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Abstract— We consider the problem of dynamically optimizing
a multiple-input multiple-output (MIMO) wireless waveform in
a given potentially heavily utilized fixed frequency band with
applications in near-field or far-field autonomous machine-to-
machine communications. In particular, we find the transmitter
beam weight vector and the pulse code sequence that maximize
the signal-to-interference-plus-noise ratio (SINR) at the output of
the maximum SINR joint space-time receiver filter. We propose
and derive two novel model-based solutions: (a) Disjoint, space
first (transmit weight vector) then time (pulse code sequence)
waveform optimization and (b) jointly optimal transmit weight
vector and pulse code sequence optimization (a mixed integer
programming problem.) The proposed formally derived algo-
rithmic solutions are studied in extensive simulations under
varying waveform code length, near-field/far-field and spread-
spectrum/non-spread-spectrum interference, in light and dense
interference scenarios. Our findings highlight the effectiveness of
the described methods compared to static conventionally designed
MIMO links and the remarkable ability of the joint space-time
optimized waveforms to avoid heavy interference.

Index Terms— Autonomous communications, directional net-
working, interference avoidance, machine-to-machine communi-
cations, MIMO, near field communications, space-time waveform
design.

I. INTRODUCTION

LECTROMAGNETIC interference has always been a

crucial concern across all generations of wireless commu-
nication systems [1]. Today, given the explosive growth in the
number of wireless users and the expectation of data transfer
rates in the order of hundreds of Mbps, especially for emerg-
ing technologies such as machine-to-machine communications
[2], [3], [4], broadband Internet of Things [5], millimeter
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wave (mm-wave) robotics [4], wireless security [6], [7], [8],
ultra-reliable low latency (URLLC) networks [9], enhanced
mobile broadband (eMBB) [10], massive machine-type com-
munications (mMTC) [11], etc., interference management
and avoidance become increasingly challenging and attract
significant attention [1], [12], [13]. A method to deal with
interference concerns is interference avoidance via dynamic
waveform design at a fine time scale [14], [15], [16], [17],
[18] where a finite sequence of repeated pulses (say, square-
root-raised cosines (SRRC)) that span the entire continuum
of the device-accessible spectrum is code optimized over
a finite pulse-modulation alphabet to maximize the signal-
to-interference-plus-noise ratio (SINR) at the output of the
max-SINR filter at the intended receiving node [19], [20].
Multiple-input multiple-output (MIMO) technology is by
now well understood as a crucial component in 5G and beyond
communications [21], [22], [23]. MIMO systems increase
channel capacity, reduce bit-error-rate (BER) and power con-
sumption for a fixed channel data rate, and present unique
interference avoidance opportunities in the form of direc-
tional transmission and space-time precoding and directional
reception and space-time filtering that exploit the product
of the spatial and time domain degrees of freedom (DOF)
[24], [25]. There are on-going efforts in the literature to deal
with interference dilemmas in the time domain by deploying
distributed deep learning models, such as [26] that considered
5G/broadband IoT networks. In [20], a similar IoT network
was considered but instead of deep learning, an optimal
adaptive sparse waveform design algorithm was proposed
which adjusts digitally the shape of the waveforms in such
a way that the SINR at the output of the maximum-SINR
linear filter at the receiver was maximized. A mechanism
for interference management in MIMO systems was proposed
in [27] where the authors focused on the energy loss problem
at downlink transmitters and combined power water-filling
algorithms with linear precoding to mitigate interference
effects between users. In [19], the problem of directional
space-time waveform design for proactive interference avoid-
ance in narrowband far-field MIMO systems was considered.
The authors proposed to establish communication between
an intended transmitter-receiver pair by a jointly optimized
pulse code sequence and signal angle-of-arrival (AoA) that
maximized the maximum achievable pre-detection SINR at the
output of the max-SINR receiver filter. Gaussian MIMO chan-
nels under total transmit and interference power constraints
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were considered in [28] and [29] where the authors obtained
by the Karush-Kuhn-Tucker (KKT) approach a closed-form
solution for the optimal transmit covariance matrix. The work
in [30] focused on the weighted sum-rate maximization prob-
lem for wireless cellular MIMO networks with full-duplex
base stations and half-duplex mobile devices. In this context,
an interference shaping algorithm was developed to decom-
pose the sum-rate problem into independent sub-problems
solved locally for each base station under varying constraints.
A MIMO relay system was considered in [31] where multiple
transmitter and receiver pairs communicate at once through a
single relay node. For this system model, the authors proposed
a new algorithm that jointly optimized the relay precoding
matrix and the receiver matrices based on the minimum sum
mean-squared error criterion.

