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Abstract—We design, implement, and demonstrate a hard-

ware-reconfigurable multiple-input multiple-output (MIMO)

transceiver that computes in real-time the transmit multi-antenna

beam weight vector and time-domain coded waveform that

maximize the signal-to-interference-plus-noise ratio (SINR) at the

output of the maximum SINR joint space-time receiver filter.

To the best of our knowledge, this is the first demonstration

of autonomous hands-free high-throughput communications by

jointly optimizing the space and time domain shape of waveforms

in heavily congested or contested spectrum environments. Im-

plementation of the self-optimized interference-avoiding MIMO

wireless link is carried out on a Radio-Frequency System-on-

Chip (RFSoC) software-defined radio (SDR) using the Xilinx

Zynq Ultrascale+ RFSoC ZCU111 platform. We experimentally

evaluate the performance of the proposed dynamic waveform in

a 4x4 MIMO wireless link in terms of pre-detection SINR in the

presence of different levels of co-channel interference and arbi-

trary antenna formations in an indoor laboratory environment.

I. INTRODUCTION

Dramatic growth in the capability and use of wireless tech-
nologies has supercharged many sectors of society including
commerce, transportation, health, science, and defense. How-
ever, the proliferation of new applications and infrastructure
technologies – such as autonomous navigation and transporta-
tion, the Internet-of-Things (IoT), machine-to-machine com-
munications, radar-based geo-sciences, connected AI robotics,
next-generation mobile wireless – has created high demand
on the electromagnetic spectrum relied on by all types of
wireless technologies [1], [2]. Spatially and spectrally neigh-
boring systems change frequently, leading to frequent changes
in the characteristics of incoming unwanted energy and the
interference impact of outgoing energy [3]. There is a plethora
of works on dynamic spectrum access (DSA) and cognitive
radio, spanning two decades of research [4]–[7] to improve
spectrum utilization by allowing secondary unlicensed users
to take advantage of ephemeral transmission opportunities in
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space, time, or frequency. We consider spectrum-dependent
systems that autonomously adapt and repeatedly optimize, on-
the-fly, waveforms at different points in space and time over
the continuum of the accessible frequency spectrum. This is
key to fully exploit every potential opportunity for reliable
communications [8], [9].

Multiple-input multiple-output (MIMO) communication ar-
chitectures play a key role to unlocking new spectrum [10]. In
addition to the vast benefits of MIMO technology including
higher channel capacity and reliability, MIMO introduces
degrees of freedom in both space and time domains. An
array of antenna elements can be used to “shape” a received
or transmitted signal, by shifting received signals to coher-
ently combine at a single point. This then can improve the
SNR of a received signal, and/or be used to mitigate in-
terference. Directional transmission/reception and space-time
precoding/filtering can provide flexibility in waveform shaping
for spectrum sharing [11]. A directional space-time waveform
design for MIMO interference-avoiding communications is
presented in [12], in which the code sequence and angle-of-
arrival (AoA) of the received signal are jointly optimized to
maximize pre-detection SINR. In [13], a precoder is designed
to jointly suppress multi-user interference and multi-cell inter-
ference. In [14], multi-antennas at the secondary transmitter
are exploited to effectively balance between spatial multi-
plexing for the cognitive radio transmission and interference
avoidance at the primary (spectrum incumbent) receivers. This
trade-off is studied from an information-theoretic perspective
by characterizing the cognitive user’s channel capacity under
both its own transmit-power constraint as well as a set of
interference-power constraints each imposed at one of the
primary receivers. In [15] a distributed deep learning model
is proposed for interference avoidance in 5G-enabled IoT. In
[16], we investigated the problem of dynamically optimizing
MIMO transmit waveforms in a given potentially heavily
utilized fixed frequency band with applications in near-field
or far-field autonomous machine-to-machine communications.
We formally derived two novel model-based machine learning
solutions to find the transmitter beam weight vector and the
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pulse code sequence that maximize the SINR at the output of
the maximum SINR joint space-time receiver filter.

