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1. Introduction

In this paper we consider the exterior isoperimetric problem for convex bodies C ⊂
R

N . We first identify a natural notion of “maximal affine dimension at infinity”, called 

the asymptotic dimension of C, denoted by d∗(C) and typically larger than the affine 

dimension of the recession cone C∞ of C. We then prove that unbounded convex bodies 

with d∗(C) ≥ N − 1 have the same exterior isoperimetric profile of half-spaces. We 

also begin the study of exterior isoperimetric profiles of convex bodies with d∗(C) ≤
N − 2, and introduce in this setting the notion of isoperimetric residue. We have two 

motivations for presenting these results. The first one is the desire of understanding the 

geometric information “stored” in the large volume behavior of exterior isoperimetric 

profiles, as done in [12] with the introduction of the isoperimetric residues of compact 

(non-necessarily convex) sets. The second one is providing characterizations of rigidity 

of equality cases in a recent comparison theorem for exterior isoperimetric profiles of 

convex bodies proved by Choe, Ghomi and Ritoré in [4].

Before further discussing these points we need to introduce some notation and termi-

nology. Given a closed set C ⊂ R
N , the exterior isoperimetric profile of C is the function 

IC : (0, ∞) → (0, ∞) defined by

IC(v) = inf
{

P (E; R
N \ C) : E ⊂ R

N \ C , |E| = v
}

, v > 0 . (1.1)

That is, IC is what is commonly called the isoperimetric profile of RN \ C; in particu-

lar, I∅(v) = N ω
1/N
N v(N−1)/N coincides with the isoperimetric profile of RN . Here |E|

denotes the volume (Lebesgue measure) of a Borel set E and P (E; G) its distributional 

perimeter, so that P (E; G) = HN−1(G ∩∂E) as soon as E is open with C1-boundary. We 

also denote by Hk the k-dimensional Hausdorff measure in RN and by ωN the volume 

of the unit ball in RN .

With this notation in hand, we can state the comparison theorem proved by Choe, 

Ghomi and Ritoré in [4]: if C is a convex body, that is, if C is a closed convex subset 

of RN with nonempty interior and different from the whole RN , then, denoting by H a 

generic half-space of RN , one has

IC(v) ≥ IH(v) = N
(
ωN /2

)1/N
v(N−1)/N , ∀v > 0 . (1.2)
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To provide some context, we recall that comparison theorems of this form are one of the 

most studied type of results in Riemannian Geometry. For example, the Levy–Gromov 

comparison theorem states that among compact Riemannian manifolds (MN , g) whose 

Ricci tensor is bounded from below by (N − 1) g, the standard sphere (SN , gSN ) has the 

lowest isoperimetric profile.1 Comparison theorems are usually accompanied by rigidity 

statements. Using again the Levy–Gromov comparison theorem as a model, the corre-

sponding rigidity statement is that if the isoperimetric profiles of (MN , g) and (SN , gSN )

coincide even for just one volume fraction, then (MN , g) is isometric to (SN , gSN ). The 

situation with the CGR-comparison theorem is remarkably different. Indeed, as proved 

in [4] when C has boundary of class C2, and for arbitrary convex bodies in [9], one has

IC(v) = IH(v) for some value of v > 0 s.t. there exist minimizers of IC(v) (1.3)

if and only if

∂C has a “facet” that supports a half-ball of volume v contained in R
N \ C . (1.4)

In particular, the class of convex bodies satisfying IC(v) = IH(v) for a single value of 

v > 0 is extremely vast, e.g., it contains all convex polyhedra!, and coincides with the class 

of convex bodies C such that IC = IH on an open interval. We can of course formulate 

the rigidity problem in a stronger sense, and consider the class of convex bodies C such 

that IC(v) = IH(v) for every v > 0. While it is not hard to construct unbounded convex 

bodies that are not half-spaces and still satisfy IC ≡ IH , there is a surprisingly direct 

condition that characterizes the stronger notion of rigidity IC ≡ IH . This condition can 

be expressed in terms of the asymptotic dimension d∗(C) of C introduced right after the 

following statement, which is our first main result.

Theorem 1.1 (Strong rigidity in the CGR-comparison theorem). Let C be a convex body 

in R
N . Then IC = IH on (0, ∞) if and only if d∗(C) ∈ {N − 1, N}. If, otherwise, 

d∗(C) ∈ {0, 1, ..., N − 2}, then

lim
v→∞

IC(v)

N ω
1/N
N v(N−1)/N

= 1 ,

and, in particular, IC(v) > IH(v) for every v sufficiently large (depending on N and C).

Remark 1.2. Notice that Theorem 1.1 addresses rigidity without making the conditional 

assumption that IC(v) admits minimizers, either for one or more values of v. In fact, by 

combining Theorem 1.1 with the equivalence between (1.3) and (1.4) proved in [4,9], one 

easily shows that if C is strictly convex and d∗(C) ≥ N − 1, then, for every v > 0, IC(v)

does not admit minimizers; see Corollary 4.4.

1 The isoperimetric profile Φ(M,g)(t) of (M, g) for the volume fraction t ∈ (0, 1) is defined as the infimum 
of Pg(E)/volg(M) among all sets E ⊂ M with t = volg(E)/volg(M).
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We now introduce the notion of asymptotic dimension d∗(C) of C. To begin with we 

recall that if x ∈ C and C is a convex body, then the family of convex sets {λ (C − x)}λ>0

is monotone increasing with respect to set inclusion. In particular, its limit as λ → 0+, 

called the recession cone C∞ of C, can be defined as

C∞ =
⋂

λ>0

λ (C − x) . (1.5)

The (affine) dimension dim(C∞) of C∞ (that is, the dimension of the smallest affine 

subspace of RN containing C∞) directly quantifies the dimension of the set of directions 

along which C is unbounded (and, indeed, C is bounded if and only if C∞ is a point, 

that is, dim(C∞) = 0). To define d∗(C), and understand rigidity of the CGR-comparison 

theorem, we follow a related procedure. Rather than working with a fixed point x ∈ C, 

we consider sequences {xn}n in C and {λn}n in (0, ∞), look at the resulting sequences 

of convex sets {λn (C − xn)}n, consider all their possible accumulation points K in the 

Kuratowski convergence, which are still convex sets in R
N , and finally maximize the 

affine dimension among the possible limits K. More formally and concisely, we set

d∗(C) := max
{

dim(K) : ∃ xn ∈ C , λn → 0 s.t. λn(C − xn) → K as n → ∞
}

(1.6)

where λn(C − xn) → K as n → ∞ is meant in the sense of Kuratowski. By taking 

xn = x ∈ C for every n it is easily seen that d∗(C) ≥ dim(C∞), and examples where this 

inequality is strict are easily constructed. We are not aware if this notion has already 

been introduced elsewhere. However, given the vastness of the literature on convex sets 

and the naturalness of the notion itself, we cannot exclude this possibility.

Having completely discussed the rigidity problem for the CGR-comparison theorem, 

we move to the problem of understanding which information on the convex body C is 

stored in the behavior of IC(v) as v → ∞, and what can be said, should they exist, 

about large volume exterior isoperimetric sets of C, i.e., about minimizers Ev of IC(v) as 

v → ∞.

Theorem 1.1 plays an interesting role in setting up these problems. Indeed, Theo-

rem 1.1 states that for a convex body C with d∗(C) ∈ {N − 1, N} there is no geometric 

information (in addition to d∗(C) ∈ {N − 1, N}) that can be found by studying IC for v

large, as IC must then be identically equal to IH . At the same time, when d∗(C) ≤ N −2, 

Theorem 1.1 invites us to investigate what information about C may be stored in the 

behavior of the quantity

RC(v) := N ω
1/N
N v(N−1)/N − IC(v) ,

as v → ∞.

When d∗(C) = 0, i.e., when C is bounded, this problem has been thoroughly addressed 

in the recent paper [12] without even assuming the convexity of C. Roughly speaking, 

the main result in [12] is that if C is any compact set in RN , then
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lim
v→∞

RC(v) = R(C)

where R(C), called the isoperimetric residue of C, is a non-negative quantity such that 

R(λ C) = λN−1 R(C) for every λ > 0 and

sup
M

HN−1(M ∩ C) ≤ R(C) ≤ sup
M

HN−1(pM (C))

where M ranges over all the affine hyperplanes in RN and pM : R
N → M denotes the 

orthogonal projection over M . In fact, R(C) can be characterized as an optimization 

problem whose solutions are area minimizing boundaries contained in RN \ C, trapped 

in between two parallel hyperplanes, and intersecting C orthogonally. Moreover, exterior 

isoperimetric sets Ev for C with v large can be fully “resolved as” (i.e., expressed as 

small diffeomorphic deformations of) the union of a large sphere of volume v missing a 

spherical cap and of an optimizing boundary in R(C). Obtaining this resolution result 

requires the introduction of a new ε-regularity criterion operating at mesoscales and 

interpolating between the local Allard’s regularity theorem [1], based on the analysis of 

blowups, and the “at infinity” regularity theorems of Allard–Almgren [2] and Simon [15], 

based on the analysis of blowdowns.