In this paper, we address for the first time in the literature the
challenge of establishing an optimally interference-avoiding
near-field MIMO wireless link, targeting for example mod-
ern connected robotics applications in high frequency bands
(i.e., mm-wave or terahertz (THz).) We recall that near-field
effects, which make conventional directional array-response
modeling non-applicable, are extended considerably when
the diameter of focused antennas exceeds half the wave-
length of the carrier or as the carrier wavelength decreases.
As a measure of the interference experienced by an acti-
vated MIMO link in the near or far-field, we utilize the
conventional SINR metric which is independent of information
symbol alphabet specifics. Specifically, we investigate the
optimization of the transmitter beam weight vector and the
time-domain wave shaping code to maximize the pre-detection
SINR at the output of the joint space-time receiver filter
for any locally sensed space-time disturbance autocorrela-
tion matrix. We propose two new model-based solutions:
(a) A disjoint approach that first optimizes the transmit-
ter beam weight vector and then shapes a digitally coded
waveform occupying the entire device accessible frequency
band and (b) an optimization approach where the transmitter
beam weight vector and the digitally coded waveform are
jointly optimized. Our contributions can be summarized as
follows:

o We propose two novel closed-loop transmit space-time
signal design solutions to dynamically maximize the
SINR at the output of the receiver’s space-time matched
filter for any locally sensed space-time disturbance auto-
correlation matrix. The first solution involves searching
for an optimized transmitter beam weight vector and
separate a posteriori optimization of a digital wave shape
code. The second solution involves jointly optimizing the
transmitter beam weights and the code vector at increased
computational complexity (a mixed integer programming
problem.)

o Extensive simulations are carried out to evaluate and
compare the effectiveness of the proposed methods
under various interference scenarios, including near-field
and far-field, spread-spectrum and non-spread-spectrum
interference, in light and dense disturbance scenarios.
The simulation studies consider varying transmit beam
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Fig. 1. MIMO system model.

vector and waveform code length and demonstrate the
potential of these near/far-field agnostic schemes to
dynamically support MIMO links in extreme interference
environments.

The rest of the paper is organized as follows. Section II
introduces the general MIMO signal model and notation.
Section III describes in detail the sensing, data structure
formation and optimization problem, whereas Section IV
presents the two proposed optimum waveform design options.
Section V is devoted to simulation studies and comparisons.
Conclusions are drawn in Section VI.

Notation: In this paper, matrices are denoted by upper-case
bold letters, column vectors by lower-case bold letters, and
scalars by lower-case plain-font letters. The transpose oper-
ation is represented by the superscript 7, conjugation by *
the Hermitian operation (conjugate transpose) by ¥, and the
Kronecker product by ®.