In this work, we implement in software-defined radio hard-
ware and experimentally evaluate MIMO transmit waveforms
proposed in [16]. To the best of our knowledge, this is first
demonstration of a high-throughput MIMO communications
link that autonomously optimizes the shape and directionality
of the transmit waveform to avoid locally-sensed interference
and maximize the SINR at the output of the maximum SINR
joint space-time receiver filter. We design and implement the
proposed wireless data link on the Xilinx Zynq UltraScale+
RFSoC ZCU111 evaluation kit paired with a custom designed
RF frontend. We leverage a combination of software tools
including MathWorks Simulink and Xilinx Vivado to target an
RFSoC SDR platform and demonstrate dynamic interference
avoidance by the adaptive joint space-time waveform shaping
MIMO system. We implement (PHY)-layer baseband signal
processing functions including the optimization of the MIMO
transmit waveform algorithm on the programmable logic (PL)
of the RFSoC to enable efficient handling of high-bandwidth
data streams with deterministic latency and on-the-fly wave-
form adaptation. The ARM-based processing system (PS) of
the RFSoC organizes the I/O, manages the control signals,
and monitors link adaptation parameters. We experimentally
evaluate the performance of our 4x4 MIMO wireless link in
the presence of co-channel interference generated by the same
RFSoC SDR in an indoor laboratory environment. We consider
three different transmit power levels for the interferer and
demonstrate that the proposed MIMO wireless link can recover
under the most adverse conditions and achieve up to 25 dB
improvement in pre-detection SINR.

The rest of the paper is organized as follows. Section II,
presents the MIMO signal model. Section III discusses the
testbed design and implementation details. In Section IV, we
discuss experimental results. Section V concludes the paper.

II. MIMO SYSTEM MODEL

We consider a MIMO signal system model with Mt trans-
mit and Mr receive antennas operating over a frequency-
flat Rayleigh fading channel. We denote the transmit-
ted signal from the mt

th antenna as xmt (t) , m =

1, 2, ...,Mt and the received signal by the mr
th antenna

ymr (t) , mr = 1, 2, ...,Mr. Without loss of generality, we
consider quadrature-phase-shift keying (QPSK) modulation.
The transmitter sends information symbol sequence b[n], n =

0, 1, ..., N , at rate 1/T across all antennas on a carrier fre-
quency fc using an underlying digitally shaped pulse s (t) of
duration T . Let us denote the average signal transmitted energy
per symbol per antenna by ET . We consider transmission of
the same signal over each transmit antenna, multiplied by a
complex beam weight parameter wmt 2 C. Specifically, the
signal transmitted from the mt

th transmit antenna is given by

xmt(t) =
p
ET

N�1X

n=0

b[n]s(t� nT )ej2⇡fctwmt , (1)

where wmt 2 C is the antenna beam weight parameter and
mt = 1, 2, . . . ,Mt. The time-domain coded pulse s (t) is
given by where s[l] 2

n
±1/

p
L
o

is the lth chip of the code
vector s, and pTc (·) is a square-root-raised-cosine (SRRC)
pulse with roll-off factor ↵ and duration Tc = T/L, and the
bandwidth of the transmitted signal is � = (1 + ↵) /Tc. For
clarity in presentation, it is assumed that the individual pulses
are normalized to unit energy, i.e.,

R
Tc

0 |pTc (t)|
2dt = 1.

At the receiver side, after carrier frequency down-
conversion, the receive antennas capture

rMr⇥1(t) =
p
ET

N�1X

n=0

b[n]s(t� nTs)H
T
wMt + i(t) + n(t) (2)

where H 2 CMt⇥Mr denotes the MIMO channel ma-
trix assumed to remain constant over NTb sec, wMt =⇥
w1, w2, . . . , wMt

⇤T 2 CMt is the transmitter beam weight
vector, n(t) 2 CMr denotes a complex Gaussian noise process
that is assumed white both in time and space, and i(t) 2 CMr

models comprehensively environmental disturbance of any
other form that is sensed locally at the receiver.