Coming back to the case of convex bodies, we are left to consider the case when 

1 ≤ d∗(C) ≤ N − 2 (and thus, with N ≥ 3). In this case we do not expect RC(v) to have 

a finite limit as v → ∞, but rather to depend on v through a power law. This expectation 

is not completely confirmed, but it is definitely supported, by our second main result.

Theorem 1.3. Let C be a convex body in RN , N ≥ 3, with d∗(C) ∈ {1, ..., N − 2}. Then 

there exists a positive constant C0 depending on N and C such that

vd∗(C)/2N

C0
≤ RC(v) ≤ C0 vd∗(C)/N , ∀v > C0 . (1.7)

It seems plausible to conjecture that the lower bound in (1.7) should be capturing the 

correct order of magnitude of RC(v). In other words, it seems plausible that for every C
as in Theorem 1.3 the limit

lim
v→∞

RC(v)

vd∗(C)/2N

should exist in (0, ∞), be amenable to be characterized as an optimization problem, and 

thus lead to extending the definition of isoperimetric residue to this class of obstacles. 

Resolving these issues would require fine geometric information on minimizers obtained 

by the application of an ε-regularity criterion analogous to [12]. Given the considerable 

complexity of this problem even in the compact case, we leave this question for future 

investigations; see Remark 5.7 for more discussion.

We now discuss the organization of the paper and, in the process, we highlight some 

additional noteworthy statements proved in the paper but not included in Theorem 1.1
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and Theorem 1.3. After setting our notation and recalling some basic facts concern-

ing isoperimetric problems in Section 2, in Section 3 we collect several facts concerning 

the notion of asymptotic dimension: in particular, in Proposition 3.3 we describe the 

structure of sets with d∗(C) ≤ N − 1. In Section 4 we introduce a constrained exterior 

isoperimetric profile IC,R (obtained by restricting competitors in IC to be contained in 

BR(0)), study its properties (Proposition 4.1), and then use those for proving Theo-

rem 1.1. Finally, in Section 5 we discuss the problem of defining isoperimetric residues 

for unbounded convex sets with asymptotic dimension less than N − 2, and prove in 

particular Theorem 1.3, together with some properties of large volume exterior isoperi-

metric sets (see Theorem 5.2 and Proposition 5.5) that lay the groundwork for further 

analysis.

Acknowledgments: FM has been supported by NSF Grant DMS-2247544. FM and MN 

have been supported by NSF Grant DMS-2000034 and NSF FRG Grant DMS-1854344. 

MN has been supported by NSF RTG Grant DMS-1840314. N. F. and M. M. have 

been supported by PRIN 2022 Project “Geometric Evolution Problems and Shape 

Optimization (GEPSO)”, PNRR Italia Domani, financed by European Union via the 

Program NextGenerationEU, CUP D53D23005820006. N. F. and M. M. are members 

of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni 

(GNAMPA), which is part of the Istituto Nazionale di Alta Matematica (INdAM).

2. Notation and preliminary results about perimeter minimizers

In the following we shall denote by BR(x) the ball with center at x and radius R. If 

the center is at the origin we shall simply write BR. Given v > 0 we let B(v)(x) denote 

the ball of volume v centered at x ∈ R
N and B(v) = B(v)(0).

Given E ⊂ R
N of locally finite perimeter and a Borel set G we denote by P (E; G)

the perimeter of E in G. The reduced boundary of E will be denoted by ∂∗E, while ∂eE

will stand for the essential boundary defined as

∂eE := R
N \ (E(0) ∪ E(1)) ,

where E(0) and E(1) are the sets of points where the density of E is 0 and 1, respectively. 

In the following, when dealing with a set of locally finite perimeter E, we shall always 

tacitly assume that E coincides with a precise representative that satisfies the property 

∂E = ∂∗E, see [11, Remark 16.11]. A possible choice is given by E(1) for which one may 

easily check that

∂E(1) = ∂∗E . (2.1)

We premise some lemmas. The first lemma is proved for instance in [7, Lemma 3.6]

for N = 3, but the same statement (with the same argument) holds in any dimension.
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Lemma 2.1. Let C ⊂ R
N be a convex body and let E ⊂ BR \ C satisfy the following 

minimality property: there exists Λ ≥ 0 such that

P (E; R
N \ C) ≤ P (F ; R

N \ C) + Λ|F∆E| for all F ⊂ BR \ C. (2.2)

Then E is equivalent to an open set, still denoted by E, such that ∂E = ∂eE and hence 

HN−1(∂E \ ∂∗E) = 0. Moreover, there exist c0 = c0(N) > 0 and r0 = r0(N, Λ) ∈ (0, 1)

independent of R and C, such that if x ∈ ∂E′, E′ being a connected component of E, 

then

|E′ ∩ Br(x)| ≥ c0rN (2.3)

for every 0 < r ≤ r0. Finally, if (2.2) holds for all F ⊂ R
N \ C, then the above density 

estimates holds also for RN \ E′; i.e., |Br(x) \ E′| ≥ c0rN for every 0 < r ≤ r0.

We recall that a sequence {Fn} of closed sets converges in the Kuratoswki sense (or 

locally in Hausdorff sense) to a closed set F if the following conditions are satisfied:

(i) if xn ∈ Fn for every n, then any limit point of {xn} belongs to F ;

(ii) any x ∈ F is the limit of a sequence {xn} with xn ∈ Fn.

One can easily see that Fn → F in the sense of Kuratowski if and only if dist(·, Fn) →
dist(·, F ) locally uniformly in RN . In particular, by the Arzelà-Ascoli Theorem any se-

quence of closed sets admits a subsequence which converges in the sense of Kuratowski.

For the simple proof of the next lemma see for instance [7, Remark 2.1].

Lemma 2.2. Let {Cn}n be a sequence of closed convex sets. Then Cn → C in the Kura-

towski sense if and only if χ
Cn

→ χ
C

pointwise almost everywhere. In addition, C is 

convex.

The next lemma is also well known, for the proof see for instance [9, Lemma 5.1].

Lemma 2.3. Let C be a closed convex set with nonempty interior and F ⊂ R
N \ C a 

bounded set of finite perimeter. Then

P (F ; ∂C) ≤ P (F ; R
N \ C) .

The following result, see [13, Lemma 2.1], is a simplified version of a nucleation lemma 

due to Almgren [3, VI.13]; see also [11, Lemma 29.10].

Lemma 2.4. There exists a constant c(N) > 0 such that if E ⊂ R
N is a set of finite 

perimeter and finite measure, then, setting Q := (0, 1)N , we have

sup
z∈ZN

|E ∩ (z + Q)| ≥ c(N) min
{( |E|

P (E)

)N

, 1
}

.
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Finally we conclude with a useful construction that allows one to locally dilate sets 

of finite perimeter with a controlled change in volume and perimeter.

Lemma 2.5. There exist ε(N), c(N) > 0 with the following property. Let E ⊂ R
N be a 

set of finite perimeter with |E| < m and BR a ball such that

|E ∩ B R
2

| ≤ εRN , |E ∩ BR| ≥ ωN RN

2N+2
,

with ε ∈ (0, ε(N)). Then there exists σ0 = σ0(E, m) > 0 such that for all σ ∈ (0, σ0)

there exists a bi-Lipschitz map Φσ : R
N 
→ R

N , with Φσ(x) = x for all |x| ≥ R, such 

that, setting Ẽ = Φσ(E), one has

|Ẽ| < m, P (E; BR) − P (Ẽ; BR) ≥ −2N NσP (E; BR), |Ẽ| − |E| ≥ c(N)σRN .

The proof of Lemma 2.5 can be deduced from the proof of [6, Theorem 1.1].

We conclude this section with the relative isoperimetric inequality outside convex sets 

due to Choe, Ghomi and Ritoré together with the characterization of the equality case.