II. MIMO SYSTEM MODEL AND NOTATION

We consider an arbitrary multi-antenna (MIMO) link con-
figuration with M, transmit and M, receive antennas as seen
in Fig. 1. Without loss of generality, we assume that the
transmitter sends an information bit sequence b(n) € {£1},
n=20,1,...,N, at rate 1/T}, across all antennas on a carrier
frequency f. using an underlying digitally shaped waveform
s(t) of duration T. Specifically, the signal transmitted by the
myth transmit antenna, m; = 1,2,..., M, is represented by

o (t mzb

s(t —nTy)e? etw,, (1)

where E} is the transmitted energy per bit per antenna, w,,, €
C is the complex antenna beam weight parameter and the
digitally pulse-coded waveform s(t) is given by

0= s

=0

1, (t—IT,) )

where s(I) € {#1/+/L} is the Ith code bit of the code vector
Srx1, and pr.(.) is a square-root raised cosine (SRRC) pulse
with roll-off factor o« and duration 7, where T, = LT, and
the bandwidth of the transmitted signal is 8 = (1 + «)/Te.
For clarity in presentation, it is assumed that the individual
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pulses are normalized to unit energy

TC
/ lpre(t)]?dt = 1. (3)
0

The receiver consists of M, antenna elements. After carrier
demodulation of the transmitted signal, the receiving antennas
capture

N-1
a1 (t) = VE Y b(n)s(t — nT,)H way, +i(t) + n(t)
n=0

4)

where H € CM+*Mr i5 a generic channel matrix assumed to
remain constant over N7 sec,

hii  hip hi, ..

o | P21 hop ha ..
HA ) ) ) &)

har,1 har, 2 hot, n,

where h,, m, € C is the complex coefficient of the channel
between the m;th transmit antenna and the m,th receive
antenna. We recall that if two transmit antennas m; = 1t,J
are in the far-field of a receive antenna m, = k, then h;
and hjj have approximately equal phase (and amplitude),
which enables effective directional signal reception by an
appropriately set receiver array. Instead, if the two transmit
antennas m; = i,j are in the near-field of m, = k, then
the phase of h;j and h;; vary significantly. Conventionally,
we set the beginnings of the far field at the distance at which
the experienced phase difference is less than /8 (Fraunhofer
distance) [32]. Returning to the description of (4), wys, € CcM
is the transmitter beam weight vector, n(t) € CM~*1 denotes
a complex Gaussian noise process that is assumed white both
in time and space, and i(t) € C™* models comprehensively
environmental disturbance of any other form.

For a given fixed bit period n, n = 1,2, ..., N, upon pulse
matched-filtering and sampling over L pulses at each receive
antenna element, the collected values are organized in the form
of a space-time data matrix Y s, «r(n) (see Fig. 1). The data
matrix is then vectorized to

vy, Lx1(n) =Vec{ Y, xr(n)} =
= VEib(n)(s @ H )wy, +i(n) +n(n) (6)

where i(n) and n(n) represent post pulse-matched-filtering
interference and white noise in the space-time receiver domain.
In the following section, we derive the maximum-SINR
optimal joint space-time receiver filter in the M,.L product
vector space and we find its output SINR as a function of s
(time-domain code) and wy, (transmit beam vector), creating
therefore the foundation for space and time transmit waveform
optimization (closed-loop interference avoiding space and time
precoding.)

III. SENSING AND THE WAVEFORM OPTIMIZATION
PROBLEM

For the given received space-time data vector in (6),
the space-time receiver matched filter (MF) is by definition
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given by
wir £ E{ym,ox1(n) b(n)} = (s@H )wyy,. (D)

The compound space-time disturbance i(n) + n(n),
assumed to be zero mean for simplicity, has
autocorrelation/autocovariance matrix defined by

Rijn £ E {(i(n) +n(n)) (i(n) + n(n))H} € CMrLxM, L
®)

In view of (7) and (8), the space-time maximum SINR receiver
filter becomes

Wax—sINk = kR (s@ H )wyy,, k€ C. (9

We can now calculate the output SINR of the maximum
SINR space-time receiver filter as follows,

SINR(S, WMt)
a E { Wi a—sivr (VE:b(n)(s @ HT )way,) ’2}
E {’er;llaxstNR (i(n) + n(n))|2}

=F, [(s ® HT)wMt] " R;_ln(s ® HT)wMt.

