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1. Introduction

In this paper we consider the exterior isoperimetric problem for convex bodies C C
RY. We first identify a natural notion of “maximal affine dimension at infinity”, called
the asymptotic dimension of C, denoted by d*(C) and typically larger than the affine
dimension of the recession cone Co, of C. We then prove that unbounded convex bodies
with d*(C) > N — 1 have the same exterior isoperimetric profile of half-spaces. We
also begin the study of exterior isoperimetric profiles of convex bodies with d*(C) <
N — 2, and introduce in this setting the notion of isoperimetric residue. We have two
motivations for presenting these results. The first one is the desire of understanding the
geometric information “stored” in the large volume behavior of exterior isoperimetric
profiles, as done in [12] with the introduction of the isoperimetric residues of compact
(non-necessarily convex) sets. The second one is providing characterizations of rigidity
of equality cases in a recent comparison theorem for exterior isoperimetric profiles of
convex bodies proved by Choe, Ghomi and Ritoré in [4].

Before further discussing these points we need to introduce some notation and termi-
nology. Given a closed set C C R¥, the exterior isoperimetric profile of C is the function
Ic : (0,00) = (0,00) defined by

Ie(v) =inf {P(E;RV\C): ECRN\C,|E|=v}, v>0. (1.1)

That is, I¢ is what is commonly called the isoperimetric profile of RY \ C; in particu-
lar, Iy (v) = ijl\,/N vV =1/N coincides with the isoperimetric profile of RY. Here |F|
denotes the volume (Lebesgue measure) of a Borel set E and P(E;G) its distributional
perimeter, so that P(E; G) = HN"1(GNOE) as soon as F is open with C''-boundary. We
also denote by H* the k-dimensional Hausdorff measure in RY and by wy the volume
of the unit ball in R,

With this notation in hand, we can state the comparison theorem proved by Choe,
Ghomi and Ritoré in [4]: if C is a convex body, that is, if C is a closed convex subset
of RV with nonempty interior and different from the whole RY, then, denoting by H a
generic half-space of RY, one has

Io(v) > In(v) = N (wy/2) "N oN-D/N vy >0, (1.2)
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To provide some context, we recall that comparison theorems of this form are one of the
most studied type of results in Riemannian Geometry. For example, the Levy—Gromov
comparison theorem states that among compact Riemannian manifolds (M%, g) whose
Ricci tensor is bounded from below by (N — 1) g, the standard sphere (S, gg~) has the
lowest isoperimetric profile.! Comparison theorems are usually accompanied by rigidity
statements. Using again the Levy—-Gromov comparison theorem as a model, the corre-
sponding rigidity statement is that if the isoperimetric profiles of (M%, g) and (SV, ggn)
coincide even for just one volume fraction, then (M¥, g) is isometric to (SV, ggn). The
situation with the CGR-~comparison theorem is remarkably different. Indeed, as proved
in [4] when C has boundary of class C?, and for arbitrary convex bodies in [9], one has

Ic(v) = Iy (v) for some value of v > 0 s.t. there exist minimizers of I¢(v) (1.3)
if and only if
JC has a “facet” that supports a half-ball of volume v contained in RV \ C. (1.4)

In particular, the class of convex bodies satisfying I¢(v) = Iy (v) for a single value of
v > 0 is extremely vast, e.g., it contains all convex polyhedral, and coincides with the class
of convex bodies C such that I = Iy on an open interval. We can of course formulate
the rigidity problem in a stronger sense, and consider the class of convex bodies C such
that I¢(v) = Iy (v) for every v > 0. While it is not hard to construct unbounded convex
bodies that are not half-spaces and still satisfy I = Iy, there is a surprisingly direct
condition that characterizes the stronger notion of rigidity Iz = Iy. This condition can
be expressed in terms of the asymptotic dimension d*(C) of C introduced right after the
following statement, which is our first main result.

Theorem 1.1 (Strong rigidity in the CGR-comparison theorem). Let C be a convex body
in RN. Then Ic = Ig on (0,00) if and only if d*(C) € {N — 1,N}. If, otherwise,
d*(C) € {0,1,..., N — 2}, then

Ic(v)

lim =1
V—00 NWJIV/N p(N=1)/N

)

and, in particular, Ic(v) > Ig(v) for every v sufficiently large (depending on N and C).

Remark 1.2. Notice that Theorem 1.1 addresses rigidity without making the conditional
assumption that I¢(v) admits minimizers, either for one or more values of v. In fact, by
combining Theorem 1.1 with the equivalence between (1.3) and (1.4) proved in [4,9], one
easily shows that if C is strictly conver and d*(C) > N — 1, then, for every v > 0, I¢(v)
does not admit minimizers; see Corollary 4.4.

! The isoperimetric profile ®(ps g)(t) of (M, g) for the volume fraction t € (0, 1) is defined as the infimum
of Py(E)/voly(M) among all sets E C M with t = voly(E)/voly(M).
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We now introduce the notion of asymptotic dimension d*(C) of C. To begin with we
recall that if z € C and C is a convex body, then the family of convex sets {\ (C — z)}a>0
is monotone increasing with respect to set inclusion. In particular, its limit as A — 07,
called the recession cone C., of C, can be defined as

Coo =[] A(C—2). (1.5)

A>0

The (affine) dimension dim(Cs) of Co (that is, the dimension of the smallest affine
subspace of RY containing Cs) directly quantifies the dimension of the set of directions
along which C is unbounded (and, indeed, C is bounded if and only if Cs, is a point,
that is, dim(Cx ) = 0). To define d*(C), and understand rigidity of the CGR~comparison
theorem, we follow a related procedure. Rather than working with a fixed point = € C,
we consider sequences {x,}, in C and {\,}, in (0,00), look at the resulting sequences
of convex sets {\, (C — x,)}n, consider all their possible accumulation points K in the
Kuratowski convergence, which are still convex sets in RY, and finally mazimize the
affine dimension among the possible limits K. More formally and concisely, we set

d*(C) == max { dim(K) : 3z, €C, Ay = 05.t. A\y(C— ) > K asn— o0} (1.6)

where A\, (C — z,) — K as n — oo is meant in the sense of Kuratowski. By taking
xn, = x € C for every n it is easily seen that d*(C) > dim(Cx ), and examples where this
inequality is strict are easily constructed. We are not aware if this notion has already
been introduced elsewhere. However, given the vastness of the literature on convex sets
and the naturalness of the notion itself, we cannot exclude this possibility.

Having completely discussed the rigidity problem for the CGR-~comparison theorem,
we move to the problem of understanding which information on the convex body C is
stored in the behavior of I¢(v) as v — oo, and what can be said, should they exist,
about large volume exterior isoperimetric sets of C, i.e., about minimizers E, of I¢(v) as
v — 00.

Theorem 1.1 plays an interesting role in setting up these problems. Indeed, Theo-
rem 1.1 states that for a convex body C with d*(C) € {N — 1, N} there is no geometric
information (in addition to d*(C) € {N — 1, N}) that can be found by studying I for v
large, as I¢ must then be identically equal to . At the same time, when d*(C) < N —2,
Theorem 1.1 invites us to investigate what information about C may be stored in the
behavior of the quantity

Re(v) == Nw]lV/N vWNU/N _ Lo (v),

as v — oo.