Theorem 2.6. Let C ⊂ R
N be a convex body. For any set of finite perimeter E ⊂ R

N \ C
we have

P (E; R
N \ C) ≥ N

(ωN

2

) 1
N |E| N−1

N . (2.4)

Moreover, if equality holds in (2.4), then E is a half ball supported on a facet of C.

The proof of (2.4) and the characterization of the equality case when C is a C2 convex 

set has been established in [4], while the characterization of the equality case for general 

convex sets has been obtained in [9].

3. Asymptotic dimension of a convex body

In this section we discuss various properties of the asymptotic dimension d∗(C) of a 

convex body C introduced in (1.6). We also recall the definition (1.5) of the recession 

cone C∞ of C.

Remark 3.1 (Convex bodies with zero/full asymptotic dimension). Note that if C is a 

bounded convex body then d∗(C) = 0. Conversely, if d∗(C) = 0 and we fix x ∈ C, then 

λ(C − x) must converge to {0} as λ → 0. Therefore we have that the recession cone 

C∞ = {0} and thus C is bounded, see [14, Theorem 8.4]. Note also that if d∗(C) = N

it is clear from the definition that C contains open balls of arbitrarily large radius. The 

converse is also true. Indeed, if Brn
(xn) ⊂ C and rn → ∞, by testing the definition with 

r
−1/2
n (C − xn) we conclude d∗(C) = N .
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Remark 3.2. Note that if C is an unbounded convex body, testing (1.6) with the constant 

sequence xn = x ∈ C and any λn → 0, we deduce that

d∗(C) ≥ dim C∞,

with the inequality being possibly strict. Note also that d∗(C) can also take any value 

between 1 and N . Indeed, if k ∈ {1, . . . , N − 1}, the set C = R
k × [0, 1]N−k is such 

that d∗(C) = dim C∞ = k (the case d∗(C) = N being covered in the previous remark). 

Conversely, Proposition 3.3 below shows that any convex C such that d∗(C) = k ∈
{1, . . . , N − 1} is contained in the product of a k-dimensional subspace times a bounded 

convex set. Finally, note that the set C = {(x′, xN ) ∈ R
N−1 × R : xN ≥ |x′|2} satisfies 

dim C∞ = 1, d∗(C) = N .

In the next proposition we deal with the structure of a convex body C such that 

1 ≤ d∗(C) ≤ N − 1. To this aim, if Z ⊂ R
N is a subspace, we denote by pZ the 

orthogonal projection on Z. Furthermore, Z⊥ will denote the subspace orthogonal to Z

and if z ∈ R
N , we will denote by z⊥ the hyperplane orthogonal to z through the origin.

Proposition 3.3. Let C ⊂ R
N be a convex body such that 1 ≤ d∗(C) ≤ N − 1. Then there 

exists a d∗(C)-dimensional subspace Z containing C∞ such that

(a) C ⊂ Z + cl (pZ⊥(C)),

(b) cl (pZ⊥(C)) is bounded.

Moreover, for every z ∈ C∞

(c) the sets Ct := pz⊥(C ∩ (tz + z⊥)) satisfy Ct ⊂ Ct′ whenever t < t′,

(d) Ct converge in the Kuratowski sense to cl (pz⊥(C)) as t → ∞, and

(e) d∗(cl (pz⊥(C))) = d∗(C) − 1.

Remark 3.4. Let C be an unbounded convex body and assume that Z is a subspace such 

that (a) and (b) of Proposition 3.3 hold. Then dim Z = d∗(Z + cl (pZ⊥(C))) ≥ d∗(C), 

where we used the fact that d∗(·) is monotone with respect to the inclusion. Therefore one 

could equivalently define d∗(C) as the smallest k ∈ N such that there exists a subspace 

Z with dim Z = k such that pZ⊥(C)) is bounded and C ⊂ Z + cl (pZ⊥(C)); if no such 

subspace exists, then d∗(C) = N .

Proof of Proposition 3.3. We first prove (c)–(e) and then (a) and (b). By Remark 3.1, 

C is unbounded and therefore C∞ is nonempty, and so we can fix some z ∈ C∞. By the 

definition of C∞, x + αz ∈ C for all x ∈ C and α ≥ 0. From this we deduce the nested 

property (c) of {Ct}. Item (d) then follows from the fact that any sequence of increasing, 

closed, convex sets converges in the Kuratowski sense to the closure of the union of its 

elements and observing that the closure of such a union coincides with cl (pz⊥(C)).
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Moving on to (e), let us set D = cl (pz⊥(C)) for brevity. We begin by proving that

d∗(D) ≤ d∗(C) − 1 . (3.1)

Let xn ∈ D and λn → 0 be such that λn(D − xn) converges in the Kuratowski sense 

to D′, where dim D′ = d∗(D). Then, taking into account 0 ∈ D′, there exist linearly 

independent vectors y1, . . . , yd∗(D) ∈ D′. By the convergence of λn(D − xn) to D′, we 

can therefore choose a sequence εn → 0 and wi,n ∈ z⊥ such that

wi,n ∈ Bεn
(yi) ∩ λn(ri(D) − xn) ∀n ∈ N , 1 ≤ i ≤ d∗(D) ,

where ri(·) stands for the relative interior of its argument. Next, since ri(D) ⊂ pz⊥(C)

and z ∈ C∞, we may choose Tn ≥ 0 large enough and w0,n ∈ z⊥ such that for all t ≥ Tn

w0,n ∈ λn(Ct − xn) , w0,n → 0 =: y0 ,

wi,n ∈ λn(Ct − xn) , 1 ≤ i ≤ d∗(D) ,

or, equivalently,

w0,n ∈ λn(tz + Ct − (tz + xn)) , w0,n → 0 ,

wi,n ∈ λn(tz + Ct − (tz + xn)) ⊂ λn(C − (tz + xn)) .

Let Tn ≤ t1,n < t2,n be such that λn(t2,n − t1,n) = 1. Then

w0,n ∈ λn(t1,nz + Ct1,n
− (t1,nz + xn))

w1,n ∈ λn(t1,nz + Ct1,n
− (t1,nz + xn)) ⊂ λn(C − (t1,nz + xn)) ,

z + wi,n ∈ λn(t2,nz + Ct1,n
− (t1,nz + xn)) ⊂ λn(C − (t1,nz + xn)) ∀1 ≤ i ≤ d∗(D) ,

where in the last inclusion we used the fact that Ct1,n
⊂ Ct2,n

. By the convergence 

wi,n → yi, we can restrict to a further subsequence, which we do not notate, that 

satisfies λn(C − (t1,nz + xn)) → C′ in the Kuratowski sense and

V := {0, y1, z + y1, . . . , z + yd∗(D)} ⊂ C′

for some closed, convex C′. Since {yi}d∗(D)
i=1 ⊂ z⊥ are linearly independent, the elements 

of V are the vertices of a (d∗(D) + 1)-dimensional simplex S, which belongs to C′ since 

C′ is convex. Since t1,nz + xn ∈ C, we have thus shown (3.1).

For the reverse inequality

d∗(D) ≥ d∗(C) − 1 , (3.2)

we recall that by the definition of D,
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C ⊂ cl (pz⊥(C)) + span {z} = D + span {z} . (3.3)

Let λn → 0, xn ∈ C be such that λn(C − xn) → C′ for some C′ with dim C′ = d∗(C). By 

(3.3), we have

λn(C − xn) ⊂ λn(D + span {z} − xn)

= span {z} + λn(D − pz⊥(xn)) .

Up to a further subsequence, the right hand side of the previous equation converges in the 

Kuratowski sense to span {z} +D′ for some closed convex D′ ⊂ z⊥ with dim D′ ≤ d∗(D). 

Thus

dim C′ ≤ dim D′ + 1 ≤ d∗(D) + 1 ,

which is (3.2), thus showing item (e).

To finish the proof it remains to show (a) and (b), which we do by strong induction 

on 1 ≤ d∗(C) ≤ N − 1. For the base case when d∗(C) = 1, item (a) follows from to the 

containment (3.3). Moreover, item (e) implies that the associated D := cl (pz⊥(C)) ⊂ z⊥

satisfies d∗(D) = 0, and so by Remark 3.1, D is a bounded convex body contained in 

z⊥, which is (b).