(10)

We see, therefore, that the SINR at the output of the maximum
SINR space-time receiver filter for the general near-field
MIMO link model under examination is a closed form expres-
sion of the transmit beam weight vector wy;, € CM¢ and
the time domain code vector s € {+1/VL}'. It is of
interest, then, to investigate what waveform design values
w), and s maximize the maximum attainable SINR by the
receiver filter for a locally sensed space-time disturbance-only
autocorrelation matrix

K
Rin = (i(k) +n(k) (i(k) +n(k)™  AD

k=1
over K samples and estimated MIMO channel state

information matrix H.
In the following section, we present two distinct space-time
waveform design methods.

IV. SPACE-TIME WAVEFORM DESIGN

In this section, we develop and describe in implementation
detail two space-time waveform design methods. The first
method carries out disjoint space-first, time-next optimization,
i.e., we first suggest an optimized transmit beam weight vector
wy, and then find the conditionally optimal code vector s
given wyy,. The second method that we present produces a
jointly optimal (wyy,, s) pair.

A. Disjoint Space and Time Optimization

We concentrate first in the space domain operation. Con-
sidering only the Ith column of the data matrix Y ps, x1.(n) in
Fig. 1 and following the notation in (4), we have

yi(n) = /Eb(n)s()B wyy, +i(l,n) +n(l,n) € CM,
(12)
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Algorithm 1: Disjoint space and time optimization

Algorithm 2: Joint space-time optimization

Input: Pulse-filtered interference-plus-noise received samples;
estimated channel matrix H € CM¢*Mr

1:  Calculate (estimate) space-only disturbance autocorrelation
matrix R§,,, € CM*Mr in (13).

2:  Calculate minimum-eigenvalue eigenvector of R}, ,,,
qspace (S CIMT.

30 If My = M, wib' = inv(H" )qspace.

40 If My # M, wih' = inv(HH" ) Hqspace.

5:  Find optimum code s°?* € {£1/v/L}" (or other alphabet)
by discrete search over (19).

. opt opt
Output: wy; , s .

Fig. 2. Proposed disjoint first-space, then-time optimization algorithm.
I e {1,2,...,L}, n € {1,2,...,N}. The space-only
disturbance autocorrelation matrix is defined by

Rf—i—n

2 B{(i(l.n) +n(L,n)) (i(L,n) +n(t,n)" } & CH>,

13)
the space-only maximum SINR filter is
Winax_siNg = kRS H wy, € CMr ke C; (14)
and its output SINR is
SINR(wyy,) = By (H was, )" Ri, (H 'wyy, ). (15)

By (15) (a quadratic expression in Hw,,), we recognize
that if qgpace € CMr is the maximum-eigenvalue eigenvector
of the space domain inverse disturbance autocorrelation matrix
Rf;;, then the maximum SINR optimal beam weight vector

t -
wil is such that
t

HTW?v?f = Qspace- (16)
If M; = M, and H € CM:=M)x(M:=M:) i fy]] rank,
then

opt

wilh = inv(H" )qspace- (17)

If M, # M, and HHT is full rank (i.e., M; < M,), then we
calculate

wil' = inv(HH" )Hqpace. (18)

The next step is to search for a binary antipodal code
sequence s € {+1/v/L}* so that the corresponding final
space-time post-filtering SINR (s, wj’é}f) is maximized. Utiliz-
ing (10) for fixed wy;, = W;Zt, the remaining optimization
problem can be written as

SOPt
= argmax { [(s® HT)WX?H " R, (s® HT)Wf\Zt}
se{+1/VL}L ' '

19)

where R, € CM-EXM-L jg the joint space-time disturbance

autocorreation matrix defined by (8). An optimized code
sequence for the given W(])V:l;f transmit beam vector can be

Input: Pulse-filtered interference-plus-noise received samples;
estimated channel matrix H € CMe*Mr
1:  Calculate (estimate) space-time disturbance
autocorrelation matrix R, € CMrIxM-L in (21).
2: Calculate minimum-eigenvalue eigenvector of R,
qs—¢ € CMrL,
3:  Find optimum code s°?* € {+1/v/L}* (or other
alphabet) by discrete search over (24).
4:  Find jointly optimal beam weight vector w?f}f by
inserting s°P¢ in (23).

