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Abstract

We obtain a full resolution result for minimizers in the exterior isoperimetric
problem with respect to a compact obstacle in the large volume regime v — 0.
This is achieved by the study of a Plateau-type problem with a free boundary (both
on the compact obstacle and at infinity), which is used to identify the first obstacle-
dependent term (called isoperimetric residue) in the energy expansion, as v — 00,
of the exterior isoperimetric problem. A crucial tool in the analysis of isoperimetric
residues is a new “mesoscale flatness criterion” for hypersurfaces with bounded
mean curvature, which we obtain as a development of ideas originating in the

theory of minimal surfaces with isolated singularities.
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1. Introduction

1.1. Overview

Given a compact set W C Rt (n > 1), we consider the classical exterior
isoperimetric problem associated to W, namely,

Yw(v) = inf {P(E; Q) : ECQ=R"\w,|E| =v}, v>0, (LD

in the large volume regime v — oo. Here | E| denotes the volume (Lebesgue mea-
sure) of E, and P(E; 2) the (distributional) perimeter of E relative to €2, so that
P(E; Q) = H"(2N I E) whenever d E is locally Lipschitz. Relative isoperimetric
problems are well-known for their analytical [28, Sections 6.4-6.6] and geometric
[6, Chapter V] relevance. They are also important in physical applications: be-
yond the obvious example of capillarity theory [19], exterior isoperimetry at large
volumes provides an elegant approach to the Huisken—Yau theorem in general rel-
ativity, see [15].

When v — oo, we expect minimizers E, in (1.1) to closely resemble balls of
volume v. Indeed, by minimality and isoperimetry, denoting by B*)(x) the ball of
center x and volume v, and with B®") = B®)(0), we find that

Yw)

T 42

Additional information can be obtained by combining (1.2) with quantitative isoperime-
try [22,23]:if 0 < |E| < oo, then

(M)z}.

P(E) > P(B“E‘)){l +e(m) inf -

xeRn+l1

(1.3)

The combination of (1.2) and (1.3) shows that minimizers E, in Yy (v) are close
in L'-distance to balls. Based on that, a somehow classical argument exploiting the
local regularity theory of perimeter minimizers shows the existence of vy > 0 and
of a function Ro(v) — 0%, Ro(v) v!/®*D — 00 as v — oo, both depending on
W, such that, if E, is a minimizer of (1.1) with v > vy, then (see Fig. 1)

(0Ey) \ Bg,yl/tn C @ C'-small normal graph over aB™ (x),
for some x € R™ with |x| = (v/wp1) "D 40!y as v — oo;
(1.4)

here w,, stands for the volume of the unit ball in R™, B, (x) is the ball of center x and
radius  in R"*!, and B, = B,(0). The picture of the situation offered by (1.2) and
(1.4) is thus incomplete under one important aspect: it offers no information related
to the specific “obstacle” W under consideration—in other words, two different
obstacles are completely unrecognizable from (1.2) and (1.4) alone.

The first step to obtain obstacle-dependent information on vy is studying LI]OC-
subsequential limits F of exterior isoperimetric sets E, as v — 00. Since the mean
curvature of 9E, has order v=1/@tD a5 v — o0 in Q, each 9F is easily seen
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(OEy) \ By (o) v1/(n41)

Fig. 1. Quantitative isoperimetry gives no information on how W affects ¥y (v) for v large

to be a minimal surface in Q2. A finer analysis leads to establish a more useful
characterization of such limits F* as minimizers in a “Plateau’s problem with free
boundary on the obstacle and at infinity”, whose negative is precisely defined in
(1.10) below and denoted by R(W). We call R(W) the isoperimetric residue of
W because it captures the “residual effect” of W in (1.2), as expressed by the limit
identity

lim Yw) — P(B™) = —R(W). (1.5)

V—>00

The study of the geometric information about W stored in R (W) is particularly in-
teresting: roughly, R (W) is close to an n-dimensional sectional area of W, although
its precise value is elusively determined by the behavior of certain “plane-like” min-
imal surfaces with free boundary on W. The proof of (1.5) itself requires proving
a blowdown result for such exterior minimal surfaces, and then extracting sharp
decay information towards hyperplane blowdown limits. In particular, in the pro-
cess of proving (1.5), we shall prove the existence of a positive Ry (depending on
n and W only) such that for every maximizer F of R(W), (d F)\Bg, is the graph
of a smooth solution to the minimal surfaces equation. An application of Allard’s
regularity theorem [3] leads then to complement (1.4) with the following “local”
resolution formula: for every S > Rj and large v in terms of n, W and S,

if E, minimizes (1.1), then (3E,) N (Bs \ Bg,) C a C'-small
normal graph over 8 F, where F' is optimal for the isoperimetric
residue R(W) of W. (1.6)

Interestingly, this already fine analysis gives no information on d £, in the mesoscale
region B Ro(v) v!/(+1) \ Bs between the resolution formulas (1.4) and (1.6). To address
this issue, we are compelled to develop what we have called a mesoscale flatness
criterion for hypersurfaces with bounded mean curvature. This kind of statement
is qualitatively novel with respect to the flatness criteria typically used in the study
of blowups and blowdowns of minimal surfaces—although it is clearly related to
those tools at the mere technical level—and holds promise for applications to other
geometric variational problems. In the study of the exterior isoperimetric problem,
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it allows us to prove the existence of positive constants vy and R, depending on n
and W only, such that if v > vg and E, is a minimizer of ¥y (v), then

(DEy) N (BRl VTSN BRZ) C a C'-small normal graph over 0 F,
where F is optimal for the isoperimetric residue R(W) of W. (1.7)

The key difference between (1.6) and (1.7) is that the domain of resolution given
in (1.7) overlaps with that of (1.4): indeed, Ry(v) — 0T as v — oo implies that
Rov!/0+D < Ry v!/@+D for vy > vg. As a by-product of this overlapping and
of the graphicality of dF outside of Bg,, we deduce that boundaries of exterior
isoperimetric sets, outside of Bg,, are diffeomorphic to n-dimensional disks. Fi-
nally, when n < 6, and maximizers F' of R(W) have locally smooth boundaries in
2, (1.7) can be propagated up to the obstacle itself; see Remark 1.7 below.

Concerning the rest of this introduction: In Sect. 1.2 we present our analysis
of isoperimetric residues, see Theorem 1.1. In Sect. 1.3 we gather all our results
concerning exterior isoperimetric sets with large volumes, see Theorem 1.6. Finally,
we present the mesoscale flatness criterion in Sect. 1.4 and the organization of the
paper in Sect. 1.5.

1.2. Isoperimetric Residues
To define R(W) we introduce the class
_7.'

of those pairs (F, v) with v € S" (= the unit sphere of R"t1) and F ¢ R**! a
set of locally finite perimeter in Q (i.e., P(F; Q') < oo forevery Q' CC ), with
boundary 9 F contained in a slab around v = {x : x - v = 0} and projecting fully
over v itself (see Remark 1.5 below): i.e., for some «, 8 € R,

BFC{x:a<x-v<,B}, (1.8)
P,L(3F) =v = {x:x-v =0}, (1.9)

where p,1(x) =x —(x -v)v, x € R**1 In correspondence to W compact, we
define the residual perimeter functional, resy : 7 — R U {£o0}, by

resw (F, v) = Rﬁ wp R" — P(F;CR\ W), (F,v)eF,
— 00

where Cy = {x € R"*! : |p,L(x)] < R} denotes the (unbounded) cylinder of
radius R with axis along v—and where the limsup is actually a monotone decreasing
limit thanks to (1.8) and (1.9) (see (4.7) below for a proof). For a reasonably “well-
behaved” F, e.g. if F is the graph of a Lipschitz function over v, w, R" is
the (obstacle-independent) leading order term of the expansion of P(F; Cy \ W)
as R — oo, while resy (F, v) is expected to capture the first obstacle-dependent
“residual perimeter” contribution of P(F; C} \ W) as R — oo. The isoperimetric
residue of W is then defined by maximizing resy over JF, so that

R(W)= sup resw(F,v); (1.10)
(Fv)eF
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Fig. 2. If (F, v) € F then 0 F is contained in a slab around vl and is such that 3 F has full
projection over vl Only the behavior of d F' outside W matters in computing resy (F, v).
The perimeter of F in C"R \ W (depicted as a bold line) is compared to w, R" (=perimeter
of a half-space orthogonal to v in Cye); the corresponding “residual” perimeter as R — oo,
isresy (F, v)

see Fig.2. Clearly R(A W) = A" R(W) if A > 0, and R(W) is trapped between the
areas of the largest hyperplane section and directional projection of W, see (1.11)
below. In the simple case when n = 1 and W is connected, R(W) = diam (W) by
(1.17) and (1.18) below, although, in general, R (W) does not seem to admit a simple
characterization, and itis finely tuned to the near-to-the-obstacle behavior of “plane-
like” minimal surfaces with free boundary on W. Our first main result collects these
(and other) properties of isoperimetric residues and of their maximizers.

Theorem 1.1. (Isoperimetric residues) If W C R"*! is compact, then there are Ry
and Cy positive and depending on W with the following property.

(): If SW) = sup{H"(W N II) : Il is a hyperplane in R**t'} and P(W) =
sup{H" (p,. (W)) : v € S*}, then we have

S(W) < R(W) <P(W). (1.11)

(ii): The family Max[R(W)] of maximizers of R(W) is non-empty. If (F,v) €
Max[R(W)], then F is a perimeter minimizer with free boundary in Q =
RN\ W, pe.

P(F;QNB)<P(G;QNB), VFAG CC B, Baball; (1.12)

and if R(W) > 0, then 0 F is contained in the smallest slab {x : o« < x -v < B}
containing W, and there are a,b € R, ¢ € v+ with max{|a|, |b|, |c|} < Co and
f e C®Wr) such that

(8F)\C§32 = {x+f(x)v:x € vJ‘,lxl > Rz}, (1.13)
f(x)=a, (n=1)
b c-X Co
‘f(x)—(a+W+W)‘EW, (n>2)

max {|x|""1 V£ x " [VEF)I) < Co,  Vx e vt x| > Ro.(1.14)
(iii): At fixed diameter, isoperimetric residues are maximized by balls, i.e.

R(W) < wy(diam W/2)" = R(cl(Bdiam w/2)) , (1.15)
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Q\ (IT\ Bg/2)

y ~ Bayz
4 \
;W :
I ' 1
\ W /
N 7

Fig. 3. The obstacle W (depicted in grey) is obtained by removing a cylinder C¢" *1 from a
ball Bj/> withd /2 > r.In this way d = diam (W) and By > is the only ball such that (1.17)
can hold. Hyperplanes IT satisfying (1.17) are exactly those passing through the center of
B2, and intersecting W on a (n — 1)-dimensional sphere of radius d/2. For every such I,
Q\ (IT\ Bg/2) has exactly one unbounded connected component, and (1.18) does not hold

where cl (X) denotes topological closure of X C R"*. Moreover; if equality holds
in (1.15) and (F, v) € Max[R(W)], then (1.14) holds with b = 0 and ¢ = 0, and
setting T1 = {y Ty-v = a}, we have

(@F)\ W =TT\ cl (Bagiamw/2(x)) , (1.16)

forsome x € I1. Finally, equality holds in (1.15) if and only if there are a hyperplane
IT and a point x € I1 such that

0 Bdiamwy2(x) NIT C W, (1.17)
i.e., W contains an (n — 1)-dimensional sphere of diameter diam (W), and

Q\ (I \ ¢l (Bgiam w/2(x)))
has exactly two unbounded connected components. (1.18)

Remark 1.2. The assumption R(W) > 0 is quite weak: indeed, if R(W) = 0, then
W is purely " -unrectifiable; see Proposition C.1 in the Appendix. For the role
of the topological condition (1.18); see Fig. 3.

Remark 1.3. (Regularity of isoperimetric residues) In the physical dimension n =
2, and provided 2 has boundary of class C L1 maximizers of R(W) are C L1/2_
regular up to the obstacle, and smooth away from it. More generally, condition
(1.12) implies that M = cl (2 N 9 F) is a smooth hypersurface with boundary in
Q\ X, where X is a closed set such that ¥ N Q is empty if | < n < 6, is locally
discrete in 2 if n = 7, and is locally H"~7_rectifiable in 2 if n > 8; see, e.g. [27,
Part III], [30]. Of course, by (1.13), ¥\ Bg, = ¥ in every dimension. Moreover,
justifying the initial claim concerning the case n = 2, if we assume that €2 is an
open set with C!'!-boundary, then M is a C'!/2-hypersurface with boundary in
R"*+1\ ¥, with boundary contained in 82, ¥ N L is H"~3+¢-negligible for every
& > 0,and Young’s law v -vg = Oholdson (M NAJQ2)\ X;see, e.g. [13,14,24,25].

Remark 1.4. An interesting open direction is finding additional geometric informa-
tion on R(W), e.g. in the class of convex obstacles. It would also be interesting
to quantify more precisely in terms of W some of the other quantities appearing in
Theorem 1.1. For instance, it could be that Ry < C(n)diam W.
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Remark 1.5. (Normalization of competitors) We adopt the convention that any set
of locally finite perimeter F in €2 open is tacitly modified on and by a set of zero
Lebesgue measure so to entail QN dF = QN cl (3*F), where 0* F is the reduced
boundary of F' in 2; see [27, Proposition 12.19]. Under this normalization, local
perimeter minimality conditions like (1.12) (or (3.1) below) imply that F N Q is
open in Rt gee, e.g. [13, Lemma 2.16].

1.3. Resolution of Exterior Isoperimetric Sets

Denoting the family of minimizers of vy (v) by Min[yrw (v)] and the annulus
Bg\cl B, by A for 0 < r < s, our second main result is as follows:

Theorem 1.6. (Resolution of exterior isoperimetric sets) If W € R"*+! is compact,
then Min[yry (v)] # @ Yv > 0. Moreover, if R(W) > 0, then

lim yw() — P(BY) = —R(W), (1.19)
v—>00
and, depending on n and W only, there are vy, Co, Ry, and Ry positive, and
Ro(v) with Ry(v) — 0T, Ro(v) v/® ) 5 o0 as v — oo, such that, if E, €

Min[yrw (v)] and v > vy, then:
(): There exist x € R"" and u € C*®(dBWY) such that

|E,ABY ()| Co
v - pl/R2@+D]’
(aEv) \ BRO(U)UI/(nJrl)
y—x
= {y —+ Ul/(n-l-l) u(m) UB@)(X)(y) Lye aB(U)(x)} \ BR()(v)Ul/(”‘*'l)’
(121)

(1.20)

where, for any G C R" with locally finite perimeter, vg is the outer unit normal
to G;
(ii): There exist (F,v) € Max[R(W)] and f € C*°((0F) \ Bg,) with

o1/ @) Ry vl/ 4D

={y+ O vr(y):y €dF} N Ay . (122

(iii): (0Ey) \ Bg, is diffeomorphic to an n-dimensional disk;
@iv): Finally, with (x, u) as in (1.21) and (F, v, f) as in (1.22),

(0E,) N AR

. |x| 1 X

lim sup H — ‘ v——1 [lullcrgpm } =0,
V=00 gy eMinyy () 0D g D x| O

lim sup ”f”Cl(BMﬂaF) = 0, VM > R2.

V%0 gy eMin[yrw (v)]

Remark 1.7. (Resolution up to the obstacle) By Remark 1.3 and a covering argu-
ment, if n < 6,5 > 0,and v > vo(n, W, ), then (1.22) holds with BRl VTSI
Is(W) in place of Bg, ,i/m+1) \ Br,, where I5(W) is the open §-neighborhood of
W. Similarly, when 92 € C! and n = 2 (and thus N d F is regular up to the
obstacle), we can find vo (depending on n and W only) such that (1.22) holds with
BR] o1/a+1) M €2 in place of BR| o1/a+1) \ BR,, that is, graphicality over 0 F holds up
to the obstacle itself.
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Remark 1.8. If W is convex and J is an half-space, then ¥w(v) > ¥ (v) for
every v > 0, with equality for v > 0 if and only if 0W contains a flat facet
supporting an half-ball of volume v; see [5,21]. Since ¥;(v) = P(B(”))/Zl/("+1)
and Yy (v) — P(BW) — —R(W) as v — oo, the bound ¥y (v) > ¥y (v) is far
from optimal if v is large. Are there stronger global bounds than {¥rw > v; on
convex obstacles? Similarly, it would be interesting to quantify the convergence
towards R(W) in (1.19), or even that of 9 E, towards d B®") and 3 F (where (1.20)
should not to be sharp).

1.4. The Mesoscale Flatness Criterion

We work with with hypersurfaces M whose mean curvature is bounded by
A > 0in an annulus By/a \ Bgr, R € (0, 1/A). Even without information on
M inside Bg (where M could have a non-trivial boundary, or topology, etc.) the
classical proof of the monotonicity formula can be adapted to show the monotone
increasing characteronr € (R, 1/A) of

H'(MN (B \Br) R My
OmrA(r) = ( - ) +— / ud?’-l !
r nr' Junog X
" H" (M N (B, \ B
+A/ (M0 (By\ Br)) dp, (1.23)
R p"
T

(here x™™ = proj 7. m (X)); moreover, if © y g A is constantover (a, b) C (R, 1/A),
then M N (B \ B,) is a cone. Since the constant density value corresponding to
M = H\Bg, H an hyperplane through the origin, is w, (as a result of a double
cancellation which also involves the “boundary term” in ® g\ g, r,0), We consider

the area deficit

SM R AT =wy — Oy ra(r), re(R,1/A), (1.24)

which defines a decreasing quantity on (R, 1/A). Here we use the term “deficit”,
rather than the more usual term “excess”, since 837, g, o does not necessarily have
non-negative sign (which is one of the crucial property of “excess quantities” typ-
ically used in e-regularity theorems, see, e.g., [27, Lemma 22.11]). Recalling that
AS = By \ cl(B,)if s > r > 0, we are now ready to state the following “smooth
version” of our mesoscale flatness criterion (see Theorem 2.1 below for the varifold
version):

Theorem 1.9. (Mesoscale flatness criterion (smooth version)) Ifn > 2, T" > 0, and
o > 0, then there are M and & positive and depending on n, I" and o only, with
the following property. Let A > 0, R € (0, 1/A), and M be a smooth hypersurface
with mean curvature bounded by A in A}Q/ A, and with

H'(M N (B, \ B
H''(MNdBg) <T R, sup (M0 By \ R))gr. (1.25)
pe(R,1/A) o"
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If there is s > O such that

€0
max{Mp, 64} R < s < A (1.26)
and
16m,R.A(s/8)] < €0, (1.27)
and if, setting,
s . €0
Ry = sup{p Z3" Sm,r.A(P) = —80}, Sy = min [R*, X}’
we have R, > 4s (and thus Sy, > 4s), then
/16 /16
MﬂAf/gg ={x+f)vg:xe K}ﬂAf/gg ,
sup {Ix| 7 I f Ol +[VFx)|:x e K} < Cn)o (1.28)

for a hyperplane K with 0 € K and unit normal vk, and for f € C'(K).

Remark 1.10. (Structure of the statement) The first condition in (1.26) implicitly
requires R to be sufficiently small in terms of 1/A, as it introduces a mesoscale s
which is both small with respect to 1/ A and large with respect to R. The condition
in (1.27) expresses the flatness of M at the mesoscale s in terms of its area deficit.
The final key assumption, R, > 4 s, expresses the requirement that the area deficit
does not decrease too abruptly, and stays above —egg at least up to the scale 4 s.
Under these assumptions, graphicality with respect to a hyperplane K is inferred
on an annulus whose lower radius s /32 has the order of the mesoscale s, and whose
upper radius S, /16 can be as large as the decay of the area deficit allows (potentially
up to g9/16 A if R, = 00), but in any case not too large with respect to 1/A.

Remark 1.11. (Relationship to other flatness criteria) If M is a hypersurface con-
taining the origin, so that, formally speaking, R = 0, and the tangent cone of M
there is a plane, Theorem 1 reduces to Allard’s theorem [3]. Similarly, if A = 0
and the exterior minimal hypersurface M has a planar tangent cone at infinity, we
recover the exterior blow-down results stated in [35,36]. In particular, although the
motivation for Theorem 1 comes from scenarios where both R and A are positive, it
can also be viewed as a general framework containing as special cases the blow-up
and blow-down flatness criteria for hypersurfaces with planar tangent cones.

Remark 1.12. (Sharpness of the statement) The statement is sharp in the sense that
for a surface “with bounded mean curvature and non-trivial topology inside a hole”,
flatness can only be established on a mesoscale which is both large with respect to
the size of the hole and small with respect to the size of the inverse mean curvature.
An example is provided by unduloids M, with waist size ¢ and mean curvature n in
R™+1: see Fig. 4. A “half-period” of M, is the graph {x + f.(x) e,41 : x € R, & <
|x] < Rg} of

folx) = /M{ - )2 — 1}_1/2dr, £ <|x| <Re, (129)

— g 4 gh— 1
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Fig. 4. A half-period of an unduloid with mean curvature n and waist size ¢ in R+ By
(1.29), the flatness of M, is no smaller than O(e2"=1/) and is exactly O(g2(r=D/ny on

an annulus sitting in the mesoscale O(e”~1/7)_ This mesoscale is both very large with
respect to waist size €, and very small with respect to the size of the inverse mean curvature,
which is order one

where ¢ and R, are the only solutions of 7" ~! = r* —g" 4+ ¢"~ 1. Clearly f; solves
—div (V fe/v/1+ |V fe|?) = n with f, = 0, [Vf.| = +oo0 on {|x| = €}, and
|V fel = +ooon {|x| = R.}, where R, = 1 — 0(&"~1); moreover, min |V fel is
achieved at r = O(e~ /") and if r € (a e~ D/" pe®=D/") for some b > a >
0, then |V f.| = Oa,b(sz(”’])/”). Thus, the horizontal flatness of M, is no smaller
than O(e2"~1/") and has that exact order on a scale which is both very large with
respect to the hole (¢ =D/ > &) and very small with respect to the inverse mean
curvature (¢~ D/n < 1),

Remark 1.13. (On the application to vy (v)) Exterior isoperimetric sets E, with
large volume v have small constant mean curvature of order A = Ag(n, W)/ pl/(D)
We will work with “holes” of size R = R3(n, W), for some Rj3 sufficiently large
with respect to the radius R; appearing in Theorem 1.1—(ii), and determined through
the sharp decay rates (1.14). The decay properties of F towards {x : x - v = a}
when (F,v) is a maximizer of R(W), the Cl—proximity of 9E to 3B (x) for
|x| ~ (a),,+1/v)l/(”+1), and the C!-proximity of d E to 3 F for some optimal (F, v)
on bounded annuli of the form Ai? are used in checking that (1.25) holds with
I' =T'(n, W), that E, is flat in the sense of (1.27), and, most importantly, that the
area deficit 6y g, o of M = (0E,)\ B, lies above —gp up to scale r = O/ (+1h)y
(which is the key information to deduce R, &~ 1/A), and thus obtain overlapping
domains of resolutions in terms of d B™ (x) and 9 F.