When d*(C) = 0, i.e., when C is bounded, this problem has been thoroughly addressed
in the recent paper [12] without even assuming the convexity of C. Roughly speaking,
the main result in [12] is that if C is any compact set in R, then
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Jim Re(v) = R(C)
where R(C), called the isoperimetric residue of C, is a non-negative quantity such that
R(AC) = AN=LR(C) for every A > 0 and

sup HY TH (M N C) < R(C) < sup HY " (pa(C))
M M
where M ranges over all the affine hyperplanes in RY and py; : RY — M denotes the
orthogonal projection over M. In fact, R(C) can be characterized as an optimization
problem whose solutions are area minimizing boundaries contained in RY \ C, trapped
in between two parallel hyperplanes, and intersecting C orthogonally. Moreover, exterior
isoperimetric sets F, for C with v large can be fully “resolved as” (i.e., expressed as
small diffeomorphic deformations of) the union of a large sphere of volume v missing a
spherical cap and of an optimizing boundary in R(C). Obtaining this resolution result
requires the introduction of a new e-regularity criterion operating at mesoscales and
interpolating between the local Allard’s regularity theorem [1], based on the analysis of
blowups, and the “at infinity” regularity theorems of Allard—Almgren [2] and Simon [15],
based on the analysis of blowdowns.

Coming back to the case of convex bodies, we are left to consider the case when
1 <d*(C) < N —2 (and thus, with N > 3). In this case we do not expect R¢(v) to have
a finite limit as v — oo, but rather to depend on v through a power law. This expectation
is not completely confirmed, but it is definitely supported, by our second main result.

Theorem 1.3. Let C be a convex body in RN, N > 3, with d*(C) € {1,..., N — 2}. Then
there exists a positive constant Cy depending on N and C such that

L (©)/2N

o <Re() <Gy v ON gy s O (1.7)
0

It seems plausible to conjecture that the lower bound in (1.7) should be capturing the
correct order of magnitude of R¢(v). In other words, it seems plausible that for every C
as in Theorem 1.3 the limit

) Re(v)
Jm o AN

should exist in (0, 00), be amenable to be characterized as an optimization problem, and
thus lead to extending the definition of isoperimetric residue to this class of obstacles.
Resolving these issues would require fine geometric information on minimizers obtained
by the application of an e-regularity criterion analogous to [12]. Given the considerable
complexity of this problem even in the compact case, we leave this question for future
investigations; see Remark 5.7 for more discussion.

We now discuss the organization of the paper and, in the process, we highlight some
additional noteworthy statements proved in the paper but not included in Theorem 1.1
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and Theorem 1.3. After setting our notation and recalling some basic facts concern-
ing isoperimetric problems in Section 2, in Section 3 we collect several facts concerning
the notion of asymptotic dimension: in particular, in Proposition 3.3 we describe the
structure of sets with d*(C) < N — 1. In Section 4 we introduce a constrained exterior
isoperimetric profile I¢ r (obtained by restricting competitors in I¢ to be contained in
Bg(0)), study its properties (Proposition 4.1), and then use those for proving Theo-
rem 1.1. Finally, in Section 5 we discuss the problem of defining isoperimetric residues
for unbounded convex sets with asymptotic dimension less than N — 2, and prove in
particular Theorem 1.3, together with some properties of large volume exterior isoperi-
metric sets (see Theorem 5.2 and Proposition 5.5) that lay the groundwork for further
analysis.

Acknowledgments: FM has been supported by NSF Grant DMS-2247544. FM and MN
have been supported by NSF Grant DMS-2000034 and NSF FRG Grant DMS-1854344.
MN has been supported by NSF RTG Grant DMS-1840314. N. F. and M. M. have
been supported by PRIN 2022 Project “Geometric Evolution Problems and Shape
Optimization (GEPSO)”, PNRR Italia Domani, financed by European Union via the
Program NextGenerationEU, CUP D53D23005820006. N. F. and M. M. are members
of the Gruppo Nazionale per 1’Analisi Matematica, la Probabilita e le loro Applicazioni
(GNAMPA), which is part of the Istituto Nazionale di Alta Matematica (INdJAM).

2. Notation and preliminary results about perimeter minimizers

In the following we shall denote by Br(z) the ball with center at  and radius R. If
the center is at the origin we shall simply write Bg. Given v > 0 we let B(”)(x) denote
the ball of volume v centered at € RN and B™) = B(®)(0).

Given E C R¥ of locally finite perimeter and a Borel set G we denote by P(E;G)
the perimeter of F in G. The reduced boundary of E will be denoted by 0* E, while 0°E
will stand for the essential boundary defined as

O°E =RV \ (E@ uEW),

where E(© and EM) are the sets of points where the density of E is 0 and 1, respectively.
In the following, when dealing with a set of locally finite perimeter F, we shall always
tacitly assume that E coincides with a precise representative that satisfies the property
OF = 0*E, see [11, Remark 16.11]. A possible choice is given by E() for which one may
easily check that

OEW) = 9. (2.1)

We premise some lemmas. The first lemma is proved for instance in [7, Lemma 3.6]
for N = 3, but the same statement (with the same argument) holds in any dimension.
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Lemma 2.1. Let C C RY be a convex body and let E C Bg \ C satisfy the following
manimality property: there exists A > 0 such that

P(E;RN\C) < P(F;RN\C)+ A|FAE|  forall F C B \C. (2.2)

Then E is equivalent to an open set, still denoted by E, such that OF = 0°FE and hence
HN-L(OE \ 0*E) = 0. Moreover, there exist co = co(N) > 0 and ro = ro(N,A) € (0,1)
independent of R and C, such that if x € OE', E' being a connected component of E,
then

|E' N B,(z)| > cor™ (2.3)

for every 0 < r < ro. Finally, if (2.2) holds for all F C RN \ C, then the above density
estimates holds also for RNV \ E'; i.e., |B.(z) \ E'| > cor™ for every 0 <r < rg.

We recall that a sequence {F,,} of closed sets converges in the Kuratoswki sense (or
locally in Hausdorff sense) to a closed set F' if the following conditions are satisfied:

(i) if @, € F, for every n, then any limit point of {z,} belongs to F;
(ii) any = € F is the limit of a sequence {x,} with z,, € F,.

One can easily see that F,, — F' in the sense of Kuratowski if and only if dist(-, F,) —

dist(-, F) locally uniformly in R¥. In particular, by the Arzela-Ascoli Theorem any se-

quence of closed sets admits a subsequence which converges in the sense of Kuratowski.
For the simple proof of the next lemma see for instance [7, Remark 2.1].

Lemma 2.2. Let {C,}, be a sequence of closed convex sets. Then C,, — C in the Kura-
towski sense if and only if X, — X, pointwise almost everywhere. In addition, C is
convez.

The next lemma is also well known, for the proof see for instance [9, Lemma 5.1].

Lemma 2.3. Let C be a closed convexr set with nonempty interior and F C RN\ C a
bounded set of finite perimeter. Then

P(F;0C) < P(F;RN\ ().

The following result, see [13, Lemma 2.1], is a simplified version of a nucleation lemma
due to Almgren [3, VI.13]; see also [11, Lemma 29.10].

Lemma 2.4. There exists a constant ¢(N) > 0 such that if E C RY is a set of finite
perimeter and finite measure, then, setting Q := (0,1)™, we have

ZseuZpN [EN(z4+ Q)| > c¢(N) min{ (%)N, 1} .
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Finally we conclude with a useful construction that allows one to locally dilate sets
of finite perimeter with a controlled change in volume and perimeter.

