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Abstract—Deep Reinforcement Learning (DRL) is critical for
autonomous systems to continuously learn and adapt in dynamic
environments. However, frequent retraining in DRL leads to
high energy consumption, posing significant challenges for mobile
and battery-dependent robotic systems. Co-optimizing energy,
latency, and algorithm performance is essential for efficient on-
device DRL. Current approaches either focus on traditional
DNNs like CNNs or target only two out of the three dimensions,
rather than addressing all three simultaneously. This paper
introduces DuoJoule, a comprehensive framework designed to
address the unique challenges of DRL workloads by meeting
latency deadlines and adhering to energy budgets while max-
imizing algorithm performance through both application and
system-level configurations. DuoJoule dynamically coordinates
adjustments in DRL algorithm parameters and system frequency
settings using Dynamic Voltage and Frequency Scaling (DVFS).
A key innovation of DuoJoule is its runtime metric tracker,
which assesses system status against target budgets and calculates
a universal efficiency score. This enables rapid and adaptive
tuning at runtime, balancing energy efficiency, latency, and algo-
rithm performance. Extensive evaluation using benchmarks along
with a realistic autonomous driving case study demonstrates
DuoJoule’s versatile cross-platform efficiency, practicality in
real-world scenarios, adaptivity to varying constraints, and low
runtime overhead evaluated on two widely used autonomous
embedded platforms. Empirical results show that DuoJoule
consistently meets latency and energy targets while maintaining
near-optimal performance, showcasing its effectiveness in man-
aging the complex trade-off space of on-device DRL.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) is becoming increas-
ingly crucial in real-time embedded systems designed for
robotic and transportation applications due to its superior
capability to handle dynamic and uncertain environments
through continuous learning and adaptation [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12]. Despite its promising
features, implementing DRL on resource-constrained embed-
ded devices—known as on-device DRL—remains a challenge.
This challenge stems from the need for constant adaptation
through frequent retraining during inference, which signifi-
cantly increases computational demands and energy consump-
tion. Additionally, it is compounded by stringent real-time
performance and safety requirements. In mobile and battery-
powered systems like robots and drones, managing latency
is crucial alongside energy efficiency, as both are essential for
functionality and sustainability [13]. Unlike conventional Deep
Learning (DL) models such as Convolutional Neural Net-
works (CNNs), which are primarily used for static inference
tasks, DRL requires ongoing training and inference cycles.
This continuous processing makes real-time performance and
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Fig. 1: Trade-offs in DRL system optimization spaces

energy management critical operational factors [14]. In these
environments, energy efficiency is not just a cost concern; it
is essential for functionality and sustainability [13]. Addition-
ally, On-device DRL systems face significant latency during
training and inference, complicating the balance of energy and
efficiency in dynamic environments.

One critical point that remains unaddressed in the current
DRL design space is the provision of energy and latency
guarantees while maximizing performance. This approach
is particularly beneficial for users who may not prioritize
minimal energy use or latency but still require assurances
that their systems will not exceed critical thresholds. This is
crucial for on-device autonomous systems where breaching
energy or latency limits can severely compromise functionality
and operational safety. Unfortunately, optimizing the three-
dimensional space of energy, latency, and algorithmic per-
formance (i.e., accuracy) of DRL presents inherent conflicts,
as these goals often compete with one another, making it
challenging to achieve optimal outcomes across all dimensions
simultaneously, as demonstrated in Figure 1.

Co-optimizing multiple—often competing—dimensions are
clearly critical for modern machine learning-driven sys-
tems [15], [16], [17]. While numerous studies [18] have ex-
plored optimizing both latency and energy in traditional DNN-
driven systems, particularly those using CNNs, these strategies
do not address the unique requirements of DRL [19]. DRL
necessitates continuous train-inference cycles and frequent
retraining to adapt to new environments, introducing diverse
computational complexities that present entirely new and chal-
lenging problems not encountered in prior efforts [20]. For on-
device DRL systems, a couple of recent works have attempted
to co-optimize two out of the three critical dimensions. [21]
investigates a hardware accelerator-based approach designed
for energy-efficient DRL but overlooks latency deadlines and
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lacks a comprehensive software solution, while [22] focuses
solely on latency and accuracy, neglecting energy consid-
erations. Despite these varied efforts, none of the existing
approaches adequately address the simultaneous maintenance
of both latency and energy guarantees while ensuring optimal
accuracy performance, specifically tailored for DRL.