Remark 1.14. While Theorem 1.9 seems clearly applicable to other problems, there
are situations where one may need to develop considerably finer “mesoscale flatness
criteria”. For example, consider the problem of “resolving” almost CMC boundaries
undergoing bubbling [9,11, 12]. When the oscillation of the mean curvature around
aconstant A is small, such boundaries are close to finite unions of mutually tangent
spheres of radius 7/ A, and can be covered by C'-small normal graphs over such
spheres away from their tangency points up to distance /A, with ¢ = ¢(n), and
provided the mean curvature oscillation is small in terms of e. For propagating
flatness up to a distance directly related to the oscillation of the mean curvature,
one would need a version of Theorem 1.9 for “double” spherical graphs; in the
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setting of blowup/blowdown theorems, this would be similar to passing to the
harder case of multiplicity larger than one.

Remark 1.15. (Comparison with blowup/blowdown results) From the technical
viewpoint, Theorem 1.9 fits into the framework set up by Allard and Almgren
in [1] for the study of blowups and blowdowns of minimal surfaces with tangent
integrable cones. At the same time, as exemplified by Remark 1.12, Theorem 1.9
really points in a different direction, since it pertains to situations where neither
blowup or blowdown limits make sense. Another interesting point is that, in [1],
the area deficit 8p7 g A is considered with a sign, non-positive for blowups, and
non-negative for blowdowns, see [1, Theorem 5.9(4), Theorem 9.6(4)]. A key in-
sight here is that for hypersurfaces where the deficit changes sign, graphicality
obtained through small negative (or positive) deficit nevertheless persists past the
scale where 6,7 g, A vanishes, and possibly much farther depending on the surface
in question; this is actually crucial for obtaining overlapping domains of resolutions
in statements like (1.4) and (1.7).

Remark 1.16. (Extension to general minimal cones) Proving Theorem 1.9 in higher
codimension and with arbitrary integrable minimal cones should be possible with
essentially the same proof presented here. We do not pursue this extension because,
first, only the case of hypersurfaces and hyperplanes is needed in studying ¥y (v);
and, second, in going for generality, one should work in the framework set up
by Simon in [33,35,37], which, at variance with the simpler Allard—Almgren’s
framework used here, allows one to dispense with the integrability assumption.
In this direction, we notice that Theorem 1.9 with A = 0 and R, = +o0ois a
blowdown result for exterior minimal surfaces (see also Theorem 2.1—(ii), (iii)). A
blowdown result for exterior minimal surfaces is outside the scope of [1, Theorem
9.6] which pertains to entire minimal surfaces, but it is claimed, with a sketch of
proof, on [35, Page 269] as a modification of [35, Theorem 5.5, m < 0]. It should
be mentioned that, to cover the case of exterior minimal surfaces, an additional
term of the form C f 5 (@ (#))? should be added on the right side of assumption [35,
5.3, m < 0]. This additional term seems not to cause difficulties with the rest of
the arguments leading to [35, Theorem 5.5, m < 0]. Thus Simon’s approach, in
addition to giving the blowdown analysis of exterior minimal surfaces, should also
be viable for generalizing our mesoscale flatness criterion.

1.5. Organization of the Paper

In Sect.2 we prove Theorem 1.9 (actually, its generalization to varifolds, i.e.
Theorem 2.1). In Sect. 3 we prove those parts of Theorem 1.6 which follow simply
by quantitative isoperimetry (i.e., they do not require isoperimetric residues nor our
mesoscale flatness analysis); see Theorem 3.1. Section4 is devoted to the study of
isoperimetric residues and of their maximizers, and contains the proof Theorem
1.1. We also present there a statement, repeatedly used in our analysis, which
summarizes some results from [32]; see Proposition 4.1. Finally, in Sect.5, we
prove the energy expansion (1.19) and those parts of Theorem 1.6 left out in Sect. 3
(i.e., statements (ii, iii, iv)). This final Section is, from a certain viewpoint, the
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most interesting part of the paper: indeed, it is only the detailed examination of
those arguments that clearly illustrates the degree of fine tuning of the preliminary
analysis of exterior isoperimetric sets and of maximizers of isoperimetric residues
which is needed in order to allow for the application of the mesoscale flatness
criterion.

2. A Mesoscale Flatness Criterion for Varifolds

In Sect. 2.1 we introduce the class V,, (A, R, S) of varifolds used to reformulate
Theorem 1.9, see Theorem 2.1. In Sects. 2.2-2.3 we present two reparametrization
lemmas (2.3, 2.5) and some “energy estimates” (Theorem 2.6) for spherical graphs;
in Sect. 2.4 we state the monotonicity formula in V,(A, R, S) and some energy
estimates involving the monotonicity gap; in Sect. 2.5, we prove Theorem 2.1.

2.1. Statement of the Criterion

Given an n-dimensional integer rectifiable varifold V = var (M, 6) in R"*!,
defined by alocally H" -rectifiable set M, and by a multiplicity functionf : M — N
(see [34]), we denote by | V| = 6 H"LM the weight of V, and by 8V the first
variation of V, so that §V(X) = [ div! X(x)dV(x,T) = [,, div¥ X (x) 0 dH}
for every X € CH(R"*!; R"*1) Given S > R > 0 and A > 0, we consider the
family

Vn(A, Rv S)’

of those n-dimensional integral varifolds V with spt V. c R"*!\ Bg and
SV (X) =/X.Hd||V||+/X.uCV°d bdy, VX e Cl!(Bg;R™,

holds for a Radon measure bdy in R”*! supported in 3 Bg, and Borel vector fields
H : R — R with |H| < A and v§? : 9Bg — R""! with [1$°] = 1. We
let M,(A,R,S) ={V € V,(A,R,S) : V =var (M, 1) for M smooth}, that is,
M C R\ By is a smooth hypersurface with boundary in Ai, bdry (M) C dBg,
and |Hy | < A.IfV € M, (A, R, S), then H is the mean curvature vector of M,
bdy = H"!Lbdry (M), and vy? is the outer unit conormal to M along d Bg. Given
V e V,(A, R, S), we define

VII(B,\ B 1 "IVI(B,\ B
Oy rAlr) = M _ _n/x 1$d bdy +A/ Mdp'
r nr R P
Oy g A(r) is increasing for r € (R, S) (Theorem 2.7—(i) below), and equal to

(1.23) when V € M, (A, R, S). The area deficit of V is then defined as in (1.24),
while given a hyperplane H in R"*! with 0 € H we call the quantity

ly - vul
/ wr(M*dIVIy, o) = arctn( ) ,
As pPaYl

the angular flatness of V on the annulus A} = By \ cl (B,) with respect to H.
(See (2.8) for the notation concerning H.)
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Theorem 2.1. (Mesoscale flatness criterion) Ifn > 2, T' > 0, and o > O then there

are positive constants My and €, depending on n, I' and o only, with the property
that: A >0, R € (0,1/A), V € V,(A, R, 1/A),

IVICBy \ Br) _ -

Ibdy [[(9Bg) < T R"", . Q@
0e(R,1/A) "
and, for some s > 0, we have that

£0 Mo, 64} R 2.2)
_— > > .
A s > max{Mp, ,
[8v,r,A(s/8)] < €o, (2.3)
R, := sup {p > % 28v,RA(P) = —80] >4s, 24

then
@(): if S, = min{Ry, g0/A} < o0, then there is an hyperplane K C R"*T! with
0eKandu e C'((KNS") x (s/32, S,/16)) with

5./16 @ ~+ u(r, w) vg
(sptV)n As/gz = [r —
V1+u(, w)

sup {|u| VKOS g a,u|} <Cn)o: (2.5)
(KNS (s/32.5./16)

‘0 e KNS r e (5/32,5./16)]

(i): if A =0and Sy ro > —eo on (s/8, 00), then vy gro > 0 on (s/8, 00), (2.5)
holds with S, = oo, and one has decay estimates, continuous in the radius, of the
form

S\« ) S
sv.ko=C) (1) svro(5).  vr> 7. 2.6)
1 5 S\ Ky Ky
7 [, ekdvisca L (;) sv,R,o(g), S B eX)

for some a(n) € (0, 1).

Remark 2.2. In Theorem 2.1, graphicality is formulated in terms of the notion
of spherical graph (see Sect. 2.2) which is more natural than the usual notion
of “cylindrical graph” in setting up the iteration procedure behind Theorem 2.1.
Spherical graphicality in terms of a C!-small u as in (2.5) translates into cylin-
drical graphicality in terms of f as in (1.28) with f(x)/|x| ~ u(|x|, %) and
Vifx) — (f(x)/I1x]) ~ |x| 9, u(|x|, x) for x # 0 and X = x/|x|; see, in par-
ticular, Lemma B.1 in “Appendix B”.

2.2. Spherical Graphs

We start setting up some notation. We denote by

H
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the family of the oriented hyperplanes H C R"*! with 0 € H, so that for any

H € 'H a unit normal vector vy to H is defined. Given H € H, we set
Sy=HNS", py:R*'>H, qu:R'T"'>H, (2.8)

for the equatorial sphere defined by H on S” and for the orthogonal projections of
R onto H and onto H+ = {t vy : t € R}. We set

X,(Zp) ={ueC' @y :lulciz, <o}, o >0.
Clearly there is 09 = op(n) > O such thatif H € H and u € &5,(Xp), then

o+ u(w)vy
J1+u)?’

defines a diffeomorphism of ¥ into an hypersurface Xy (1) C S”, namely

a)EEH,

Ju(w) =

© tu@ve 'a)eZH}. (2.9)

J1+u?

We call ¥y (u) a spherical graph over Xy. Exploiting the fact that Xy is a
minimal hypersurface in S” and that if {r;}; is a local orthonormal frame on Xy
then vy - Vi 7; = 0, a second variation computation (see, e.g., [16, Lemma 2.1])
gives, foru € X, (Zp),

Eu() = fu(En) = |

H NSy W) —nw, — 1 / IVEH > — (n — 1)u2( §C(n)o/ u® + |VEH |2,
2 ZH Zy

(where nw, = H" ' (Zy) = H" 1(ZH(0))). We recall that u € L*(Zp) is

a unit norm Jacobi field of Xy (i.e., a zero eigenvector of AZH 4 (n—11Id
with unit L2(Zp)-norm) if and only if there is 7 € S* with 7 - vy = 0 and
u(w) = con) (- 1) (w € Tpy) for co(n) = (n/H" 1 (SpH))'/2. We denote by
E %H the orthogonal projection operator of L2(£2) onto the span of the Jacobi fields
of X . The following lemma provides a way to reparameterize spherical graphs
over equatorial spheres so that the projection over Jacobi fields is annihilated.

Lemma 2.3. There exist constants Co, €9 and oy, depending on the dimension n
only, with the following properties:

():ifH,K € H, lvg —vk| <& < &g, andu € Xy (Xpg) for o < oy, then the map
TMK : Xy — Xk defined by

TX (@) = Pk (fu(w))  pxko+u(®)pkvH wey.

P& (fu(@)|  Ipkw + u(@)pxvul’

is a diffeomorphism between Ly and Xk, and v,f : Xx — Rdefined by

qk (ful@)) vk - (@+u(@)vy)

K (1K () = = ,
Pk (fu(@)| |pxo + u(w)pkxval

weXy, (2.10)

is such that

v e Xewy 016)(Zk), Tu@) = g k), (2.11)
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R M LY (7R R T B CA )
Tk SH Zy

(ii): if H € Hand u € Xy, (X ), then there exist K € H with vy — vk| < &9 and
v € Xcyo,(Zk) such that

2H(bt) = Xk (v), (2.13)
w1 =0, (2.14)
vk —vul? < Co(n) / (ES., 1u])’, (2.15)

ke

Remark 2.4. It may seem unnecessary to present a detailed proof of Lemma 2.3,
as we are about to do, given that, when Xy is replaced by a generic integrable
minimal surface X in S", similar statements are found in the first four sections of
[1, Chapter 5]. However, two of those statements, namely [1, 5.3(4), 5.3(5)], seem
not to be correct; and the issue requires clarification, since those statements are
used in the iteration arguments for the blowup/blowdown theorems [1, Theorem
5.9/Theorem 9.6]; see, e.g., the second displayed chain of inequalities on [1, Page
254]. To explain this issue we momentarily adopt the notation of [1]. In [I,
Chapter 5] they consider a family of minimal surfaces {M;};cy in S” obtained as
diffeomorphic images of a minimal surface M = M. The parameter ¢ ranges in
an open ball U C R/, where j is the dimension of the space of Jacobi fields of M.
Given a vector field Z in §", defined on and normal to M;, they denote by F;(Z)
the diffeomorphism of M, into S” obtained by combining Z with the exponential
map of S"” (up to lower than second order corrections in Z, this is equivalent to
taking the graph of Z over M,, and then projecting it back on S”, which is what
we do, following [33], in (2.9)). Then, in [1, 5.2(2)], they define A, as the family
of those Z such that Image(F;(Z)) = Image(Fo(W)) for some vector field W
normal to M, and, given t,u € U and Z € A;, they define F} : A, — Ay,
as the map between such classes of normal vector fields with the property that
Image(F;(Z)) = Image(F,(F/'(Z))): in particular, F/(Z) is the vector field that
takes M, to the same surface to which Z takes M,. With this premise, in [1, 5.3(5)]
they say thatif r,u € U, and Z € A;, then

< Co(n) u’. (2.16)
P

I LC i B T @.17)
M, M; M,

for a constant C depending on M only. Testing this with Z = 0 (notice that
0 € A; by [1, 5.3(1)]) one finds F/'(0) = 0, and thus M; = Image(F;(0)) =
Image(F, (F}/(0))) = Image(F,(0)) = M,. In particular, M,, = M, for every
t,u € U, thatis, {M,},cy consists of a single surface, M itself. But this is never the
case since {M,};cy always contains, to the least, every sufficiently small rotation
of M in S§". An analogous problem is contained in [1, 5.3(4)]. Coming back to our
notation, the analogous estimate to (2.17) in our setting would mean that, for every
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H, K € H with [vk —vy| < gyandu € X, (Xp), v defined in (2.10) satisfies

[ el [ < cmmn - [, 2.18)
Xk ZH ZH
which again gives a contradiction if u = 0. A correct estimate, analogous in spirit
to (2.18) and still sufficiently precise to be used in iterations, is (2.12) in Lemma
2.3. There should be no obstruction! in adapting our proof to the more general
context of integrable cones, and then in using the resulting generalization of (2.12)
to implement the iterations needed in [1, Theorem 5.9, Theorem 9.6].

Proof of Lemma 2.3. The constants ¢y and op in the statement will be such that
oo = &0/ Cy for a sufficiently large dimension dependent constant C..
Step one: To prove statement (i), let H, K € H, |vg — vk| < & < & and
u € X;(Xy) with o < op. Setting (forw € Xy and x € R\ {0})

gh (@) =pxw+u(@) pxve.  Px) =x/lx|,
we have TX = ® o gK and, if u is identically 0,

Pxw
[Pk wl

&) =pro, Tfw = , YweXy.

By [pxkvul> =1— (g -vk)? <2(1 — (vg - vk)) = lvg — vk %,

K K
lg, — 8o | = lullpxval| < lullvg — vk,
|VEH oK _ EH oK) < |VEHY| vy — vk ).

Inparticular, |gX| > 1—0¢ &9 > 1/2, and since ® and V& are Lipschitz continuous
on {|x| > 1/2}, we find

max {[IgX — g5 iz ITF = T e, ) < C@ lluller s, lve — vkl -

(2.19)

Similarly, since w - vk = w - (vg — vy) for € X g, we find that

lg& —idlcis,) < C@) va —vkl, 1T —idlleig,, < CO) lvg — vkl
(2.20)

and we thus conclude that TMK is a diffeomorphism between £y and k. As a
consequence, the definition (2.10) of v,f is well-posed, and (2.11) immediately
follows (in particular, g (1) = X K(vf ) is deduced easily from (2.10) and (2.9)).
Finally, if we set FX (o) = vK(TK (0))? 7*# TX (w) (w € Tp), then

/ WKy? = / / vK (a)+MVH)) 77 TK () — i,
S Sy Kw)|

where, using again |w - vg| < |vyg — vk| for every w € Xy, we find

17T (0) =11 < Co ITS —idlcis,,) < CO) v — vkl

' At the time of publication of this paper, Allard has published a corrigendum to [1], see
[4].
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11— g8 @] < |1 = Ipkol?| + [Pk ve|u® + 2 ul Ipk v Pk o
< C(jva —vkl* +u?),

|k - (@ + wvg))? — |

< g o +u’ (1 — (g - vE)*) + 2 ul vy - vk | o - vk

< vk —vg?+2u? vg — vg| +2ul jvy — vk | < C (lvg — vg|* + 1)
and thus, (2.12), thanks to
|k - (@ 4+ uvp))? — u?|
|2

‘ (uf)z—/ uz(g 1JZH TK — 142 42 -
Sk S S 18

1 2 ) 2
+2 1 ol = Cn)(|lvg — vk~ + u“).
Sy 18 | PP

Step two: We prove (ii). If E%H[u] = (0, then we conclude with K = H, v = u.

We thus assume y2 = fEH (E%H[u])2 > 0, and pick an orthonormal basis {qﬁé_,}l’.l:l
of L2 () N{EY, = 0} with ES_[u] = y¢}{ andy = [g ugr # 0. This
corresponds to choosing an orthonormal basis {t},}!_, of H such that

Pp@) =comw -1y,  weZy,
for co(n) = (n/H"_l(EH))l/?. For each K € H with distg: (v, vk) < €0 we
define an orthonormal basis {7} }_, of K by parallel transport of {tj,}/ | C H =
T,,8" to K = T, S". The maps v > ' (v) := 7y, define an orthonormal frame
{t"};‘:1 of S" on the open set A = BES; (vg) = {v € " : distsn (v, vyg) < go}. We
denote by p 5 the rotation of R"*! which takes H into K by setting pg (t},) = 7,';.(
and p 5 (vyg) = vk. By the properties of parallel transport we have that

lof —Tdllcoc,) < Cn) disten (v, vk) < Cn) . 221)

Finally, we define an L(Z )-orthonormal basis {¢} }/_; of L?(Zg) N{EY = 0}

by setting ¢>§( (w) =co(n) w- r}'( (w € Xg), and correspondingly consider the map
v, : A — R” defined by setting

W, (v) = (/ vf(”)(t)}((v),...,/ vf(”)¢>}’((v)), Ve A,
ZKw) 2K )

where vf @) is well-defined for every v € A thanks to step one. We now claim the

existence of v, € A such that
U, (vy) =0. (2.22)

Before proving (2.22), we use it to deduce (2.13)—(2.16), thus finishing the proof
of (ii) and the lemma modulo (2.22). With K = K (v,) and v = vX we deduce

u

(2.13) from (2.11) and (2.14) from ¥, (v,) = 0. By (2.26) and (2.27), if n =
dists (vg, vy ), then

172
(/E (ES,[0)*) " = Iyl = 1%, i)] = 1%, (1) = W (0]
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1 -
_ (_—C(n) (eo+00>)’7 z %

d
= | [ 5 watm vt as| = (=

that is (2.15). Finally, (2.16) follows from (2.15) and (2.12).
Turning now towards proving (2.22), by the area formula, (2.10), and qx (v)[e] =
v - e, we find that

(ej - W)(v) := / vf(”) (M{(v) — / vf(v)(TuK(v)) ‘M((V)(TMK(U)) JZH TuK(v)
Zkw) P

Pk (w +uvy)

JEH TK(v)dHn_l,
IpK(w-l-MVH)I2> ! ¢

= co(n) v-(w+u vH)(,og(”)[rIj{] .
XH

so that (2.19) gives that

I, — Wollcia) < C(m)op,  where

ej . \IIO(U) = Co(n) \/E (V . Cl)) (pg(‘))[rl{[] . Pxw ) JEHI:|pLa)i| dHZ)_l

Ipxw|? Pk |
(2.23)
By definition of A and by (2.20) and (2.21),
j KWw),_j Prw b Pkw
sup sup ’t’wo—(p [t5]- )J ”[ ]‘SC(H)SO,
veAwesy | o pgof? Ipx ol
and thus [[Wo — Wyl c1(4) < C(n) (00 + €0), (2.24)

where W, : A — R" is defined by e; - W, (v) = co(n) fZH v - w) (‘L’}Q w)dH!