Lemma 2.5. There exist ¢(N),c(N) > 0 with the following property. Let E C RY be a
set of finite perimeter with |E| < m and Bgr a ball such that

N wNRN
with € € (0,e(N)). Then there exists o9 = oo(E,m) > 0 such that for all o € (0,00)
there exists a bi-Lipschitz map ®, : RN — RN with ®,(x) = x for all |x| > R, such
that, setting E = ®,(E), one has

|E| <m, P(E;Bg)— P(E;Bg)>—-2"NoP(E;Bg), |E|—|E|>c¢(N)oRN.

The proof of Lemma 2.5 can be deduced from the proof of [6, Theorem 1.1].
We conclude this section with the relative isoperimetric inequality outside convex sets
due to Choe, Ghomi and Ritoré together with the characterization of the equality case.

Theorem 2.6. Let C C RN be a conver body. For any set of finite perimeter E C RV \ C
we have

1
P(E;RV\C) > N(“TN) Y BIF (2.4)
Moreover, if equality holds in (2.4), then E is a half ball supported on a facet of C.

The proof of (2.4) and the characterization of the equality case when C is a C? convex
set has been established in [4], while the characterization of the equality case for general
convex sets has been obtained in [9].

3. Asymptotic dimension of a convex body

In this section we discuss various properties of the asymptotic dimension d*(C) of a
convex body C introduced in (1.6). We also recall the definition (1.5) of the recession
cone Cy of C.

Remark 3.1 (Convex bodies with zero/full asymptotic dimension). Note that if C is a
bounded convex body then d*(C) = 0. Conversely, if d*(C) = 0 and we fix z € C, then
A(C — x) must converge to {0} as A\ — 0. Therefore we have that the recession cone
Coo = {0} and thus C is bounded, see [14, Theorem 8.4]. Note also that if d*(C) = N
it is clear from the definition that C contains open balls of arbitrarily large radius. The
converse is also true. Indeed, if B, (z,) C C and r,, — 00, by testing the definition with
r;”?(c — z,,) we conclude d*(C) = N.
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Remark 3.2. Note that if C is an unbounded convex body, testing (1.6) with the constant
sequence z,, = x € C and any A\, — 0, we deduce that

d*(C) > dim C,

with the inequality being possibly strict. Note also that d*(C) can also take any value
between 1 and N. Indeed, if k € {1,...,N — 1}, the set C = R* x [0,1]V~* is such
that d*(C) = dimCyx = k (the case d*(C) = N being covered in the previous remark).
Conversely, Proposition 3.3 below shows that any convex C such that d*(C) = k €
{1,..., N — 1} is contained in the product of a k-dimensional subspace times a bounded
convex set. Finally, note that the set C = {(2/,zy) € RN"L x R : 2y > |2/|?} satisfies
dimCy =1, d*(C) = N.

In the next proposition we deal with the structure of a convex body C such that
1 < d*(C) < N — 1. To this aim, if Z C R¥ is a subspace, we denote by pz the
orthogonal projection on Z. Furthermore, Z+ will denote the subspace orthogonal to Z
and if z € RV, we will denote by z* the hyperplane orthogonal to z through the origin.

Proposition 3.3. Let C C RY be a convex body such that 1 < d*(C) < N — 1. Then there
exists a d*(C)-dimensional subspace Z containing Cso such that

(a) CC Z+cl(pz:(C)),
(b) cl(pz+(C)) is bounded.

Moreover, for every z € Co

(c) the sets Cy :=p,1(CN (tz + 21)) satisfy C; C Cy whenever t < t/,
(d) C; converge in the Kuratowski sense to cl(p,1(C)) as t — oo, and

(&) d*(cl(p.+(C))) = d*(C) - 1.

Remark 3.4. Let C be an unbounded convex body and assume that Z is a subspace such
that (a) and (b) of Proposition 3.3 hold. Then dim Z = d*(Z + cl(pz.(C))) > d*(C),
where we used the fact that d*(-) is monotone with respect to the inclusion. Therefore one
could equivalently define d*(C) as the smallest & € N such that there exists a subspace
Z with dim Z = k such that pz.(C)) is bounded and C C Z + cl(pz+(C)); if no such
subspace exists, then d*(C) = N.

Proof of Proposition 3.3. We first prove (¢)—(e) and then (a) and (b). By Remark 3.1,
C is unbounded and therefore C, is nonempty, and so we can fix some z € Co,. By the
definition of Cs, x + az € C for all x € C and « > 0. From this we deduce the nested
property (c) of {C;}. Item (d) then follows from the fact that any sequence of increasing,
closed, convex sets converges in the Kuratowski sense to the closure of the union of its
elements and observing that the closure of such a union coincides with cl (p,. (C)).
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Moving on to (e), let us set D = cl(p,+(C)) for brevity. We begin by proving that
d*(D) <d*(C)—1. (3.1)

Let x, € D and A, — 0 be such that A\,(D — x,) converges in the Kuratowski sense
to D', where dim D’ = d*(D). Then, taking into account 0 € D’, there exist linearly
independent vectors y1,...,yq-(p)y € D'. By the convergence of \,,(D — z,,) to D', we
can therefore choose a sequence ¢,, —+ 0 and w; ,, € 21 such that

Wi € Be, (y;) N A (ri(D) —x,) VneN,1<i<d*(D),

where ri(-) stands for the relative interior of its argument. Next, since ri(D) C p,+(C)
and z € Co, we may choose T;, > 0 large enough and wy , € 21 such that for all t > T,

Won € A (Cr — ), Won — 0=y,
Win € M(Cr —xp), 1<i<d*(D),

or, equivalently,

Wo,n € /\n(tZ + Ct — (tZ + l‘n)) ,  Won — 0,
Win € Mtz +Cp — (tz +25)) C A (C — (tz +24)).

Let T, < t1,, < t2,, be such that A, (t2, —t1,,) = 1. Then

Wo,n € )‘n(tl,nz + Ctl,n - (tl,nz +2n))
Win € ’\n(tlmz + Ctl,n - (tl,nz + xn)) C /\n(c - (tlmz + xn)) )
24+ Wim € M(tonz +Chy,, — (Linz+20)) CA(C = (binz +2,)) V1I<i<d'(D),
where in the last inclusion we used the fact that C;, , C C,,. By the convergence

Wi, — Y;i, we can restrict to a further subsequence, which we do not notate, that
satisfies A, (C — (t1,n2 + z5,)) — C’ in the Kuratowski sense and

V.= {O,yl,z—l—yl,...,z—l—yd*(D)} cc
f;(lD) C z* are linearly independent, the elements
of V are the vertices of a (d*(D) + 1)-dimensional simplex S, which belongs to C’ since
C' is convex. Since t1 ,z + 2, € C, we have thus shown (3.1).

for some closed, convex C’. Since {y;}

For the reverse inequality
(D) > d*(€) - 1, (3.2)

we recall that by the definition of D,
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C Ccl(p,.(C))+span{z} =D +span{z}. (3.3)

Let A, — 0, z,, € C be such that A\, (C — x,,) = C’ for some C' with dimC’ = d*(C). By
(3.3), we have

A (C — ) C Ay (D +span{z} — zy,)
=span{z} + A\, (D — p,o(zy)).