Contributions. In this paper, we introduce DuoJoule, a
novel framework designed to address the unique challenges of
DRL workloads by meeting latency deadlines and adhering
to energy budgets through dynamic configurations at both
the application and system levels. DuoJoule stands out
by its ability to satisfy energy and latency targets while
simultaneously delivering near-optimal accuracy performance,
specifically tailored for the continuous train-inference cycles
and frequent retraining of DRL. DuoJoule manages the
complex multi-dimensional trade-off space by providing a
cross-platform and adaptive framework that accommodates
constraints on energy and latency, whether they are soft or hard
limits. DuoJoule operates by intricately coordinating adjust-
ments at both the application and system levels for efficient
operation. It employs a simple and effective runtime Metric-
Tracker to assess the system against targets and calculate a
universal score. This score enables dynamic tuning of DRL
parameters and system frequency via DVFS. By addressing
the unique characteristics of DRL, DuoJoule provides a
groundbreaking approach to balance energy efficiency, latency,
and accuracy in on-device DRL systems.

We have implemented DuoJoule on two autonomous
embedded platforms with heterogeneous computing capabil-
ities: the relatively powerful NVIDIA Jetson AGX Orin and
the rather resource-limited NVIDIA Jetson Nano Orin, both
featuring GPU-enabled multicore architectures. We evaluated
DuoJoule’s performance in meeting latency and energy
targets, as well as its accuracy, using the Breakout Atari
[23] and CartPole classic control [24] environments. These
environments are part of the Autonomous Learning Library
[25] and the Arcade Learning Environment [23], which are
among the most pervasively investigated libraries in the DRL
community [26], [27]. Also, we evaluate three prominent
DRL algorithms, including DQN [3], DDQN [4], and C51 [5]
Additionally, we demonstrated DuoJoule in a Donkey Car
[28] case study, a realistic autonomous driving environment,
highlighting the practical applicability of our approach. Our
results show that DuoJoule achieves:
• Versatile Overall Effectiveness: DuoJoule not only

meets timing and energy budgets consistently with strong
performance across tasks, demonstrating robust resource
management, but also ensures efficient operation on di-
verse hardware, from the powerful NVIDIA Jetson AGX
Orin to the resource-limited Jetson Nano. This adaptability
highlights its broad applicability in applications from au-
tonomous vehicles to fire detection drones. (Sec. V-B)

• Practicality: Through the Donkey Car test case, which
closely mimics real-world driving scenarios, DuoJoule
has proven its practical applicability and robustness under
realistic operational conditions. (Sec. V-D)

Previous 

Episodes

System

Environment

s0 sn sT
...

Episode

Starts

Episode

Restart

End

Episode

Terminal 

State

Replay 

Buffer

Batch of

Data

Q 

Network

S1 Sn+1

rn+1 Doneanr1a0 aT

Store

Sample

Batch SizeTrain

TrainingInference

Q 

NetworkPolicy

Generate 

a

a


Step

b

Train

Training Frequency f

Latency Deadline

Energy Budget

Explore

vs


Exploit

Fig. 2: An overview of Deep Reinforcement Learning (DRL).

• Adaptivity: DuoJoule dynamically adapts to varying op-
erational scenarios with different constraints on latency and
energy, maintaining flexibility to prioritize resources based
on immediate application needs. (Sec. V-C)

• Low Overhead: Engineered to impose minimal runtime
(as low as 8ms) overhead on existing DRL algorithms,
DuoJoule ensures efficient system performance without
compromising computational resources. (Sec. V-E)