Suppose now that (a) and (b) are true for any convex body C′ with 1 ≤ d∗(C′) ≤ k ≤
N − 2. If C ⊂ R

N is a convex body with d∗(C) =: k + 1 > 1 and z ∈ C∞, we apply (c), 

(d) and (e) to C and to the (N − 1)-dimensional convex body D := cl (pz⊥(C)) ⊂ z⊥

with d∗(D) = k ≥ 1 to obtain

C ⊂ span {z} + D . (3.4)

By the induction hypothesis applied to D, we may obtain N − 1 orthonormal vectors

{z2, . . . , z1+d∗(D), y1, . . . , yN−d∗(D)−1} ⊂ z⊥

such that setting Z ′ = span {z2, . . . , z1+d∗(D)} ⊂ z⊥ and Y = span {y1, . . . , yN−d∗(D)−1}
⊂ z⊥, we have

D ⊂ Z ′ + cl (pY (D)) (3.5)

and

cl (pY (D)) is bounded . (3.6)

Therefore, by (3.4)-(3.5), setting Z := span {z, z2, . . . z1+d∗(D)}, we have

C ⊂ Z + cl (pY (D)) = Z + cl (pY (cl (pz⊥(C)))) .
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Since d∗(C) = d∗(D) + 1 and cl (pY (cl (pz⊥(C)))) = cl (pZ⊥(C)), we have shown (a). The 

boundedness of cl (pZ⊥(C)), which is (b), follows from the induction hypothesis (3.6). �

4. Rigidity in the Choe–Ghomi–Ritoré comparison theorem

In this section we prove various properties of the exterior isoperimetric profile IC of 

a convex body, and then prove Theorem 1.1. We begin with the following proposition, 

where we consider a constrained version of the exterior isoperimetric profile.

Proposition 4.1. Let C ⊂ R
N be a convex body. Given R > 0 sufficiently large, for all 

v ∈ (0, |BR \ C|) we set

IC,R(v) := min{P (E; R
N \ C) : E ⊂ BR \ C and |E| = v} . (4.1)

Then IC,R is a locally Lipschitz function in (0, |BR \ C|) and for a.e. v > 0, I ′
C,R(v)

coincides with the constant mean curvature H∂∗Ev
of ∂∗Ev ∩ (BR \ C), where Ev is any 

minimizer of the problem (4.1). Moreover for all v > 0

lim
R→∞

IC,R(v) = IC(v) . (4.2)

Furthermore, assuming, up to a translation, that 0 ∈ ∂C, there exist positive constants 

Λ0, d0, r0, c0, and an integer I0 ∈ N, all depending on N (but not on C), such that for 

all R ≥ R0 =
(

2
ωN

)
1
N + 1 and v > 0, any minimizer E for IC,R v1/N (v) satisfies

P (E; R
N \ C) ≤ P (F ; R

N \ C) + Λ0v− 1
N

∣∣|F | − |E|
∣∣ ∀F ⊂ BR v1/N \ C , (4.3)

has at most I0 connected components each of them with diameter less than v
1
N d0 and for 

every connected component E′ and x ∈ E′

|E′ ∩ Br(x)| ≥ c0rN for all 0 < r ≤ r0v
1
N .

Finally, for any such minimizer we have

|H∂∗E(x)| ≤ Λ0v− 1
N for all x ∈ (BR v1/N \ C) ∩ ∂∗E. (4.4)

Proof. Note that if R ≥ R0 for any convex set C such that 0 ∈ ∂C there exists a set of 

finite perimeter E ⊂ BR \ C with |E| = 1. Indeed, C is contained in a half space and R0

is strictly bigger than the radius of a half ball of volume 1. We divide the proof in three 

steps.

Step 1: The Lipschitz continuity and the representation formula for the derivative of IC

when C is a bounded convex body are well known facts. The proof of the same properties 

for IC,R is similar, see for instance Steps 3 and 4 of the proof of Theorem 1.2 in [9].
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The proof of (4.2) is immediate. Indeed we clearly have IC,R(v) ≥ IC(v) for R ≥ R0v
1
N . 

For the opposite inequality it is enough to observe that any competitor for IC(v) can be 

approximated in (relative) perimeter by bounded sets of the same volume.

Step 2: The argument needed to prove that there exists Λ0 such that (4.3) holds is similar 

for instance to the one in Step 6 of the proof of [7, Theorem 3.2] with some modifications 

due to our particular setting. We reproduce it here for the reader’s convenience. To this 

aim, by rescaling, it is enough to show that there exists Λ0 such that for every convex 

body C, any v > 0 and any R ≥ R0, every minimizer for the penalized problem

min{P (E; R
N \ (v− 1

N C)) + Λ0

∣∣|E| − 1
∣∣ : E ⊂ BR \ (v− 1

N C)} (4.5)

with volume 1.

Let us suppose then for contradiction that there exist a sequence Λj → ∞, Rj ≥ R0, 

Cj , vj ∈ (0, +∞) and minimizers Ej,Λj
for (4.5) (with Λ0, R, v and C replaced by Λj , 

Rj , vj and Cj , respectively) which do not have volume 1. We observe that necessarily 

|Ej,Λj
| < 1, since otherwise we could contradict the minimality by cutting Ej,Λj

with a 

hyperplane not intersecting v
− 1

N
j Cj . Using as a competitor BR\(v

− 1
N

j Cj), with R ∈ (0, R0]

chosen so that |BR \ (v
− 1

N
j Cj)| = 1 (which is possible since Rj ≥ R0), we have

P (Ej,Λj
; R

N \ (v
− 1

N
j Cj))) ≤ P (BR; R

N \ (v
− 1

N
j Cj))) ≤ P (BR0

) (4.6)

and

|Ej,Λj
| → 1 . (4.7)

Thus by Lemma 2.4, there exists a constant c(N) > 0 such that |(zj + Q) ∩ Ej,Λj
| ≥

c(N) > 0 for some zj ∈ Z
N and for every j. Therefore, up to a subsequence (not 

relabeled), we may assume that χ
Ej,Λj

−zj
→ χ

E
a.e., with E of finite perimeter and 

|E| ≥ c(N).

We claim that there exist x ∈ ∂∗E and r > 0 such that

Br(x) ⊂ −zj +
(
BRj

\ v
− 1

N
j Cj

)
, for all j sufficiently large. (4.8)

To see this note that, up to a not relabeled subsequence, we may assume that Kj := −zj+

v
− 1

N
j Cj → K in the sense of Kuratowski, for a suitable closed convex set K. Moreover, by 

Lemma 2.2 we have that χ
Kj

→ χ
K

almost everywhere. In particular, for a.e. x ∈ R
N we 

have χ
E

(x)χ
K

(x) = limj χ
Ej,Λj

−zj
(x)χ

Kj
(x) = 0, i.e., E ⊂ R

N \ K. Observe also that, 

up to a further not relabeled subsequence, we may assume that −zj +BRj
converge in the 

Kuratowski sense to K̃, where K̃ can be RN or a half space containing E (if Rj → ∞) 

or a ball BR∞
(z∞), where R∞ = limj Rj and z∞ = − limj zj (if {Rj} is bounded). Note 
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that z∞ ∈ ∂K. Therefore, there exist x ∈ ∂∗E \ K and r > 0 such that Br(x) ∩ K = ∅
and Br(x) ⊂ int(K̃). This is immediate if K̃ is either RN or a half space containing E. 

Instead, if K̃ = BR∞
(z∞), this follows since R∞ ≥ R0, hence |BR∞

(z∞) \ K| > 1, while 

|E| ≤ 1 by (4.7). Thus, from the Kuratowski convergence (4.8) follows.

Arguing as in Step 1 of Theorem 1.1 in [6], given 0 < ε < ε(N), where ε(N) is as in 

Lemma 2.5, we can find a ball Br(x0) ⊂ Br(x) such that

|E ∩ B r
2
(x0)| < εrN , |E ∩ Br(x0)| >

ωN

2N+2
rN .

Therefore, for j sufficiently large, we have

|Ej,Λj
∩ B r

2
(x0 + zj)| < εrN , |Ej,Λj

∩ Br(x0 + zj)| >
ωN

2N+2
rN ,

where by (4.8), Br(x0 +zj) ⊂ BRj
\(v

− 1
N

j Cj). We now apply Lemma 2.5 to find a positive 

sequence {σj} and a sequence {Ẽj} such that Ẽj \ Br(x0 + zj) = Ej,Λj
\ Br(x0 + zj) and 

satisfying |Ẽj | < 1 and

P (Ej,Λj
; Br(x0 + zj)) − P (Ẽj ; Br(x0 + zj)) ≥ −2N NσjP (Ej,Λj

; Br(x0 + zj)),

|Ẽj | − |Ej,Λj
| ≥ c(N)σjrN .