Up to a further subsequence, the right hand side of the previous equation converges in the
Kuratowski sense to span {z}+ D’ for some closed convex D’ C z+ with dim D’ < d*(D).
Thus

dimC’ <dimD’'+1<d*(D)+1,

which is (3.2), thus showing item (e).

To finish the proof it remains to show (a) and (b), which we do by strong induction
on 1 < d*(C) < N — 1. For the base case when d*(C) = 1, item (a) follows from to the
containment (3.3). Moreover, item (e) implies that the associated D := cl (p,+(C)) C z+
satisfies d*(D) = 0, and so by Remark 3.1, D is a bounded convex body contained in
21, which is (b).

Suppose now that (a) and (b) are true for any convex body C' with 1 < d*(C') <k
N —2.If C ¢ R¥ is a convex body with d*(C) =: k+1 > 1 and z € Co, we apply (c),
(d) and (e) to C and to the (N — 1)-dimensional convex body D := cl(p,.(C)) C z
with d*(D) = k > 1 to obtain

Sl VAN

C Cspan{z} + D. (3.4)
By the induction hypothesis applied to D, we may obtain N — 1 orthonormal vectors
{22, 214a+(D), Y15+ - - YN—a=(D)—1} C zt

such that setting Z’' = span{zs,...,z144+(p)} C zt and Y = span {y, ... YN—d*(D)—1}
C z', we have

D c Z'+cl(py(D)) (3.5)
and
cl (py (D)) is bounded . (3.6)
Therefore, by (3.4)-(3.5), setting Z := span {z, 22, ... 2114+(D)}, We have

€ Z+c(py(D)) = Z+cl(py (el (p.+ (C))) -
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Since d*(C) = d*(D)+1 and cl (py (cl (p,+(C)))) = cl (pz+(C)), we have shown (a). The
boundedness of cl (pz. (C)), which is (b), follows from the induction hypothesis (3.6). O

4. Rigidity in the Choe-Ghomi-Ritoré comparison theorem

In this section we prove various properties of the exterior isoperimetric profile I of
a convex body, and then prove Theorem 1.1. We begin with the following proposition,
where we consider a constrained version of the exterior isoperimetric profile.

Proposition 4.1. Let C C RY be a convex body. Given R > 0 sufficiently large, for all
v € (0,|Br \ C|) we set

Ie r(v) ;= min{P(E;RY\C): EC Bp\C and |E| = v}. (4.1)

Then Ic g is a locally Lipschitz function in (0,|Bg \ C|) and for a.e. v > 0, It p(v)
coincides with the constant mean curvature Ho~g, of 0*E, N (Bgr\ C), where E,, is any
minimizer of the problem (4.1). Moreover for all v > 0

Jim Ie,r(v) = Ic(v). (4.2)

Furthermore, assuming, up to a translation, that 0 € OC, there exist positive constants
Ao, do, 10, co, and an integer Iy € N, all depending on N (but not on C), such that for
al R> Ry = (%)% +1 and v > 0, any minimizer E for Iz g1/~ (v) satisfies

P(E;RV\ C) < P(F;RN \ C) + Agv™ V| |F| — |E|| VF C Brouy~ \C, (4.3)

has at most Iy connected components each of them with diameter less than v~ dy and for
every connected component E' and x € E'

|E' N B, ()] > cor™  for all 0 < r < rou¥.
Finally, for any such minimizer we have
|Hy-p(z)| < Agv™ N for all z € (B~ \C) NO*E. (4.4)

Proof. Note that if R > Ry for any convex set C such that 0 € 9C there exists a set of
finite perimeter £ C By \ C with |E| = 1. Indeed, C is contained in a half space and Ry
is strictly bigger than the radius of a half ball of volume 1. We divide the proof in three
steps.

Step 1: The Lipschitz continuity and the representation formula for the derivative of I
when C is a bounded convex body are well known facts. The proof of the same properties
for I¢ g is similar, see for instance Steps 3 and 4 of the proof of Theorem 1.2 in [9].
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The proof of (4.2) is immediate. Indeed we clearly have I¢ g(v) > I¢(v) for R > Ryu~.
For the opposite inequality it is enough to observe that any competitor for I¢(v) can be
approximated in (relative) perimeter by bounded sets of the same volume.

Step 2: The argument needed to prove that there exists Ag such that (4.3) holds is similar
for instance to the one in Step 6 of the proof of [7, Theorem 3.2] with some modifications
due to our particular setting. We reproduce it here for the reader’s convenience. To this
aim, by rescaling, it is enough to show that there exists Ay such that for every convex
body C, any v > 0 and any R > Ry, every minimizer for the penalized problem

min{ P(E; RN \ (v ~C)) + Ao||E| — 1| : E C Bg\ (v~ ¥C)} (4.5)

with volume 1.

Let us suppose then for contradiction that there exist a sequence A; — oo, R; > Ry,
Cj, vj € (0,4+00) and minimizers Ej 5, for (4.5) (with Ao, R, v and C replaced by Aj,
R;, v; and Cj, respectively) which do not have volume 1. We observe that necessarily
|Eja,;| <1, since otherwise we could contradict the minimality by cutting Ej o, with a

1 L il

hyperplane not intersecting v; ~ C;. Using as a competitor B\ (v; ¥ C;), with R € (0, Ro]
1

chosen so that [Bg \ (v; ¥ C;)| = 1 (which is possible since R; > Ry), we have

P(E; ;RN\ (v; ¥C))) < P(Bg: RN \ (v; ¥C;))) < P(Bry) (4.6)

and
|Eja; | — 1. (4.7)

Thus by Lemma 2.4, there exists a constant ¢(N) > 0 such that [(z; + Q) N Eja;| >
¢(N) > 0 for some z; € Z~N and for every j. Therefore, up to a subsequence (not

relabeled), we may assume that X, — X a.e., with E of finite perimeter and
34

|E| > ¢(N).
We claim that there exist T € *F and T > 0 such that

—zj

1
Bi(Z) C —z; + (Bkg, \ v, NC;), for all j sufficiently large. (4.8)

To see this note that, up to a not relabeled subsequence, we may assume that K; := —z;+
vj_%Cj — K in the sense of Kuratowski, for a suitable closed convex set K. Moreover, by
Lemma 2.2 we have that x K, 7 X almost everywhere. In particular, for a.e. z € RY we
have (@)X (z) = lim; XEj,Aj - (a:)XKj () =0, i.e., EC RV \ K. Observe also that,
up to a further not relabeled subsequence, we may assume that —z;+ Bg, converge in the

Kuratowski sense to K, where K can be RN or a half space containing E (if R; — o)
or a ball Bg__(%c0), where Ry = lim; R; and zo, = —lim; z; (if {R;} is bounded). Note
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that 2., € OK. Therefore, there exist 7 € 9*E \ K and 7 > 0 such that Bx(Z) N K = ()
and Br(T) C 1nt(K) This is immediate if K is either RY or a half space containing E.
Instead, if K = Br_ (2s0), this follows since Roo > Ry, hence |Br_ (250) \ K| > 1, while
|E| <1 by (4.7). Thus, from the Kuratowski convergence (4.8) follows.