Upon pulse matched-filtering and sampling over L pulses
at each receive antenna element, the collected values are
organized in the form of a space-time data matrix YMr⇥L[n].
The data matrix is then vectorized to

yMrL⇥1[n] = V ec{YMr⇥L[n]} =

=

p
ET b[n](s⌦H

T
)wMt + i[n] + n[n]

(3)

where i[n] and n[n] denote pulse-matched-filtering interfer-
ence and white noise in the space-time receiver domain. The
“space-time disturbance autocorrelation” matrix is given by

Ri+n , E
n
(i[n] + n[n]) (i[n] + n[n])H

o
2 CMrL⇥MrL. (4)

For the rest of the paper, we proceed with the joint-space
time waveform optimization algorithm proposed in [16], which
takes as input the estimated MIMO channel matrix bH 2
CMt⇥Mr and pulse-filtered interference-plus-noise received
samples and outputs the jointly optimal transmit beam weight
vector wopt

Mt
and pulse code sequence s

opt.

III. TESTBED DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementa-
tion details of the proposed autonomous MIMO interference-
avoiding wireless link on the RFSoC platform.

A. Software-defined Radio Platform

Our SDR platform is built on the Xilinx Zynq Ultra-
Scale+ RFSoC ZCU111 evaluation kit, which is based on
the XCZU28DR-2FFVG1517E RFSoC Gen1 chip. The kit
is paired with the XM500 RFMC balun transformer add-on
card and commercial-off-the-shelf (COTS) amplifiers (Nooelec
Vega Barebones - ultra low-noise variable gain amplifier), fil-
ters (BLK-89-S+ DC block and VBFZ-925-S+) and VERT900
monopole antennas that are omnidirectional in azimuth with an
estimated gain of 3 dBi at 900 MHz. The XM500 add-on card
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features 4 Digital-to-Analog-Converters (DACs)/4 Analog-to-
Digital-Converters (ADCs) routed to high-frequency and low-
frequency baluns and 4 DACs/4 ADCs routed to SMAs for use
with external custom baluns and filters. The PL and the ARM
PS give us the opportunity to examine hardware-software co-
design tradeoffs. We use MathWorks Simulink and Xilinx
Vivado to target the RFSoC PL and PS. We leverage the high
level of parallelism in FPGAs to implement all the baseband
processing of our interference-avoiding MIMO transceiver as
a non-feedback pipelined architecture on the PL fabric.

B. Transmitter Design and Frame Structure

The data frame structure is described below. A preamble
comprising of pilot/training symbols that are a priori known at
the receiver precedes the PHY-layer dataframe. The size of the
preamble is pre-set to 128 bytes and remains constant across
transmitted frames. Each PHY data frame is divided into 8

subframes. Each subframe consists of Mt MIMO training
sequences, pilot sequence, header, payload, and cyclic redun-
dancy check (CRC) data. The 32 bytes training sequences are
allocated for a specific transmit antenna and are known a priori
to the receiver and are used to estimate the magnitude and
phase of the channel to build the estimated MIMO channel
matrix. A 128 bytes pilot sequence is transmitted from all
transmit antennas with corresponding weights wmt ,mt =

1, 2, . . . ,Mt, and used for bit-error-rate (BER), error vector
magnitude (EVM), and SINR calculations). A 4 byte PHY
header contains information about the size of the payload and
number of subframes. Each subframe includes a payload of
120 bytes. A CRC of 4 bytes is calculated for each payload and
appended at the end of each subframe. Therefore, each sub-
frame is 384 bytes long and a PHY dataframe is 3072 bytes.
The transmitter remains idle for the time duration of 1552

bytes after transmission of a frame. This is done purposefully
to allow the receiver to collect measurements corresponding
to local disturbance (i.e., interference and noise).