¢
Output: w;’\f[’t, soPt

Fig. 3. Proposed joint space-time optimization algorithm.

found by an one-dimensional search over 2” candidate code
sequences. The complete disjoint space and time optimization
algorithm is summarized in Fig. 2 for easy reference. Its
overall computational complexity is O(2M} + (M, L)> +
4M M, L + AM;M, + 2L_1) (the code-vector quadratic
optimization sub-problem is sign insensitive.)

The separately optimized code and transmit beam weight
vectors s°P¢, WZ}Z define the interference-avoiding MIMO link
waveform. Under the assumption that som,wzg’f are made
available to the transmitter within the H and R, channel
coherence time, the output SINR of the joint space-time
receiver filter is conditionally maximized at operational infor-
mation rate 1/LT, symbols per second where T, is the
duration of the utilized SRRC pulse.

B. Joint Space-Time Optimization
We now revisit (10) and attempt to jointly optimize s and
Wy, ; that is, we attempt to solve

(s, wf\gf) = argmax

se{+1/VL}E wpy, €CMt

< {lsoHwa] " REL (s 0 H way, |

(20)

From (20), we recognize that -code domain and MIMO
channel specifics aside- the overall jointly optimal space-time
waveform is the maximum-eigenvalue eigenvector qs_; €
CM-L of the inverse of the joint space-time disturbance
autocorrelation matrix

Ripn 2 E{(i(n) + n(n)) (i(n) + n(n)" } € CH-2xML,
(21)

which coincides with the smallest-eigenvalue eigenvector of
R;1,. As an effective surrogate to the mixed-integer opti-
mization problem in (20), we suggest lo-norm approximation
of qs_¢ by (s @ HT)wyy,, i.e., we try to solve
t t
(57, wiit)

llas—t — (s @ H w2 (22)

= argmin
se{£1/VL}L wa, €CMe

Authorized licensed use limited to: Florida Atlantic University. Downloaded on June 07,2024 at 17:37:31 UTC from IEEE Xplore. Restrictions apply.



NADERI et al.: SELF-OPTIMIZING NEAR AND FAR-FIELD MIMO TRANSMIT WAVEFORMS

45

40 -

(%)
a
T

w
o
T

n
o
T

n
o

Pre-detection SINR (dB)

4 i
0 —%— Joint space-time optimization
+Disjoint space, time optimization
5, -4 -Optimum transmit beam vector
--@--Optimum code vector
M Arbitrary waveform
0 I I I I I I I I
25 50 75 100 125 150 175 200 225 250
Transmit energy per bit/N0 per antenna (linear scale)
(a)
45 T
40 -
35
@30
=
z
5257 ). N
c s
Re]
320 .
[}
9
o
o 15 4

0y / —%— Joint space-time optimization

—A— Disjoint space, time optimization

-4 -Optimum transmit beam vector ||

--@--Optimum code vector
B Arbitrary waveform

0 Il Il Il Il Il Il Il Il
25 50 75 100 125 150 175 200 225 250
Transmit energy per bit/N per antenna (linear scale)
(b)

Fig. 4. Pre-detection SINR in light near-field non-spread-spectrum
interference (My = M, = M;;, = 4): (a) L =4, (b) L = 16.

We can prove (see Appendix) that a closed-form expression
of Wj\)gf for any fixed code vector s is

wit' = inv[(s” @ H*)(s @ HY)|(s” ® H')qs—y  (23)

where (s ® H*)(s @ HT) is invertible if rank(H) > M,.
Inserting now (23) in (22) (or (20)), we can find the jointly
optimal code vector s°?! with a simple binary search

Sopt

= argmin ||qs—¢

se{+1/VL}L
— (s @ HT )ino[(s” ® H*)(s @ HT)](s” @ H)qu ||
= argmin

I{T
se{+1/VL}L
_ (S ® HT)[(ST ® H*)(S ® HT)]—l(ST ® H*)}q57t||2
(24)
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Fig. 5. Pre-detection SINR in dense near-field non-spread-spectrum
interference (M = M, = M;; = 4): (a) L =4, (b) L = 16.

where I is the M, L x M, L identity matrix. Reverting to (23),
we calculate wff}f. The overall joint space-time optimization
algorithm is summarized for easy reference in Fig. 3. The
computational complexity is O(M? + M? + MZM,L +
AMyM, L + 2--1).