II. SYSTEM MODEL

In this section, we describe the background of DRL and typ-
ical GPU-enabled autonomous embedded hardware platforms.
DRL Background. DRL has received significant attention
for its ability to learn complex tasks and adapt to dynamic
environments, proving invaluable in robotics and autonomous
driving [29], [30], [31], [22], [32]. Key components of effec-
tive DRL include the agent, environment, policy formulation,
reward structure, and episodic execution of steps. As illustrated
in Figure 2, an episode in a DRL system involves several
steps where each step (or frame in vision-based environments)
represents a single iteration in the environment, involve the
agent perceiving the current state (s), taking action (a) based
on the state, and receiving feedback in the form of a reward
(r) which transitions the environment and the agent to the
next state (s′). This feedback loop continually gathers the
past experiences (s, a, r, s′) in a buffer known as a replay
buffer, allowing sampling from the buffer to update the DNN.
In DRL, the Frames Per Second (FPS) metric refers to how
quickly the environment’s steps or frames are processed and
corresponding actions are executed. The performance of DRL
algorithms depends on the cumulative (discounted) rewards
and the fps as latency, highlighting the dynamic interplay
between continuous feedback and systematic learning in ad-
vancing autonomous systems.
DRL Characteristics. In optimizing DRL for better accuracy,
energy, and latency performance within autonomous embedded
systems, training frequency f and batch size b are crucial.
Unlike CNNs that train on static datasets, DRL continuously
adapts to dynamically changing environments influenced by
agent interactions. Adjusting the training interval t—which
determines the number of steps between algorithm updates
from the replay buffer—directly affects the update frequency.
A lower training interval t, meaning fewer frames are skipped,
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TABLE I: Step-level average DRL execution energy con-
sumption [mJ] for training and inference on various training
frequencies and GPU frequency [MHz].

GPU Frequency Training Frequency Training Energy Inference Energy

306 1 43.1484 3.2805
4 10.8707 3.443

612 1 43.112 3.3359
4 10.865 3.3224

1020 1 43.273 3.57126
4 10.874 4.2303

1300 1 43.69 4.225
4 11.365 4.2299

results in a higher frequency f of updates, which significantly
increases the computational load due to the frame-skipping
mechanism. Similarly, batch size impacts the execution, han-
dling multiple data samples from the replay buffer per training
session, with the complexity of variable experience quality.
Fine-tuning these parameters is vital to balance learning effi-
ciency and resource constraints, ensuring optimal performance
within stringent energy and latency budgets. Figure 2 illus-
trates the roles of these parameters in DRL training.
Power configurations. Dynamic Voltage and Frequency Scal-
ing (DVFS) is a power management technique used in GPU-
enabled autonomous embedded systems like NVIDIA Jetson
Nano and Jetson AGX Orin [33]. By adjusting processor
frequency in real-time, DVFS balances energy efficiency and
latency. These systems offer multiple power configurations
[33], [34], enabling a choice between lower frequencies for
improved energy efficiency or higher frequencies for reduced
latency, thus optimizing system performance. This trade-off
provides opportunities for optimizing system performance
across different operational contexts as discussed in previous
works such as [35], [36]. Table I lists energy consumed aver-
aged by training and inference steps during DRL execution,
under various training frequency and GPU frequency. We can
observe two significant patterns from it. (1) A training step
consumes much more energy than an inference step, particu-
larly under an intensive training frequency. (2) Different power
configurations may have an impact on the energy consumption
of DRL execution. Additionally, training energy in I remains
stable due to fine-grain cycle calculations and near-maximum
GPU utilization during training. Lowering GPU frequency
prolongs training and increases total energy consumption while
increasing frequency shortens the cycle. This highlights that
compared to traditional deep learning techniques that mainly
involve inference cycles, supporting on-device DRL can be
much more challenging due to the rather energy-intensive
nature of training cycles along with inferences.

III. MOTIVATION

In this section, we conduct several case studies on GPU-
enabled autonomous embedded systems which reflect key
insights that highlight the primary challenges in developing
DRL systems that co-optimize energy, latency, and accuracy.