Arguing as in Step 1 of Theorem 1.1 in [6], given 0 < ¢ < e(N), where ¢(N) is as in
Lemma 2.5, we can find a ball B,.(z9) C B#(T) such that

WN
|EQB%($0)| <€’/‘N, |EﬂB (.130)|> oN+2 rv.

Therefore, for j sufficiently large, we have

WN
|Ej,Aj ﬂBg(IE()‘FZjN <€’I’N, |Ej,Aj ﬂBT($0+Zj)| WTN,

1
where by (4.8), Br(zo+2;) C Br; \(v; ¥ C;). We now apply Lemma 2.5 to find a positive
sequence {o;} and a sequence {EJ} such that Ej \ Br(z0+2;) = Ej, \ Br(20 +2;) and
satisfying |F;| < 1 and

P(Eja,; Be(20 + 25)) — P(Ej; Br(zo + 25)) > =2V No;P(Ej a,; Br(z0 + 25)),
|Ej| = |Eja,| > e(N)or™.

From these inequalities, recalling (4.6) and that |Ej; A, | < [E;| < 1, we then get
~ _ 1 ~ L
P(E;RY\ (0 7 C))) + Aj[1Ej| = 1] = (P(Eja, RV (v 7€) + Ay Eja, | = 1))
§ QNNO'J‘P(EJ'A]. y Br<.%'0 + Zj)) + Aj (|Ej,Aj| - |EJ|)
< 0 (2Y N2} — Aje(N)rN) < 0
for j large, as A; — oo. This contradicts the minimality of Ej; 4, thus proving (4.3).

Step 3: We finally show the last part of the statement. Assume now R > Ry and v > 0
and let £ a minimizer for the problem defining I; 1/~ (v). From (4.3) it follows that

P(u™VE;RN\v™~C) < P(F; RV \0™NC) + Ao|[ FAv™¥E|  forall F C B\ v™~C.

Appealing to Lemma 2.1, the conclusions of which do not depend on R and v=Y/NC, we
obtain ¢o(IN) > 0 and ro depending only on N, Ay and thus only on N, such that for
every connected component E’ of the open set v~NE and x € 0F’,

|E' N B(z)| > cor™ YO<r<rg. (4.9)

Since |v‘1/ NE| = 1, this implies the existence of Iy € N such that the number of
connected components of v~/ E is at most Iy. Moreover, the density estimate (4.9)
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also implies by a standard argument the existence of dy such that diam (E’) < d for
any component E’. Finally, the estimate (4.4) follows from the A-minimality property
(4.3) by a standard first variation argument. 0O

We now prove a semicontinuity property of the exterior isoperimetric profile with
respect to the Kuratowski convergence of the set C.

Lemma 4.2. Let {C,,} be a sequence of convex bodies converging in the Kuratowski sense
to a convex body C. Then for all v > 0 we have

limsup I¢, (v) < Ic(v).

Proof. Without loss of generality we may assume that 0 € int(C). Let Ic g be the
constrained exterior isoperimetric profile defined in (4.1). For any € > 0 sufficiently
small let E C Bg \ C be a minimizer of the problem defining Ic r((1 + ¢)Nv). By the
local Hausdorff convergence we have that

CNBr C (1+¢6)C,NBg,
for n large enough. Set E,, := E \ (1 4 ¢)C,, and observe that
|En| = |E|—|[EN(L+e)C|=1+e)Nv—|En(1+e)C|.

We now let F, := E, UB,, (z,,), with B,. (x,) a small ball in R" \ (C, U Bg) such that
|F| = (1 +¢)Nv. Then | B, (z,)| = O(¢) and thus

limsup I(14¢)c, (1 + e)No) < limsup P(F,,;; RN\ (1+¢)C,,)
= limsup P(E,;R™ \ (1 +¢)C,) + O(S(N—l)/N)
< P(B;RV\ €) + O™ =1/M)
=Ic.r((1+)No) + O(eW-D/Ny,

We conclude the proof by observing that I(14.)c, (1 +¢)¥v) = (1 +¢)¥ I, (v) and
using Proposition 4.1 to let € — 0 and then R — co. O

Lemma 4.3. Let C C RY be a convez body and let H be any half space. If dim Coo > N —1,
then Ic = Ig.

Proof. In what follows we denote by B..(x) the intersection B, (x)N{zxy = 0}. We divide
the proof in two steps.

Step 1: We start with the case d := dimCo, = N — 1. Without loss of generality we
may assume that Coo C {zny = 0} and that e; belongs to the relative interior of Cu.
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Let ¢’ = C N {zy = 0} and note that Coc C C’. Therefore there exists » > 0 such
that Bj, (e1) C Co. Consider now the sequence of balls B, (ne;) and for any n denote

by ¢n : Bb,.(ne1) — [0,00) the concave function whose graph coincides with dC N
(Bb,,(ne1) x [0,00)). We claim that

%max{gpn(:c') : 2’ € B, (nep)} — 0. (4.10)

nr
In fact, if 2], is the maximum point of ¢,, in B,.(ne1) then, up to a subsequence,

(@, pn ()

— (y,0
T

for some (y',0) € Coo. Thus @, (x])/|z],| — 0, hence (4.10) follows. Recall that by a well
known property of concave functions, see for instance [5, Ch. I, Eq. (2.15)],

2
\Y n||L> (B’ , (ne < — n .
IVenllea, ey < 5,050

Thus, thanks to (4.10) we have that

IVenllL=a, , ey = 0- (4.11)
Therefore it is easily checked that the sets C — (ney, @, (ne1)) converge in the Kuratowski
sense, up to a subsequence, to a convex set K C {xx < 0} such that 0K C {xn = 0}. Let
us now fix v > 0 and denote by r, the radius of a half ball of volume v. For every n let r,,
be the radius of the ball centered at x,, = (ne1, ¢n(ne1)) and such that |B,, (x,)\C| = v.
Then, recalling that by (4.11) the boundary of C — z,, is flattening out, it follows that
rn — 7y and that P(B,. (z,); RV \C) — Iy (v). Hence, I¢(v) < I (v), while the opposite
inequality follows from Theorem 2.6.

Step 2: We assume now that d = N. Without loss of generality we may assume, up to a
possible rotation and dilation that C has a unique tangent plane {zx = 0} at e; and
that Cs is contained in {xy > 0}. Let us now fix k > 0 so large that B’ (e1) is contained

in the projection of Co onto {zy = 0}. Consider the balls B’ (ne;) and the functions

©n @ Bh(ney) — [—00, +00) defined as
on(')=inf{t e R: (2/,t) € OC}.

Observe that for any ' € B’ (nep) the above infimum is finite. Indeed, if for some point
2’ we had p,(z') = —o0, then the half line {teny : t < 0} would be contained in Cs,
which is not possible. A similar argument shows also that if &/, is the minimum point of
©n ON B’% (nep) then lim inf,, %ﬂjl") > —oo. We claim that
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!/
lim inf £20) > o (4.12)
n n
Indeed, assuming without loss of generality that the sequence (%;‘, %ﬂt;‘)) converges to

some point y = (¢, yn) € R™ then necessarily y € dCs and thus yx > 0. Since ¢, is a

convex function, as before we have

2K 2K
”v‘PnHL:’C(B;l(nq)) < — osc pn=—(eny,) — en(x))), (4.13)

N B, (nep) n
K

ﬁ ‘Pn(y;))

where y/, is the maximum point of ¢, on B’ (ne1). Observe that the point ( e

lies below OCo and since 2 € B, (e1) we have
!