It is of interest to mention that to the extend that
our joint design of s°P' and w?f}f by (22) succeeds in
approximating closely the eigenvector qs_;, i.e., (s°' ®
HT)W?\f ~ qs_ then R (s ® HT)W?V’Z =
c(sPt ® HT)W}’\Z, ¢ € C. Therefore, the space-time
maximum SINR receiver filter Wy,.x_SINR = kR;ln(s ®
HT)wyy,, k € C, degenerates conveniently to the matched-
filler (MF) (s°P! ® HT)WE)\Zt. As before, the operational
information rate of the link is 1/LT. symbols per sec-
ond where 7T, is the duration of the utilized SRRC
pulse.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on June 07,2024 at 17:37:31 UTC from IEEE Xplore. Restrictions apply.



1678

45

40

n w (%)
a o a

Pre-detection SINR (dB)
n
o

g —— Joint space-time optimization
Y —A— Disjoint space, time optimization
5@ ~ 4~ -Optimum transmit beam vector ||
--@-Optimum code vector
B Arbitrary waveform
0 Il Il Il Il Il Il Il Il Il
25 50 75 100 125 150 175 200 225 250
Transmit energy per bit/N, per antenna (linear scale)

(2)

Pre-detection SINR (dB)

7 —k— Joint space-time optimization
/: —A— Disjoint space, time optimization
5 ~ 4~ -Optimum transmit beam vector |
--@--Optimum code vector
B Arbitrary waveform
L L L

0 L L L L
25 50 75 100 125 150 175 200 225 250
Transmit energy per bit/N0 per antenna (linear scale)

(b)

Fig. 6. Pre-detection SINR in light near-field spread-spectrum interference
(My = My = M;, =4): (@ L=4, (b) L = 16.

V. SIMULATIONS STUDIES AND COMPARISONS

This section presents simulation results that demonstrate
the effectiveness of the proposed formal MIMO waveform
optimization methods using as direct performance evaluation
metric the SINR at the output of the maximum-SINR space-
time receiver filter. To model disturbance effects, we consider
near-field/far-field and spread-spectrum/non-spread-spectrum
interference signals in all four possible combinations. We eval-
vate the performance of the proposed waveforms in light
and dense interference, where in the light interference sce-
nario we assume there are M, /2 interfering transmitters
of each interference type and in the dense interference
scenario HM, interfering transmitters of each interference
type. In all studies, the data record size used to estimate
the disturbance autocorrelation matrix needed for the com-
putation of w}’\gf and s°® by Fig. 2 or Fig. 3 and the
computation of W.x—siNr by (9) is set to N = 100.
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Fig. 7. Pre-detection SINR in dense near-field spread-spectrum interference
My = My = M;, =4): (@ L =4, ()L =16.

All presented results are averages over 10000 independent
experiments.