A. Training Frequency

In this subsection, we present a detailed analysis conducted
using the Breakout Atari benchmark [23], utilizing the Au-
tonomous Learning Library (ALL)[25] with PyTorch backend
[37] on a Jetson AGX Orin platform. Experiments in this
section are all done using C51 [5] algorithm with default
parameters of (ALL) and batch size of 64. As illustrated
in Figure 3, we delve into the impact of training frequency
on three critical optimization metrics: algorithm performance,
latency, FPS, and GPU energy consumption. Specifically,
Figure 3a examines the trade-offs and trends influenced by
decrease in training interval or increases in training frequency.
For this experiment, we collect energy, latency, FPS, and
reward for each episode across 8 different training frequencies,
which reveals a reduction in training frequency or increase
in training interval typically results in decreased algorithm
performance, better latency, and energy. In contrast, Figure 3b
collects cumulative energy and latency data across episodes for
three training frequencies, with horizontal lines representing
energy and latency budgets. Vertical lines indicate episodes
where training exceeds these budgets. This figure demonstrates
how imposed budgets on energy or latency limit the number
of episodes and frames, thus limiting the accuracy of a DRL
system. Further in Figure 3c, we can visualize the impact of
the same latency and energy budgets on performance given a
cutoff (represented by vertical lines). The figure displays how
algorithm performance is capped due to constraints. As the
training frequency increases, the cumulative rewards decrease
along with the episodes. This suggests training frequency
significantly impacts both latency and energy outcomes, po-
tentially preventing the system from achieving its training
objectives.
Observation 1: Optimal training frequency is crucial in DRL
systems to balance achieving higher rewards with managing
the constraints of increased latency and energy consump-
tion. Reducing training frequency can decrease algorithm
performance but significantly lowers both latency and energy
usage. This necessitates careful tuning, particularly under
strict latency and energy budgets, to avoid premature training
cessation and ensure effective system performance.

B. Training Batch Size

Following the discussion on training frequency trade-offs,
we now turn our attention to another critical parameter:
training batch size, as previously introduced. The experimental
setup remains consistent with that described in Section III-A
with a fixed training frequency of 4. Figure 4 presents a
systematic analysis aimed at understanding the impacts of dif-
ferent training batch sizes on algorithm performance, latency,
and GPU energy consumption. As shown in Figure 4a, the re-
sults delineate trends in DRL algorithm performance, latency,
and energy as influenced by varying batch sizes. It features
the collection of energy, latency, and accuracy data across
nine different batch sizes, comparing the trends of normalized
values to delineate how scaling batch size influences efficiency
and effectiveness. While an increase in batch size entails
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Fig. 3: Figure (a) illustrates the trend of 8 different training frequencies on the 3 trade-offs among training performance, energy,
and latency where the best performance occurs at the highest frequency, unlike latency and energy. Figure (b) presents energy
and latency usage per episode under constraints. The horizontal dashed lines denote the imposed constraints, while the vertical
dashed lines mark the episode cutoff numbers after reaching those constraints. The solid line indicates the cumulative energy
and the dashed line demonstrates the cumulative latency in the experiment. Figure (c) depicts the algorithm’s performance cutoff
(horizontal line) under the same constraints (vertical lines). Algorithm performance dropped significantly when increasing the
training interval from 4 frames to 10 frames per training because the agent trains less frequently, leading to slower learning
and adaptation.
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Fig. 4: Figure (a) illustrates the trend of varying 9 training batch sizes on the 3 trade-offs among training performance, energy,
and latency where the best performance occurs at 256 batch size, unlike latency and energy. Figure (b) presents energy and
latency usage under constraints per episode in each experiment. The horizontal dashed lines denote the imposed constraints,
while the vertical dashed lines mark the episode cutoff numbers after reaching those constraints. The solid line indicates
the cumulative energy and the dashed line demonstrates the cumulative latency in the experiment. Figure (c) depicts the
algorithm’s performance cutoff (horizontal line) under the same constraints (vertical lines). Algorithm Performance increased
while increasing training batch size from 32 frames to 500.

larger training steps, excessively large batch sizes can lead to
training with less informative experiences, potentially causing
overfitting and a subsequent decline in performance beyond a
certain point. This phenomenon establishes a ’sweet spot’ for
the batch size, optimizing the trade-off between performance,
latency, and energy—a concept also supported by previous
studies [38]. Figure 4b illustrates how constraints on latency
and energy (indicated by horizontal lines, similar to those used
in the training frequency experiments) impact the number of
episodes that can be processed. This figure collects cumulative
energy and latency data over episodes from experiments of
three different settings of batch size, providing a detailed view
of operational dynamics. Despite the potential for higher batch
sizes to converge to greater rewards, performance differences
are minimal due to these constraints. Figure 4c then displays
the DRL performance under constraints that terminate training
after a certain number of episodes.
Observation 2: Increasing training batch sizes in DRL sys-

tems typically worsens GPU energy consumption and latency,
without clearly improving learning outcomes. A discernible
trend shows that beyond a certain ’sweet spot’, additional
increases in batch size are detrimental. Finding this sweet spot
necessitates extensive search through all possible configura-
tions; a fixed value overlooks the system’s resource constraints,
emphasizing the need for strategic batch size adjustments.