(v € A). Recalling that {t'}/_, is an orthonormal frame of " on A, with Vv =

Ti(v) = r}'((v) = pg(v)[r;,], we find that

ej VoW (v) = co(n) /2 (op " 1Th - ) (tfy - ) dHL",
ej - VoW (vy) = co(n) / (thy - @) (¢}, - ) dHET' = 8, /co(n).
Xy

By (2.21), (2.23) and (2.24) we conclude that

Wy — Willc1ay < C(n) (00 + €0), (2.25)

V90, —com) ™' Y ey @ lcoay < €V (00 +80).  (2.26)
j=1

Let us finally consider the map 2 : A x [0, 1] — R”,
h(, 1) =h(v) =t V() + (1 =) Y, (v), (v,1) € Ax[0,1],

which defines an homotopy between W, and ;. By (2.25) and (2.26) we see that
if v € 0A, that is, if dists» (v, vyg) = &g, then, denoting by [vy, v], the unit-speed
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length minimizing geodesic from vy to v, considering that [vy, v]; € A for every
s € (0, &9), and that S” is close to be flat in A, we find

€ g
)1 = | [ 2 b, w10 ds| = i om)

— C) (20 +00) ) 80 — C(m) 0 =

- 1 e
- (co(n) 2co(n)’

provided g = &g/ C is small enough with respect to &g (i.e., provided C, is large),
go is small in terms of ¢g, and where we have used W, (vy) = 0 and

%)l = Iy | = ]/Z ugh| = oo, (2.27)

todeduce |h; (vy)| < C(n) og. ThisprovesthatQ ¢ 9 h; (0 A) foreveryt € [0, 1],s0
that deg(h;, A, 0) is independent of 7 € [0, 1]. In particular, hp = W, and h| = W,
givedeg(W,, A, 0) = deg(¥,, A, 0) = 1, where we have used W, (vy) = O and the
fact that, up to decreasing the value of g9, W, is injective on A. By deg(¥,, A, 0) =
1, there is v, € A such that ¥, (v,) = 0, as claimed in (2.22). m]

2.3. Energy Estimates for Spherical Graphs Over Annuli

Given H € Hand 0 < r; < rp we let X;(Zpg, r1, r2) be the class of those
u € CH(Zy x (r1, r2)) such that, setting u, = u(-,r), one has u, € X, (Xpy) for
every r € (r1,rp) and |r d,u| < o on Xy x (r1,m). Ifu € X;(Xy, r1, r2), then
the spherical graph of u over A;? N H, given by

w u(w)v
@) ve 'wEEHJG(rl,Vz)},

VI+u?

is an hypersurface in A;2. It is useful to keep in mind that £ (0, r1,72) = {rw :
weX,re(,n)=HN Aif is a flat annular region of area w, (ry — r{), and
thatif o < o1 = o1(n), then

1
wl dH" < / "l < Cn) wiy dH" .
C(n) Zg(u,ry,ry) Zpx(ri,r2) Zg(u,ry,ry) (2.28)

Sat i) ={r

Lemma 2.5. There are €y, oo, Co positive, depending on n only, such that:
:ifH K € H,vg-vk > 0, lvg —vk| = ¢ < €9, u € Xo(Zpy,711,12),
and o < oy, then there is v € Xcyo+e)(XH, 11, 12) such that X (v, r1,1r2) =
Xy (u,ry, r).

(i): if H € H, u € X;y(Xp,r1,12), and (a,b) CC (r1,r2), then there exist
K eH, ve Xcyoo(2k,71,72), and ry € [a, b] such that

X, ri,r) =Xk, r1, ),
E%K(U’*) =0,
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ver — vk > < Co(n) min / (ES, Tu,l)’. (2.29)
b] Ty

pEla,

Moreover, for every r € (r1, ),
[ [ wr|=amf min [ wre [ w2] @so
Zk Sy pela.b] Jxy Sy

Proof. We prove statement (i). If [vy — vg| = ¢ < &y, since u, € X, (Xpy) for
every r € (r1,r2), by Lemma 2.3—(i) we see that 7, : ¥y — X,

T, (@) = [pg o + ur (@) vyl prlo + u (@) vyl ©e Ty, (2.31)
is a diffeomorphism between Xy and Xk, and v, : g — R,

vg - (0 + ur(w) vy)
(T = , XH 2.32
@) = e v @y O (2:32)

satisfies v, € X¢; (o4¢)(Zk), T (u,) = Xk (v,) forevery r € (r1, r2), and

@)= / w?| = co flon - vi?+ / w?}. (2.33)

Sinceu € Xg (Xy,r1,r2),and 7, and v, depend smoothly on u,, setting v(w, r) :=
vr(w) we have Xy (u,r1,rn) = g, r1,r) (by Xg(u,) = Xk (v,) for every
r € (r1,r2)), and v € X, (o+¢) (2, 71, 12) (Ir 0-v] < Co(o + ¢) is deduced by
differentiation in (2.31) and (2.32), and by |u,|, | 0,u,| < o).

Step two: We prove (ii). Let y = min,e[q,p) sz (EO):H [up])z, and let ry € [a, b]
be such that the minimum y is achieved atr = r,. If y = 0, then we set K = H
and v = u. If y > 0, then we apply Lemma 2.3—(ii) to u,, € Xy (Xp), and find
K € H with vk —vy| < g0 and vy, € X¢,5,(Xk) such that Xy (u,,) = Xk (vy,)
and

EY [v,]1=0, (2.34)

v — v l> < Co(n) /Z (E, Tu1)* = Com) v,

2 2
e [ .
o sy

Since v, = v(-, r4) for v constructed in step one starting from u, H and K, we
deduce (2.30) by (2.33) and (2.35), while (2.34) is (2.29). O

<Com) [ (us)* (2.35)
P

We will use two basic “energy estimates” for spherical graphs over annuli. To
streamline the application of these estimates to diadic families of annuli we consider
intervals (rq, ) and (73, r4) are (1, no)-related, meaning that

rp=ro(l4+n0), ri=ro(l=mn0), ra=ro(l+n, r3=ro(1—-n), (2.36)

for some 9 > n > 0, and with ro = (r1 + r2)/2 = (r3 + r4)/2; in particular,
(73, r4) is contained in, and concentric to, (r, 72). The case A = 0 of the following
statement is the codimension one, equatorial spheres case of [1, Lemma 7.14,
Theorem 7.15].
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Theorem 2.6. (Energy estimates for spherical graphs) If n > 2 and no > n > 0,
then there are oo = oo(n, no, n) and Co = Co(n, no, n) positive, with the following
property. If H € H, A > 0, andu € X;(Xy, r1, r2) is such that max{l, Ar}o <
oo and Xy (u, 1, ry) has mean curvature bounded by A in Aﬁ then, whenever
(r1, r2) and (r3, rq) are (n, no)-related as in (2.36),

Mt rsera) = W En )| = Co [ 07 )
X x(ri1,r2)
Moreover, if there is r € (r1, 172) S.1. EO):Hur = 0on Xy, then we also have
/ "t < C) A (7} =) + Co / (e 0pu).
Xy x(r3,ra) Xy x(ri,r2)

Proof. Since this proof is quite long and the arguments are not needed to understand
the rest of the paper, we postpone it to “Appendix A”. O

2.4. Monotonicity for Exterior Varifolds with Bounded Mean Curvature

The following theorem states the monotonicity of @y g A for V e V, (A, R, S),
and provides, when V corresponds to a spherical graph, a quantitative lower bound
for the gap in the associated monotonicity formula; the case A = 0, R = 0 is
contained in [1, Lemma 7.16, Theorem 7.17].

Theorem 2.7. (i): IfV € V,,(A, R, S), then
Ov.R.A is increasing on (R, S) .

(ii): There is oog(n) such that, if V. € V,(A, R, S) and, for some H € 'H, u €
Xy (2,11, 1) witho < og(n), and (r1, r2) C (R, S), we have
V corresponds to g (u, ry, ry) in A2 2.37)

ry?

then

/z PN duy)* < Cnyrl {®V,R,A(i’2) - ®V,R,A("1)}- (2.38)

Hx(r,r2)

(iii): Finally, given no > n > 0, there exist og and Cq depending on n, ng, and n
only, such that if the assumptions of part (i) and part (ii) hold and, in addition to
that, we also have max{l, Ar}o < oy and

Ir € (ri,r2) st EY uy =0on Sy, (2.39)
then, whenever (ry, rp) and (r3, r4) are (n, no)-related as in (2.36), we have
H (Zpg(u,r3,14)) — H"(ZH (0,73, 14))

< Corg {OvRa(2) = Oy R AlD + (A7) (240)
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Proof. We give details of the proof of (i) when V € M, (A, R, S) (whereas the
general case is addressed as in [34, Section 17]). By the coarea formula, the diver-
gence theorem and |H| < A, fora.e. p > R,

d |VI(Bp\Bp) _ 1 [ [|dH"~! nH"(M N (B, \ BR))
dp o" o" Junoas, |IxTM] ol
1 x|dH"! 1 X
= 7“”4 - . HdH"
" ImnaB, Xt PT IMN(Bp\BR) P
! {/ co n—1 / co n—1
B vig - xdH + vy - xdH }
o U mnas,M mraBg”
s ( k| |xTM|> n1
= 0" Junas, NxTM| x|
1 H'(M N (B, \ B
S / WO dH ! — A ( (n,o\ R))
" I mnaBg P
d 1 VI(B, \ B
=Mon(V, p) + — —— /x 1§ dbdy — A IVIItB, \ Br) (2.41)
dp np" o

where Mon(V, p) = (d/dp) pr\BR IxL 12 |x|7"=2d||V]. Since Mon(V, p) > 0,
this proves (i). Assuming now (2.37), a straightforward computation which we omit
(c.f. for example in [1, Lemma 3.5(6), Lemma 7.16]), we see that, under (2.37),

rn
Cnyrl / Mon(V, p)dp > / U 8,u)?,
r g x(r1.r2)
thus proving (ii). To prove (iii), we seta = ro (1 — (n+no)/2) and b = ro (1 4+ (n+
10)/2), so that (a, b) and (r3, r4) are (, (n+no)/2)-related, and (rq, r2) and (a, b)
are ((n+mno)/2, no)-related (in particular, (r3, r4) C (a, b) C (r1, r2)). By suitably
choosing oy in terms of n, n and ng, we can apply Theorem 2.6 with (r3, r4) and
(a, b), so to find (with C = C(n, ng, 1))

H ) = HEO ) <€ [l Al
Y g x(a,b)

<C [(Ab)2 " —a")+/

pl u2].
Xy x(a,b)

Thanks to (2.39) we can apply Theorem 2.6 with (a, b) and (r1, r2) to find

/ AR ek (O S G +/ o).
Sy x(a,b) g x(r1,r2)

We find (2.40) by (2.38) and (A b)? (b" — a") < (Ar2)? 1. O

2.5. Proof of the Mesoscale Flatness Criterion

As a final preliminary result to the proof of Theorem 2.1, we prove the fol-
lowing lemma, where Allard’s regularity theorem is combined with a compactness
argument to provide the basic graphicality criterion used throughout the iteration.
The statement should be compared to [1, Lemma 5.7].
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Lemma 2.8. (Graphicality lemma) Letn > 2. Foreveryo > 0,I" > 0, (A3, A4) CC
(A1, 22) CC (0,1), and (n1,n2) CC (0, 1), there are positive constants €| and
M, depending only on n, o, T', (A1, A2), (A3, A4), and (n1, 1n2), and &3 and M,
depending only on n, o, T', A1, and (n1, n2), with the following properties.
@A:IfA>0,Re(0,1/A), V € Vy(A, R, 1/A),

VI(B, \ B
Ibdy [(9BR) < T R, IVIBABR) (249
pe(R,1/A) po"
there exists r > 0 such that
max{M;, 64} R < r < %‘ (2.43)
v, R.A(M)] < e1, (2.44)
IVI(ALT) >0, (2.45)
and if, for some K € H, we have
1 2
— | wgd|V]=Zer, (2.46)
g
then there exists u € Xy (Xk, n1r, n2r) such that
V corresponds to Xg (u, nyr,nar) on AZ?;
(ii): If A, R, and V are as in (i), (2.42) holds, and there exists r such that
&
max(M, 64} R <r < . (2.47)
max{|dy g a(A1 1), 16V R A} < &2, (2.48)

then there exists K € Handu € Xy (X, n1 r, n2 r) such that

V corresponds to g (u, nir,n2r) on A2 .

Proof. Step one: As a preliminary, we first show that if V is a stationary, n-
dimensional, integer rectifiable varifold in B; such that

IVI(BY) <wn. sptVNAR CK, and sptVNAR #4¢, (2.49)

for some K € Hand 0 < B < 8> < 1,then V = var (K N By, 1|gnp,).
Let B/ € (B1, B2) and @1, ¢o € C®(R"*!: [0, 1]) be such that spto; C Bg,,
o1 By = 1, and ¢ + @2 = 1. As a consequence of (2.49) and the stationarity of

V in Bg,, for X € CL(R"!\(K N (Bg,\Bp)), we have

5(V L By)(X) = / div M (1 X) + div ¥ (g X) d]| V|
Bﬁ/

_ / div M (1 X) | V]| = .
Bﬁz
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Then by the convex hull property [34, Theorem 19.2], spt (V L Bg') C K. By the
constancy theorem [34, Theorem 41.1], V L Bg, = var (K N Bg,, 6) for some
constant 6. Furthermore, since V assigns non-trivial mass to Bg, by (2.49) and is
integer rectifiable, & > 1. Therefore 0 € spt|| V|, and the monotonicity formula
gives w, < lim,_ o+ [V|[(B)r~" < |[V|(B1) < wy. Thus V is a stationary,
n-dimensional, integer rectifiable varifold in By with constant area ratios w, and
sptV N Agf C K,soV =var (K N By, llgng,)-

Step two: We prove item (i) by contradiction. If it were false, we could find o > 0,
' > 0, (A3,A4) CC (A1, A2) CC (0, 1), (n1,m) C (0,1), with K; € H,
positive numbers R, A; < 1/R;, rj, and W; € V, (A, R, 1/A;) such that
IW1(A5s7) = 0, libdw, 1@Br,) < T RY, W;II(B, \ Br,) < T p" for ev-
ery p € (Rj,1/Aj), and p; = Rj/rj — 0,r;A; — 0, SWj,Rj,Aj(rj) — 0,
and ;" thrj\BMrj a)%(j d||W;|l — 0, but there is no u € Xo(Sk,,n1 7, M27})

with the property that W; corresponds to Xk, (u, n1rj, n27;) on AZ? :j Hence,
setting Vj = Wj/rj,nou € X;(Xg;, n1, n2) can exist such that V; corresponds to
EKj (u, n1, n2)on AZ?,despitethefactthateach V;ibelongstoV, (rj Aj, pj, 1/(rj Aj))
and satisfies

bdy.||[(0B,. Vil(B, \ B,
oAk > o, Pl@B) Vil By \ Bo) _ |
3 n—1 n
P pe(pj,1/(Ajrj)) p
. 2 _
jll)rr;omax {SVj,pj,rj Aj(l), /Alz wk; d||Vj||} =0. (2.50)

at

Clearly we can find K € ‘H such that, up to extracting subsequences, K; N B; —
K N By in LY(R"*1). Similarly, by (2.50), we can find an n-dimensional integer
rectifiable varifold V' such that V; — V as varifolds in B; \ {0}. Since the bound
on the distributional mean curvature of V; on By A rj)\B pj is rj Aj, and since
pj — 0t and riAj — 0™, it also follows that V is stationary in B; \ {0}, and
thus, by a standard argument and since n > 2, on By. By || V|| (Ai;‘) > 0, for every
J there is x; € Ai;‘ N spt V;, so that, up to extracting subsequences, x; — xg
for some xo € Zii Nspt V. By (A3, A4) CC (A1, X2), there is p > 0 such that
B, (x0) C Aif, hence

IIVII(AQT) = |[VI(By(x0)) = wn p" >0, 2.51)

thus proving V L Aif # (. By this last fact, by wg = 0 on (spt V) N Aif, and by
the constancy theorem [34, Theorem 41.1], we have

AP NsptV =AZNK.

At the same time, since [|bdy; [[(0B);) < Fp;z_l and || V;[[(Bp\By;) < T p"
forevery p € (pj, 1/(Ajrj)) D (p; 1), by (2.50),

L\WVill(B, \ By,
Vil (B \ p_,)dp

n

. Pj
@, =lim [|V;[|(Bi \ By,) — = 18V, [(8B,,) + Ajrj /
j—o00 n 0
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> |VI(B)—T lim (p}’ + Ajrj) = VI(B). (2.52)
j—o00

Since V is stationary in B and integer rectifiable, and since (2.51) and (2.52) imply
(2.49) with A} = By and A = B, the first step yields V = var (K N By, 1|gnp,)-
By Allard’s regularity theorem and by V; — V as j — oo we deduce the existence
of a sequence {u};, with u; € X(,_,.(EK, n1, n2) for some o; — 0 as j — oo,
such that V; corresponds to Xk (u, n1, 112) in A',ﬁ for j large enough. As soon as
J is large enough to give o; < o, we have reached a contradiction.

Step three: For item (ii), we again argue by contradiction. Should the lemma be
false, then we could find ¢ > 0, " > 0, A1 € (0, 1), (1, 1m2) C (0, 1), positive
numbers R, A; < 1/Rj, rj, and, by the same rescaling as in step two, V; €
Varj Aj, pj, 1/(rj Aj)) with

llbdv; 10 B,;) _ r sup IVill(Bp \ Bp,) <

n—1 -

r, (2.53)
I pepj 1/(Aj 1) Pl

. R;j
,hm max {pj = _]7 rj A]s |5Vj,pj,rj[\j(1)|s |8Vj,pj,rjAj()‘l)|} :()1
Jj—>00 I‘j

(2.54)

such that there exists nou € A, (X, 11, n2) with the property that V; corresponds
to X K; (u, n1, n2) on AZ? As in step two, we can find an n-dimensional integer
rectifiable varifold V= var (M, 0) such that V; — V as varifolds in B1\{0} and
V is stationary on Bj. If for some K € H, V = var (K N By, l|gnp,), then
using Allard’s theorem as in the proof of (i), we have a contradiction. So we prove
V =var (K N By, l|lgnp,)-

For every r € [A1, 1], using p; — 0t and riN; — 0" in conjunction with
(2.53), and then the monotonicity of 8\/_],,[)_/.,” A and (2.54), we have

- Vi1 (B, \ By))
lim |0, — ————

j—00 ri

= 1im |8y, p,r A, (r
/—>oo| V],pj,rjAJ( )|

< 1 {5 }:o-
= lim | max 18v;.05,r; 7; ()]

Thus the convergence V; — V and the monotonicity of ||V [|(B,)/r" yield
IVII(B) = wpr™ ¥re (b, 1) and [[V|(B1) = wy. (2.55)

By (2.55), VI_(Bl\EM) = var (C, 0¢c)(B; \EM ) for some locally H"-rectifiable
cone C C R"*! and zero homogeneous 6¢c : C — N. Now since the integer
rectifiable varifold cone var (C, 6¢) is stationary in By \ EM , it is stationary in
R**! by n > 2, and due to (2.55), it satisfies meBl Oc dH" = w,. Therefore
C = K for some K € H, and ¢ = 1. From the definition of C, it follows that

sptV N (B \B,,) CK. (2.56)

Finally, (2.55) and (2.56) give (2.49) with §; = A1, B2 = 1. The result of step one
then completes the proof that V' = var (K N By, 1{gnp,). O
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Proof of Theorem 2.1. The proof proceeds in four steps, which we outline here.
Precise statements can be found at the beginning of each step. First, we assume that
8y.r.a(s/8) = 0, and prove that C!-graphicality can be propagated from s/32 to
an upper radius S; /16 < S./16 as long as dy g A (S+) remains non-negative and
S+ < eo/A. This is then enough to prove the exterior blow-down result in part (ii)
of Theorem 2.1 in step two. In the third step, we argue that if §y g A (s/8) < 0, then
C!-graphicality can be propagated inwards from S, /2 down to s/32. The details
in this step are quite similar to the first, so we summarize them. Finally, the first
and third steps are combined in step four to conclude the proof Theorem 2.1-(i),
in which there are no sign restrictions on the deficit.

Step one: In this step, givenn > 2, I" > 0, and o0 > 0, we prove the existence of
go and My (specified below in (2.65) and (2.66), and depending on n, I', and o)
such that if (2.1), (2.2), (2.3) and (2.4) hold with gy and My, and in addition

0 <dy,ra(s/8) < &p, (2.57)

then there exist K € H and uy € X5 (Xk,, 5/32, §1/16) such that

54/16

V corresponds to X, (u,s/32, 54/16) on As/32 , (2.58)
where
s . 0]
Ry = max { sup [p > 3 20y r.A(P) > O],4s} , S84 =min HR+, X} >45.
(2.59)
We start by imposing some constraints on the constants &g and M. For the finite
set
J {(1 1) (2 1)}c{( ) 0} (2.60)
=1z z) (33 sm ino>n>0fp, .
36 33 no,Mn) Mo >N

we let o9 = og(n) be such that Lemma 2.5—(ii), Theorems 2.6, and 2.7—(ii), (iii)
hold for every (g, n) € J, Lemma 2.5—(i) holds for o < o9, and

oy < % for o1(n) as in (2.28), and Co(n) as in Lemma 2.5-(ii));  (2.61)
0

we shall henceforth assume, without loss of generality, that
o < 0p.