The preamble is used to determine the accurate starting
point of the data frame. A finite-impulse-response (FIR) filter
implements a sliding correlation of the received data stream
with the expected reference sequence in the preamble struc-
ture. We utilize complementary Golay sequences (CGS) in the
packet preamble due to their superior aperiodic autocorrelation
characteristics in low SINR and multipath environments [17].
Binary Golay pairs are constant amplitude with no information
encoded in their phases. Thus, we can use their reversed
complex conjugate signum as coefficients of the FIR filter
to facilitate hardware-intensive complex multiplications. At
the output of the correlator, the absolute value of the peak-
to-average ratio is computed and is used as the detection
metric to compare to a user-defined tunable threshold. When
the magnitude of the sliding correlator exceeds the threshold,
a flag is asserted to indicate the presence of the preamble.
We utilize the frame detector output to delimit the PHY
dataframe and pilot symbols contained therein by asserting
the corresponding flags.

At the transmitter, a controller block which is a finite state
Moore machine controls packetization with logical signaling.
Subsequently, subframe generation generates payload data bits,
header, CRC, and appends training sequences. The symbol
mapping block is a rectangular QPSK modulator that maps
the incoming bits to complex symbols using a gray mapping
scheme. The MIMO arrangement block then, takes care of
transmitting the training sequence for each transmit antenna
in a time-division fashion. In this way, receiver antennas at
a given time slot receive the signal transmitted from one Tx
antenna and estimate the channel coefficients corresponding
to each transmit antenna. The MIMO data block organizes the
symbols and creates four identical steams of data for a 4x4
MIMO system. Given code sequence vector s 2 {±1/

p
L}L,

the spreading block modulates each QPSK symbol into L = 4

chips. The packetization block appends preamble to the be-
ginning of each frame and by having a gain coefficient as
input adjusts the amplitude of the signal and controls the
transmitted energy ET . The transmit SRRC pulse shaping
filter is a finite impulse response (FIR) interpolation filter that
upsamples and shapes the incoming chips with 8 samples per
chip and an SRRC impulse response. The directionality of
the waveform is controlled by the block that multiplies the
pulse-shaped waveform with a complex-valued beam weight
parameter wmt at each transmit antenna mt = 1, 2, . . . ,Mt.
Generated samples with a valid flag are delivered to the
corresponding RFSoC’s DAC channels for transmission. As a
result, the samples generated by each antenna overlap except
for the samples corresponding to the training sequences.

C. Receiver Design

The over-the-air transmitted signal is captured using 4 ADC
channels with sampling rate of 3.9321 GSps per channel
and decimated by a factor of 8. Four parallel channels of
491.52 MSps data are streamed to the FPGA with 4 samples
per clock. We further decimate by a factor of 4 to get 4

parallel streams of 1 sample per 122.88 MHz FPGA clock
cycle. We consider a frequency-flat Rayleigh fading channel
with additive-white-Gaussian noise (AWGN) and the channel
coefficients remain constant over the duration of a frame. The
received signal is first pulse-matched filtered and then a flag
is asserted at the beginning of the frame when the magnitude
of the sliding correlator with the CGS preamble exceeds a
user-defined threshold.

1) Timing Acquisition and Synchronization: Chip-level tim-
ing acquisition is carried out after frame detection and after we
downsample the signal by a factor of 8 and move from sample
rate of 122.88 MSps to chip rate of Rc = 15.36 Mchips/sec.
Since the output of the frame detection does not provide us
with a chip-level accurate estimate of the beginning of the
frame, we calculate the sample offset to acquire our chip-

spaced samples as k̂ = argmax
k=0:7

1
P

P�1P
p=0

|r (pTc + kTs)|2.

We create 8 delayed versions of the received chip-space
sequences. Then, we calculate the energy of each sequence
and apply a moving average over P = 1024 samples for each
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sequence. The sequence with the maximum energy indicates
the best sampling point.