C. Co-optimizing Training Parameters

Building on our analyses of training frequency and batch
size, we delve into the co-tuning of these two control knobs.
As depicted in Figure 5, we conduct combinations of exper-
iments using the CartPole environment [24], C51 algorithm
[5], and the autonomous learning library [25] on a Jetson
AGX Orin platform by varying training batch size and fre-
quency. We changed the environment from Breakout Atari
to CartPole to demonstrate the effects of frequency (f) and
batch size (b) across different types of environments. By
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including CartPole, an easier environment, alongside the more
challenging Breakout Atari, we show that the trade-offs and the
importance of fine-tuning f and b are relevant in both simple
and complex scenarios. This highlights that even in easier
environments like CartPole, trade-offs exist, underscoring the
necessity of optimizing f and b for improved performance.
Results highlight an interesting observation where the optimal
settings for energy, latency, and algorithm performance occur
at different combinations of training frequency and batch size.
Unfortunately, this sub-linear relationship complicates the co-
optimization of DRL training parameters under energy and
latency constraints, primarily due to the interconnect effects
where modifying both knobs exacerbate resource consumption
nonlinearly. Figure 5a explicitly shows how the batch size
and training frequency influence latency, with increases in
both parameters, significantly raising latency levels. Figure
5b illustrates the same interconnect effects on energy con-
sumption, where the red plane indicates how a budget on
latency and energy can limit viable experiment configura-
tions. Furthermore, Figure 5c identifies the optimum batch
size and frequency for training performance; however, budget
constraints can potentially alter these ideal settings. Figure 5d
shows the radar chart of the three optimum points. Moreover,
our analysis demonstrates an interesting insight that training
frequency has a greater impact on latency, while batch size
more significantly affects energy consumption, as indicated
in Equations 1 and 2. These insights effectively motivate
our system design and implementation, providing a nuanced
understanding of the intricate trade-offs in the co-optimization
space.

Normalized Batch Size Latency Difference
Normalized Frequency Latency Difference

= 65% (1)

Normalized Batch Size Energy Difference
Normalized Frequency Energy Difference

= 23% (2)

Observation 3: Optimizing training frequency and batch size
independently can lead to suboptimal performance across dif-
ferent dimensions, exacerbated by their interconnected effects.

The challenge becomes more severe under specific energy or
latency constraints, where naive adjustments may breach these
limits due to both parameters affecting energy and latency.
Even though there may be a sweet spot for batch size or
training frequency obtained by exhaustive offline search that
provides optimal performance, it neglects resource constraints,
potentially violating energy or latency budgets, and ignores co-
optimization benefits. Our analysis demonstrates that training
frequency more significantly impacts latency, while batch size
has a greater effect on energy consumption. Additionally, fixed
sweet spots for batch size and frequency don’t exist due to their
interdependency and runtime dynamics, preventing administra-
tors from using offline sweet spots. This highlights the need
for strategic parameter adjustments to meet constraints while
optimizing for the highest possible reward.

D. DRL Specific Energy Patterns

We conduct a comprehensive analysis of the DRL’s latency,
energy, and performance by measuring training energy and
latency across six GPU frequencies under 15W and 30W
power profiles on the Jetson AGX Orin platform. Our experi-
ments reveal an inherent negative correlation between energy
consumption and latency: higher frequencies improve latency
but increase energy usage, as shown in Figure 6. Another
notable observation relates to the characteristics of DRL,
which cycles between training and inference. While scaling
frequency up during training and down during inference might
seem advantageous for saving energy, our findings reveal
substantial overhead. Each DVFS adjustment involves an I/O
operation of writing frequency on the system file, which can
take up to 1-2ms. Given the inference-training cycle of DRL
can be under 100ms, this results in up to 20 I/O operations
per second (2 I/O per cycle for read and write), making the
overhead significant and impractical.
Observation 4: Adjusting GPU scaling frequency affects
DRL latency and energy, highlighting the importance of using
DVFS to dynamically meet energy and latency targets by
complementing changes in training frequency and batch size.
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the entire duration of the experiment.