Moreover, for 1 and M as in Lemma 2.8—(i) and Cy as in Lemma 2.5, we let
, o 11 11 1 1
M()zmax {M1<ns_arv <_7_)7<_v_>5<_5_))5
2Cy 8 2 6 4 32°2

i (n 55T (5 5) () (33 2))

o o 11y /11y /11
8() =< min {81 (nv ) F7 (_7 _)7 (_7 _)s ( ) _)>7
2Cy 8 2 6 4 32°2

(g (D) G ) (D) o
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‘We also assume that

C(n.T)(e))"/? < min {80, 2%0} , (2.63)

where C(n, I') will be specified in (2.96)—(2.97), Cp is as in Lemma 2.5, and &g is
smaller than both of the n-dependent gy’s appearing in Lemmas 2.3 and 2.5. Lastly,
we choose & > 0 such that

7 < min{zico,,/gg)/wn], (2.64)

and then, for g7, M as in Lemma 2.8—(ii), we choose &y and M so that

1 1 1
= minfeg.e2(n.7. 0 2 (550 5)) ) 2.65
80_m1n{£0 e n, o (33 (2.65)
Mo > ma |M’M( _Fl(l 1))} (2.66)
X ) ) B 'y o'\ AR A . .
0= 0. M2\ T g \320 2
Let us now recall that, by assumption, V € V,, (A, R, 1/A) is such that
VI(B,\ B
Ibdy|(dBg) <T R""', VB, \ Br) <T; (2.67)
pE(R,1/A) p"
in particular, by Theorem 2.7-(i),
8y.Rr.A is decreasing on (R, 1/A). (2.68)

Moreover, we are assuming the existence of s with max{64, Mo} R < s < g9/4 A
such that

[8v,r,A(s/8)] < &0,

Re=sup{p= 2 :vra(e) = —eo| = 4s, (2.69)
so that the latter inequality, together with (2.59), implies
Ry > Ry . (2.70)
By (2.68), (2.69) and (2.70) we have
18y, A =0,  Vrels/8 Ry]. 2.71)

By (2.67), the specification of s satisfying (2.2), and (2.71), the assumptions
(2.42), (2.47), and (2.48), respectively, of Lemma 2.8—(ii) with r = 5, A1 = 1/8,
and (n1, n2) = (1/32, 1/2) are satisfied due to our choices (2.65) and (2.66). Setting
Hyp = H, where H € 'H is from the application of Lemma 2.8—(ii), we thus find
uo € X5(Xn,, s/32, s/2) such that

V corresponds to X g, (o, 5/32, 5/2) on Aiﬁz. (2.72)
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If it is the case that S; = 4 s, we are in fact done with the proof of (2.58), since
then s/2 > S /16. We may for the rest of this step assume then that Sy > 45, so
that

Rp=sup{p = 2 :vralp) 20} = S, > 4s. (2.73)
First, we observe that thanks to (2.72) and then (2.64),
Ty = 1 /x/4 =1 dr/ [M0]2 <w 2 <é (2.74)
= <w,o’ <eg. .
(/4" Joss S 0

We lets; = 2/3s for j € Z>_1. By (2.73) and by s < e0/4 A < &(/4 A there
exists N € {j € N: j > 2} U {400} such that

/
{O,l,..,N}:{jeN:Ssj§S+:min{R+,8X0}}. (2.75)

Notice that if A > 0 then it must be N < co. We are now in the position to make
the following:
Claim: There exist 7 = 7(n) € (0, 1) and {(H}, uj)}jtoz with H; € H such that,

setting
1 Sj+1
-1 2
Tj = o / " dr / [ujlr,
Jj+1 s Xn;

J

forevery j =0,...,N — 2,
uj € Xo(XH;,8/32,45j-1) N Xop2c0(EH;, /4, 455), (2.76)
V corresponds to EHj (uj,s/32,4s;) on Aj/gjz, 2.77)
where Cy is from Lemma 2.5, and

18v,r.a ()| < €0 (2.78)
Tj < C(n)egy; (2.79)

additionally, forevery j =1, ..., N — 2,

v, = v, P < Co) T, (2.80)
Sv.ra(s) S T{v.Ra(sji—) + A +T)Asj—1}, (2.81)
Tj = CO[Sv,RaGs1-1) = 8v.paGsj42) + Asjr . (282)

Proof of the claim: We argue by induction. Clearly (2.76) j—, (2.77) j=0, (2.78) j—0
and (2.79) j—q are, respectively, (2.72), (2.69) and (2.74). This concludes the proof
of the claimif N = 2, therefore we shall assume N > 3 for the rest of the argument.
To set up the inductive argument, we consider £ € N such that: either £ = 0; or
1 < ¢ < N —3and (2.76), (2.77), (2.78), and (2.79) hold for j = 0, ..., £, and
(2.80), (2.81) and (2.82) hold for j = 1, ..., £; and prove that all the conclusions of
the claim hold with j = ¢ + 1.
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The validity of (2.78)—¢41 is of course immediate from (2.71) and (2.75).
Also, after proving (2.82) j—¢41, we will be able to combine it with (2.78) j—¢41
and (2.75) to deduce (2.79) j—¢+1. We now prove, in order, (2.80), (2.76), (2.77),
(2.81), and (2.82) with j = £ + 1.

To prove (2.80) j—¢+1: Let [a, b] CC (s¢, sgy1) with (b — a) = (sgy1 — 5¢)/2, s0
that

1 ) 1 Se+1 | )
min / [uely < — / " dr / [uel; =T . (2.83)
C(n) rela,b) EH[ SZ+1 se EH@

Keepinginmind (2.76) j—¢, (2.77) j—¢, we can apply Lemma 2.5—(ii) with (r1, 2) =
(s/32,4s¢) and [a, b] C (s¢, S¢+1) to find Hpy € 'H,

u€+1 € XC() UO(EHZ+1 ’ S/32, 4S@) (284)
(with Cq as in Lemma 2.5—(ii)) and
sy € la,b] C (se,s041),

such that, thanks also to (2.83),

EHZ(IA(, S/32, 4S() = EHZH (u(_;,_l, S/32, 4Sg), (2.85)
EZ e ([e11) =0, (2.86)
Ve, = Vi, )P < C) Ty, (2.87)

J

In particular, (2.87) is (2.80) j—¢1-
To prove (2.76) j=¢+1 and (2.77)j=¢+1: Notice that (2.84), (2.85) do not imply
(2.76) j=¢+1 and (2.77) j—=¢+1, since, in (2.77) j—¢+1, we are claiming the graphical-

ity of V inside AA:/SQ ' (which is strictly larger than A?/ng), and in (2.76) j—¢4+1 We

e il? < € (T + /2 W), Vre/24s).  @89)
Hy

Hypq

are claiming that s, | has C'-norm bounded by o or o/2 Cy (depending on the
radius), and not just by Cq o¢ (with C¢ as in Lemma 2.5—(ii)).
We want to apply Lemma 2.8—(i) with K = Hy41 and

11 3 7 1 1

r=38spt1, (A1, A2) = (R’ 5)’ (A3, A4) = (5 a) » (M,m) = (ﬁ 5) .

(2.89
We check the validity of (2.43), (2.44), (2.45), and (2.46) with g1 = 5(’) and M| =
M(/) for these choices of r, A1, A2, A3, A4, N1, 12, and K. Since r = 8sp41 >
s > max{My, 64 R} > max{M(’), 64 R}, and since (2.75) and £ + 1 < N give
r=28sp41 < eo/A < g/A, we deduce the validity of (2.43) with r = 8s¢1. The
validity of (2.44) with r = 8 sy is immediate from (2.71) by our choice (2.62) of
&(- Next we notice that

718 64 Ts¢/4
IVICAL D) = IVIIAL ot 15 = IVIAT! ) > 0
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thanks to (2.77) j—¢, so that (2.45) holds for r, A3 and A4 as in (2.89). Finally, by
(2.28) (which can be applied to u¢ thanks to (2.61)), (2.85) and (2.76) j—¢, and,
then by (2.88), we have

1 ) C(n) [+ | )
7 [ par gy, dIVI = r" dr/): [tes1]?

n n
JA Ser1 e Hest

IA

n
Ser1 Jse

< Cm) Ty < C(n) &,

C Se+1
cont, + < r"_ld’/ [0 12
=n,

where in the last inequality we have used (2.79) j—,. Again by our choice (2.62) of
56, we deduce that (2.46) holds with r, A1 and A; as in (2.89). We can thus apply
Lemma 2.8—(i), and find v € X5 /2 ¢y (X1, Se+1/4, 4 5¢41) such that

V corresponds to X, , (v, s¢41/4, 4 5¢41) on Aj,';f:r/l4 . (2.90)

By (2.85), (2.77)1':[, and (2.90), V= Uy4+1 0N ZHHI X (Sg+1/4, 4Sg). ‘We can thus
use v to extend ugyy from Xpg,,, x (s/32,45¢) to X, x (s/32,45¢41), and,
thanks to (2.85), (2.77) j—¢ and (2.90), the resulting extension is such that

Upy1 € XO’/2C0(EHZ+17s£+1/474sf+1) and (2.91)
V corresponds to Xp,,, (ue11,5/32,45¢41) on A?;ﬁrl. (2.92)

The bound (2.91) is part of (2.76) j—¢+1, and (2.92) is (2.77) j—=¢+1, so in order to
complete the proof of (2.76);—¢+1 and (2.77) j—=¢41, it remains to show that the
C'-norm of u is bounded by o in between s/32 and 4 s;.

Towards this end, we record the following consequence of taking square roots
in (2.81)j=p (using 8y g o > O from (2.75)) and summing over m = 1, ..., i for
any 1 <i <f:fora=332,27%2and C(n,T) = tV/2(1 + 1),

i—1

i
Sii= > Svralsm)? <72 Sy ralm) 7+ (14 D) (Asy)'

m=0 m=0

+8v, kA (50)"/?
251 +a Cn, T (A si)V? + 8y g a(s0)'?
128 1+ (1 +aCn, T)) ()2, (2.93)

IATA

where in the last line we have used (2.75) and (2.71). By induction, utilizing (2.57),
(2.65) for the base case and (2.93) for the induction step we have

_ (4ol D))
L= 1 =712

Vo<i<e. (2.94)
Now by the positivity of §y g 4 and (2.82)j—, forallm =1, ..., £,

Ta> < C)dy roa(sm-1)"/? + C) (A sp_)"/?. (2.95)
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In turn, by (2.80) j—¢+1, (2.74) and (2.95), then (2.75) and (2.94);—¢—1,
£+1

¢
12
[VH, — VH,_| < T,
i =

< ()" + C)Se—1 +a Cn) (A s—p)'/?
< C(n, D))" /?/Cn) (2.96)

for a suitable C(n, I'). We use (2.96) to see
e, — v, | < Cn, D)2 Vi=0, ..., L. (2.97)

Now u; € X0/2C0(2HJ«, S,‘/4, 4S,‘) by (2.76)]':,', and 0/2 C() and |VHi — VH, | are
small enough to apply Lemma 2.5—(i) by our choice of o above (2.61) and 2.97)
with (2.63), respectively. Then we obtain w; corresponding to V on AL /4 and in
Xg/2+c0|vﬂi UHg+1|(EHk+1 ,8i/4,4s;), and by (2.97), (2.63),

o
E+CO|VH VE, | < 2+C0—=G,

sow; € Xs(Xp,,,,si/4, 4s,) Finally, since they represent the same surface over

YHy > Wi = Ugq1 ON A 4~ Gathering these estimates fori = 0, ..., £, we have
ugr1 € Xo(Zp,,5/32, 4Sg) which finishes the proof of (2.76) j—¢1.
To prove (2.81) j—¢+1: We set rg = (s¢ + s¢+1)/2 and notice that for no = 1/3,

ri=ro(l—mo)=s¢, ra=ro(l+n0)=s¢+1- (2.98)
For n = 1/6 we correspondingly set
rm=ro(l—n)=s,, ra=ro(l+n =15, (2.99)

and notice that (19, n) € J, see (2.60). With the aim of applying Theorem 2.7—(iii)
to these radii, we notice that (2.77) j—¢+1 implies that assumption (2.37) holds with
H = Hy4+1 and u = uy41, while, by (2.86), r = s;f € (s¢, S¢+1) 1s such that (2.39)
holds. By A sp+1 < g9 < 1, (2.75), and (2.40), with C(n) = Co(n, 1/6, 1/3) for
Cy as in Theorem 2.7—(iii), we have

VB \ By) = o (67" = 657)")
= s, [H (Shppy (e, 57 50) — H (S, 0,5, 5)]
<Cm{( se41)? + Ov ra(se41) — Ov,r.as0)}.
Setting for brevity § = 8y g A and ® = Oy g A, and recalling that
8(r) = wn 1" = O() 1"
=wy " = [VI(B, \ Br) — A

"IVI(B,\ B R|8V| (OB
n/ VI ;;\ R)der I8VII( R)’
R o n

we have

)80 = (508G ] < Cm) {(Ase)? + O(seq1) — OGse) }
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st B B 5 B B
+C(n)As[”[(szr)”/Rz de_@n/; VB, \Bo) )

S+
= € {(8s0)? + OGesn) — OG0 + ) A /R Wtfﬂ

By A sy < 1 and since sZ’ < ¢ < g0/8 A thanks to £ < N, we can use the upper

bound ||V|[(B, \ Br) < T p" with p € (R, SZ') C (R, 1/A), to find that

(s j)"

‘(sf ) 8(s;) — 5(s Zr)‘ <C(n) {8(s0) — 8(se41)} + Caln) (T + 1) A sy,

for a constant C,(n). By rearranging terms and using the monotonicity of § on
(R, 00) and (s, , szr) C (8¢, S¢+1) we find that

(Ce(n) + (s)"/(s1)) 8(se41) < Ci(m) 8(se1) + ()" /() 8(s))
< Ce(n) 8(se) + ((s,)"/(s7)) 8(s; ) + Co(n) (1 +T) A sg
< (Cx(n) + (s,)"/(s})) 8(s¢) + Cye(n) (1 +T) A s

We finally notice that by (2.98), (2.99), no = 1/3, and n = 1/6, we have

se_rnQ-m _5 st _ sk
se  ro(l—mo) 47 s Se41 L+ny 4

l+n 7

so that we find that § (s¢41) < T{d(s¢) + (1 +T') A s¢} (i.e. (2.81)j=¢+1) With

T_,(n)_w f_,(n)_c*—m)q
- TG+ T/ T T Cu(n) + (T/4)n

To prove (2.82) j—¢+1: We finally prove (2.82)j—¢y1, 1.€.

25041
! [ < Cm{8v.r.a(se) — 8v.R.A(Se43) + Ase}.
j+1 Se41 XHy,
(2.100)
By (2.77) j=¢+1 we know that
V corresponds to g, (uet1,5/32,45041) on AS/QI . (2.101)

Now, (2.36) holds with ro = 3s¢ and (ng, n) = (2/3,1/3) € J, see (2.60), if

ry =50 =350 — 25y, rn=5s¢ =350+ 25y,
r3 = Spy1 = 3850 — 8¢, r4 =2sp41 =350+ 0.

Since s € (s¢, s¢+1) C (r1, 72), by (2.101), (2.86) and (1, r2) C (5/32, 4s¢+1)
we can apply Theorem 2.6 to deduce that

25041 Sst
/ ’"n_1/ [ues1]; < C(n) / P @)} + C) A (s)"
Se+1 z 5t

Hypq By
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Again by (2.101), Theorem 2.7—(ii) with (r1, 2) = (s¢, 8 5¢) gives
85y
@ luesi)? < 57" / o+ / O lup41))?
S¢ )

55
s;n / rn+1 /
Se Ty Hyy

< Cm){Oy,r,aBse) — Oy ralse)} < Cn) {Sv,r.als0) — Sy, R A(5e43) ]

The last two estimates combined give (2.100), which finishes the claim.

Proof of (2.58): We assume S < oo (thatis either A > 0 or R, < 00), and recall
that we have already proved (2.58) if S = 4 5. Otherwise, N (as defined in (2.75))

is finite, with 2V < 3+ < 2N+1 By (2.76);_y_» and (2.77) j=y—2, we have that
UN—2 € Xo(XHy_,.5/32,4sy-2)and V corresponds to X, , (un—2,5/32,4sy-2)
on Aj/sévz’z. Since 4sy_2 = 2V*1s/16 > S, /16, we deduce (2.58) with K =
Hy_sanduy =uy_s.

Step two: In this step we prove statement (ii) in Theorem 2.1. We assume that
A = 0 and that

5(r) > —g9  Vr> % (2.102)
where we have set for brevity § = 8y g 0. We must first show that
5(r) >0 Vr> % (2.103)

Since § is decreasing in r, it has a limit lim, , o, 6 (r) =: o0 > —&p, and we want to
show that o, = 0. Next, we know that for any sequence R; — oo, V//R; converges
locally in the varifold sense to a limiting integer rectifiable varifold cone W. By the
local varifold convergence and n > 2, W is stationary in R"*! and it is the case
that

8w.00(r) =800 > —g9 Vr >0.

Up to decreasing ¢ if necessary (and recalling that § oo is the usual area excess
multiplied by —1), Allard’s theorem and the fact that W/r = W imply that W
corresponds to a multiplicity one plane. In particular, it must be that §oo = 0,
which together with the monotonicity of § yields (2.103).

By (2.103), S4 = S« = 00, and so by (2.76) and (2.77), there is a sequence
{(Hj,u j)}j'vzo but with N = 0o now, satisfying

V corresponds to EH_/. (uj,s/32,45;) on Aj/S?{z Vj >0, (2.104)

e, — va,_, |7 < Cn) Ty, if j>1, (2.105)
€0, if j =0,

8(sj) < o (2.106)
T8(sj—1), if j > 1,

(2.107)

C(n) e, if j =0,
T; < .
Cn)é(sj—1), ifj>1.
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Notice that, in asserting the validity of (2.107) with j > 1, we have used (2.103)
to estimate —J(s;42) < 0in (2.82);. By iterating (2.106) we find

8(sj) <t/ 8(s/8) <tley, Vj=x1, (2.108)

which, combined with (2.107) and (2.105), gives, for every j > 1,
T; < C(n) min{l, 7/~ '} 8(s/8) < C(n) v/ 8(s/8), (2.109)
e, — e,y |7 < C(n) min{1, 7772} 8(s/8) < C(n) 7/ 8(s/8), (2.110)

thanks also to T = t(n) and, again, to (2.103). By (2.11_0), forevery j > 0,k > 1,
we have vy, — vu,| < C(n) /8(s/8) Zl,‘;ll (\/?)]71+h, so that there exists
K € 'H such that

7 :=|vk —vg, > <C) T/ 8(s/8),  Vj=1, (2.111)

In particular, for j large enough, we have £; < &, and thus, by Lemma 2.5—(i)
and by (2.104) we can find vj € Xcn) (o+e;)(Zk, 5/32,45)) such that

V corresponds to X (v, s/32,45;) on Aj/‘vgfz . 2.112)

By (2.112), vj41 = vj on Xk x (5/32,45;). Since s; — oo we have thus found
u € Xcmyo(Zk; /32, 00) such that

V corresponds to Xk (u, s /32, 00) on Af%z , (2.113)

which corresponds to (2.5) with oo in place of Si.

To prove (2.6), we notice that if r € (s, sj41) for some j > 1, then, setting
T = (1/2)* (e, a = log;»(7) € (0, 1)) and noticing that r/s < 2/+1=3 by
(2.68) and (2.108) we have

8(r) < 8(sj) <t/ 8(s/8) =27798(s/8) =477 27U 5(5/8)
< C(n) (s/r)*5(s/8),
where in the last inequality (2.102) was used again; this proves (2.6). To prove

(2.7), we recall that wg (y) = arctan(Jvg - y|/|pk ¥|), provided arctan is defined
on R U {#o00}, and where = y/|y|, y # 0. Now, by (2.113),

Pk Y +uPk ¥, [yD) vk
V1+ulpg 3, 1y)?

so that |pgx y| > 1/2 for y € (sptV)\Bs/32; therefore, by (2.111), up to further
decreasing the value of ¢¢, and recalling §(s/8) < &9, we conclude

y =1yl

Vy € (spt V) \ By32,

. 1
PH; Y = 3 Vy € (sptV) \ By/32, (2.114)
for every j € NU {+o0} (if we set Hy, = K). By (2.114) we easily find

lwk () — o, (M| = Clvh; —vkl,  Vy € (sptV)\ By, Vj =1,
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from which we deduce that, if j > 1 and r € (s, s;41), then
2
7 [ okai]

Jj+1 il

1 2 1 2
< Cn) {g /Asj+1 0}y, dIV] + = /W oy, dIVIY
5j

Sj+1 JAG

1 1
5 | dkawicm (5 [ okawi+
r J sj

+Cm T (lvk — v > + vk — vy, %),

where (2.67) was used to bound ||V||(A%p) <T'Q2p)" with p = sj,5j41 €
(R, 1/A). By (2.104) we can exploit (2.28) on the first two integrals, so that
taking (2.111) into account we find that, if j > 1 and r € (sj,5;41), then
P [y 0k dIVI < CONTj + Tjqr} + C)T v/ 8(s/8) < Cn) (1 +T) 7/
8(s/8), where in the last inequality we have used (2.109). Since /< C) (s/r)<,
we conclude the proof of (2.7), and thus, of Theorem 2.1-(ii).

Step three: In this step, givenn > 2,I" > 0, and o > 0, we claim the existence of
go and My, depending only on n, I', and o, such that if (2.1), (2.2), (2.3) and (2.4)
hold with gy and My, and in addition,

—e0 < dy,g,a(s/8) <0, (2.115)

then there exist K_ € Handu_ € Xy (Zk_, s/32, Si/2) such that

V corresponds to g (u, s/32, S,/2) on Afjﬁ, (2.116)

where S, and R, are as in Theorem 2.1. The argument is quite similar to that of
the first step, with minor differences due to the opposite sign of the deficit. The
first is that the iteration instead begins at the outer radius S, and proceeds inwards
via intermediate radii s; = 277 8,, and the second is that, in the analogue of the
graphicality propagation claims (2.76) j—¢+1 and (2.77) j—¢41, the negative sign on
dv,Rr,A is used to sum the “tilting” between successive planes H; and H; ;.
Step four: Finally, we combine steps one and three to prove statement (i) in Theorem
2.1. Before choosing the parameters g and My, we need a preliminary result. We
claim that for any ¢’ > 0, there exists o’(¢") > O such thatif rj < r, K1, K € H
with vg, - vk, > 0 and accompanying u; € X,/ (Xg,,r1,72), and M is a smooth
hypersurface such that M N A;f corresponds to X, (u;, r1, rp) fori =1, 2, then

vk, — vk,| <&’ 2.117)

It is immediate from vk, - vk, > 0 and the fact that the L°°-bounds on u; imply
that M is contained in the intersection of two cones containing K1 and K>, whose
openings become arbitrarily narrow as ' — 0.