2) Frequency Synchronization: Due to the mismatch of
the transmitter and receiver oscillators, a carrier frequency
offset (CFO) will rotate the received signal with an angu-
lar speed �f . The receiver estimates the CFO using the
correlation-and-accumulation method [18]. Let Pt denote the
number of symbols for one period of the training sequence
t [k]. Then, the transmitted training chips have the property
t [k] = t [k + PtL] for k = 0, 1, ..., PtL � 1. Using this
property, for the duration of received training chips we have
y [k + PtL] ⇡ ej2⇡�fPtLTcy [k] . Using linear least squares,
and assuming two identical training sequences of total length

2PtL, CFO can be estimated as c�f =

\
PtL�1P
k=0

y[k+PtL]y⇤[k]

2⇡TcPtL
.

The phase at the numerator is efficiently computed using the
Coordinate Rotation Digital Computer (CoRDiC) algorithm.
The estimated c�f value is properly scaled to calculate a phase
increment that is fed to a numerically controlled oscillator
(NCO) to generate a complex exponential signal at the negative
of the offset frequency. The input signal is multiplied by
e�j2⇡ c�fkTc to compensate CFO.

3) Channel Estimation and Space-Time Matched Filtering:

To maximize the pre-detection SINR of the received signal
we first pulse match filter the received signal using the
SRRC filter and then apply the space-time matched filter
g = s⌦

�
H

T
w
�
2 CNL⇥1, which requires an estimate of the

MIMO channel matrix H. We consider a chip-spaced block
flat-fading model with Rayleigh distributed magnitude and
uniformly distributed phase. Considering the time slot that the
training sequence from the first transmit antenna is transmitted,
the channel coefficient between the first transmit and receive

antenna h1,1 is given by ĥ1,1 =
1
w1

PtL�1P
k=0

y1[k]t
⇤
1 [PtL�k]

PtL�1P
k=0

|t1[k]|2
, where

w1 is the beam weight of the first transmit antenna, y1[k]
is the received sequence at the first receive antenna, and
t1[k] is the training sequence from the first transmit antenna.
Accordingly, we estimate the remaining coefficients of the
MIMO channel matrix bH and the space-time filter is designed.
After space-time filtering the vectorized received data, de-
spreading operation is carried out followed by subsequent
QPSK symbol demapping and bit decoding.

4) Experimental Evaluation Metrics: We calculate the
number of flipped bits using the a priori known pilot sequences
at the receiver and compare them with the recovered symbols
using XOR. The accumulated number of erroneous bits is
kept in a register and a counter counts the total number of
received bits. The BER is calculated in real-time up until
the counter hits 100,000,000 and resets. We calculate average
BER using a sliding moving average over 1,000 BER values.
The instantaneous EVM and SINR values are measured per
subframe by having the reference constellation of QPSK and
calculating the distance of the received symbol to the reference
point. These values are accumulated and averaged over K data
points. The SINR can be found using SINR ⇡ 1/(EVM)

2.

The recovered symbols are streamed out of the FPGA to a
host computer using the AXI4 stream interface.

D. Optimization of Waveform Shaping and Directionality

Based on the joint space-time optimization algorithm pro-
posed in [16], we first calculate (estimate) the space-time dis-
turbance autocorrelation matrix bRi+n. During the idle periods
of the transmitter, a flag is asserted at the receiver after sensing
the absence of a frame. Considering an idle window of Tidle =

NidleTc, Mt = Mr = 4 and L = 4, we vectorize the received
sequence and construct the ĩ16⇥1 locally-sensed disturbance
vector. By accumulating and averaging over Nidle/L vectors

we get bRi+n =
L

Nidle

Nidle/L�1P
k=0

⇣
ĩ16⇥1 [k]

⌘⇣
ĩ16⇥1 [k]

⌘H

. Im-

plementing bR�1
i+n

, calculating the maximum-eigenvalue eigen-
vector q̂max and solving the joint space-time waveform opti-
mization problem in [16] is computationally expensive for the
PL. Considering that the space-time disturbance autocorrela-
tion matrix changes slowly or it is relatively constant over the
duration of a few frames, and the channel coherence time is
large enough, we distribute the workload of optimization to
the PS based on our HW/SW co-design. For this reason, the
256 components of the bRi+n matrix, and 16 components of
the bH matrix are streamed to the processor using the AXI4
lite interface. On the processor side, bR�1

i+n
and q̂max are

calculated. Already having bH, we follow the steps described
in Algorithm 2 in [16] to determine the optimum values for
waveform shaping s

opt and directionality w
opt

Mt
which are then

fed back to the Tx for interference avoidance.