IV. DESIGN

In this section, we outline the design of DuoJoule,
as shown in Figure 7, to effectively manage system la-
tency and energy consumption within predetermined budgets.
DuoJoule employs a Metric Tracker to monitor system
status by comparing the expected latency and energy at the
end of the experiment to the set budgets. This comparison
yields a comprehensive system status score, which serves
as a basis for optimizing the balance between energy and
latency. The three principal techniques—ParamTuner, DVFS,
and EarlyExit—leverage this score to efficiently manage sys-
tem performance within the constraints. Building on the trade-
offs discussed in Section III, we provide detailed explanations
of each technique to ensure that the DRL system operates
efficiently within the established energy and latency limits.

Latency and energy budgets for DuoJoule are user-
defined but adjustable during runtime to reflect changes in
task demands or system performance. DuoJoule dynami-
cally adapts to these updates, optimizing performance within
the revised constraints. Soft constraints where in systems it
usually indicates an easier target and where system can tolerate
exceeding budget within a threshold, are set at 75% of max-
imum system peak to handle temporary fluctuations without
impacting overall performance, while hard constraints where
systems cannot tolerate above their harder budgets, are fixed
at 50% of the peak to ensure safety and prevent overloads.
Energy budgets typically stem from battery capacity or system
capabilities, whereas latency budgets are shaped by operational
requirements such as fast prototyping or production needs [39],
[40]. This flexibility allows DuoJoule to maintain optimal
performance under varying conditions and constraints.

As a result, DuoJoule dynamically adjusts both algo-
rithm parameters and system configurations in response to the
system status score, successfully meeting predefined energy
and latency budgets while optimizing performance within
these constraints. Additionally, unlike offline approaches like
exhaustive search, DuoJoule effectively adopts run-time
dynamics such as varying total frames and budgets, making
DuoJoule a comprehensive approach to on-device DRL
optimization. Algorithm 3 and the following sections describe
different DuoJoule and its components.
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Fig. 7: Design overview of DuoJoule

A. Metric Tracker

The Metric Tracker is a pivotal component of DuoJoule
(Lines 3-4 in Algorithm 3), meticulously monitoring the DRL’s
performance at each episode by tracking FPS, average GPU
power consumption, and session latency. This data enables
the Metric Tracker to forecast training energy and latency,
allowing it to compare these predictions with preset budgets
and calculate a comprehensive system status score. This score
informs DuoJoule in making dynamic adjustments to algo-
rithm and system settings, optimizing them to meet the energy
and latency budgets. Designed to operate with minimal over-
head—as confirmed by our evaluations in Section V-E—the
Metric Tracker ensures robust real-time performance without
sacrificing efficiency. Furthermore, DuoJoule requires an
initial total number of frames for training which might be
challenging to determine in real-world DRL applications, as
models may converge at different rates, or fail to converge if
the total frame count is too low. However, DuoJoule only
requires an initial estimate of the total frames. During runtime,
if the total frame count changes, DuoJoule dynamically re-
calculates the expected latency and energy, and adjusts hyper-
parameters accordingly. This allows DuoJoule to maintain
optimal performance and accuracy while respecting the initial
constraints, even as the frame count varies.

Before delving into the formal definitions of the Metric
Tracker’s calculations, it is important to establish the notations
used. We represent the latency and energy targets as Lt and
Et, respectively. The current latency and energy consumption
up to this point in the system are denoted by Lc and Ec. In
our setup, the total number of frames for training is set at the
beginning (flexible to vary during runtime) of the experiment
and denoted as Ft. The remaining number of frames until the
end of the experiment is referred to as Fr. fps denotes the
average fps of last episode window. PEP is defined as episode-
level power consumption, PEP denotes the average power
consumption of the last episode window, LEP is episode-
level latency, and fEP is the number of frames (step) in the
episode. PEP×LEP calculates the energy consumption during
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the episode where dividing it by fEP results in an estimate
of energy consumption per frame. Based on this information,
we can calculate the expected latency and expected energy
consumption as follows:

Let = Lc +
Fr

fps
(3)

Eet = Ec +

[
PEP × LEP

fEP

]
× Fr (4)

then the deviation of the calculated expected values from
the respective latency and energy budgets can be calculated
based on Eq. 4 as follows:

Dlatency =
Let − Lt

Lt
(5)

Denergy =
Eet − Et

Et
(6)

Definition 1: Efficiency Score (ES).