Fixn > 2,I" > 0,ando > 0; we assume without loss of generality thato < oy,
where oy is the dimension-dependent constant from Lemma 2.5. We choose &’ with
corresponding o’ according to (2.117) such that, up to decreasing o’ if necessary,

¢ <egy, Coloc'+¢)<o, (2.118)
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where ¢g, Cp are as in Lemma 2.5. Next, we choose ¢g = go(n, I', o) and My =
Mo(n,T', 0) to satisfy several restrictions: first, gy is smaller than the &g from
Lemma 2.5 and each ¢o(n, I, o’) from steps one and three, and M is larger than
Mo(n, T, o’) from those steps; second, with &; and M» as in Lemma 2.8—(ii), we
also assume that

o2l (e ) 02 (1)
(2.119)

In the remainder of this step, we suppose that
V satisfies (2.1), (2.2), (2.3) and (2.4) at mesoscale s . (2.120)

In proving Theorem 2.1-(i), there are three cases depending on whether 8y g A
changes sign on [s/8, Sy].
Case one: 8y g A(r) > 0 forall r € [s5/8, Si]. If the deficit is non-negative, then
in particular

0 <6y.ra(s/8) < &0 2.121)

and S, = Sy, where S was defined in (2.59). By our choice of ¢g and My at the
beginning of this step and the equivalence of (2.121) and (2.57), step one applies
and the conclusion (2.58) is (2.5). Thus Theorem 2.1—(i) is proved.

Case two: 8y g A(r) < 0 forall r € [s/8, Si]. Should the deficit be non-positive
in this interval, then in particular, (2.115) holds in addition to (2.1), (2.2), (2.3) and
(2.4). Therefore, by our choice of &y and My, step three applies. The conclusion
(2.116) is (2.5) (in fact with larger upper radii S, /2), and Theorem 2.1-(i) is proved.
Case three: §y g A changes sign in [s/8, Si]. By the monotonicity of §y g A,

Sv.R.A(s/8) > 0> 8y g A(Sx) - (2.122)

First, by (2.122), (2.57) is satisfied, so (2.58) gives K € Hand uy € Xy (X,
s/32, S4/16) such that

V corresponds to X (uy,s/32, S,/16) on Af;r3/216, (2.123)
where
s . &0
R, = max { sup {,o > 3 20y r.A(P) > O},4s} , S4 =min [R+, X] .
(2.124)

If 4 = S,, then (2.123) is (2.5) and we are done. So we assume for the rest of this
case that S < S, which implies S} # €9/A and thus

4s <Ry =S, <S,. (2.125)

Next, we make the following
Claim: There exists K_ € Handu_ € X,/ (Xx_, R+/2, S«/2) such that

V corresponds to Xx_(u—, Ry /2, S¢/2) on Afei/zz . (2.126)
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Proof of the claim: There are two subcases.
Subcase one: 16 Ry < g9/4 A and 64 Ry < R,. We claim the conditions of step
three are verified at s’ = 16 R.. First, (2.1) holds from (2.120), and

€0
64, Mo} R < 16 R —
max{ 0} R < + < A

(which is (2.2)) holds due to the assumption of the subcase and 16R; > s >
max{64, Mo} R. Next,2 R+ < R,/4 by the assumption of the subcase, which com-
bined with the monotonicity of §y g A and (2.124) gives —gg < Sy r. A(2R4) < 0.
This implies (2.115) and (2.3) with s = 16 R... Lastly, (2.4) holds at s’ = 16 R
since 64 R, < R,. Thus we apply (2.116) at s’ = 16 R, finding (2.126).
Subcase two: One or both of 16 Ry > g9/4 A, 64 Ry > R, hold. In this case,

64 R, > min{eo/A, Rs} = S, . (2.127)

We wish to apply Lemma 2.8—(ii) with r = Sy, A} = %, (1, m) = (%, %). By
(2.120), (2.42) holds for V, and by (2.119), (2.120), and S, > 4 s,

S. &
max{M2,64}R§s§Z*§S*§X,

which is (2.47). Finally, we have R, > S,/16 > s/8, so that by the definition of
R, (2.3), the monotonicity of §y g A, and (2.119),

s (3

which is (2.48). By the choices (2.119), Lemma 2.8—(ii) applies and yields the
existence of K_ € Hand u_ € X,/ (Xk_, S«/128, S,/2) such that

, |5V,R,A(S>k)|] <ey < ¢,

V corresponds to Xx_ (44, Sx/128, Sx/2) on Ag’;ﬁzg, (2.128)
By (2.127), Sx/128 < R1 /2, s0 (2.128) implies (2.126). The proof of the claim is
complete.

Returning to the proof of Theorem 2.1—(i) under the assumption (2.122), we
recall (2.125) and choose R’ € (R4, min{2 R, S.}). Again, we want to apply
Lemma 2.8—(ii), this time with r = R’, A1 = %, and (n1,m2) = (1/128, 1/2).
To begin with, V satisfies (2.42) as usual from (2.120). Second, (2.47) holds at R’
by s < R’ < Sy, (2.120), and the choices (2.119). By the monotonicity of Sy g a
and [R'/16, R'] C [R+/16, Si] C [s/4, Ss], (2.48) is valid by our choice (2.119)
of 9. The graphicality result from Lemma 2.8—(ii) therefore yields K € H and
ue X, (Xg, R'/128, R'/2) such that

V corresponds to S (u, R'/128, R'/2) on Afy/2c. (2.129)
Now s/32 < R'/128 < R+ /64 < S4/16by R' <2 Ry and (2.125), and Ry /2 <
R’/2 < 84/2, s0 by (2.123) and (2.126), respectively, we have

V corresponds to T, (uy, R'/128, §4/16) on A;t/llfg (2.130)
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V corresponds to Tx_(u—. Ry-/2, R'/2) on AR 7. (2.131)
where uy € Xp/(Xk,, R'/128,8,/16) and u_ € Xy (Xk_, Ry /2, R'/2). Fur-
thermore, up multiplying vk, or vk_ by minus one, we may assume vk - vg, > 0.
Thus V is represented by multiple spherical graphs on nontrivial annuli. By com-
bining (2.129), (2.131) and (2.131), vg - vk, > Oand o’ = o’(¢’), (2.117) applies
and gives

lvg —vk, | <é&, |vg —vg_ | <&

But ¢’ was chosen according to (2.118) so that Lemma 2.5—(i) is applicable; that
is, since &’ < g9 and 0’ < op from that lemma, we may reparametrize (2.123) and
(2.126), respectively, as

54/16

V corresponds to L g (w, s/32, S4+/16) on AS/32 (2.132)
V corresponds to Tx (w_, Ry /2, S,/2) on Afgﬁz, (2.133)

where
Wy € Xeyorren(Bk.5/32.S1/16) ., w_ € Xoy(orven (Sx. Re/2.54/2).

By (2.118), Co(c’ +¢') < o,and by R'/128 < S /16 < R+ /2 < R'/2, (2.133)
and (2.133), we may extend the u defined in (2.129) onto X g x (s/32, S,/2) using
w and w_ with C'-norm bounded by o. The resulting extension is such that (2.5)
holds, so the proof of Theorem 2.1 is finished. O

3. Application of Quantitative Isoperimetry

Here we apply quantitative isoperimetry to prove Theorem 1.6—(i) and parts of
Theorem 1.6—(iv).

Theorem 3.1. If W  R"*! is compact, v > 0, then Min[yry (v)] # @. Moreover;
depending on n and W only, there are vy, Co, Ag positive, so € (0, 1), and Ry(v)
with Ry(v) — 01 and Ro(v) v/ ) = 00 as v — o0, such that, if v > vg and
E, is a minimizer of ¥rw (v), then:

(): E, is a (Ag/v'/®*D | 590!/ +D)_perimeter minimizer with free boundary
in Q, that is

P(Ey; QN B (2)) = P(F; Q2N Br(2)) +

|E,AF[,  (3.0)

Ao
pl/(+1)

for every F ¢ Q = R"I\W with E,AF CC Br(z) and r < sov'/ D (ii):
There exists x € R" such that

|EyAB®™ (x)| < oo~ H1/BIHDT, (3.2)
if R(W) > 0, then there also exists u € C*®ABWM) such that

(0Ey) \ By y1/m+1)
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y — X
_ {y n vl/("H)u(m) Vg () 1y € BB(”)(x)} \ Bp, p1/+13.3)

(iii): if R(W) > 0 and x and u depend on E, as in (3.2) and (3.3), then

V) _ el
n

lim sup  max { | |x|v

Mullcrgpoyy =0. (3.4)
V= B eMin[Yy (v)] (o8}

Remark 3.2. (Improved convergence) We will repeatedly use the following fact
(see, e.g. [7,8,18,20]): If 2 is an open set, A > 0, s > 0, if {F}}; are (A, s)-
perimeter minimizers in €2, i.e. if it holds that

P(Fj; B-(x)) < P(Gj; B/ (x)) + A |[F;AGj], (3.5)

whenever G;AF; CC B,(x) CC Qandr < s,andif F is an open set with smooth
boundary in €2 such that F; — F in LIIOC(Q) as j — 0o, then for every Q' CcC Q
there is j (') such that

(aFj)ﬂQ/z {y+uj(y)vF(y):y € QﬂaF}ﬂQ/, Vi > j(),

for a sequence {u;}; C CH(QNIF) with lujllcr@nary — O

Compare the terminology used in (3.1) and (3.5): when we add “with free
boundary”, the “localizing balls” B, (x) are not required to be compactly contained
in €2, and the perimeters are computed in B, (x) N 2.

Proof of Theorem 3.1. Step one: We prove Min[¢ry (v)] # ¥ for all v > 0. Since
W is compact, B") (x) CcC  for |x| large. Hence there is {E;}; with

E;CcQ. |Ej=v, P(Ej;Q)§min{P(B(”)),P(F;Q)}—i—(l/j), (3.6)

for every F' C € with |F| = v. Hence, up to extracting subsequences, E£; — E in
Ll (R"1) with P(E; Q) < lim; , . P(Ej; Q), where E C Qand |E| < v. We
now make three remarks concerning E:

(a): If {2 }ies are the connected components of Q, then Q N I*E = @ if and only
if E = Uielo Q; (Ip C I).Indeed, QN 3*E = Jimplies cl (0*E)N Q2 =9IE N,
hence dE C 92 and E = ;¢ , $2. The converse is immediate.

(b): If Q N O*E # (), then we can construct a system of “volume—fixing vari-
ations” for {E;};. Indeed, if Q N 9*E # {, then there are Bg,(xo) CC
with P(E; 0Bs,(x0)) = 0 and a vector field X € CZ°(Bs,(x0); R*+1) such that
f g div X = 1. By [27, Theorem 29.14], there are constants Co, co > 0, depending
on E itself, with the following property: whenever |(FAE) N Bg,(xp)| < co, then
there is a smooth function ®% : R” x (—cg, co) — R" such that, for each [t| < co,
the map <I>fr = ®F(., 1) is a smooth diffeomorphism with {CIDf #1id} CC Bg,(x0),
|®f (F)| = |F|+t,and P(®] (F): Bs,(x0)) < (1+ Co|t|) P(F: Bg,(x0)). For j
large enough, we evidently have [(E; AE) N Bg,(xo)| < cop, and thus we can con-
struct smoc_)th functions ®/ : R” x (—cp, cg) — R”" such th_at, for each |t| < co,
the map ®; = ®/ (-, 1) is a smooth diffeomorphism with {®] # id} CC Bs,(x0),
|®/(Ej)| = |Ej| +1t,and P(®](E;); Bs,(x0)) < (1 + Co|t]) P(E;; B, (x0)).
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©): IfQNO*E # @, then E is bounded. Since |E| < v < 00, it is enough to prove
that Q N 0*E is bounded. In turn, taking xop € 2 N 0*E, and since W is bounded
and |E| < oo, the boundedness of QM 9d* E descends immediately by the following
density estimate: there is r; > 0 such that

|E N By (x)| > c(n) r"*!

(3.7)
VxeQNIE, r<r, B(x) CCR"™\ (I, (W)U Bg,(x0)) .

To prove (3.7), let r; > 0 be such that | B, | < cop, let x and r be as in (3.7), and set
Fj = (®] (Ej) N B, (x0) U[E;\(B, (x) U Bs, (x0))] for t = |E; N B, (x)| (which
is an admissible value of 7 by |B,,| < co). In this way, |F;| = |E;| = v, and thus
we can exploit (3.6) with F = F;. A standard argument (see, e.g. [27, Theorem
21.11]) leads then to (3.7).

Now, since 32 C W is bounded, every connected component of 2 with finite
volume is bounded. Thus, by (a), (b) and (c) above, there is R > 0 such that
WUE CC Bg.Since |E N [Br+1\Bgr]| =0, we can pick T € (R, R + 1) such
that Hn(E] N dBr) — 0 and P(Ej\BT) = Hn(Ej N dBr) + P(Ej; Q\Br7),
and consider the sets F; = (E£; N By) U Bpj (y) corresponding to p; = (|E; \
Br|/wps) @D and to y € R**! which is independent from j and such that
Iyl > pj + T (notice that sup; p; < C(n) v"/® D). Since |Fj| = |Ej| = v, (3.6)
with F = F; and P(Bp_/) < P(E; \ Br) give

P(Ej; Q) — (1/))P(F;; Q) < P(Ej; QN Br) + H"(E; N dBr) + P(By,;)
P(E;; Q) +2H"(E;NdBy),
so that, by the choice of 7', {F;}; is a minimizing sequence for Y¥rw (v), with F;; C
Br+ and T* independent of j. We conclude by the Direct Method.
Step two: We prove (3.2). If E,, a minimizer of ¥y (v) and R > 0 is such that
W CC Bg, then by P(E,; Q) < P(B™) we have, for v > v, and v and Cp
depending on n and W,
P(E, \ Bg) < P(E,; Q) +nw, R* < P(BY) + Cy
< (1+ (Co/v)) P(BIF\PRD) 4 ¢, (3.8)

where we have used that, if v > 2b > 0 and o = n/(n + 1), then
PBYYPBY™) 1 =@w/wv=5b)*—1<ab/(v—>b) <2abv .

By combining (1.3) and (3.8) we conclude that, for some x € R+

I(Ep \ BR>AB<'EU\BR'>(x)|)2 P(Ey \ Bg) Co

C(”)( |Ey \ Bxl = P(BUENBRD) = primtD

provided v > vg. Hence we deduce (3.2) from

|E,AB™ (0)] = 2|E, \ BY (0)] < Co +2[(Ey \ Br) \ BV ()]
< Co+2[(Ey\ Br) \ B0 ()] < Co + |Ey \ Br| Cov™"20 .



Arch. Rational Mech. Anal. (2024) 248:87 Page 41 of 70 87

Step three: We prove the existence of vy, Ag, and sy such that every E, €
Min[¢rw (v)] with v > vg satisfies (3.1). Arguing by contradiction, we assume
the existence of v; — oo, E; € Min[yw (v;)], F; C Q with |[F;AE;| > 0 and
F;AE; CC By, (x;) for some x; € R"*+1 and rj= v;/("+l)/j, such that

=1 1
P(Ej; QN By (x)) = P(Fji QN By (x) + jv; "V | E;AF;.

Denoting by E.’f, F /* and €2; the sets obtained by scaling E;, F; and 2 by a factor
—1/(n+1)
v.

; , we find that F;.kAE;-‘ CC Byyj(y;) forsome y; € R and

P(E7; Q) N Byj(y) = P(F}; 2 0 Bj(y) + j |[E;AF]]. (3.9)

By (3.2) there are z; € R+ such that |E;.‘AB(1)(ZJ-)| — 0. We can therefore use
the volume-fixing variations of B to find diffeomorphisms <I>{ :R" — R" and
constants c(n) and C(n) such that, for every |t| < c(n), one has {®/ #id} CC U;
for some open ball U; with U; CC Q;\By;;(y;), |®/ (E;.‘) NU;| = |E;? NUj|+1,
and P(CID',/(E;T); Uj) < (A4 Cm)lt]) P(E;f; U;). Since F;“AE;‘ cC Bl/j(yj)
implies ||F;‘| — |E;'f|| < c¢(n) for j large, if t = |E;f| — |F/’.‘|, then G’/‘. = CD{(F;.")
is such that |ij| = |E;f|, and by E; € Min[¢rw (v;)],
P(E}; Q)) < P(G3;Q)) < P(ET; Q2 \ (U; U By (y)))
+P(FF; Q2N Byyj(y;) + P(ET; Uj) + C(n) P(ET; Uj) |E7AF;|.

Taking into account P(E%; Uj) < ww(vj)/v';/(nﬂ) < C(n), we thus find

P(E}; QN Bij(y) < P(F}; 2 N Bj(y) + Cn) |[EJAF

)

which, by (3.9), gives j |E;'TAFJ’."| < C(n) |E;AF;|. Since |[EAF;| > 0, this is
a contradiction for j large enough.
Step four: We now prove that, if R(W) > 0, then

lim sup |x| o~ OFD g D] — (3.10)
V0 E,eMin[yy (v)]

where x is related to E, by (3.2). In proving (3.10) we will use the assumption
R(W) > 0 and the energy upper bound

Jim yw () — P(BY) < —R(W). (3.11)

A proof of (3.11) is given in step one of the proof of Theorem 1.6, see section 5;
in turn, that proof is solely based on the results from section 4, where no part of
Theorem 3.1 (not even the existence of minimizers in ¥y (v)) is ever used. This
said, when |W| > 0, and thus S(W) > 0, one can replace (3.11) in the proof of
(3.10) by the simpler upper bound

Tim yrw (v) — P(BY) < —S(W), (3.12)
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where, we recall, S(W) = sup{H"(W N II) : ITis ahyperplane in R"*!}. To
prove (3.12), given I1, we construct competitors for ¥y (v) by intersecting 2 with
balls B®"(x,) with v > v and x, such that |[B®" (x,)\W| = v and H"(W N
IB@) (x,)) — H"(W NTI) as v — o0o. Hence, limy_ o0 ¥ (v) — P(BY) <
—H"*(W N II), thus giving (3.12). The proof of (3.11) is identical in spirit to that
of (3.12), with the difference that to glue a large ball to (F,v) € Max[R(W)]
we will need to establish the decay of 3 F towards a hyperplane parallel to v
to the high degree of precision expressed in (1.14). Now to prove (3.10): by
contradiction, consider v; — oo, E; € Min[yw(v;)], and x; € R with
inf cgnet |E;ABW) (x)| = |E; ABW) (x;)], such that

UG IR 3.13)

lim ||x |v i1

]—)OO

and set ; = v; "V EY = 45 (B; — xj), Wi = 0 (W — x)), and QF =
Aj(—x;).By(3.1),each E;‘ isa (Ao, so)-perimeter minimizer with free boundary
in 7. By (3.2) and the defining property of x;, E — B in L' (R"*"). Moreover,
diam (W]*) — 0 and, by (3.13),

lim dist(W#,0B") > 0. (3.14)
j—o0

Thus there is zg & 8 B such that, forevery p < dist(zo, dB), there is j (p) such
that {E; }j=j(p) 1s a sequence of (Ao, so)-perimeter minimizers in RrH \B,/2(z0)-
By Remark 3.2, up to increasing j(p), (9 E;.‘)\Bp (zo) is contained in the normal
graph over aBW of uj with [lujllc1pmy — 0; in particular, by (3.14), (BE;‘) \
B, (z0) is disjoint from W;. By the constant mean curvature condition satisfied by
Qn BE;.‘, and by Alexandrov’s theorem [2], (8E;‘) \ B,(zo) is a sphere M;‘ for
Jj > Jj(p).Let B;f be the ball bounded by M;‘. Since M}k N W; = (), we have either
one of the following:
Case one: W;‘ C B;.‘. We have 8[B;‘UE;‘] C M;.‘U[(E)E;.‘)\cl (B;f)] C (BE;.‘)\WJ’F,
so that, by |Bj u E;f| > |E;‘| + |W;.‘| > 1, we find P(Ej; Qj) > P(B;‘.‘ U E;‘) >
P(BW), thatis, Yw (v;) > P(BW), against (3.11).
Case two: W;.k N B;? = (. In this case, Ej = B;‘ U G’;, where G; is the union of
the connected components of E7 * whose boundaries have non-empty intersection
with W* in other words, we are clalmlng that B* is the only connected component
of E; * Whose closure is disjoint from W* Indeed if this were not the case, we
could recombine all the connected components of E; * with closure disjoint from
W/ into a single ball of same total volume, centered far away from W* in such a
way to strictly decrease P(E QN ) against E; € Min[yrw (v;)]. Let us now set
Gj=x;+ i/ @+ G;‘. and U; = x; + vjl-/(n—H) B;f, sothat £; = G; U U, and
dist(G;, Uj) > 0.

If we start sliding U; from infinity towards G ; U W along arbitrary directions,
then at least one of the resulting “contact points” z ; belongs to NI G ;: if this were
not the case, then G ; would be contained in the convex envelope of W, sothat | B | =
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|Ej| —|Gj| = vj — C(W), and thus, by yw(v;) = P(E;; Q) > P(Bj; W) =
P(Bj), and by P(Bj) = P(BU=C") > p(B) — (W) v /""" against
with (3.11) for j large. '

By construction, there is a half-space H; such that G; C H;j, z; € (0G;) N
(0H}), and G| is a perimeter minimizer in B, (z;) for some small r > 0. By the
strong maximum principle, see, e.g. [13, Lemma 2.13], G; has H; — z; as its
unique blowup at z;. By De Giorgi’s regularity theorem, see e.g. [27, Theorem
21.8], G is an open set with smooth boundary in a neighborhood of z ;. Therefore,
if we denote by U j/ the translation of U; constructed in the sliding argument, then,
E; =G;U U]’. € Min[yw (v)] and, in a neighborhood of z ;, E’; is the union of two
disjoint sets with smooth boundary which touch tangentially at z;. In particular,
|E} N B.(zj)|/|Br] = 1asr — 07, against volume density estimates implied by
(3.1), see, e.g. [27, Theorem 21.11].