Algorithm 2 of [16]: Joint space-time waveform optimization

Input: Pulse-filtered interference-plus-noise received samples;
estimated channel matrix H 2 CMt⇥Mr .

1: Calculate (estimate) space-time disturbance autocorrelation
matrix Ri+n 2 CMrL⇥MrL.

2: Calculate minimum-eigenvalue eigenvector of Ri+n,
qs�t 2 CMrL.

3: Find optimum code s
opt 2 {±1/

p
L}L (or other alphabet)

by discrete search over ||{I � (s⌦H
T )

[(sT ⌦H
⇤)(s⌦H

T )]�1(sT ⌦H
⇤)}qs�t||2.

4: Find jointly optimal beam weight vector wopt

Mt
by inserting

s
opt in w

opt

Mt
= inv[(sT ⌦H

⇤)(s⌦H
T )](sT ⌦H

⇤)qs�t.
Output: w

opt

Mt
, sopt .

Fig. 1: Joint space-time waveform optimization algorithm [16].

IV. EXPERIMENTAL RESULTS

We experimentally evaluate the performance of the joint
space-time waveform optimization algorithm proposed in [16]
for high-throughput resilient MIMO communication in the
presence of co-channel interference and arbitrary antenna
formations in an RFSoC-based testbed in an indoor labora-
tory environment. An RFSoC SDR is utilized to control the
transmitter and receiver of the MIMO link and the co-channel
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interferer; all controlled by a custom MATLAB app that is
running on a host PC. We test both linear and square antenna
formations considering a carrier frequency of fc = 900 MHz.
We place the Rx antennas 2 m away from the Tx and interferer
antennas. To assess the performance of our MIMO link,
we consider two operation modes: 1) static channelization
using an arbitrarily selected fixed (non-optimized) space-time
waveform; 2) adaptive channelization with real-time optimized
waveform shape and directionality according to [16]. Under
normal operation (i.e., when the interferer is turned off), both
static and adaptive channelization systems exhibit similar pre-
detection SINR performance. However, only the adaptive sys-
tem can adapt its waveform to avoid the in-band interference
and restore the SINR performance of the disrupted link. We
test binary antipodal codes of length L = 4 for shaping
the time-domain coded pulse-shaped waveforms and we vary
the number of samples per chip U . The excess bandwidth
parameter of the SRRC is set to ↵ = 0.5 which leads to
bandwidth occupancy of 11.5 MHz with U = 16, 23 MHz

with U = 8, and 46 MHz with U = 4. We consider a co-
channel interferer that is using the same modulation (QPSK),
an arbitrarily selected code and transmits continuously at
the same carrier frequency and same bandwidth with the
MIMO link to effectively disrupt its performance. The adaptive
channelization subsystem at the receiver calculates an estimate
of the disturbance autocorrelation matrix bRi+n by sample
averaging signal-absent received signal snapshots over 2048

chips that are acquired during the Tx’s idle periods.
Figure 2, depicts the post-filtering SINR estimated at the