From these inequalities, recalling (4.6) and that |Ej,Λj
| < |Ej | < 1, we then get

P (Ẽj ; R
N \ (v

− 1
N

j Cj)) + Λj

∣∣|Ẽj | − 1
∣∣ −

(
P (Ej,Λj

; R
N \ (v

− 1
N

j Cj)) + Λj

∣∣|Ej,Λj
| − 1

∣∣)

≤ 2N NσjP (Ej,Λj
; Br(x0 + zj)) + Λj

(
|Ej,Λj

| − |Ẽj |
)

≤ σj

(
2N N2ω

1
N

N − Λjc(N)rN
)

< 0

for j large, as Λj → ∞. This contradicts the minimality of Ej,Λj
, thus proving (4.3).

Step 3: We finally show the last part of the statement. Assume now R ≥ R0 and v > 0

and let E a minimizer for the problem defining IC,R v1/N (v). From (4.3) it follows that

P (v− 1
N E; R

N \ v− 1
N C) ≤ P (F ; R

N \ v− 1
N C) + Λ0|F∆v− 1

N E| for all F ⊂ BR \ v− 1
N C.

Appealing to Lemma 2.1, the conclusions of which do not depend on R and v−1/N C, we 

obtain c0(N) > 0 and r0 depending only on N, Λ0 and thus only on N , such that for 

every connected component E′ of the open set v−1/N E and x ∈ ∂E′,

|E′ ∩ Br(x)| ≥ c0rN ∀0 < r ≤ r0 . (4.9)

Since |v−1/N E| = 1, this implies the existence of I0 ∈ N such that the number of 

connected components of v−1/NE is at most I0. Moreover, the density estimate (4.9)
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also implies by a standard argument the existence of d0 such that diam (E′) ≤ d0 for 

any component E′. Finally, the estimate (4.4) follows from the Λ-minimality property 

(4.3) by a standard first variation argument. �

We now prove a semicontinuity property of the exterior isoperimetric profile with 

respect to the Kuratowski convergence of the set C.

Lemma 4.2. Let {Cn} be a sequence of convex bodies converging in the Kuratowski sense 

to a convex body C. Then for all v > 0 we have

lim sup
n

ICn
(v) ≤ IC(v) .

Proof. Without loss of generality we may assume that 0 ∈ int(C). Let IC,R be the 

constrained exterior isoperimetric profile defined in (4.1). For any ε > 0 sufficiently 

small let E ⊂ BR \ C be a minimizer of the problem defining IC,R((1 + ε)N v). By the 

local Hausdorff convergence we have that

C ∩ BR ⊂ (1 + ε)Cn ∩ BR ,

for n large enough. Set En := E \ (1 + ε)Cn and observe that

|En| → |E| −
∣∣E ∩ (1 + ε)C

∣∣ = (1 + ε)N v −
∣∣E ∩ (1 + ε)C

∣∣ .

We now let Fn := En ∪ Brn
(xn), with Brn

(xn) a small ball in RN \ (Cn ∪ BR) such that 

|Fn| = (1 + ε)N v. Then |Brn
(xn)| = O(ε) and thus

lim sup
n

I(1+ε)Cn
((1 + ε)N v) ≤ lim sup

n
P (Fn; R

N \ (1 + ε)Cn)

= lim sup
n

P (En; R
N \ (1 + ε)Cn) + O(ε(N−1)/N )

≤ P (E; R
N \ C) + O(ε(N−1)/N )

= IC,R((1 + ε)N v) + O(ε(N−1)/N ) .

We conclude the proof by observing that I(1+ε)Cn
((1 + ε)N v) = (1 + ε)N−1ICn

(v) and 

using Proposition 4.1 to let ε → 0 and then R → ∞. �

Lemma 4.3. Let C ⊂ R
N be a convex body and let H be any half space. If dim C∞ ≥ N −1, 

then IC = IH .

Proof. In what follows we denote by B′
r(x) the intersection Br(x) ∩{xN = 0}. We divide 

the proof in two steps.

Step 1: We start with the case d := dim C∞ = N − 1. Without loss of generality we 

may assume that C∞ ⊂ {xN = 0} and that e1 belongs to the relative interior of C∞. 
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Let C′ = C ∩ {xN = 0} and note that C∞ ⊂ C′. Therefore there exists r > 0 such 

that B′
2r(e1) ⊂ C∞. Consider now the sequence of balls B′

nr(ne1) and for any n denote 

by ϕn : B′
2nr(ne1) → [0, ∞) the concave function whose graph coincides with ∂C ∩(

B′
2nr(ne1) × [0, ∞)

)
. We claim that

1

n
max

{
ϕn(x′) : x′ ∈ B′

nr(ne1)
}

→ 0. (4.10)

In fact, if x′
n is the maximum point of ϕn in B′

nr(ne1) then, up to a subsequence,

(x′
n, ϕn(x′

n))√
|x′

n|2 + ϕn(x′
n)2

→ (y′, 0)

for some (y′, 0) ∈ C∞. Thus ϕn(x′
n)/|x′

n| → 0, hence (4.10) follows. Recall that by a well 

known property of concave functions, see for instance [5, Ch. I, Eq. (2.15)],

‖∇ϕn‖L∞(B′

n r
2

(ne1)) ≤ 2

nr
osc

B′
nr(ne1)

ϕn .

Thus, thanks to (4.10) we have that

‖∇ϕn‖L∞(B′

n r
2

(ne1)) → 0 . (4.11)

Therefore it is easily checked that the sets C −(ne1, ϕn(ne1)) converge in the Kuratowski 

sense, up to a subsequence, to a convex set K ⊂ {xN ≤ 0} such that ∂K ⊂ {xN = 0}. Let 

us now fix v > 0 and denote by rv the radius of a half ball of volume v. For every n let rn

be the radius of the ball centered at xn = (ne1, ϕn(ne1)) and such that |Brn
(xn) \C| = v. 

Then, recalling that by (4.11) the boundary of C − xn is flattening out, it follows that 

rn → rv and that P (Brn
(xn); RN \C) → IH(v). Hence, IC(v) ≤ IH(v), while the opposite 

inequality follows from Theorem 2.6.

Step 2: We assume now that d = N . Without loss of generality we may assume, up to a 

possible rotation and dilation that C∞ has a unique tangent plane {xN = 0} at e1 and 

that C∞ is contained in {xN ≥ 0}. Let us now fix κ > 0 so large that B′
1
κ

(e1) is contained 

in the projection of C∞ onto {xN = 0}. Consider the balls B′
n
κ

(ne1) and the functions 

ϕn : B′
n
κ

(ne1) → [−∞, +∞) defined as

ϕn(x′) = inf{t ∈ R : (x′, t) ∈ ∂C}.

Observe that for any x′ ∈ B′
n
κ

(ne1) the above infimum is finite. Indeed, if for some point 

x′ we had ϕn(x′) = −∞, then the half line {teN : t ≤ 0} would be contained in C∞, 

which is not possible. A similar argument shows also that if x′
n is the minimum point of 

ϕn on B′
n
κ

(ne1) then lim infn
ϕn(x′

n)
n > −∞. We claim that
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lim inf
n

ϕn(x′
n)

n
≥ 0. (4.12)

Indeed, assuming without loss of generality that the sequence 
(x′

n

n , 
ϕn(x′

n)
n

)
converges to 

some point y = (y′, yN ) ∈ R
n then necessarily y ∈ ∂C∞ and thus yN ≥ 0. Since ϕn is a 

convex function, as before we have

‖∇ϕn‖L∞(B′
n

2κ
(ne1)) ≤ 2κ

n
osc

B′
n
κ

(ne1)
ϕn =

2κ

n
(ϕn(y′

n) − ϕn(x′
n)), (4.13)

where y′
n is the maximum point of ϕn on B′

n
κ

(ne1). Observe that the point 
( y′

n

n , 
ϕn(y′

n)
n

)

lies below ∂C∞ and since 
y′

n

n ∈ B′
1
κ

(e1) we have

ϕn(y′
n)

n
≤ sup

x′∈B′
1
κ

(e1)

min
{

t : (x′, t) ∈ ∂C∞

}
≤ o

( 1

κ

)
,

where the last inequality follows from the fact {xN = 0} is tangent to C∞ at e1. Therefore, 

recalling (4.12) and (4.13) we get that

‖∇ϕn‖L∞(B′
n

2κ
(ne1)) ≤ κo

( 1

κ

)
.