Step five: We finally show the existence of vg and Ro(v) with Ro(v) — 0T and
Ro(v) v+ — o0, such that each E,, € Min[yry (v)] with v > vy determines x
and u € C*®(dBWM) such that (3.3) holds and supg, llullcigpmy — 0asv — oo.
To this end, let us consider v; — oo, E; € Min[vrw (v;)], and define x;, E;‘ and
W]’f as in step four. Thanks to (3.10), there is zo € 9B s.t. dist(zo, W;.k) — 0.In
particular, for every p > 0, we can find j(p) € N such thatif j > j(p), then E;‘

is a (Ao, sp)-perimeter minimizer in R”H\BP(ZO), with E;‘ — BW, By Remark
3.2, thereare u; € CI(BB“)) such that

OED\ Bap(z0) = {y +u; (0 vy () - y € 3BV} Bay(20), Vj = j(p),

and [[ujllc15pmy — 0. By the arbitrariness of p and by a contradiction argument,
(3.3) holds with Ro(v) — 0 such that Ry(v) v/t — 0o as v — oo, and with
the uniform decay of [[ul[¢1(ypm)- |

4. Properties of Isoperimetric Residues

Here we prove Theorem 1.1. It will be convenient to introduce some notation
for cylinders and slabs in R"*!: precisely, given r > 0, v € S” and I C R, and
setting p,L (x) = x — (x - v) v (x € R**1), we let

D) = {x e R . pyLx| <rx-v= O},
Cl ={xeR"™ :|px| <r},
b= {x e R pix| <rx-ve 1},
%C:, ={xeR"* px|=rx-vell,
Sy ={xeR*:x.vell. .1
Given x € R, we also set D! (x) = x + DY, C!(x) = x + C, etc. We premise

the following proposition, used in the proof of Theorem 1.1 and Theorem 1.6, and
based on [32, Proposition 1 and Proposition 3].
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Proposition4.1. Let n > 2, v € S", and let f be a Lipschitz solution to the
minimal surface equation on v’ \ cl DR). If n = 2, assume in addition that
M = {x + f(x)v:|x| > R} is stable and has natural area growth, i.e.

/ IVMo? — |A¢* 20, Vo e CLR?\ Bp), (4.2)
M

H>(MNB,)<Cr*>  Vr>R. (4.3)
Then there are a, b € R and ¢ € v such that, for every |x| > R,

f@) = (@+bxP "+ -0l ™| <CRI™ =3) (@)
|F) = (a+bloglx|+ (c-x) x| 2)| < Clx| ™2, (n=2)
max {|x|"—1 IV £ QO X" V2] 2 x| > R} < C, (everyn). (45)

Proof. If n > 3, the fact that V f is bounded allows one to represent f as the
convolution with a singular kernel which, by a classical result of Littman, Stam-
pacchia, and Weinberger [26], is comparable to the Green’s function of R"; (4.4)
is then deduced starting from that representation formula. For more details, see
[32, Proposition 3]. In the case n = 2, by (4.2) and (4.3), we can exploit a clas-
sical “logarithmic cut-off argument” to see that M has finite total curvature, i.e.
f e dH? < oo, where K is the Gaussian curvature of M. As a consequence,
see, e.g. [31, Section 1.2], the compactification M of M is a Riemann surface
with boundary, and M is conformally equivalent to M\{p1, ..., pm}, Where p; are
interior points of M. One can thus conclude by the argument in [32, Proposition 1]
that M has m-many ends satisfying the decay (4.5), and then that m = 1 thanks to
the fact that M = {x + f(x) v : [x] > R}.

Proof of Theorem 1.1. Step one: Given a hyperplane IT in R**!, if F is a half-
space with 9 F = IT and v is a unit normal to T1, then resy (F, v) = H"(W N II).
Therefore the lower bound in (1.11) follows by

R(W) > S(W) = sup {H”(H N W) : II an hyperplane in R”H} . (4.6)

Step two: We notice that, if (F, v) € F, then by (1.8), (1.9), and the divergence
theorem (see, e.g., [27, Lemma 22.11]), we can define a Radon measure on the
open set v\ p,. (W) by setting

w(U) = P(F; (p,) ")) = H"(U), U cCvE\p,(W).

In particular, setting R = inf{p : W C C,}, the fact that u(D \ p,+(W)) > 0
gives

P(F:C3\ W) = o, R" — H'(p,.(W)), VR >R,
while the identity

wn R" — P(F Cy \ W) = —(D \ D)) + o (R')" — P(F; Cj \ W)
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(which possibly holds as —oo = —oo if P(F; CY%, \ W) = 400) gives that
R € (R,00) > wy R" — P(F; Cy \ W) isdecreasingon (R',00). (4.7)

In particular, the limsup defining resy always exists as a limit.

Step three: We prove the existence of (F, v) € Max[R(W)] and (1.12). We first
claim that if {(F}, v;)}; is a maximizing sequence for R(W), then, in addition to
pv%(a Fj) = vji, one can modify (F;, v;), preserving the optimality in the limit

J — 00, so that (writing X CU“ Yfor|X\Y|=0)

Uj Vi £n+] V/' £n+] n+1
IFj C Sy, 81 S(-_OO’A/_) C Fj, S(-Bj,oo) C R\ Fj,
where [A4;, Bj]1=[{(@.p): W CS 5} (4.8)

Indeed, since (F, v;) € F, for some a; < B; € R we have

vj

8F, C S[Olj»ﬂj] )

P (OF)) = vy .

vj

. . Vi
Would it be that either S(ioo’aj)u(ﬁj’oo) Cert Fjor 8L o hues00) CLmt!
]R"‘H\Fj, then, by the divergence theorem and by p 1 (0 F;) = vj-,
J

P(Fj;CY NQ) > 2 (w, R —H"(p,L(W))), VR >0,
J

and thus resy (F;, v;) = —o0; in particular, (F;,v;) € F being a maximizing
sequence, we would have R(W) = —oo, against (4.6). This proves the validity (up
to switching F; with R"*1\ F;), of the inclusions

SC ooy Comt Fiv S(h gy Connt R\ F; (4.9)
Thanks to (4.9) (and by exploiting basic set operations on sets of finite perimeter,
see, e.g., [27, Theorem 16.3]), we see that

. ' vj vj
Fi= (Fju S(—oo,Aj—l/j)) N S(—oo,Bj+1/f>

(Ff.vj)eF., P(F;CQ\W)<P(Fj;CJ\W), VR >0{4.10)

satisfies

in particular, {(F ;.‘, v;)}; is also a maximizing sequence for R(W). By standard
compactness theorems there are F of locally finite perimeter in R"*! and v € "
such that F; — F in LIIOC(R"H) andv; - v.If A CC CVR \ W is open, then, for

J large enough, A CC CUR" \ W, and thus

P(F;CRr\W)= sup P(F;A) < lim P(Fj;C‘,)ej\W). “4.11)
ACCCR\W j—00

By 4.7), R — w, R" — P(Fj; CURj\W) is decreasingon R > R; =inf{p : W C
C/'}. By sup; Rj < C(W) < oo and (4.11) we have

wp R" — P(F; Cx \ W) > lim w, R" — P(F}; C;f' \ W) > lim resw(Fj,v;)),
J—>© j—o00
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for every R > C(W); in particular, letting R — o0,
resy (F,v) > lim resy (Fj,v;) = R(W). 4.12)
j—o0

By Fj — Fin LIOC (R"*1), 9F = ¢l (9* F) is contained in the set of accumulation
points of sequences {x;}; with x; € dF}, so that (4.8) gives

OF CSiap.  Sloou Comt Fuo Slp o) Com RMINF, (413)

if[A,B] = ({(@.B) : W C S” ) } Therefore (F, v) € F, and thus, by (4.12),
(F,v) € Max[R(W)]. We now show that (4.12) implies (1.12), i.e.

P(F;Q2NB) < P(G;Q2NB), VFAG CC B, B aball. 4.14)

Indeed, should (4.14) fail, we could find § > 0 and G C R"+! with FAG cC B
for some ball B, such that P(G; B\W) + 8 < P(F; B\W). For R large enough to
entail B CC C% we would then find

resy(F,v) +8 <w, R" — P(F; CR \ W)+ 68 <w, R" — P(G; C{ \ W),

which, letting R — oo, would violate the maximality of (F, v) in R(W).

Step four: We show thatif R(W) > Oand (F, v) € Max[R(W)],thend F C SFA’B]
for A, B asin (4.13). Otherwise, by the same truncation procedure leading to (4.10)
and by (F, v) € Max[R(W)], we would find

0 R" — P(F*; CZ\ W) > w,R" — P(F;C{ \ W) = R(W) VR >0,

so that (F*, v) € Max[R(W)] too. Now P(F c \W) (F* (o \W) is in-
creasingin R, and sinceresy (F, v) = resy (F*, v), it follows thatP(F, CR \W) =

P (F*; C];{ \W) for large R. But this can hold only if d F' N €2 is an hyperplane dis-
joint from W, in which case R(W) = resy (F, v) = 0.

Step five: Still assuming R(W) > 0, we complete the proof of statement (ii)
by proving (1.14). By (4.13), if (F,v) € Max[R(W)], then F/R — H™ = {x €
R"!: x.v < 0}inL]  (R"*!)as R — oco.By (4.14) and by improved convergence
(i.e., Remark 3.2—notice carefully that 0 F is bounded in the direction v thanks to
step four), we find Rr > 0 and functions { fr}r>gr, C c! (D3\DY) such that

(C5\CY)NO(F/R) = {x + fr(x)v:x €e D3\ D]}, VR > Rp.
with ||fR||C1(D§\Df) — 0 as R — oo. Scaling back to F' we deduce that
(BF)\CﬁF:{x—}—f(x)v:xevL\D”RF}, (4.15)
for a (necessarily smooth) solution f to the minimal surfaces equation with
”f”c()(vL\DVRF) S B —_ A . hm ”Vf”CO(D;R\D )y = O (416)

thanks to the fact that f(x) = R fr(x/R) if x € Dy, \ Dx. Whenn > 3, (1.14)
follows by (4.15) and Proposition 4.1. When n = 2, (4.2) holds by (4.14). To
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check (4.3), we deduce by resy (F, v) > 0 the existence of R > Rp such that
wy, R" > P(F; CRAW) — 1if R > R’. In particular, setting M = (0F) \ Bg,., for
R > R’ we have

HA(M N Br) < HXM NW)+ P(F; Ch\ W) < w, R"+1+H>(MNW) <CR",

provided C = w, + [(1 + H>(M N W))/(R")"]; while if R € (Rp, R), then
HZ(M N Bg) < CR" with C = H3(M N Bpg/)/R%,. This said, we can apply
Proposition 4.1 to deduce (4.5). Since d F is contained in a slab, the logarithmic term
in (4.5) must vanish (i.e. (4.5) holds with » = 0), and thus (1.14) is proved. Finally,
when n = 1, by (4.15) and (4.16) there are a;, a» € R, x| < x2,x1,x € vi =R
such that f(x) = a; forx € v, x < x, and f(x) =axforx e v, x > x5. Now,
setting M1 = {x +ajv:x € vh x < xi}and My = {x+av:x € vh x> X2},
we have that

P(F;CR\ W) =H"(CRN@F)\ (WUM; UM))+2R—|xs — xil;

while, if L denotes the line through x; + a; v and x> + a> v, then we can find
vr € S! and a set Fy, such that (Fr,vp) € FwithoFp = [((8F)\(M1 U Mz)) U
(L1 U Lz)], where L1 and L are the two half-lines obtained by removing from
L the segment joining x; + a; v and x» + a» v. In this way, P(Fz; CY'\W) =
H*(Ch N @F)\(W U M UMy))+2R — |(x1 +a1v) — (x2 + azv)|, so that
resw (Fr,vy) —resw(F,v) = |(x1 +arv)—(x2+a v)| — |x2 — x1| > 0, against
(F,v) € Max[R(W)]if a; # a>. Hence, a; = a>.

We are left to prove that (4.15) holds with R, = R (W) in place of R, and the
constants a, b, c and Cy appearing in (1.14) can be bounded in terms of W only. To
this end, we notice that the argument presented in step one shows that Max[R(W)]
is pre-compact in LllOC (R"*+1). Using this fact and a contradiction argument based
on improved convergence (Remark 3.2), we conclude the proof of statement (ii).
Step six: We complete the proof of statement (i) and begin the proof of statement
(iii) by showing that, setting for brevity d = diam (W), it holds

HY W NI = RW) < sup H'(p, (W) <wa(d/2)", (4.17)

vest

whenever IT is a hyperplane in R"*!. We have already proved the first inequality
in step one. To prove the others, we notice that, if (F, v) € F,thenp, . (0F) = vt
and (4.7)

give, for every R > R/,

—resy (F, v) > P(F; Cy \ W) — @, R" = H"(p,.@F \ W) N DY) — w, R"
= —H"(DR\p,L(OF \ W)) = —H"(p,+(W)) = —w, (d/2)", (4.18)

where in the last step we have used the isodiametric inequality. Maximizing over
(F,v) in (4.18) we complete the proof of (4.17). Moreover, if W = cl(By/2),
then, since S(cl (Bg/2)) = H"(cl (Bg/2) NI1) = w, (d/2)" for any hyperplane
IT through the origin, we find that R(cl (B4/2)) = w, (d/2)"; in particular, (4.17)
implies (1.15).
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Step seven: We continue the proof of statement (iii) by showing (1.16). Let R(W) =
wy, (d/2)" and let (F, v) € Max[R(W)]. Since every inequality in (4.18) holds as
an equality, we find in particular that

sup P(F; Cx\ W) —H"(p,.(0F \ W)ND}) =0, (4.19)
R>R'
H" (p,r (W) = w, (d/2)". (4.20)

By (4.20) and the discussion of the equality cases for the isodiametric inequality
(see, e.g. [29]), we see that, for some xy € v,

p,L (W) =cl (D;/z(xo)) , so that W C C;/z(xo) .

Condition (4.19) implies that (1.14) holds with u = a for some a € [A, B] =
N{(a, B) : W C S‘(’a /3)}; in particular, since (0 F) \ W is a minimal surface and
W C C; P (xp), by analytic continuation we find that

(OF)\ Cyp(x0) =M\ Cp(x0), T ={x:x-v=a}. (4.21)
By (4.21), we have that for R > R’,
P(F;Cr\ W) —wa R" = P(F; Cy 5 (x0) \ W) — @y (d/2)".

Going back to (4.18), this implies P(F; C}, /2()60) \ W) = 0. However, since
(0 F)\ W is (distributionally) a minimal surface, P(F; B,(x) \ W) > w, p" when-
ever x € (F)\W and p < dist(x, W), so that P(F; Cz/z(xo) \ W) = 0 gives
(@FO)\W)N Cl’i/z(xo) = (. Hence, using also (4.21), we find (0 F)\W = II\cl
(Ba/2(x)) for some x € I1, that is (1.16).

Step eight: We finally prove that R(W) = w, (d/2)" if and only if there are a
hyperplane IT and a point x € IT such that

IINoByp(x) CW, (4.22)
Q\ (IT\ Bg/2(x)) has two unbounded connected components . (4.23)

We first prove that the two conditions are sufficient. Let v be a unit normal to IT
and let TTT and T1~ be the two open half-spaces bounded by IT. The condition
[TU0Bg/2(x) C W implies W C C;/z(x), and thus

Q\cl[Cyp gay®] =TT UT)\cl[Cyp ga)]
In particular, 2 \ (IT \ Bg/2(x)) has a connected component F which contains
M \el [C;/Z,(—d,a’) @];

and since 2\ (IT\ B2 (x)) contains exactly two unbounded connected components,
it cannot be that F' contains also IT™ \ cl [C; /2.(—d.d) (x)], therefore

M\ [C) gp@]CF, T \C[C),  gq@®] CRTN\C(F).
(4.24)
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As a consequence d F is contained in the slab {y : |(y — x) - v| < d}, and is such
thatp, 1 (OF) = vl thatis, (F, v) € F. Moreover, (4.24) implies

IT\ cl(Bgpa(x)) CRNIF,

while the fact that £ is a connected component of 2\ (IT\ B4 /2 (x)) implies QN3 F C
IT\cl (B4/2(x)). In conclusion, 2 N 0 F = IT\cl (B4/2(x)), hence

Wy (d/z)n = hrgo wnrn — P(F; Clr} \W)<RW) 2w, (d/z)n s
r—

and R(W) = wy, (d/2)", as claimed. We prove that the two conditions are necessary.
Let (F, v) € Max[R(W)]. As proved in step seven, there is a hyperplane ITand x €
ITsuch that QN F = IT\cl (Byy2(x)). If z € [N 0 By/2(x) but z € 2, then there
is p > 0 such that B,(z) C €2, and since d F is a minimal surface in 2, we would
obtain that TN B, (z) C QNI F, against QNI F = T\ cl (By/2(x)). So it must be
I[MNdBy2(x) C W, and the necessity of (4.22) is proved. To prove the necessity of
(4.23), we notice that since TI™ \ cl [Cri/z,(—d,d) (x)]and T~ \ ¢l [C;/z,(—d,d) )]
are both open, connected, and unbounded subsets of €\ (IT\ By/2(x)), and since
the complement in \ (IT\ B4/2(x)) of their union is bounded, it must be that €2 \
(IT\ Bg/2(x)) has at most two unbounded connected components: therefore we
just need to exclude that it has only one. Assuming by contradiction that this is
the case, we could then connect any point x* € TTt \ ¢l [C}, /2.(—d.a)(¥)] to any
point x~ € TI7 \ cl[C}, 12.(—d,d) (x)] with a continuous path y entirely contained
in Q\(IT\ Bg,2(x)). Now, recalling that 2 N 0F = TI\cl (By/2(x)), we can pick
xo € MM\cl (Bg/2(x)) and r > 0 so that

B (x))NTIT C F, B.(xo) NTI~ Cc R™ 1\ cl(F), (4.25)

and Br(xo) N cl[Cy )y _y4y(¥)] = #. We can then pick xT e By(xp) NTIT,
X~ € By(xp) N II7, and then connect them by a path y entirely contained in
Q\(IT\ Bg/2(x)). By (4.25), y must intersect d F', and since y is contained in 2, we
see that y mustintersect N0 F" = IT\cl (By/2(x)), which of course contradicts the
containment of y in Q\(IT\ By,2(x)). We have thus proved that &\ (IT\ By,2(x))
has exactly two unbounded connected components. O

5. Resolution Theorem for Exterior Isoperimetric Sets

The notation set in (4.1) is in use. Given v; — 00, we set A; = v}/("ﬂ).

Proof of Theorem 1.6. Theorem 1.6—(i) and the estimate for |v~!/"+D |x| —
—1/(n+1)
n+1

(iii).

Step one: We prove that

| in Theorem 1.6—(iv), have already been proved in Theorem 3.1—(ii),

Jim g (v) — P(B™) < —R(W). (5.1)



87 Page 50 of 70 Arch. Rational Mech. Anal. (2024) 248:87

To this end, let (F, v) € Max[R(W)], so that by (1.13) and (1.14), we have
F\Ck, ={x+tv:xevt |x| >Ryt < f(x)}, (5.2)
for a function f € C'(v1) satisfying

|f) = (@+bIx*" + (c-x)[x|™")| < Colx|™",
max {|x|""N V£ 1x" [VEF()I) < Co,  Vx e vt x| > Ry, (5.3)

and for some a,b € R and ¢ € v! such that max{|al, |b], |c]} < C(W) < oo
(moreover, we can take b = 0, ¢ = 0 and Cyp = 0 if n = 1). We are going to
construct competitors for ¥y (v) with v large by gluing a large sphere S to 0 F
along dC} forr > R;. This operation comes at the price of an area error located on
the cylinder dC;. This error will remain bounded as needed thanks to the fact that
(5.3) determines the distance (inside of C}) of 3 F from a hyperplane (namely, 3G,
for the half-space G, defined below) up to o(r!~") as r — oo. Thus, the asymptotic
expansion (1.14) is just as precise as needed in order to perform this construction,
i.e. our construction would not be possible with a less precise information.

We now discuss the construction in detail. Given r > Rj, we consider the
half-space G, C R"*! defined by the condition that

G,ﬂ&C‘;:{x+tv:xevl,|x|:r,t<a+br2_"+(c-x)r_"}, (5.4)

so that G, is the “best half-space approximation” of F on dC} according to (5.3).
Denoting by hd (X, Y) the Hausdorff distance between X, Y C R for every
r > Ry and v > 0 we can define x,, € R"*! in such a way that v > X, is
continuous and

lim hd (B (x,,) NK,G,NK)=0 VK cc R (5.5)

vV—>00

Thus, the balls B™ (x,.,)) have volume v and are locally converging in Hausdorff
distance, as v — 00, to the optimal half-space G,. Finally, we notice that by (5.3)
we can find @ < § such that

(@F)U(dG,) U (G,AF))NC} C C;},(oz+l,ﬁ71) , (5.6)
and then define F, , by setting

Fro=(FNC. ) U (B )\ el[Cl 0 s]) (5.7)

see Fig.5. We claim that, by using F}, as comparisons for ¥rw (| F}.,|), and then
sending first v — 0o and then r — o0, one obtains (5.1). We first notice that by
(5.5) and (5.6) (see, e.g. [27, Theorem 16.16]), we have
P(Fr: Q) = P(Fi Cy g ) \ W) + P(B (i 0): R"\ €l [ €] ) ])
+H((FAB®W (x,0)) N 3C} ) (5.8)
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where the last term is the “gluing error” generated by the mismatch between the

boundaries of 8 F and d B®™ (xr.p) along BgC‘r’! (@.p)" Now, thanks to (5.3) we have

hd (G, N3C}, FNIC}) < Cor™", so that
H"((FAG,)NIC)) <nw,r" 'hd (G, NIC,, FNIC,) < C(n, W)/r. (5.9)
At the same time, by (5.5),

v]i)ngo H" ((G,«AB(U)(xr,v)) n aeC‘r),(a,ﬂ)) =0,

and thus we have the following estimate for the gluing error,

S Cn,W
lim H"((FAB™ (x,.,)) N 8,C}. 4 5)) < ﬁ, ¥r>Ry.  (5.10)
vV—> 00 2\, r
Again by (5.5), we find that
Jim P(B" (x:1): Chap) = P(Gri C o) (5.11)
1< (w, ™! P(Gr; C:'J,(a,ﬂ)) = ][ V1I+ (/2 <1+C r2m,
Dy
(5.12)
so that, by (5.11) and by the lower bound in (5.12), for every r > R»,
lim P(B™ (x,); R"™ \cl[C}, 5)]) = P(BY) < —w, 1" (5.13)

vV—>00

Combining (5.10) and (5.13) with (5.8) and the fact that Cf,(a’ﬂ) NIF =C/NIF
(see (5.6)), we find that, for every r > R,

Jim P(Fr0: Q) = P(BY) < P(FiCAW) — w1 + Cn, W)/r
< —reswy(F,v)+C(n, W)/r = —R(W)+ C(n, W)/r. (5.14)
where (4.7) has been used. Now, combining the elementary estimates
max {[|F.o| — v|, 0"V pBW)) — PBIFD) ) < )yt (5.15)
with (5.14), we see that

lim yw (| Frol) = P(BID) < ~R(W) + C(n, W)/r, ¥r > Ry. (5.16)
v—>

Again by (5.15) and since v +— |F;,| is a continuous function, we see that
limy o0 Yw (| Fro]) — P(BUF2D) =Tim, o0 Yrw (v) — P(B™). This last identity
combined with (5.16) implies (5.1) in the limit » — oo.