receiver of the 11.5 MHz system under static and adaptive
channelization. Each data point in the plot is the result of
averaging the pre-detection SINR over 128 consecutive frames.
Initially, the system exchanges around 25,000 frames using a
fixed (non-optimized) arbitrary waveform. Next, the interferer
turns on using the same time-domain coded waveform and
almost 25,000 more frames are transmitted. Finally, with the
interferer still on, adaptive channelization is enabled manually
to autonomously optimize the waveform and 25,000 frames
are transferred using the max-SINR optimal space-time wave-
form. We note that arbitrarily selected waveforms will have
a more favorable interaction with certain interferer profiles
than others, and head-to-head comparison of SINR curves can
be misleading. Nevertheless, varying the transmit power of
the interferer helps us better understand the impact of the
proposed MIMO waveform optimization method in real-world
spectrum congested environments. We consider three different
transmit power settings for the interferers. Specifically, with
respect to the power of the signal of interest, we consider
PS/I = 4, 2, and 0 dB. We observe that the average SINR
decreases 16.5, 28, and 33 dB respectively. As the co-channel
interferer occupies the same-band and carrier with the link of
interest, it significantly degrades the link performance. The
proposed adaptive MIMO optimized waveform demonstrates
an improvement of 11, 26, and 27 dB in pre-detection SINR.

Figure 3, shows the pre-detection SINR estimated at the
receiver of the 23 MHz system under static and adaptive

Fig. 2: Pre-detection SINR vs. packet no. in the presence of a
co-channel same-band interferer (� = 11.5 MHz).

Fig. 3: Pre-detection SINR vs. packet no. in the presence of a
co-channel same-band interferer (� = 23 MHz).

channelization. For the 23 MHz system, the average SINR
decreases by 6.8, 17.5, and 23.5 dB for PS/I = 4, 2, and
0 dB, respectively. The adaptive system offers a significant
improvement of 6.6, 17.7, and 16 dB compared to the static
(non-optimized waveform) system in the presence of co-
channel interference. Fig. 4, depicts pre-detection SINR for the
46 MHz system. We note that in higher bandwidth systems,
due to shorter chip duration, inter-symbol-interference (ISI) is
more severe, which leads to lower overall SINR performance.
For the 46 MHz system, the average SINR decreases by 14.4,
18.2, and 21.7 dB for PS/I = 4, 2, and 0 dB, respectively.
Here, we observe 14.9, 19.8, 8.92 dB improvements in pre-
detection SINR for the adaptive system. We note that as
the interference strength reduces, the co-channel interference
immunity of the static (non-optimized waveform) system im-
proves and the performance improvement offered by adaptive
channelization diminishes. Furthermore, we observe that adap-
tive channelization offers SINR performance improvement for
a range of medium to low interferer powers.

In Fig. 5, we show experimental results from two different
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Fig. 4: Pre-detection SINR vs. packet no. in the presence of a
co-channel same-band interferer (� = 46 MHz).

Fig. 5: Pre-detection SINR vs. packet number for two antenna
formations: 1) linear and 2) square positioning with 10 cm
spacing (� = 11.5, 23 MHz).

antenna formations, specifically linear and square formation
with inter-antenna spacing set to 10 cm. We plot the pre-
detection SINR vs. packet number for an 11.5 MHz and a
23 MHz links. First, we observe that as the bandwidth of the
link gets larger, the link suffers more from ISI. Specifically,
the 11.5 MHz link in static (non-optimized waveform) mode
operates in an SINR region of 30�35 dB, whereas the 23 MHz

link operates in a 20� 25 dB region. Furthermore, comparing
linear and square antenna formations for the 11.5 MHz link,
we observe that in static mode, the square formation performs
almost 2 dB below than the linear formation (possibly due
to changes in the array’s propagation pattern). When the
interferer is turned on (PS/I = 4 dB), all the links experience
almost the same degradation. During operation with the space-
time optimized waveform, the linear formation produces SINR
gains of 10.9 dB and the square formation about 10.07 dB.
Comparing the linear and square formations for the 23 MHz
link, we observe that both operate almost identically.

V. CONCLUSIONS

We designed and implemented for the first time on an
RFSoC SDR interference-avoiding waveforms that are dy-
namically optimized in the joint space-time domain. We
demonstrated significant improvements (up to 25 dB) in pre-
detection SINR in the presence of a co-channel, same-band
interferer. We also validated in practice that the proposed
generalized beamforming design can be applied to transceivers
with arbitrary antenna formations.
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