Efficiency Score (ES) =
|Dlatency|

α× |Denergy|
(7)

The Efficiency Score (ES) metric, derived by comparing the
absolute values of Dlatency and Denergy as calculated in Eq. 6,
assists in identifying which aspect-latency or energy-requires
more immediate attention. The sign of Dlatency and Denergy
indicates the direction of deviation: a positive sign signifies
the value exceeds its budget, while a negative sign indicates
compliance with the budget. Moreover, the weight α quantifies
the relative importance of energy compared to latency. For
instance, an α of 2 signifies that meeting the energy target is
twice as important as meeting the latency target.

The absolute values of Dlatency and Denergy, representing
the normalized differences from performance targets, can be
treated as the error rate ϵ. These error rates quantify how much
the actual performance deviates from the budgets. When the
absolute value of D∗, where ∗ ∈ {latency, energy}, is less
than a predefined threshold ϵ, the system is considered stable,
indicating that it is within an acceptable range of its budgetary
goals. This threshold, ϵ which is defined by the system initially,
thus not only signifies the system’s tolerance for deviations but
also determines its operational flexibility, allowing DuoJoule
to adjust its strategy based on the magnitude of D∗. A smaller ϵ
means tighter control, aiming for precision in meeting targets,
while a larger ϵ offers more leeway, reducing the frequency
of adjustments but potentially allowing larger deviations.

The development of the ES metric responds directly to
the co-optimization challenges highlighted in Observation 3
(Section III-C). ES simplifies the simultaneous management
of latency and energy by merging their deviations into a
single actionable score. This metric, as implemented in the
controller part of DuoJoule (Algorithm 3), optimally adjusts
training batch size, frequency, and DVFS settings based on the
stability criterion—keeping the absolute value of deviation D∗
below the error rate ϵ. The algorithm also limits exploration

(See sections IV-B and IV-C) once the system stabilizes,
ensuring minimal computational overhead and eventual system
stability. Its effectiveness and simplicity directly address the
issues presented in Section III, making it a practical tool for
optimizing real-time embedded systems and navigating the
intricate balance between latency and energy.

Algorithm 1 ParamTuner component of DuoJoule.

Require: Minibatch size b, training frequency f , Last Up-
dated Parameter p, Minibatch size modification unitb∗

1: function PARAMTUNER(mode, f, b, constrain)
2: if constrain == “energy” or “explore” then
3: if mode == “increase” or “explore” then
4: if p or f ≤ 1 then
5: b← b+ b∗

6: else
7: f ← f − 1
8: end if
9: else if mode == “decrease” then

10: if not p or b < b∗ then
11: f ← f + 1
12: else
13: b← b− b∗

14: end if
15: end if
16: else if constrain == “latency” or ”explore” then
17: if mode == “increase” or ”explore” then
18: if p or b < b∗ then
19: f ← f + 1
20: else
21: b← b− b∗

22: end if
23: else if mode == “decrease” then
24: if not p or f ≤ 1 then
25: b← b+ b∗

26: else
27: f ← f − 1
28: end if
29: end if
30: end if
31: p← not p
32: return b, f
33: end function

B. ParamTuner

As previously discussed, the ES assesses deviations from
latency and energy budgets by evaluating the sign and mag-
nitude of D∗. In response, ParamTuner, the main component
of DuoJoule, adjusts key parameters, batch size (b), and
training frequency (f ), to meet budget constraints. Utilizing
observations from Section III, batch size influences energy
consumption, while training frequency primarily impacts la-
tency. Depending on the ES, adjustments are made accord-
ingly: if Denergy is positive, b is decreased to reduce energy
usage; if negative, b is increased by a constant value b∗ which
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often is small and depends on the environment and algorithm
(in our setup we used 8 for CartPole and 16 for Breakout).
Similarly, if Dlatency is positive, f is decreased to improve
latency; if negative, f is increased by 1. These adjustments
continue until the system stabilizes, ensuring compliance with
the set budgets. Algorithm 1 shows the ParamTuner algorithm.
However, this naive ParamTuner faces several challenges.