" 1
#n(Yn) < sup min{t: (2/,t) € 9Cx} < 0(_)7
n @/ EB', (e1) k

where the last inequality follows from the fact {xy = 0} is tangent to Coo at e1. Therefore,
recalling (4.12) and (4.13) we get that

1
VénllLe(B, (nex)) < mo(—).

2k KR

Fix R > 0. From the previous estimate we have that for all xk > 0

. . 1
lim sup [[Von || Lo By, (ney)) < Hmsup [[Von| Lo (B, (ney)) < HO(—),
n n 2K KR

hence for all R > 0
hTILH HVSOTL”Lm(B}%(nel)) =0.

Then conclusion then follows exactly as in the final part of Step 1. O

We are finally ready to prove Theorem 1.1.
Proof of Theorem 1.1. It suffices to prove that if d*(C) > N — 1, then I¢ = Iy, and that
if d*(C) < N — 2, then I¢(v) v —N/N ijl\,/N as v — 00.

If d*(C) > N — 1, by definition there exists a sequence {z,} C C, A\, — 01, such
that A\, (C — z,) = Knax in the Kuratowski sense, with dim K. = d*(C) > N — 1. Up

to a subsequence, we may also assume that C — z,, — K for some convex body K. In
particular, since for any A > 0 and n sufficiently large

M (C—zp) CAC —zp) = MK,
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we have that K.x C AK for every A > 0, and thus K,y C Ko . Therefore dim K., >
N — 1. In turn, by Lemma 4.3 we have that Ix = Iy. Hence, the lower semicontinuity
property stated in Lemma 4.2 for all v > 0 we have that I¢(v) < Ix(v) = Iy (v), while
the opposite inequality follows by the isoperimetric inequality (2.4).

Assume now d*(C) < N — 2. Without loss of generality we may assume 0 € 9C. Given
any diverging sequence v,, — 400, it will be enough to show that

Io (v, 1
timint 220 > N R (4.14)

Un

Without loss of generality we may assume that the above liminf is a limit. By Proposi-
tion 4.1, we may find Ay > 0 and R,, — +00 such that

I B Io(v,,
Jim 26 () Te(n) (4.15)
"V "N
and
I n
%_(?) =I 1 1 (1)
o™ vn NV Cun N Ry, (4 16)

— min {P(E;RN\UﬁC) + Mo||E| = 1] : E Cvp ™ (B, \o)}.

Let E, be a minimizer of (4.16). Again by Proposition 4.1, passing possibly to a not
relabeled subsequence, there exist k € N and dy > 0 such that for n sufficiently large
each E,, has k connected components E, ; and each of them has diameter less than d.
We claim that for all i =1,... &

P(Ep.i;0(un ¥ C)) — 0. (4.17)

To this aim fix ¢ and assume P(E, ;; 8(1}5%@) — 0. Then we may find z,, ; € U;%C such
that E, ; C Bg,(xn,:). Up to a subsequence, we have v;%C — Zp,; — K; with dim K; <
N — 1. Hence, for any € > 0 and n large enough, setting (K;). := {z : dist(z, K;) < e},
we have

P(Ei = 0030(00 ¥ C = 2,0)) < HY "N (Byy N 0(0n ¥C = 2,))
1
< P(Bay 1 (02 € = 1)) < P(Bay 01 (KG)2)
where the last inequality follows from the containment By, N (v;%c — ;) C Bgy, N(K;)e

(holding for n large by Kuratowski convergence) and the fact that both sets are convex.
Since P(Bg, N (K;):) = 0 as € — 0, (4.17) follows.
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In turn, by the isoperimetric inequality,

ICRN—W = P(E,L;RN\U;%C) = P(E,)—P(E,; a(vﬁ(Z)) > Nw

N

— P(E,; 8(v ¥ C))

2z~

Un

and (4.14) then follows, recalling (4.15) and (4.17). This concludes the proof of the
theorem. O

Corollary 4.4. Let C be a strictly convex body with d*(C) > N — 1. Then, for every v > 0
the relative isoperimetric problem (1.1) does not admit a solution.

Proof. By Theorem 1.1, we have I¢(v) = I (v). On the other hand, by the characteri-
zation of the equality case in Theorem 2.6, taking into account that C is strictly convex,
we have P(E; RN\ C) > Iy (v) for all sets E C RV \ C, with |E| =v. O

Remark 4.5 (Minimizers and generalized minimizers). Note that if C is a convex cylinder,
then there exists a minimizer for the problem defining I¢(v) for all v > 0. Indeed, by
Proposition 4.1 any minimizer Er of I g,i/~x(v) for R > Ry has at most [y connected
components of diameter at most dov'/N. Letting R — oo and availing ourselves of the
translation invariance outside a cylinder and the convergence of I p,1/v to Ic(v), we
see that up to a subsequence and translations, the Er’s converge to a minimizer E of
Ic(v) as R — oo. The veracity of (4.3) among any F' cC R™ \ C follows from noticing
that for any Bgr(0) containing Er U F (4.3) is satisfied by Fr and then passing to the
limit as R — oo.

Finally, we remark that for general convex sets C one could prove the existence of
generalized minimizers for the problem I¢(v) in the following sense: Let Egr be as before,
with R — 400, and pick zr € Egi. Then, up to a subsequence, we may assume that
Er — 2r — Es in L' and C — zr — K in the Kuratowski sense, with K., being a
(possibly lower dimensional) convex cylinder, see [10, Lemma 3.1]. It could be possible
to show that E, is a minimizer for the “asymptotic problem” Ix_ (v). The set E, can
be regarded as a generalized minimizer for I¢(v) capturing the behavior of (suitable)
minimizing sequences. Note that d*(K,) < d*(C).

5. The order of isoperimetric residue for unbounded convex bodies with asymptotic
codimension larger than 2

The main goal of this section is providing a proof of Theorem 1.3. In fact, we shall
prove various other results that seem potentially useful for future investigations too.
Specifically, as already explained in the introduction and as indicated by [12] for the
case d*(C) = 0, the question of understanding the behavior of R¢(v) as v — oo is closely
related to the description of minimizers of I¢(v) as v — co. Since such minimizers may
fail to exist, here we explore the idea of using minimizers of the constrained isoperimetric
problems I; g1/~ already used in the previous section. In particular, in the following
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lemmas, we obtain basic information on the shape of such minimizers; see, in particular,
Theorem 5.2 and Proposition 5.5.

Before moving forward with the above program we introduce some additional notation
and terminology. In the following we denote by ¢(INV,C) a positive constant depending
only on C and N whose value may change from line to line or even within the same line.
Moreover, given a set of finite perimeter E, with v = |E|, we denote the isoperimetric
deficit and the Fraenkel asymmetry of E by

P(E)

(v)
6iso(E) = =5 — 1, A(E) = inf |EAB ($)|

_ 1
BB T (5:1)

respectively. Finally, in this section, if A and B are positive quantities associated with a
fixed convex body C, by

A<B
we mean that there exists a constant ¢(N,C) > 0 such that A < ¢(N,C)B.