Fix R > 0. From the previous estimate we have that for all κ > 0

lim sup
n

‖∇ϕn‖L∞(B′
R(ne1)) ≤ lim sup

n
‖∇ϕn‖L∞(B′

n
2κ

(ne1)) ≤ κo
( 1

κ

)
,

hence for all R > 0

lim
n

‖∇ϕn‖L∞(B′
R(ne1)) = 0.

Then conclusion then follows exactly as in the final part of Step 1. �

We are finally ready to prove Theorem 1.1.

Proof of Theorem 1.1. It suffices to prove that if d∗(C) ≥ N − 1, then IC ≡ IH , and that 

if d∗(C) ≤ N − 2, then IC(v) v(1−N)/N → Nω
1/N
N as v → ∞.

If d∗(C) ≥ N − 1, by definition there exists a sequence {xn} ⊂ C, λn → 0+, such 

that λn(C − xn) → Kmax in the Kuratowski sense, with dim Kmax = d∗(C) ≥ N − 1. Up 

to a subsequence, we may also assume that C − xn → K for some convex body K. In 

particular, since for any λ > 0 and n sufficiently large

λn(C − xn) ⊂ λ(C − xn) → λK,
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we have that Kmax ⊂ λK for every λ > 0, and thus Kmax ⊂ K∞. Therefore dim K∞ ≥
N − 1. In turn, by Lemma 4.3 we have that IK = IH . Hence, the lower semicontinuity 

property stated in Lemma 4.2 for all v > 0 we have that IC(v) ≤ IK(v) = IH(v), while 

the opposite inequality follows by the isoperimetric inequality (2.4).

Assume now d∗(C) ≤ N − 2. Without loss of generality we may assume 0 ∈ ∂C. Given 

any diverging sequence vn → +∞, it will be enough to show that

lim inf
n

IC(vn)

v
N−1

N
n

≥ Nω
1
N

N . (4.14)

Without loss of generality we may assume that the above lim inf is a limit. By Proposi-

tion 4.1, we may find Λ0 > 0 and Rn → +∞ such that

lim
n

IC,Rn
(vn)

v
N−1

N
n

= lim
n

IC(vn)

v
N−1

N
n

, (4.15)

and

IC,Rn
(vn)

v
N−1

N
n

= I
v

−
1
N

n C,v
−

1
N

n Rn

(1)

= min
{

P (E; R
N \ v

− 1
N

n C) + Λ0

∣∣|E| − 1
∣∣ : E ⊂ v

− 1
N

n

(
BRn

\ C
)}

.

(4.16)

Let En be a minimizer of (4.16). Again by Proposition 4.1, passing possibly to a not 

relabeled subsequence, there exist κ ∈ N and d0 > 0 such that for n sufficiently large 

each En has κ connected components En,i and each of them has diameter less than d0. 

We claim that for all i = 1, . . . , κ

P (En,i; ∂(v
− 1

N
n C)) → 0. (4.17)

To this aim fix i and assume P (En,i; ∂(v
− 1

N
n C)) � 0. Then we may find xn,i ∈ v

− 1
N

n C such 

that En,i ⊂ Bd0
(xn,i). Up to a subsequence, we have v

− 1
N

n C − xn,i → Ki with dim Ki <

N − 1. Hence, for any ε > 0 and n large enough, setting (Ki)ε := {x : dist(x, Ki) ≤ ε}, 

we have

P (En,i − xn,i; ∂(v
− 1

N
n C − xn,i)) ≤ HN−1(Bd0

∩ ∂(v
− 1

N
n C − xn,i))

≤ P (Bd0
∩ (v

− 1
N

n C − xn,i)) ≤ P (Bd0
∩ (Ki)ε) ,

where the last inequality follows from the containment Bd0
∩(v

− 1
N

n C −xn,i) ⊂ Bd0
∩(Ki)ε

(holding for n large by Kuratowski convergence) and the fact that both sets are convex. 

Since P (Bd0
∩ (Ki)ε) → 0 as ε → 0, (4.17) follows.
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In turn, by the isoperimetric inequality,

IC,Rn
(vn)

v
N−1

N
n

= P (En; R
N \v

− 1
N

n C) = P (En)−P (En; ∂(v
− 1

N
n C)) ≥ Nω

1
N

N −P (En; ∂(v
− 1

N
n C))

and (4.14) then follows, recalling (4.15) and (4.17). This concludes the proof of the 

theorem. �

Corollary 4.4. Let C be a strictly convex body with d∗(C) ≥ N − 1. Then, for every v > 0

the relative isoperimetric problem (1.1) does not admit a solution.

Proof. By Theorem 1.1, we have IC(v) = IH(v). On the other hand, by the characteri-

zation of the equality case in Theorem 2.6, taking into account that C is strictly convex, 

we have P (E; RN \ C) > IH(v) for all sets E ⊂ R
N \ C, with |E| = v. �

Remark 4.5 (Minimizers and generalized minimizers). Note that if C is a convex cylinder, 

then there exists a minimizer for the problem defining IC(v) for all v > 0. Indeed, by 

Proposition 4.1 any minimizer ER of IC,Rv1/N (v) for R ≥ R0 has at most I0 connected 

components of diameter at most d0v1/N . Letting R → ∞ and availing ourselves of the 

translation invariance outside a cylinder and the convergence of IC,R v1/N to IC(v), we 

see that up to a subsequence and translations, the ER’s converge to a minimizer E of 

IC(v) as R → ∞. The veracity of (4.3) among any F ⊂⊂ R
N \ C follows from noticing 

that for any BR(0) containing ER ∪ F (4.3) is satisfied by ER and then passing to the 

limit as R → ∞.

Finally, we remark that for general convex sets C one could prove the existence of 

generalized minimizers for the problem IC(v) in the following sense: Let ER be as before, 

with R → +∞, and pick zR ∈ ER. Then, up to a subsequence, we may assume that 

ER − zR → E∞ in L1 and C − zR → K∞ in the Kuratowski sense, with K∞ being a 

(possibly lower dimensional) convex cylinder, see [10, Lemma 3.1]. It could be possible 

to show that E∞ is a minimizer for the “asymptotic problem” IK∞
(v). The set E∞ can 

be regarded as a generalized minimizer for IC(v) capturing the behavior of (suitable) 

minimizing sequences. Note that d∗(K∞) ≤ d∗(C).

5. The order of isoperimetric residue for unbounded convex bodies with asymptotic 

codimension larger than 2

The main goal of this section is providing a proof of Theorem 1.3. In fact, we shall 

prove various other results that seem potentially useful for future investigations too. 

Specifically, as already explained in the introduction and as indicated by [12] for the 

case d∗(C) = 0, the question of understanding the behavior of RC(v) as v → ∞ is closely 

related to the description of minimizers of IC(v) as v → ∞. Since such minimizers may 

fail to exist, here we explore the idea of using minimizers of the constrained isoperimetric 

problems IC,R v1/N already used in the previous section. In particular, in the following 
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lemmas, we obtain basic information on the shape of such minimizers; see, in particular, 

Theorem 5.2 and Proposition 5.5.

Before moving forward with the above program we introduce some additional notation 

and terminology. In the following we denote by c(N, C) a positive constant depending 

only on C and N whose value may change from line to line or even within the same line. 

Moreover, given a set of finite perimeter E, with v = |E|, we denote the isoperimetric 

deficit and the Fraenkel asymmetry of E by

δiso(E) :=
P (E)

P (B(v))
− 1, A(E) := inf

x∈RN

|E∆B(v)(x)|
v

, (5.1)

respectively. Finally, in this section, if A and B are positive quantities associated with a 

fixed convex body C, by

A � B

we mean that there exists a constant c(N, C) > 0 such that A ≤ c(N, C)B.

Lemma 5.1 (Estimate from above by convex cylinders). Let N ≥ 3, C ⊂ R
N be a closed 

convex body with 1 ≤ d∗(C) ≤ N − 2, Z be a d∗(C)-dimensional subspace as in Proposi-

tion 3.3, and D := cl (pZ⊥(C)). Then

IC(v) ≤ IZ+D(v) ∀v > 0 . (5.2)

Proof. Let z1 ∈ C∞. By (c), (d) and (e) of Proposition 3.3 we have that C −tz1 converges 

in the Kuratowski sense to span {z1} + D1 as t → +∞, where D1 = cl (pz⊥
1

(C)) and 

d∗(D1) = d∗(C) − 1. Then by Lemma 4.2 we have that

IC(v) ≤ Ispan {z1}+D1
(v) .