Step two: Now let £; € Min[yw (v;)] for v; — oco. By (3.1) and a standard
argument (see, e.g. [27, Theorem 21.14]), there is a local perimeter minimizer
with free boundary F in € such that, up to extracting subsequences,

E; — Fin L (R"™), H" 9E; — H"LF as Radon measures in <2,
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hd(KNJE;j; KNJF) — 0  forevery K CC . (5.17)

Notice that it is not immediate to conclude from E; € Min[yw (v;)] that (for some
v e §" (F,v) € Max[R(W)] (or even that (v, F) € F), nor that P(E;; Q) —
P(B™)) is asymptotically bounded from below by —resy (F, v). In this step we
prove some preliminary properties of F, and in particular we exploit the blowdown
result for exterior minimal surfaces contained in Theorem 2.1—(ii) to prove that
F satisfies (5.2) and (5.3) (see statement (c) below). Then, in step three, we will
use the decay rates (5.3) to show that E; can be “glued” to F, similarly to the
construction of step one, and then derive from the corresponding energy estimates
the lower bound matching (5.1) and the optimality of F in R(W).

(@) QNOFNIB, # ¥ forevery p suchthat W CC B,: If not there wouldbe ¢ > 0
suchthat W CC B,_ and QﬂaFﬁAsz = ((recallthat AT = {x : s > |x| > r}).
By (5.17) and the constant mean curvature condition satisfied by 2N E ;, we would
then find that each E; (with j large enough) has a connected component of the form
B™7 (x;), with B®) (x;) cC R"™\B, 1, and w; > v; — C(n) (o +&)"*!. In
particular, against R(W) > 0,

Yw(v)) = P(Ej; Q) = P(BY=C@+"™ D)y > p(®)) — Ca7! (o + )"+

(b) Sharp area bound: We combine the upper energy bound (5.1) with the perimeter
inequality for spherical symmetrization, to prove

P(F; QN B,) <w,r" —R(W), forevery r s.t. W CC B, . (5.18)

(Notice that (5.18) does not immediately imply the bound for P(F; 2N C}) which
would be needed to compare R(W) and resy (F, v).) To prove (5.18) we argue by
contradiction, and consider the existence of § > 0 and r with W CC B, such that
P(F; Q2N B,) > w, r" — R(W) + §. In particular, for j large enough, we would
then have

P(E;; QN B) = w,r" —R(W) +6. (5.19)

Again for j large, it must be H"(dE; N dB,) = 0: indeed, by (3.1), 2 N 9E; has
mean curvature of order O()Cl), while of course d B, has constant mean curvature
equal to n/r. Thanks to H"(dE; N9B,) =0,

P(Ej; Q) = P(Ej;; QN B) + P(E;R™ \cl(B)). (520

If E% denotes the spherical symmetral of E; such that E% N d B, is a spherical cap
in 9B, centered at p e,41, with area equal to H"(E; N dB,), then we have the
perimeter inequality

P(Ej; R" '\ cl(B,)) = P(ES; R" \ el (B))): (5.21)

see [10]. Now, we can find a half-space J orthogonal to ¢,+; and such that H" (J N
0B,) = H"(E; N dB,). In this way, using that |E; \ B;| = |E; \ B;| (by Fubini’s
theorem in spherical coordinates), and that H" (B, N dJ) < w, r" (by the fact that
aJ is a hyperplane), we find

P(ESR™\cl(B,)) = P((E3\ el (B) U (J N B,)) — H' (B, NdJ)
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> P(B(\E./‘|—\Ejﬂ3r|+|1ﬁ3r|)) —wp 1"

> P(BY)) = Cm)r" ™ a7t — w, "

which, with (5.19), (5.20) and (5.21), finally gives P (E; Q)—P(BY)) > —R(W)+
§—C(n)r"t! A;l for j large, against (5.1).

(¢) Asymptotic behavior of dF: We prove that there are v € S*, f € C®(v1),
a,beR,cevt, R >sup{p: W C C)}and C positive, with

IF\Cp ={x+fx)v:xe v x| > R'},

fx)=a, n=1 (522
f) = (a+bxP"+ -0 x| = Clx[™", (n=2),

max {|x|""N V£ Ix" [VEF()I) < Co,  Vx e v, x| > R'.(5.23)

To this end, by a standard argument exploiting the local perimeter minimality of F in

2, given r; — o0, then, up to extracting subsequences, F/r; Log J in LllOC (R,
where J is a perimeter minimizer in R”*1\{0}, 0 € 8J (thanks to property (a)), J
is a cone with vertex at O (thanks to Theorem 2.7 and, in particular to (2.41)), and
P(J; By) < wy, (by (5.18)). If n > 2, then dJ has vanishing distributional mean
curvature in R"*! (as points are removable singularities for the mean curvature
operator when n > 2), thus P(J; By) > w, by upper semicontinuity of area
densities, and, finally, by P(J; B1) = w, and Allard’s regularity theorem, J is a
half-space. If n = 1, then dJ is the union of two half-lines ¢; and ¢, meeting at
{0}. If £; and ¢, are not opposite (i.e., if J is not a half-space), then we can find
a half-space J* such that (J/ N J*)AJ cC B ccC R?\{0} for some ball B, and
P(J NJ* B) < P(J; B), thus violating the fact that J is a perimeter minimizer
in R**1\ {0}.

If n = 1 it is immediate from the above information that, for some R’ > 0,
F\Bg' = J\Bp; this proves (5.22) and (5.23) in the case n = 1. To prove (5.22)
and (5.23) whenn > 2, we let My and ¢q be as in Theorem 2.1—(ii) with parameters
nand I' = 2n w,, and with o = 1. Since J is a half-space, by using Remark 3.2

1
and F/r; 2% J on the annulus A%/Lz, for some L > max{My, 64} to be chosen later
on depending also on &g, we find that

4Lrj . L 4Lrj L
OF)NA, ) ={x+r filx/rj)vixeviina . vi=08J, (524

for fj € C'(v*) with || fjllc1¢,ty = 0. By (5.24), V; = var (0F)\B,,. 1) €
Vu(0, 7}, 00), with (for o(1) — 0 as j — o0)

" /x . v%,f; dbdy; = —nw, + o(1)
ri " Ibdy,1I(By,) = nw, + o(1), (5.25)

sup [ =T IV (B \ By —wa| =0(1).  (5.26)
re(rj,3Lrj)



Arch. Rational Mech. Anal. (2024) 248:87 Page 55 0of 70 87

By our choice of T, by (5.18) and (5.25) we see that, for j large, we have
Ibdv, 1(@B,,) <Tr"=" . IVill(By\ By) <Tp", ¥p>rj.  (527)
Moreover, we claim that setting
sj=2Lr;
(so that, in particular, s; > max{My, 64} r;), then

8v,065/8)| <60, Inf Sy, 0() 2 ~so. (5.28)

1
r>s;j

provided j and L are taken large enough depending on gp. To check the first
inequality in (5.28) we notice that, by (5.25) and (5.26),

8,008 /8)=wn — “V]“((fjs}g"\ o n (Sjl/S)n / * - vy; dbdy,
(s;/8)" —r}l wp r;?

(sj/8)" (sj/8)"
=o(1) (1 + (rj/s;)") = o(1),

so that |5vj,r].70(s j/8)] < €0 as soon as j is large with respect to &g. Similarly, if
r>s;/8 = (Lr;)/4, then by (5.25), (5.26), (5.18),and r; /r < 4/L,

IVil(B, \ B2y IVill(Bar, \ Br))  @nr™
- rn - rn - r}’l

w, 1" — R(W) Qrp" - r;?

wp "
> oy — ————— = (@ +o(D)) - — - (1+0()

> r " R(W) = 2(4/L)" (wq +0(1)) = (4/L)" o(1) = =3 (4/L)" wp,

=w, — (wn +0(1))

(14 o(D))

(14 o(D))

5Vj,rj,0(r) = U)n

rn

provided j is large; hence the second inequality in (5.28) holds if L is large in terms
of g9. By (5.27) and (5.28), Theorem 2.1-(ii) can be applied to (V, R, A,s) =
(Vj,rj,0,s5;) with j large. As a consequence, passing from spherical graphs to
cylindrical graphs with the aid of Lemma B.1, we find that, for some large j,

(OF)\ By;j16 = {x + f(x)v:x € v} \ By 16, (5.29)

where f : vt — R is a smooth function which solves the minimal surfaces

equation on v+ \ By ;/16- Since 9 F admits at least one sequential blowdown limit
hyperplane (namely, v = 9J), by a theorem of Simon [36, Theorem 2] we find
that V f has a limit as |x| — oo; in particular, |V f| is bounded. Moreover, by
(5.29) (or by the fact that F is a local perimeter minimizer in €2), d F is a stable
minimal surface in R?*1 \ st /16, Which, thanks to (5.18), satisfies an area growth
bound like (4.3). We can thus apply Proposition 4.1 to deduce the validity of (5.23)
when n > 3, and of | f(x) — [a + b log |x| + (¢ - x) |x|72]| < C |x|72 for all
|x| > R’ when n = 2 (with R’ > s;). Recalling that F is a local perimeter
minimizer with free boundary in 2 (thatis, P(F; QNB) < P(F’; QN B) whenever
FAF' cc B cc R?) it must be that 5 = 0, as it can be seen by comparing F
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with the set F’ obtained by changing F inside C; (r >> R’) with the half-space
G, bounded by the plane {x +7v : x € v+, t =a+b log(r) +c - x/r?} and such
that H>((FAG,) N aCy) <C/ r? (we omit the details of this standard comparison
argument). Having shown that b = 0, the proof of (5.23) when n = 2 also is
complete and we are finished with (c).

(d) F U W defines an element of F: With R > R’ as in (5.22) and (5.23), Vg =
var (3 F) N (Bg\W)) is a stationary varifold in R**!\ K for Kr = W U {x +
fx)v:x e vt |x| = R}, and has bounded support. By the convex hull property
[34, Theorem 19.2], we deduce that, for every R > R’, sptVy is contained in
the convex hull of Kg, for every R > R’. Taking into account that f(x) — a
as |x| — oo we conclude that 2 N dF is contained in the smallest slab S[”a’ 81
containing both W and {x : x - v = a}. Now set F/ = F U W. Clearly F’ is a set
of locally finite perimeter in €2 (since P(F'; Q') = P(F; Q') forevery Q' CC Q).
Second, 9 F' is contained in SF&,,B] (since dF’ C [(AF)NK]UW). Third, by (5.22)
and (5.23),

{x+tv:xevL,|x|>R’,t<a}CF’, (5.30)
[x+tvixevh x| >R, t> B} cR™N\F, (5.31)
{x+tv:x e vt x| <R/,teR\[a,ﬂ]}ﬂ(8F/)=®. (5.32)
By combining (5.30) and (5.32) we see that {x +tv : x € vh < a} C F/, and
by combining (5.31) and (5.32) we see that {x +7v : x € v, ¢t > B} C R*1\ F:

in particular, p,1 (dF’) = v, and thus (F', v) € F.
Step three: We prove that

lim Yw(v) — P(BY) > —R(W). (5.33)

V—>00

For v; — oo achieving the liminf in (5.33), let E; € Min[vyrw (v;)] and let F be a
(sub-sequential) limit of £, so that properties (a), (b), (c) and (d) in step two hold
for F. In particular, properties (5.22) and (5.23) from (c) are entirely analogous to
properties (5.2) and (5.3) exploited in step one: therefore, the family of half-spaces
{G,},> g defined by (5.4) is such that

(0F)U@G,)U(G,AF)NC] C C)yi15 1)
H'((FAG,)NaC)) <r~' Cn, W), (5.34)
|P(Gr; C o py) —@nr"| <" Cn, W), (5.35)

(compare with (5.6), (5.9), and (5.12) in step one). By (5.35) we find

—resy (F',v) = rlLrI;o P(F;C)\ W) — P(G,; C;”(a’ﬁ)) . (5.36)

In order to relate the residue of (F’, v) to Yry (v i) — P(BWi) we consider the sets
Z;=(G,NnC; @p) Y (Ej\ C, («,p))> Which, by isoperimetry, satisfy

P2z PBYE\Cwnly = P(BYD) — )" (B—e) ;' (5.37)
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Since for a.e. r > R’ we have
P(Zj) = P(Ej; R"™N\C) (, p)) + P(Gr; C} ) + H' ((EjAG,) N OC) 1)
we conclude that
Yw () — P(BY)) = P(Ej: €. py)\W)+ P(Ejs R"INCY  5)— P(BUD)
=P(Ej; C} (u.p \ W) + P(Z)) — P(B®)
—P(G,; C) (1) — H"((E;AG,) NBCY 1)

sothat E; — Fin LIIOC(R"“) and (5.37) give, for a.e. r > R/,

lim Y (v)) = P(BY) = P(F; C) (, 5)\W) = P(G; C) (o, )

j—o00

—H"((FAG,) N 3C] , 4)) = P(F; C)\W) = P(G; C)) = C(n, W)/r,

thanks to (5.34) and (FAG,) N 3C) = (FAG,) N BC;’)(ayﬁ). Letting r — o0,

recalling (5.36), and by (F',v) € F, we find lim; ,  Yw(v;) — P(BYi)) >
—resy (F', v) > —R(W). This completes the proof of (5.33), which in turn, com-
bined with (5.1), gives (1.19), and also shows that Llloc-subsequential limits F of
E; € Min[yrw (v;)] for v; — oo are such that, for some v € S*, (F U W,v) e F
and F/ = FUW € Max[R(W)].

Step four: Moving towards the proof of (1.22), we prove the validity, uniformly
among varifolds associated to maximizers of R(W), of estimates analogous to
(5.27) and (5.28). For a constant I > 2 n w,, to be determined later on (see (5.48),
(5.49), and (5.50) below) in dependence of n and W, and for o > 0, we let My =
My(n,2T,0) and g = €p(n, 2T, o) be determined by Theorem 2.1. If (F, v) €
Max[R(W)], then by Theorem 1.1-(ii) we can find Ry = Ry(W) > 0, f €
C*°(v1) such that

@F)\Ch, ={x+ f@)v:xevt [x| > Ry}, (5.38)

and such that (1.14) holds withmax{|a|, |b|, |c|} < C(W)and |V f(x)| < Co/|x|"""
for |[x| > R». Thus ||Vf||CO(UJ_\D;J) — 0 as r — oo uniformly on (F,v) €
Max[R(W)], and there is R3 > max{2 R, 1} (depending on W) such that, if
Vi = var ((0F) \ Bg,, 1), then Vr € V,(0, R3, 00), and

Ibdv, [(@Bry) <T Ry~ [[VFI(B,\ Bry) <Tp"  Vp >Ry, (539

(compare with (5.27)). Then, arguing as in step three—(c), or more simply by exploit-
ing (5.38) and the decay estimates (1.14), we see that there is L > max{M, 64},
depending on n, W and o only, such that, setting

sw(o) =2L Rj3 (5.40)
we have for some c(n) > 0 (compare with (5.28))

16V, r3.0(sw(0)/8)| < €0/2, inf - Syp ry0(r) = —0/2.  (5.41)

r>sw(o)/8
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Step five: Given E; € Min[yrw (v;)] for v; — o0, we prove the existence of
(F,v) e Max[R(W)] and h; € C*°((3F)\Bg,) such that

RiAj Ri%j
(E)) ﬂA4}Q2" = {y +hi(vr(y):ye€ 8F} ﬂA4]R2", (5.42)
jlgr;o ”hj”C‘((aF)mAj”Rz) =0, YM < oo; (5.43)

and that if x; satisfies |EJ-AB(”J')(x~,~)| = inf, |EjAB("f)(x)|, then

lim [|x;| " x; —v|=0; (5.44)
j—o0

finally, we prove statement (iii) (i.e., (0 £ ;)\ B, is diffeomorphic to an z-dimensional
disk). By step three, there is (F, v) € Max[R(W)] such that, up to extracting sub-
sequences, (5.17) holds. By (5.17) and (5.38), and with sy (o) defined as in step
four (see (5.40)) starting from F', we can apply Remark 3.2 to find f; € C ®(ph)
such that

GEHN AP =[x + fi)v 1 x e vh} n Ay, (5.45)

for j large enough (interms of o', n, W, and F), and such that f; — fin c! (D;’W(o)\

D) r,)- With R3 as in step four and with the goal of applying Theorem 2.1 to
the varifolds V; = var ((0E;)\Bg,, 1), we notice that V; € V, (A, R3, 00), for

some Aj < Ag A;l (thanks to (3.1)). In particular, by (5.40), sw (o) satisfies the
“mesoscale bounds” (compare with (2.2))

gy (4 Aj)_1 > sy (o) > max{My, 64} R3 (5.46)

provided j is large. Moreover, by R3 > 2 R; and sw(0)/8 > 2 Ry, by (5.38),
(5.45)and f; — fin cl, we exploit (5.39) and (5.41) to deduce

”dej ”(aBRz) =< (2 F) Rgl_l,
18v;,r3,0(sw (0)/8)] = (2/3) &o. (5.47)
We claim that, up to increasing I' (depending on n and W), we can entail
IVill(B,\ Bry) <T p", Vp>R3. (5.48)

Indeed, by Theorem 3.1-(i), for some positive Ag and so depending on W only, E ;
isa (A k;l , S0 A j)-perimeter minimizer with free boundary in 2. Comparing E;
to E;\B, by (3.1), for every r < so A},

P(Ej; QN B) < C) (r" + Aga; ' r"Th) < Cln, W) " (5.49)
since, at the same time, if » > 50 A, then
P(Ej;: QN By) < P(Ej: Q) = yw(v)) < P(B")) < Cn)sg" ", (5.50)

by combining (5.49) and (5.50) we find (5.48). With (5.47) and (5.48) at hand, we
can also show that

18v;,Rs.0; (sw(0)/8)| < €. (5.51)
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Indeed, by sw(0) =2L R3and by A; < Ag A;l,

187, 5., (5w (6)/8) = 8y, 3.0 (5w (0)/8)]

()2

sw(o)/8
=< (Ao/2j) /R o " IVill(Bp \ Bry)dp < =3
3

J

provided j is large enough. To complete checking that Theorem 2.1 can be applied
to every V; with j large enough, we now consider the quantities

Rij =sup{p > sw(0)/8: 8y, ry.0;(p) = —60},
and prove that, for a constant 7y depending on n and W only, we have
Ryj > 10A); (5.52)
in particular, provided j is large enough, (5.52) implies immediately
Ryj > 4sw(o), (5.53)

which was the last assumption in Theorem 2.1 that needed to be checked. To prove
(5.52), we pick 7¢ such that

|t " H"(Bey(2) N3BY) — | <e0/2,  VzedBD.