In particular, near-field non-spread-spectrum interfering
signals are described by

i1(t) = VEL Y _binlp(t — nTy)H{way,,,  (25)

with bandwidth 7, wy,, transmit antennas, b [n] € {+1},
and H; € CM#u*Mr Near-field spread-spectrum interfering
signals are described by

i5(t) = VB2 »_balnlsa(t — nTy)HY way,,,  (26)
L—1 !

so(t) = Y so(Dpr, (1 —ITe), 27)
=0
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Fig. 8. Pre-detection SINR in light far-field non-spread-spectrum interference
(My = My = M, =4):(a) L =4, (b) L = 16.

with bandwidth T%, so(l) € {£1/VL}, wpy,, transmit
antennas, bo[n] € {£1}, and Hy € CMe*Mr,

Far-field interfering signals have a directional interference
effect on the M, -element receiver front, which is modeled
herein by an array response vector that assumes for simplicity
linear uniform geometry and inter-element spacing equal
to half the carrier wavelength. In particular, far-field
non-spread-spectrum interfering signals are described

by

i3(t) = V/Es » _ ba[nlp(t — nT})hsa(0s), (28)

with bandwidth T%, bs[n] € {£1}, flat-fading coefficient hg €
C, and array response vector a(f3) € CM- with angle of

arrival 03 € (—7%,%). Far-field spread-spectrum interfering
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Fig. 9. Pre-detection SINR in dense far-field non-spread-spectrum interfer-
ence (My = M, = M;, =4): () L =4, (b) L = 16.

signals are described by

i4(t) = \/EZ b4 [n]34 (t — nTb)h4a(04), (29)
L—1
sa(t) = Y sa(lpr, (t—IT.), (30)

=

with bandwidth T%, sa(l) € {£1/v/L}, flat-fading coefficient
hy € C, and array response vector a(fy) € CM- with angle
of arrival 04 € (=73, 5).

In Fig. 4, we study the pre-detection SINR of a MIMO
link with M; = M, = 4 antennas in light near-field non-
spread-spectrum interference under no waveform optimization,
code only optimization, transmit beam vector only optimiza-
tion, disjoint transmit beam vector optimization followed by
code vector optimization, and joint beam-code optimization.
The number of transmit antennas of each of the M, /2 =2

(=)
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Fig. 10. Pre-detection SINR in light far-field spread-spectrum interference

(My = My = M;, =4): (@) L=4, (b) L = 16.

interferers is M;, = 4 and their energy-per-bit-over-Ny value
per antenna is set at 10dB where Ny/2 denotes the power
spectral density of the underlying Gaussian vector noise pro-
cess assumed to be white across time and space (antenna
points). Fig. 4(a) assumes codelength L = 4 and Fig. 4(b)
assumes codelength I. = 16. Figs. 5(a) and 5(b) repeat
the same studies for dense near-field non-spread-spectrum
interference (i.e., 5M, = 20 interferers) with energy-per-
bit-over-Ny value per antenna equal to 15dB. An overall
observation is that the MIMO link easily handles light or
dense near-field non-spread-spectrum interference and the joint
space-time waveform optimization approach offer 6dB or
more gain over the disjoint space first, time next optimization
approach at any transmit-energy-per-bit per antenna level. For
example, a target pre-detection SINR value equal to 15dB
(practically error-free binary phase-shift-keying decoding) is
attained by joint space-time optimization at about 1/15th of
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Fig. 11. Pre-detection SINR in dense far-field spread-spectrum interference
(My = My = M;, =4): (@ L=4,(b) L = 16.

the transmit-energy-per-bit per antenna required under disjoint
optimization. Comparing against no optimization whatsoever
(arbitrary waveform), the fraction becomes 1/35. Finally,
as expected, for large codelengths, beam vector optimization
only and beam vector optimization followed by code vector
optimization have about the same pre-detection SINR yield
(Figs. 4(b) and 5(b).)

Figs. 6 and 7 repeat the studies of Figs. 4 and 5 under
the more challenging scenario of spread-spectrum near-field
interference with codelengths that follow the codelength of the
main link. The trends and gains in favor of joint space-time
optimization remain the same, but Fig. 7(a) highlights the
difficulty in dealing with dense near-field spread-spectrum
disturbance and the importance of having sufficiently large
codelength to operate and optimize (Fig. 7(b).)

Figs. 8 and 9 study far-field non-spread-spectrum interfer-
ence with conclusions similar to the near-field corresponding
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Fig. 12. Pre-detection SINR in dense interference of all types (M; = M, =
M;, = M;, = M;; = M;, =4): (L =4,((b)L =16

case (impressive pre-detection SINR gain by the jointly
optimized waveform.)