Lemma 5.1 (Estimate from above by conver cylinders). Let N > 3, C C RYN be a closed
convez body with 1 < d*(C) < N — 2, Z be a d*(C)-dimensional subspace as in Proposi-
tion 3.3, and D :=cl(pz.(C)). Then

Ic(v) <Izip(w) Yv>0. (5.2)

Proof. Let z; € Cx. By (c), (d) and (e) of Proposition 3.3 we have that C —tz; converges
in the Kuratowski sense to span{zi} + D1 as t — +oo, where D1 = cl(p.+(C)) and
d*(D;1) = d*(C) — 1. Then by Lemma 4.2 we have that

Ie(v) < Ispan {z1}+D: (v).

If d*(C) = 1 we have proved the claim. Otherwise, we pick any z3 € (D7) and, arguing
as above, we get that Dj —tzo — span {22} 4+ D2 as t — 400 in the Kuratowski sense, so
that span {z1} + D1 — tz2 — span {21, 22} + Da, where Dy = cl(p,; (D1)) = cl(pz.(C))
and Zs = span {z1, 22}. Now d*(D3) = d*(C) — 2 and again, by upper semicontinuity

Ie(v) < Iz,4D,(v).
The conclusion then follows by iterating the argument. 0O
The following theorem contains Theorem 1.3 as a particular case.

Theorem 5.2 (Lower and upper bounds for Rc). Let N >3 and let C C RN be a convex
body with 1 < d*(C) < N — 2. Assume without loss of generality that 0 € OC. Then,
there exists vg > 1 depending on C and N, such that for all R > Ry = (%)% +1 and
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v > wo, any minimizer E for I¢ g/~ (v) has one connected component and satisfies
diam(F) < v%do, where dy is as in Proposition 4.1. Moreover, if v > vy

d* () da*(c)

v S Re(v) S (diamCNOE)T (@ <o v | (5-3)

and

i @ (c) e
.A(E)2 < C(N)5150(E) ,S(dlam (C n aE)) < U*N#d(c) .

= oV D)/ ~ (5-4)

Proof. Throughout the proof we will use the fact that, by Proposition 3.3, there exists
a subspace Z of dimension d*(C), such that cl (pz1(C)) is bounded and

CCZ+c(py(C)=:C. (5.5)
For each v > 0, let us now choose R(v) > Ry such that

Te pguyorrn (v) < To(v) + 1
and denote by E, C Bpr(,,1/~v \ C a minimizer for I¢ g(y),1/~5(v). By Proposition 4.1

there exist Iy € N and dy, depending only on N, such that the number of connected
components of F, is at most Iy and

2~

diam (E') < dpv™ (5.6)

for any connected component E’ of E,. Given y € RY we shall write y = (y/,y), with
y' € Z and y* € Zt. Let E' be a connected component of F, touching C and let
r = (2/,21) € OF' N AC. Note that E' € S = {y = (¢v/,y') : |y — 2| < diam (E')}.
Hence, using also (5.5), we have

P(E;8C) < P(CNS) < P(CNS). (5.7)

Note that CNS = Bxcl (pz.(C)), where B = {y € Z : |y/ —a/| < diam (E')}. Therefore,
denoting by 07 and 0. the boundary relative to Z and Z*, respectively,

P(CNS) < e(d*(C),N) (Hd*@ (BYHN =4 ©=1(d,. (p2. (C)))
+HTO-L 9, BYHN O ((p 40 (C))) (5.8)
< (diam (E")*©) 4 diam ()" (©O71) <o

provided that v > 1, where in the last inequality we used (5.6). From this estimate,

(5.7) and the fact that there are at most Iy connected components, we have P(E,;9C) <
v N In turn, this implies
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NwX o™~ < P(E,) = P(E,;RN \ C) + P(E,;dC)

d*(¢)

<Ic(w)+1+4+¢(C, Ny~ (5.9)

N—-1 d* ()

1
< Nw{v ¥ +¢C,N)v v .
Now we show that up to increasing the value of vy obtained above, any minimizer E for
I r o/ (v) With R > Ry has one connected component. By the isoperimetric inequality,
v UNE = Ui]":lEi satisfies

Io IO
~ = L —1-d*(C)
Nod Y IE < S P(E) < Nwd + 0w & ), (5.10)
i=1 i=1
where the E;’s are the connected components of v~ /N E, Zfil |E;] = 1 and the last
inequality follows arguing as in (5.9).? But for all i, |E;| > cord’, where 7 is as in

(N-1)

Proposition 4.1, and so by the concavity of ¢ — ¢ /N Iy > 2 is impossible for large

enough v. Therefore, recalling (5.7) and (5.8), and arguing as in (5.9) we have

Nwﬁv% < P(E,) = P(EU;RN \ C) + P(E,; dC)
< Ie(v) + 1+ O((diam (C N 9E))* (@)

Hence, the last two inequalities in (5.3) follow from the above inequality and (5.6).
In turn, (5.4) follows from these inequalities and from the quantitative isoperimetric
inequality proved in [8].

We now prove the first inequality in (5.3). By Lemma 5.1 it suffices to estimate R¢
from below when C is a convex cylinder of the form Z + D, with D C Z* bounded and
Z a subspace of dimension d*(C). With no loss of generality we may assume that Z =
{x e RN : 2= (24,.. S ZTg+(0),0...,0)} and that the cube Q := [—a, N4 (©) criD.

In the following we will denote a point in RY as 2 = (2/,y',xn), where 2’ € Z,
Y = (Tg+(c)41,---»TN—1). We will simply attach a large ball to Z + D, utilizing @ to
bound from below Rz p(v). For every r, consider the ball B,(—rey). By the choice of
Q, we estimate

HNL(OB, (—ren) N (Z + D)) > HN 1 (BT(—reN) N (Z x [~a,a] V174 {—a}))

= dy’ dz’  (5.11)
[CaalN-1-4"©)  {a/€Z: |a/[2+]y’[2<2ra—a2}

a*(c)

> ¢(N,d"(C))a™ 1= O ar)

2 Note indeed that (5.9) holds with I¢(v) + 1 replaced by Ic g y1y/v (v) and with E, any minimizer for the
problem defining Ic g1/~ (v), provided R > Ro.
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for r sufficiently large. By a similar argument we may estimate

a*(C)

wytN — ¢(N,C)r = diam (D)N T ©) <y, := |B.(—ren) \C| <wnrY . (5.12)

Up to changing the constant ¢(N,C) if necessary, we combine (5.11) and (5.12) to obtain

d*(c)

Ic(v,) < P(By(—ren); RV \ C) < NuyrN =1 — ¢(N,C)r =2

N—-1

) T N,O)r

d*(c)

< Nwn (:;—T +c(N,C)r =
N

d*(C)
2

1 N-—1 a*(c)

< Nwl vV —¢(N,C)v 2N

for large enough 7, where all the constants above may change from line to line. Since
N—-1

T N1
Re(vr) = Nwy vV — Ie(vyr), we have proven the lower bound in (5.3). O

In the next lemma we complement the upper bound given in (5.2) by a corresponding
lower bound.

