered pieces to the universal
cover.
Despite this, we expect that, in general, all graph manifold groups are -inaccessible. In one

of the simplest examples where the underlying graph has only one vertex, we can show that this
is the case.

Example 4.11. Let𝑀 be the 3-manifold that is the mapping torus over a punctured torus defined
by a Dehn twist. This is a graph manifold consisting of a single Seifert-fibered space with three
boundary components, two of which are identified; see [21]. As described in [21, Lemma 2.2], the
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fundamental group of𝑀 has presentation

𝜋1(𝑀) ≅ ⟨𝑎, 𝑏, 𝑡 ∣ [𝑎, 𝑏] = 1, 𝑎𝑡 = 𝑏⟩.
We will show that 𝜋1(𝑀) is-inaccessible.
First, notice that the abelianization of𝜋1(𝑀) is𝜋1(𝑀)𝐴𝑏 ≅ ⟨𝑎, 𝑡 ∣ [𝑎, 𝑡] = 1⟩ ≅ ℤ2. Thus, by first

composingwith the quotientmap𝜋1(𝑀) → 𝜋1(𝑀)𝐴𝑏, we obtain uncountablymany incomparable
actions of 𝜋1(𝑀) on lines; see [1, Example 4.23]. The elements 𝑎 and 𝑏 have the same image in
𝜋1(𝑀)𝐴𝑏, and so, in each of these lineal actions, they are either both loxodromic or both elliptic.
In all but one of these actions, 𝑎 and 𝑏 are both loxodromic. Fix one such action 𝜋1(𝑀) ↷ 𝓁.
Now, suppose that 𝜋1(𝑀) ↷ 𝑍 is a cobounded action on a hyperbolic space, and suppose

𝜋1(𝑀) ↷ 𝑍 ⪰ 𝜋1(𝑀) ↷ 𝓁. Since 𝑎 and 𝑏 are both loxodromic with respect to the action on 𝓁,
they must both be loxodromic with respect to the action on 𝑍, as well. Since they commute and
are conjugate in 𝜋1(𝑀), they must have the same fixed points in the boundary 𝜕𝑍 and the same
translation length. Moreover, the element 𝑡 must also stabilize (setwise) the two fixed points of 𝑎
in 𝜕𝑍, as 𝑡 conjugates 𝑎 to 𝑏. Thus, all of𝜋1(𝑀) stabilizes these two points in 𝜕𝑍, and so,𝐺 ↷ 𝑍 is a
lineal action. Since lineal actions are alwaysminimal [1, Corollary 4.12], wemust have𝜋1(𝑀) ↷ 𝑍

is equivalent to 𝜋1(𝑀) ↷ 𝓁 in(𝜋1(𝑀)). In particular, no element of(𝜋1(𝑀)) can dominate all
of the lineal actions, and so, 𝜋1(𝑀) is-inaccessible.

Our proof that this 3-manifold group is -inaccessible depended on properties of a particular
presentation of the group. It is not clear that themethods used in this examplewill generalize to all
graphmanifold groupswith one vertex in the underlying graph. It is possible that a collection of ad
hoc methods could be used to show that these remaining 3-manifold groups are-inaccessible.
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