If d∗(C) = 1 we have proved the claim. Otherwise, we pick any z2 ∈ (D1)∞ and, arguing 

as above, we get that D1 − tz2 → span {z2} +D2 as t → +∞ in the Kuratowski sense, so 

that span {z1} + D1 − tz2 → span {z1, z2} + D2, where D2 = cl(pz⊥
2

(D1)) = cl(pZ⊥
2

(C))

and Z2 = span {z1, z2}. Now d∗(D2) = d∗(C) − 2 and again, by upper semicontinuity

IC(v) ≤ IZ2+D2
(v) .

The conclusion then follows by iterating the argument. �

The following theorem contains Theorem 1.3 as a particular case.

Theorem 5.2 (Lower and upper bounds for RC). Let N ≥ 3 and let C ⊂ R
N be a convex 

body with 1 ≤ d∗(C) ≤ N − 2. Assume without loss of generality that 0 ∈ ∂C. Then, 

there exists v0 ≥ 1 depending on C and N , such that for all R ≥ R0 =
(

2
ωN

)
1
N + 1 and 
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v ≥ v0, any minimizer E for IC,R v1/N (v) has one connected component and satisfies

diam(E) ≤ v
1
N d0, where d0 is as in Proposition 4.1. Moreover, if v ≥ v0

v
d∗(C)

2N � RC(v) � (diam C ∩ ∂E)d∗(C) � v
d∗(C)

N , (5.3)

and

A(E)2 ≤ c(N)δiso(E) �
(diam (C ∩ ∂E))d∗(C)

v(N−1)/N
� v− N−1−d∗(C)

N . (5.4)

Proof. Throughout the proof we will use the fact that, by Proposition 3.3, there exists 

a subspace Z of dimension d∗(C), such that cl (pZ⊥(C)) is bounded and

C ⊂ Z + cl (pZ⊥(C)) =: C̃ . (5.5)

For each v > 0, let us now choose R(v) ≥ R0 such that

IC,R(v)v1/N (v) ≤ IC(v) + 1

and denote by Ev ⊂ BR(v)v1/N \ C a minimizer for IC,R(v)v1/N (v). By Proposition 4.1

there exist I0 ∈ N and d0, depending only on N , such that the number of connected 

components of Ev is at most I0 and

diam (E′) ≤ d0v
1
N , (5.6)

for any connected component E′ of Ev. Given y ∈ R
N we shall write y = (y′, y⊥), with 

y′ ∈ Z and y⊥ ∈ Z⊥. Let E′ be a connected component of Ev touching ∂C and let 

x = (x′, x⊥) ∈ ∂E′ ∩ ∂C. Note that E′ ⊂ S = {y = (y′, y⊥) : |y′ − x′| ≤ diam (E′)}. 

Hence, using also (5.5), we have

P (E′; ∂C) ≤ P (C ∩ S) ≤ P (C̃ ∩ S) . (5.7)

Note that C̃∩S = B×cl (pZ⊥(C)), where B = {y′ ∈ Z : |y′−x′| ≤ diam (E′)}. Therefore, 

denoting by ∂Z and ∂Z⊥ the boundary relative to Z and Z⊥, respectively,

P (C̃ ∩ S) ≤ c(d∗(C), N)
(

Hd∗(C)(B)HN−d∗(C)−1
(
∂Z⊥(pZ⊥(C))

)

+ Hd∗(C)−1(∂ZB)HN−d∗(C)
(
(pZ⊥(C)

))

�
(
diam (E′)d∗(C) + diam (E′)d∗(C)−1

)
� v

d∗(C)
N ,

(5.8)

provided that v ≥ 1, where in the last inequality we used (5.6). From this estimate, 

(5.7) and the fact that there are at most I0 connected components, we have P (Ev; ∂C) �

v
d∗(C)

N . In turn, this implies
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Nω
1
N

N v
N−1

N ≤ P (Ev) = P (Ev; R
N \ C) + P (Ev; ∂C)

≤ IC(v) + 1 + c(C, N)v
d∗(C)

N (5.9)

≤ Nω
1
N

N v
N−1

N + c(C, N)v
d∗(C)

N .

Now we show that up to increasing the value of v0 obtained above, any minimizer E for 

IC,R v1/N (v) with R ≥ R0 has one connected component. By the isoperimetric inequality, 

v−1/N E = ∪I0
i=1Ei satisfies

Nω
1
N

N

I0∑

i=1

|Ei|
N−1

N ≤
I0∑

i=1

P (Ei) ≤ Nω
1
N

N + O
(
v− N−1−d∗(C)

N

)
, (5.10)

where the Ei’s are the connected components of v−1/NE, 
∑I0

i=1 |Ei| = 1 and the last 

inequality follows arguing as in (5.9).2 But for all i, |Ei| ≥ c0rN
0 , where r0 is as in 

Proposition 4.1, and so by the concavity of t 
→ t(N−1)/N , I0 ≥ 2 is impossible for large 

enough v. Therefore, recalling (5.7) and (5.8), and arguing as in (5.9) we have

Nω
1
N

N v
N−1

N ≤ P (Ev) = P (Ev; R
N \ C) + P (Ev; ∂C)

≤ IC(v) + 1 + O
(
(diam (C ∩ ∂E))d∗(C)

)
.

Hence, the last two inequalities in (5.3) follow from the above inequality and (5.6). 

In turn, (5.4) follows from these inequalities and from the quantitative isoperimetric 

inequality proved in [8].

We now prove the first inequality in (5.3). By Lemma 5.1 it suffices to estimate RC

from below when C is a convex cylinder of the form Z + D, with D ⊂ Z⊥ bounded and 

Z a subspace of dimension d∗(C). With no loss of generality we may assume that Z =

{x ∈ R
N : x = (x1, . . . , xd∗(C), 0 . . . , 0)} and that the cube Q := [−α, α]N−d∗(C) ⊂ ri D.

In the following we will denote a point in R
N as x = (x′, y′, xN ), where x′ ∈ Z, 

y′ = (xd∗(C)+1, . . . , xN−1). We will simply attach a large ball to Z + D, utilizing Q to 

bound from below RZ+D(v). For every r, consider the ball Br(−reN ). By the choice of 

Q, we estimate

HN−1(∂Br(−reN ) ∩ (Z + D)) ≥ HN−1
(

Br(−reN ) ∩
(
Z × [−α, α]N−1−d∗(C) × {−α}

))

=

∫

[−α,α]N−1−d∗(C)

dy′

∫

{x′∈Z: |x′|2+|y′|2f2rα−α2}

dx′ (5.11)

≥ c(N, d∗(C))αN−1−d∗(C)(αr)
d∗(C)

2

2 Note indeed that (5.9) holds with IC(v) + 1 replaced by IC,R v1/N (v) and with Ev any minimizer for the 
problem defining IC,R v1/N (v), provided R g R0.
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for r sufficiently large. By a similar argument we may estimate

ωN rN − c(N, C)r
d∗(C)

2 diam (D)N−d∗(C) ≤ vr := |Br(−reN ) \ C| ≤ ωN rN . (5.12)

Up to changing the constant c(N, C) if necessary, we combine (5.11) and (5.12) to obtain

IC(vr) ≤ P (Br(−reN ); R
N \ C) ≤ NωN rN−1 − c(N, C)r

d∗(C)
2

≤ NωN

(
vr

ωN
+ c(N, C)r

d∗(C)
2

) N−1
N

− c(N, C)r
d∗(C)

2

≤ Nω
1
N

N v
N−1

N
r − c(N, C)v

d∗(C)
2N

r

for large enough r, where all the constants above may change from line to line. Since 

RC(vr) = Nω
1
N

N v
N−1

N
r − IC(vr), we have proven the lower bound in (5.3). �

In the next lemma we complement the upper bound given in (5.2) by a corresponding 

lower bound.