(Of course this condition only requires 7 to depend on n; the dependence on W will
appear later.) By definition of x; and by (3.4), and up to extracting a subsequence,
we have x; — 7o for some z¢ € dBM  In particular, setting pj = ToAj, we find

P37 NV, \ Bro=rg ™ P((Ej = x))/3j; Bry(—)\ By, (—1)))
— 'L’(;n H"? (Bro(_ZO) N aB(l)) <wy+ (80/2)7

thus proving that, for j large enough,

€0 1 Pi|lVill(Bp \ Brs)
8v; Ry A (Pj)=—— + /x~v€f]’.dbdvj —Aj/ —L P S dp

2 npf R3 o
s 2T R" - — R & C n, w
___0_ - 3 _Aoru 2_—0—¥—C**(’1’ W)TO’
2 nTyAj Aj 2 W

where we have used (5.47), sptbdy; C 9 Bg,, and (5.48). Therefore, provided we
pick 79 depending on n and W so that C, 19 < €0/4, and then we pick j large
enough to entail (Cy(n, W)/r&))»;l < &0/4, we conclude thatif » € (R3, p;], then
8v;, Ry, A, (r) = 8v; ry,A;(pj) = —&o, where in the first inequality we have used
Theorem 2.7—(i) and the fact that V; € V, (A, R3, 00). In summary, by (5.47) and
(5.48) (which give (2.1)), by (5.46) (which gives (2.2) with s = sy (0)/8), and by
(5.51) and (5.53) (which imply, respectively, (2.3) and (2.4)) we see that Theorem
2.1—(i) can be applied with V = V; and s = sw(0)/8 provided j is large in terms
of o, n, W and the limit F’ of the E;’s. Thus, setting

S*j :min{R*j,so/Aj},
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and noticing that by (5.52) and A; < Ag )»jfl we have
Sij =16 R A,

(for Ry depending onn and W only) we conclude that, for j large, there are K; € H
andu; € XU(EKJ., ow(0)/32, Ry A ), such that

Ry A
@E;HN Asvlv(é)/n = Xg; (uj, sw(o)/32, Ry Aj) . (5.54)
Similarly, by (5.39) and (5.41), thanks to Theorem 2.1—(ii) we have
OF) N (RN By, 0y/32) = Zy1 (u, sw(0)/32, 00) (5.55)

foru € X,/ (2,1, sw(o)/32, 00) foreveryo’ > o.Now,by E; — FinLlloc(R"H),
(5.54) and (5.55) can hold only if [vg; — v| < ¢(o) for a function ¢, depending
on n and W only, such that £(¢) — 0 as ¢ — 0*. In particular (denoting by oy
&g and Cjj the dimension dependent constants originally introduced in Lemma 2.5
as og, &9 and Cq) we can find o1 = o1(n, W) < o(’)" such that if 0 < o7, then
gy > ¢(0) > lvk; — vl, and correspondingly, Lemma 2.5-(i) can be used to infer
the existence of u’; € Xcy (0+¢(0)) (X1, sw(0)/32,2 Ry A ) such that, for j large,

EVL(uj, sw(0)/32,2 Ry )»j) = EK]. (uj, sw(0)/32,2 Ry )»j)
2R1)»‘,‘

= (0E;)N Asw(o)/32'

(5.56)

By (5.45) and Lemma B.1, (5.56) implies cylindrical graphicality: more precisely,
provided o1 is small enough, there are g; € C LyLy such that

Sull{|gj(x)| lx| 71 Vg 0]} < C (0 + £ (0)). (5.57)
XEV
WENN Ay = {x +g;)v:x e vt} nAype’. (5.58)

At the same time, by (5.38), (1.14), and up to further increasing R, and decreasing
o1, we can exploit Lemma B.2 in the Appendix to find 4 € CHG(f), G(f) =
{x + f(x)v: x € v}, such that

[x+givixev)\Big, ={z+hj@vr@ :z€G(f)}\ Bag,,

which, combined with (5.38) and (5.58) shows that

Ry Aj RiA;
OE)NAug ={z+hj@vr@) :z€dF ALY,

thatis (5.42). By E; — Fin L} (R"™"), wefindh; — 0in L'((9F)N A%Rz) for
every M < oo, so that, by elliptic regularity, (5.43) follows. We now recall that, by
Theorem 3.1(ii), (0Ej)\BRy(v;)»,; coincides with

(2w (O =) /3)) Vg () 2y € 9B DI Browy)
with [w;llc15 01, — 0 and Ro(v;) — 0, (5.59)
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The overlapping of (5.58) and (5.59) (i.e., the fact that Ro(v;) < Ry if j is large
enough) implies statement (iii). Finally, combining (5.57) and (5.58) with (5.59)
and [[w;lc15pmy = 0 we deduce the validity of (5.44). More precisely, rescaling
by A; in (5.57) and (5.58) and setting E;‘ = E;/Aj, we find g;‘ e C'(v1) such
that, for every j > jo(o) and 0 < o7,

sup {|g¥)llx| L, [VgE )1} < € (0 + £(0)),

xevt

OENHN Af;wj ={x+gi@v:xevt)n A§}Q2/M, (5.60)
while rescaling by A in (5.59) and setting z; = x;/A; we find

QEN\ Browp={zj + 2+ w;(@) vgn(2) : y € 3BV ()} \ Bryw))

where ||z — wii('lﬂrl)

|z0] = a),llif'fH). Should zp # |zo| v, then picking o small enough in terms of

v — (zo/lzo])| > 0 and picking j large enough, we would then be able to exploit
(5.60) to get a contradiction with ||wj[|c1ypmy — 0.

Conclusion: Theorem 3.1 implies Theorem 1.6—(i), and (1.19) was proved in step
three. Should Theorem 1.6—(ii), (iii), or (iv) fail, then we could find a sequence
{(Ej,vj)}; contradicting the conclusions of either step five or Theorem 3.1. We
have thus completed the proof of Theorem 1.6. O

| — O thanks to (3.4). Up to subsequences, z; — zo, where

Acknowledgements. Supported by NSF-DMS RTG 1840314, NSF-DMS FRG 1854344, and
NSE-DMS 2000034. We thank William Allard and Leon Simon for clarifications on [1] and
[35] respectively, and Luca Spolaor for his comments on some preliminary drafts of this
work.

Data availability Data sharing not applicable to this article as no datasets were
generated or analyzed during the current study.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive
rights to this article under a publishing agreement with the author(s) or other right-
sholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

Appendix A: Proof of Theorem 2.6

We assume H € H, A > 0,19 > n > 0, (r1, r2) and (3, r4) are (n, no)-related as
in (2.36), and u € X,(Zy, r1, rp) is such that Xz (u, rq, r») has mean curvature
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bounded by A in Aﬁ We want to find o and Cy, depending on n, ng, and n only,
such that, if max{l, A rn}o < og, then

H a3, 1) = H (S 0,73, 7)) SCO/ @ Al (AD
Ty x(ry,r2

and such that, if there is r € (r, ) s.t. E%H [ur] =0on Xy, then

/ "t < C)Ar (7} =) + Co / N au)?. (A2)
) P

HX(r3,r4) HX(r1,r2)

We make three preliminary considerations: (i): By [1, 4.5(8)]
H (a1, 72) = H S 0,71, 72)

_l/ P (VE P 4 00 = (1= D)
z

2 HX(r1,r2)
<Cmo / P 4 IVE ) 4 (r 8,u)?) (A3)
Zpx(rir2)

Similarly, by the last displayed formula on [1, Page 236] and by [1, Lemma 4.9(1)],
if o =vy>w, we CY(Sy x (r1.r2)) and ¥ € C'(ry, r2), then

d
‘_ H Sy +1 @, r1, 1))
dt|,—g
_/ rn—l {VEHMVZH(p—i—(raru)(l’ar(P)—(”_1)”‘/’}‘
S x(r1,r)

<Cm)o / PR (IVER U 4 [VER w4 (r 8u) + (r dw)?
>

HX(r1,r2)
+u? +wr+ @y wz}, (A4)
which is the second order expansion of the first variation of the area at X g (u, r1, 12)
along outer variations in spherical coordinates of the form ¢ = ¥ w, ¥ = ¥ (r).

(ii): For the sake of brevity, given ¢ : (r1,r) — R a radial function, u, v :
Ygx @, >R X,Y: Xy x(r,rn) > R", weset

Q;(u,v)=/ ) uv, Q;(X,Y)z/ X - Y
Xy x(ri,r2) Xy x(r1,r2)

and Q; (u) = Q¢ (u,u), Qr(X) = Q(X, X). (iii): The following two estimates
(whose elementary proof is contained in [1, Lemma 7.13]) hold: whenever v €
C'(Zy x (r1,72)), we have

/ " < Cn, o, no){/ P 8rv)2~|—/ r”_lvz},(A.S)
> ) )

HXx(r1,r2) Hx(r1,r2) H*x(r3,r4)

and, provided there is r € [r1, r2] such that v, = 0 on Xy, we have

/ 1% < Cn, no) P 9,0)2. (A.6)
Y px(r1,r2) Ypx(r1,r2)
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We are now ready for the proof. Compared to [1, Chapter 4], the main difference
is that we replace [1, Lemma 4.10] with (A.7).

Step one: We prove that thereis h : ¥ x (r1,r2) — [—A, A] such that for every
we CY Ty x (r1,r)) and ¥ € C'(r1, r2) we have

Ty, w) —/2 r Y wh| < Cmoo(Qy @)+ Qy(w) + 0y (V")

Hx(r1,r2)

+0y (VZHw) + 0y y (Bu) + Or y Byw) + Qpy (). (AT)

where Ty (1, w) = Qy (VEHu, VEHw) + Q. (8,u, 3, [y *w]) — (n — 1) Qy (u, w).
We start rewriting (A.4) as

d
(Tw(u, w)— | H(S 2w, 1, rz))‘

<C)o (Qy) + Qyw) + Oy (VZHu) + 0y (VZHw)
+ 0y @rut) + Qr gy (Brw) + Oy g (AP)

If Fuyrp:Zu X (r1,r2) = Zpw+te,r,m), ¢ = wz w, is given by

o+ Ww(w,r)+te(w,r)) vy
V14w, r) + tp(@,r)?

Fu+t<p(w, ry=r

then {®; = F,4,y 0 (F,,)’l},e[o,l] are diffqomorphisms on Xy (u,ry,ry), with
S (Xpu,r1,r2) = Zgutt ¢, ri,r2)and &g = (d/dt);=oP;. Since Ty (u, r1, 2)
has mean curvature bounded by A in Aff, for some bounded function i : Xy x

(r1,r) — [—A, A] we have

d L
—| H'(ZwA+te,ri,m)=A / R(F7Y &0 - vy
dt lt=0 Sh ()

=A / h do(Fy) - %(3: Fu A A28 Fy),
z

HXx(r1,r2)

where 9; = V, for a local orthonormal frame {ri}?:_ll in Xy, and where x is the
Hodge star-operator (so that x (v1 A v2... A vy,) is a normal vector to the hyperplane
spanned by the v;’s, with length equal to the n-dimensional volume of the paral-
lelogram defined by the v;’s, and whose orientation depends on the ordering of the
v;’s themselves). We can compute the initial velocity g of {®;}€10,1] by noticing
that @, (Fy(w,r)) =r (1 4+ w+1t9)) 2 (@ + (u +t ) vg), so that,

. d o+ (u+te)vy —upw—+ vy
bo(Fy) = = | r et =

:r(—zupa)—l-gpvy)+r00(w2(u2+w2)).

At the same time

o F a)+uvy+ a(a)—i—uvﬂ) w+uvy ruoruw rouVvy
= r oy = —
NG el Vi+ui2) JT+u2 (A +u?)3? 0 (14 u?)3?
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:(1 — (u2/2) —ur Bru) o+ (u +r 8ru) vy +o O(u2 + (raru)z)
=Aw+ Bvy + 0 OW? + (rou)?),
0; Fy w+uvy T u oiu oju
i<\/1+—uz) T ixae QT pan
=(1- /)t —uduw+ dhuvy + 0o OW* + (du)?)
=Crt+Eiw+ Fjvy —|—00(u2 + (Biu)z)

r

so that, with & = /\?:_111,', Ti = NjiTj, and PWw)? = u® + |VEHu]® + (royu)?,

-1
O Fu A NZ  0i Fy
rnfl

=AC"'OANE+BC" vy AE +Gi (wAvy A ) +0O(Pw)?),

=(Aw+ Bvg)AAZ}(Cti + Ei o + F; vi) +0O(P(w)?)

for a coefficient G; which we do not need to compute. Indeed, x(w A vy A Ti),
being parallel to 7;, is orthogonal to w and vy, so that

r o (Fu(r, ) - %(3, Fu A AT 0 Fy)
F(—upo+ovy)+o O(gﬁz(u2 + vz))] .
fAc™ vy = BC" ' w+ 0 O(P(w)?)]

2
=" (1~ uj —urdpu) o+ w+rduyuglt o Oy w? + Pw)?))
=+ 00y (w? + Pw)?)

In particular, since |h| < A,
d

dt

t:OH"(E(u +1o,71,12)) =/ h ®o(Fy) - *(3, Fy A /\;?;llaiFu)

Ex(ri,r2)

= /)S " YPwh + o ArO(Qy ) + Quw) + Qu (V1 u) + Qr y (910)).

HX(r1,r2)

Plugging this estimate into (A.8), and by max{1, A} o < o9, we find (A.7).
Step two: We prove that

Qu(VEHU) + Oy (1) < Qy(ul, A7) + C(n) (Qy () + Oy (w)).(A9)
By O, (¢ 8ru, ¥'u) < Qpy (8,u)/4 + C Q, y(u) and by (A.7)y,—, we find
Oy (VEu) + 0y () < Qy(lul, Ar) + C(n) (Qy ) + Oy yr(w))
+C () 00 (Qy ) + Qp yr (W) + Oy (VETU) + Qr y (d,u0)).

which implies (A.9) provided oy is small enough.

Step three: We prove that, if w : £y x (r1, r2) — R is slice-wise orthogonal to
u — w, in the sense that sz w, (i, —w,) =0, fEH 9, w, (yu, — 0,w,) = 0, and
sz VEHw, . (VEHy, — VEHw,) = 0 for every r € (r1, r2), then

1Ty, w)| < Qy(lwl, Ar) + C(n) oo (Qy ) + Qpyr(u) + Oy (lul, Ar)).
(A.10)
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Indeed, by slice-wise orthogonality, we find that O, (w) < Q; (), Q;(3,w) <
Q¢ (0u) and Q;(VZH w) < Q;(VEHu) whenever ¢ : (r;, ) — R is radial.
Therefore (A.7) gives | Ty (u, w)| < Qy (|w|, Ar)+C(n) og Ry (1), with Ry, (1) =
Oy (u) + Q]/,(VEHu) + Oy (3ru) + Oy (u). Combining this with (A.9) we get
(A.10).

Step four: We prove (A.1). Let now i be a cut-off function between (r3, r4) and
(r1,12), so that with Zy, (u) = Qw(VE”u) + Oy W) + Oy (0ru),

‘/ PHIVER U — (= Du? + (r a,u)z}‘ < Zy(u).
Xy x(r3,r4)

IfA(w) = H'(Zg(u,r3, re)) — H" (X5 (0, r3, rs)), then by (A.3) with (r3, r4) in
place of (r1, r2), we find

|A@)| < Zy W) + C(n) o Zy () < Qy(jul, Ar) + C(n) (Qy ) + Oy (w))
+Cm) o {Qy ) + Qy(lul, Ar) + Cn) (Qy () + Oy yr(w))},

where in the last inequality we have used (A.9). We deduce

|A@)| < C) (Qy (lul, Ar) + Qy () + Qryr (),

and (A.1) follows (with Co = Co(n, ng, n) by the properties of yr).
Step five: We finally prove that, if E OEH [ur,] = Oforsomery € (r1, r2), then (A.2)
holds, that is

/ P < C) A (Y =)+ Cmo,m) | T o). (AL
z

HX(r3,74) Ex(ry,r2)

Define ut,u=,u’ : Ty x (r1,r2) — R by setting, for r € (r,r2), (™), =
EY lu], (™), = Eg, [ur]and u®), = EY,_[u,], where E%H denotethe L2(Zg)-
orthogonal projections on the spaces of positive/negative eigenvectors of the Jacobi
operator of Xy, and where E %H is the L?(X y)-orthogonal projection onto the
space of the Jacobi fields of Xp. Since (u”),, = 0, we can directly apply (A.6)
with v = u and deduce that

/ L w®)? < cn, o) L 8,u%)?. (A.12)
Zpx(ri,r2) g x(r1.r2)
By the orthogonality relations between u?, ul and u;” we have that
/ Pt = / =l ((u0)2 + @h? + (u_)2> (A.13)
Xy x(r3,r4) Xy x(a,b)

/ (B u)? = / P (@u”)? + Bu)? + Bru)?)(A14)
) D)

1 Xx(r1,r2) HX(r1,r2)

By the spectral theorem, for every » € (r1,r2) we have Ci(n)™! fEH (u’)% <
Js, n =1 (u™)? — |V¥H (u™),|>, which, multiplied by "~! y2, gives

Cim) ™ Qy™) = (n—1) Qy™) — Qy(V*u")
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=n—1)Qy ,u)— Qu(V¥u~, V¥y)
= Ty, u)+ QrOu, 8, (W2 u")),

where in the second to last identity we have used that w = u~ is slice-wise orthog-
onal to w — u; in particular, by (A.10) with w = u~, we find

Cim)™' Qu ™) < Qulu™l, Ar) + Qr (Bru, 3 (Y u))
+C(n) 00 (Qy () + Qg () + Oy (lul, Ar)). (A.15)

Again by slice-wise orthogonality of w = u™ to w — u, we have
0 @B, (WP u7)) = QrBru™, (Y2 u7)) = Qry (Bru”)

Qyu™) _
5Ci0) +Cn) Oy (3ru),

+2 Qr(l/// ou",Yu )= er/f(aru_) +
which combined into (A.15) gives

QCi )™ Qy™) < Quul, Ar)+ Qry Byu) + C(n) Qpyr (,u7)
+C () 00 (Qy () + Qpyr () + Qy (lul, A, 1)).

Using Holder inequality again we have

_ Qyu™) n o on
0y (u~|, Ar) < % FC) Ary (2 — ),
Qy(lul, Ar) <2Qy ) +C(n) Ary (ry —r),
Q ( _) —_ — n n
SO that#ll(tn) < Q,,/,(aru )+C(n)(Qr1///(8ru )+ Anr (72 —n ))

+C ()00 (Qy ) + Qryr () + Ara (5 — 1))

Taking i to be a cut-off function between (3, r4) and (r1, r2), we find

/ Ml <Ccm)Ar (ry —r)
z

x(r3,r4)

+C(n, no, n) { / P d.um)? + 0 / rl uz}. (A.16)
Ex(r1,r2) Zx(r1,r2)
By combining (A.12), (A.16), and the analogous estimate to (A.16) for u™ with
(A.13) and (A.14) we find that (A.16) holds with u in place of u~; this latter
estimate, thanks to (A.5), finally gives (A.11).

Appendix B: Spherical and Cylindrical Graphs
We state here for the reader’s convenience two technical lemmas concerning spher-

ical and cylindrical graphs. They are both used in the last step of the proof of
Theorem 1.6. The elementary proofs are omitted.
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Lemma B.1. (Spherical graphs as cylindrical graphs) There are dimension inde-
pendent positive constants C and no with the following property. Ifn > 1, H € H
andu € X, (Xy, ri, r2) withn < no, then we have

D'

A=Cn®)r \D}" Cpu(Znu,ri,r2) CDAD

a-cn®r’

and there is g € C'(H) such that sup {|x|’1 lg()|+IVgx)| : x € H} < Cnand
Yuu,ri,rn) = {x +g(x)vy 1x € pH(ZH(u,rl,rz))}. Moreover, if (p1, p2) C
((A+Cn)ri, (1 =Cn?)r), then Ty (u, p1, p2) = {x+g(x) Vg I X E H}ﬂAgf.

Lemma B.2. There is n € (0, 1) with the following property. If H € 'H, R > 1,
fe C2(H), and g € CY(H) are such that

max {| £ (0], x| [Vl x| [V2f(0)] : x € H, x| > R} <,
max { x|~ g, Ve x € H} <,

then there is h € C! (Gu(f)) such that
Gu(@\Bir={z+h@vs(2):z€Gu(f)}\ Bar,

where Gy (f) = {x + f(x)vy : x € H} and, for z = x + f(x) vy, we have set
Vi) = A+ VP2 (V) +vm).

Appendix C: Obstacles with Zero Isoperimetric Residue

Proposition C.1. If W is compact and R(W) = 0, then yw(v) — P(B®) — 0
as v — oo and W is purely H"-unrectifiable, in the sense that W cannot contain
an H"-rectifiable set of H"-positive measure. In a partial converse, if W is purely
‘H"-unrectifiable and H" (W) < oo, then R(W) = 0.

Proof. Stepone:Let R(W) = 0.Comparing with balls, lim,_, oo ¥ (v)— P (B™)
< 0 = R(W). To prove the matching lower bound, we argue by contradiction and
consider E; € Min[yrw (v;)] with v; — oo such that

lim yw() — P(BY) = lim P(E;; Q) — P(BY)) <0. (C.1)
v—00 J—00

With (C.1) replacing R(W) > 0, one can repeat verbatim step two-(a) of the proof
of Theorem 1.1; we thus derive the asymptotic expansion for F as in step two-(c),
which is then the key fact used in step three to derive that lim;_, o, P(E;; Q) —
P(B(”J'>) > —resy(F U W,v) > —R(W); the latter inequality is of course in
contradiction with (C.1) if R(W) = 0. Next, arguing again by contradiction, we
assume the existence of an H"-rectifiable set S with H"(W N S) > 0. By [34,
Lemma 11.1], without loss of generality, S is a C'-embedded hypersurface in
R"*+!. Let x be a point of tangential differentiability for W N S, so that H" (W N SN
B,(x)) = w, p" +0x(p") as p — 0%. Since S is a C'-embedded hypersurface,
there is v € S" such that for every ¢ > 0 there is p, = pi(x,&) > 0 with

SNC, , (x) ={y+g()v:yeD) (x)}, where g € C'(x 4 vt) with g(x) =0
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and Lip(in) < e. Denoting that G(g) = {y + g(»)v:y € (x +v1)},andup to a
decrease p, we can get that

H'(G@NWNC, x) =H'WNSNB, (x)) = (1 —g) w,p}. (C2)

Since |g| < € px on 3D‘;,*(x), we can define f : (x + v1+) = R so that f=g
on D} (x), f =0on (x + vh) \Dgp*(x), and Lip(f) < e. Denoting by F the
epigraph of f, we have that (F, v) € F and we compute, for R large enough to
entail that CEP* x)UW cc C%,

wn R" = P(F; Cx \ W)zw, 2p)" — P(F; C3, (x) \ W)

=/ 1=/ 1+|Vf2+P(F;Cy, (x)NW)
D

2 px ()

>—wy (2p)" % + (1 — &) wy ps",

where we have used f = 0 on pt \ Dgp* (x), (C.2)and V1 + &2 < 1+ &% Up to
taking ¢ < e(n), we thus find resy (F, v) > 0, and thus deduce R(W) > 0.

Step two: Let W be purely H"-unrectifiable with H" (W) < oo, and let (F, v) €
Max[R(W)]. Since F is a local perimeter minimizer in 2, F is open in  with
QNIF = cl(3*F), where by 9* F we mean the reduced boundary of F as a set of
locally finite perimeter in 2. Now, w, R" — P(F; Cye \ W) is decreasing towards
R(W) = S(W) = 0, therefore P(F; C,\W) < oo for every R. In particular,
H' (2N JF) is a Radon measure on R"T!, Now, dF C (2N 3JF)U W, so that
H* (W) < ooimplies that H" 9 F is aRadon measure on R"+1 and, since F is open,
that F is a set of finite perimeter in R"*! by [17, Theorem 4.5.11]. The pure H"-
unrectifiability of W gives P(F; Ci\W) = P(F; C}), where P(F; Cy) > w, R"
by (1.8) and (1.9), and thus R(W) = resy (F, v) < 0. This proves R(W) =0. O
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