Lemma 5.3 (Estimate from below by convex cylinders). Let N > 3, C C RY be a closed
conver body with 1 < d*(C) < N — 2, and Z be a d*(C)-dimensional subspace as in
Proposition 3.5 with D := cl(pz1(C)). Then there exist vo > 0 and c¢(N,C) such that

d*(c)—1
N

Izip(W) —ce(N,C)v v <Ic(v) Yv>up. (5.13)
In particular,
d*(c)—1
0<Re(w)—Rziplw) Sv W Vv > vy . (5.14)

Proof. By Theorem 5.2 (and assuming without loss of generality 0 € 9C), given v > vy
and R > Ry there exists a connected minimizer E, of the problem defining I g1/~ (v)
such that diam E, < dyv . By the containment of C in Z + D, we may write

P(E,;RY\C) > P(E,;RN\ (Z + D)). (5.15)
Now by the diameter bound on F, and boundedness of D, we know that

|Eu\ (Z + D)| > [E, \C| = |[E, 0 (Z + D)
> v — ¢(N,C)(diam E, )% ©) (diam D)N~4"(©) (5.16)

a*(c)
Zv—cv N Z>1,

where ¢ = ¢(N,C) > 0, provided v is sufficiently large.
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Recall now that by Proposition 4.1 for a.e. t € (v — v N ,v) and for R sufficiently
large, we have that |17, ) o 1w (t)] < Aot~ ~. Thus,

0 < Izippon (V) = Izppron (v —co ) < Ao(N) / a
8

a*()—1
N

< ¢(N,C)v (5.17)

Combining (5.15) with (5.17), and taking into account (5.16), we get
Ie gy (v) > P(E;;RY\ (Z + D))

d*(c)
> IZ+D7RUI/N (U —Ccv N )

d*(c)—1
N

> Iz, p rotv (V) = (N, C)v

Letting R — oo, we conclude (5.13). Finally, (5.14) follows at once from (5.13) and
(5.2). O

Remark 5.4. Note that by the above lemma, if d*(C) = 1, then the behavior of the
residue Re is determined, up to a constant, by the residue Rspan 24+, D = cl(p.+(C)),
with z being any point of C,. In particular, in the physical case N = 3, we can reduce
the study of isoperimetric residues to the case of convex cylinders.

We conclude with the following proposition, which provides an estimate on the prox-
imity to balls of large volume isoperimetric sets. For simplicity we assume C to be a
convex cylinder, as in this case we can ensure the existence of minimizers for the relative
isoperimetric problem (see Remark 4.5). Given two compact sets K1, Ko, we denote here
by

hd (K1, K2) = max { max dist (z, K2)’§é2}()§ dist (z, K1)},

their Hausdorff distance.

Proposition 5.5 (Uniform convergence to balls). Let 1 <k < N —2 and letC = Z + D,
with Z a k-dimensional subspace and D C Z+ a compact (N — k)-dimensional convex
set. Then there exists v1 = v1(N,C) > 0 such that if E is a minimizer for the problem
defining Ic(v), with v > vy, and if the ball B () is optimal for the definition (5.1) of
A(E), then

hd (OF \ C, 0B (z0))

0. (diam CNOE)EN) - (n i _pyjen)
v

p(N=1)/(2N?) ~

S (5.18)



N. Fusco et al. / Advances in Mathematics 453 (2024) 109833 25

Remark 5.6. It should be noted that for general convex sets C, with 1 < d*(C) < N — 2,
the conclusion of Proposition 5.5 applies to the generalized minimizers introduced in
Remark 4.5, with k& = d*(C).

Proof of Proposition 5.5. Let v > vy, where vg is from Theorem 5.2, so that any mini-
mizer E' is connected. Recall also that by Proposition 4.1

P(E;RV\C) < P(F;RN\C) + Agv™ ¥ ||F| — |E|| YFCRN\C.

In turn, this implies by Lemma 2.1 together with a rescaling argument (see also the proof
of Proposition 4.1) that

min {|E N B,(z)|,|B.(z) \ E|} > cor¥ forall 0 <r < rou N, (5.19)
for a suitable 1o = 79(N) > 0. Suppose now that for some z € cl(9F \ C),
h:=hd (0E\ C,0B") (x0)) = dist (z, 0B™) (x0)) > 0; (5.20)

we will handle the other case for computing A in (5.24). Then By, (z) "B (z0) = 0, so
due to (5.19) and the quantitative isoperimetric inequality, we get

(v) ; 1/NYN
< |[EAB\Y) (x0)| < Comln{h,rov } '

N 5iso E = = 21
CN)V/Gol ) ; : (5:21)
On the other hand, since d*(C) = k, (5.4) reads
(dlamC N 8E>k —(N—=1—k)/N
5iso(E) S W S v ( )/ y (522)

in which case the minimum in (5.21) must be achieved by h if v > v; and we choose
vy > vp large enough. Combining (5.21) and (5.22), we arrive at

(diam C N OE)k/N)
v (N=1)/(2N?)

h < C(N)GL PN (B /N < /N

iso

(5.23)

Since diam E < dov/N by (5.6), dividing (5.23) by v'/V yields (5.18) in the case that
(5.20) holds. Conversely, if there exists € dB(")(2¢) such that

h:="hd (dE\ C,0B™ (x4)) = dist (z,0E \ C) > 0, (5.24)

then either By (z) C E or B(x) C RY \ E. An analogous argument as in the previous
case leads again to (5.23) and thus to (5.18). O

Remark 5.7. Improved estimates on the Hausdorff distance of OF to the large ball could
be used to determine an upper bound for R¢(v). In a nutshell, one would need to prove
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Lemma 5.5 with OF in (5.18) instead of OF \ C. Let us explain why these estimates
should hold and then how the argument would go. Assume for simplicity C = Z + D
with dim Z = k = d*(C) < N —2,dim D = N —d*(C) and D C Z*. The estimate (5.18)
with OF would hold if we knew for example that minimizers F never “envelop” C; that
is, there are no slices C, = CN(z+ D), with z € Z, such that 9C, C OF. If this were true
(and it seems like it should be - why should a minimizer envelop the obstacle?), then
every point in JF would be close to a point in OF \ C and thus (5.18) would hold with
OF. Thus we would have

hd (OE, 9B (x)) < (diamCn OE)& (€)/2N)
vl/N ~ v(N-1)/(2N?)

Setting r, = (v/wy)N and h = hd (OE, dB™ (1)),
OENC COFE C Berrh(xO) \ Brv,h(xo) . (525)
From the Pythagorean theorem we know that the longest line segment contained in

B, +1(20)\ By, —n(z0) has length bounded by 4+/r,h. Therefore, (5.25) and (5.18) imply
that for v > 1

diam C N 9E) & ©)/CN)
V(N1 N)

v

diam (CNIOE) S vVrh < \/(
Rearranging this, we find
diam (C N OE) < vNGN-a"@ |

Recalling the upper bound in (5.3), the above estimate would lead to the improved upper
bound

(3N41)d*(C)
Rc(v) 5 Y N@EN=d¥(0)) |

(3N+1)d*(C) d* (

Note that NAN=F(C) < Nc). Lastly, we remark that this argument is predicated on

detailed geometric information on minimizers. Based on [12], it stands to reason that any

such a resolution of minimizers and their energies would require a e-regularity criterion
tailored to the cylindrical geometry of C = Z 4+ D. In [12], the idea is that, for large
volumes, the compact set outside which one is solving an isoperimetric problem is so small

1/N

relative to the length scale v set by the minimizer that it functions like an isolated

singularity of the bounded mean curvature hypersurface 0F. Here this role would instead
be played by C, which, when the volume is large, acts as the k-dimensional subspace Z.
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