Lemma 5.3 (Estimate from below by convex cylinders). Let N ≥ 3, C ⊂ R
N be a closed 

convex body with 1 ≤ d∗(C) ≤ N − 2, and Z be a d∗(C)-dimensional subspace as in 

Proposition 3.3 with D := cl (pZ⊥(C)). Then there exist v0 > 0 and c(N, C) such that

IZ+D(v) − c(N, C)v
d∗(C)−1

N ≤ IC(v) ∀v ≥ v0 . (5.13)

In particular,

0 ≤ RC(v) − RZ+D(v) � v
d∗(C)−1

N ∀v ≥ v0 . (5.14)

Proof. By Theorem 5.2 (and assuming without loss of generality 0 ∈ ∂C), given v ≥ v0

and R ≥ R0 there exists a connected minimizer Ev of the problem defining IC,R v1/N (v)

such that diam Ev ≤ d0v
1
N . By the containment of C in Z + D, we may write

P (Ev; R
N \ C) ≥ P (Ev; R

N \ (Z + D)) . (5.15)

Now by the diameter bound on Ev and boundedness of D, we know that

|Ev \ (Z + D)| ≥ |Ev \ C| − |Ev ∩ (Z + D)|
≥ v − c(N, C)(diam Ev)d∗(C)(diam D)N−d∗(C)

≥ v − cv
d∗(C)

N ≥ v0 ,

(5.16)

where c = c(N, C) > 0, provided v is sufficiently large.
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Recall now that by Proposition 4.1 for a.e. t ∈ (v − cv
d∗(C)

N , v) and for R sufficiently 

large, we have that |I ′
Z+D,R v1/N (t)| ≤ Λ0t− 1

N . Thus,

0 ≤ IZ+D,R v1/N (v) − IZ+D,R v1/N (v − cv
d∗(C)

N ) ≤ Λ0(N)

v∫

v−cv
d∗(C)

N

t− 1
N dt

≤ c(N, C)v
d∗(C)−1

N . (5.17)

Combining (5.15) with (5.17), and taking into account (5.16), we get

IC,R v1/N (v) ≥ P (Ev; R
N \ (Z + D))

≥ IZ+D,R v1/N (v − cv
d∗(C)

N )

≥ IZ+D,R v1/N (v) − c(N, C)v
d∗(C)−1

N .

Letting R → ∞, we conclude (5.13). Finally, (5.14) follows at once from (5.13) and 

(5.2). �

Remark 5.4. Note that by the above lemma, if d∗(C) = 1, then the behavior of the 

residue RC is determined, up to a constant, by the residue Rspan z+D, D = cl(pz⊥(C)), 

with z being any point of C∞. In particular, in the physical case N = 3, we can reduce 

the study of isoperimetric residues to the case of convex cylinders.

We conclude with the following proposition, which provides an estimate on the prox-

imity to balls of large volume isoperimetric sets. For simplicity we assume C to be a 

convex cylinder, as in this case we can ensure the existence of minimizers for the relative 

isoperimetric problem (see Remark 4.5). Given two compact sets K1, K2, we denote here 

by

hd (K1, K2) = max
{

max
x∈K1

dist (x, K2), max
x∈K1

dist (x, K1)
}

,

their Hausdorff distance.

Proposition 5.5 (Uniform convergence to balls). Let 1 ≤ k ≤ N − 2 and let C = Z + D, 

with Z a k-dimensional subspace and D ⊂ Z⊥ a compact (N − k)-dimensional convex 

set. Then there exists v1 = v1(N, C) > 0 such that if E is a minimizer for the problem 

defining IC(v), with v ≥ v1, and if the ball B(v)(x0) is optimal for the definition (5.1) of 

A(E), then

hd (∂E \ C, ∂B(v)(x0))

v1/N
�

(diam C ∩ ∂E)k/(2N)

v(N−1)/(2N2)
� v−(N−1−k)/(2N2) . (5.18)
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Remark 5.6. It should be noted that for general convex sets C, with 1 ≤ d∗(C) ≤ N − 2, 

the conclusion of Proposition 5.5 applies to the generalized minimizers introduced in 

Remark 4.5, with k = d∗(C).

Proof of Proposition 5.5. Let v ≥ v0, where v0 is from Theorem 5.2, so that any mini-

mizer E is connected. Recall also that by Proposition 4.1

P (E; R
N \ C) ≤ P (F ; R

N \ C) + Λ0v− 1
N

∣∣|F | − |E|
∣∣ ∀F ⊂ R

N \ C .

In turn, this implies by Lemma 2.1 together with a rescaling argument (see also the proof 

of Proposition 4.1) that

min {|E ∩ Br(x)|, |Br(x) \ E|} ≥ c0rN for all 0 < r ≤ r0v
1
N , (5.19)

for a suitable r0 = r0(N) > 0. Suppose now that for some x ∈ cl(∂E \ C),

h := hd (∂E \ C, ∂B(v)(x0)) = dist (x, ∂B(v)(x0)) > 0 ; (5.20)

we will handle the other case for computing h in (5.24). Then Bh(x) ∩ ∂B(v)(x0) = ∅, so 

due to (5.19) and the quantitative isoperimetric inequality, we get

C(N)
√

δiso(E) ≥ |E∆B(v)(x0)|
v

≥ c0
min{h, r0v1/N }N

v
. (5.21)

On the other hand, since d∗(C) = k, (5.4) reads

δiso(E) �
(diam C ∩ ∂E)k

v(N−1)/N
� v−(N−1−k)/N , (5.22)

in which case the minimum in (5.21) must be achieved by h if v ≥ v1 and we choose 

v1 ≥ v0 large enough. Combining (5.21) and (5.22), we arrive at

h ≤ C(N)δ
1/(2N)
iso (E)v1/N � v1/N (diam C ∩ ∂E)k/(2N)

v(N−1)/(2N2)
. (5.23)

Since diam E ≤ d0v1/N by (5.6), dividing (5.23) by v1/N yields (5.18) in the case that 

(5.20) holds. Conversely, if there exists x ∈ ∂B(v)(x0) such that

h := hd (∂E \ C, ∂B(v)(x0)) = dist (x, ∂E \ C) > 0 , (5.24)

then either Bh(x) ⊂ E or Bh(x) ⊂ R
N \ E. An analogous argument as in the previous 

case leads again to (5.23) and thus to (5.18). �

Remark 5.7. Improved estimates on the Hausdorff distance of ∂E to the large ball could 

be used to determine an upper bound for RC(v). In a nutshell, one would need to prove 
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Lemma 5.5 with ∂E in (5.18) instead of ∂E \ C. Let us explain why these estimates 

should hold and then how the argument would go. Assume for simplicity C = Z + D

with dim Z = k = d∗(C) ≤ N − 2, dim D = N − d∗(C) and D ⊂ Z⊥. The estimate (5.18)

with ∂E would hold if we knew for example that minimizers E never “envelop” C; that 

is, there are no slices Cz = C ∩ (z +D), with z ∈ Z, such that ∂Cz ⊂ ∂E. If this were true 

(and it seems like it should be - why should a minimizer envelop the obstacle?), then 

every point in ∂E would be close to a point in ∂E \ C and thus (5.18) would hold with 

∂E. Thus we would have

hd (∂E, ∂B(v)(x0))

v1/N
�

(diam C ∩ ∂E)d∗(C)/(2N)

v(N−1)/(2N2)
.

Setting rv = (v/ωN )1/N and h = hd (∂E, ∂B(v)(x0)),

∂E ∩ C ⊂ ∂E ⊂ Brv+h(x0) \ Brv−h(x0) . (5.25)

From the Pythagorean theorem we know that the longest line segment contained in 

Brv+h(x0)\Brv−h(x0) has length bounded by 4
√

rvh. Therefore, (5.25) and (5.18) imply 

that for v ≥ v1

diam (C ∩ ∂E) �
√

rh �

√
(diam C ∩ ∂E)d∗(C)/(2N)

v(N−1)/(2N2)
v2/N .

Rearranging this, we find

diam (C ∩ ∂E) � v
3N+1)

N(4N−d∗(C)) .

Recalling the upper bound in (5.3), the above estimate would lead to the improved upper 

bound

RC(v) � v
(3N+1)d∗(C)

N(4N−d∗(C)) .

Note that (3N+1)d∗(C)
N(4N−d∗(C)) < d∗(C)

N . Lastly, we remark that this argument is predicated on 

detailed geometric information on minimizers. Based on [12], it stands to reason that any 

such a resolution of minimizers and their energies would require a ε-regularity criterion 

tailored to the cylindrical geometry of C = Z + D. In [12], the idea is that, for large 

volumes, the compact set outside which one is solving an isoperimetric problem is so small 

relative to the length scale v1/N set by the minimizer that it functions like an isolated 

singularity of the bounded mean curvature hypersurface ∂E. Here this role would instead 

be played by C, which, when the volume is large, acts as the k-dimensional subspace Z.
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