Figs. 10 and 11 study spread-spectrum far-field interference,
regarded arguably as a simpler case than its near-field counter-
part. Indeed, optimized waveforms handle well dense far-field
spread-spectrum interference even with small codelengths (see
for example Fig. 11(a).)

Fig. 12 adds up all types of interference in their dense
form, that is, twenty near-field and twenty far-field non-spread-
spectrum interferers, as well as twenty near-field and twenty
far-field spread-spectrum interferers, all at 15dB energy-
per-bit-over-NNy value per transmit antenna. Given sufficient
degrees of freedom in the time domain, such as L =
16 in Fig. 12(b), the two proposed disjointly and jointly
optimized MIMO waveforms readily attain 10dB and 15dB
pre-detection SINR, correspondingly.
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Fig. 13.  Pre-detection SINR under imperfect channel knowledge in dense

interference of all types (My = My = M;; = M;, = M;; = M;, = 4):
L =16.

All studies presented above assumed perfect channel state
information, i.e. knowledge of the MIMO channel matrix
H ¢ CMxMr (a5 well as perfect pulse/symbol syn-
chronization.) Instead, Fig. 13 reproduces the studies of
Fig. 12(b) under imperfect channel knowledge with indepen-
dent zero-mean complex Gaussian error per channel coefficient
and mean-square estimation error o2 = e x 10~ F+/No(dB)/10
where € = 5 is set to represent the level of channel knowledge
imperfection in our study [6] and [7]. A moderate SINR loss
is observed compared to Fig. 12(b) that diminishes as the
mean-square error decreases for increasing E; /Ny values.

VI. CONCLUSION

In this paper, we addressed the challenge of creating a
dynamic near-field or far-field MIMO wireless link over a fixed
frequency band that may be heavily utilized with application
focus autonomous interference-avoiding machine-to-machine
communications. In particular, given a running local estimate
of the disturbance autocorrelation matrix and the MIMO chan-
nel matrix coefficients, we found the optimal transmit beam
weight vector and time-domain pulse code that maximize the
output SINR of the maximum-SINR joint space-time receiver
filter. We proposed and described in implementation detail two
algorithmic solutions. The first solution carries out disjoint
space-first (transmit beam weight vector) time-next (pulse
code sequence) waveform optimization. The second solution
succeeds in carrying out jointly optimal transmit beam weight
vector and pulse code sequence optimization leaning on the
closed-form expression of the optimal transmit beam vector
that we derived as a function of the pulse code sequence.
Notably, under joint beam weight and code vector optimization
the maximum SINR space-time receiver filter simplifies to
space-time matched-filtering reception.

Through extensive simulations studies, we evaluated the
effectiveness of the methods in the presence of near-field/far-
field, spread-spectrum/non-spread spectrum interference,
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in both light and dense interference scenarios. The
studies highlighted the ability of the optimized waveforms,
particularly joint space-time optimization, to maintain “clean”
communications in extreme mixed-interference environments
(i.e, attained pre-detection SINR of 15dB or better.)

APPENDIX
PROOF OF EQUATION (23)

We consider the gradient of the objective function in (22)
with respect to wﬁt. We expand the ly-norm and apply
the hermitian operator to all components inside the first
parenthesis,

Ve las— = (s @ H )wag, ||

= Vst (@ — (5@ H was) (e — (@ H )way, )]
(31)
= Vo l(alls — Wi, (7 & ) (@ — (s @ H )wag)].
(32)

We set the gradient equal to 0 € CM¢ and calculate

—(ST @H")qs—t + (ST QH")(s® HT)WMt =0, x1-
(33)

We solve (33) to obtain

wil = inv[(sT 9 H) (s o H)|(s” @ H)qo—y  (34)

where (s” @ H*)(s ® HT) is invertible if rank(H) > M;. B
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