ParamTuner (Lines 5-14 in Algorithm 3) navigates a com-
plex dynamic where both batch size (b) and training frequency
(f ) simultaneously influence latency and energy consumption,
as discussed in Section III-C. The interdependence of these pa-
rameters can cause compounding effects and system instability
when adjusted concurrently. To mitigate this, ParamTuner
employs a sequential adjustment strategy based on the ES,
modifying one parameter at a time followed by a stabilization
period within a defined change window wp. This approach
allows the system to adapt and reflect the new settings’
impacts before further adjustments, ensuring controlled, mea-
surable changes. Despite fostering stability, this method can
restrict the exploration of potentially superior configurations.
If DuoJoule shows that performance is within target limits
(deviation from target less than error), further adjustments
cease, potentially overlooking optimal settings. To address
this, ParamTuner intermittently experiments with increasing
b or f after periods of stability, assessing the impact on ES
within a toggle strategy framework (Line 3,17 in 1). This
exploration is limited to several attempts and strikes a balance
between achieving system stability and discovering enhanced
configurations.

ParamTuner, the core component of the DuoJoule system,
effectively balances energy and latency to meet predefined
budgets while optimizing for the best performance config-
uration. Enhancements such as DVFS and EarlyExit fur-
ther improve DuoJoule, ensuring compliance with budgets.
Algorithm 3 illustrates the DuoJoule framework. Inputs
include latency and energy budgets, and an error rate ϵ, which
should be specified beforehand. The energy budget is typically
set based on the embedded system’s workload or battery
capacity, while target latency varies with the operational
context—whether a prototype run, production, or test—and
these values are user-defined, similar to the concept described
in [41]. Although these values are initially fixed, they can be
adjusted during experiments, allowing DuoJoule to adapt.
The total number of training frames in DRL is generally
predefined, akin to epochs in deep learning [42]. Crucial
hyperparameters for the system are the ParamTuner and DVFS
adjustment windows, denoted as wp and wd respectively.

Target latency and energy define system performance flex-
ibility, while adjustment windows dictate parameter tuning
leeway. On devices like the Jetson Orin, GPU power updates
take about 5-10 seconds after algorithm adjustments, whereas
DVFS changes take just a second. Consequently, the DVFS
window (wd) is smaller than the ParamTuner window (wp).
Given the variability in response times across systems, estab-
lishing suitable windows is crucial. wp and wd depend on the
platform as different platforms take varying times to reflect

system changes. However, DuoJoule employs a learning
method that can quickly determine these values at runtime
by updating f, b, and GPU frequency, and setting the number
of frames required to reflect changes in fps and GPU power
as windows values. Note that small windows reduce stability
and hinder optimal convergence, while large windows decrease
responsiveness and extend convergence time.

C. Dynamic Voltage and Scaling Frequency (DVFS)

DVFS (Lines 15-24 in Algorithm 3), and Algorithm 2,
as discussed in Sec. II, is a pivotal technique in managing
energy efficiency for GPU-intensive tasks, such as DRL, as
it dynamically adjusts GPU frequencies to optimize latency
or energy consumption [43], [44]. Unlike ParamTuner, which
can significantly alter training performance (see Section III),
DVFS adjusts system parameters with no impact on per-
formance, making it a more favorable trade-off. However,
DVFS’s effect on latency and energy is subsequently smaller
than ParamTuner which allows DVFS to provide finer-grained
control over system constraints, particularly useful when de-
viations are marginally outside the acceptable error bounds.

In DuoJoule, ParamTuner and DVFS serve complemen-
tary roles in managing performance and system efficiency.
However, a notable challenge with DVFS is that there is
no clear ”sweet spot” for GPU frequency, as frequency ad-
justments often have inverse effects on latency and energy.
To address this, DuoJoule dynamically selects from the
available GPU frequencies at runtime, such as the 11 options
provided by systems like Jetson Orin. DuoJoule uses the ES
in the same way as ParamTuner, increasing (or decreasing)
the GPU frequency if the ES is positive (or negative) to
prioritize latency (or energy) (2). The DVFS change window
wd is set to be much smaller than that of ParamTuner (see
ParamTuner IV-B, allowing DVFS to tune the frequency to
stabilize the system after a change in parameters. Similar to
ParamTuner, DVFS explores higher or lower frequencies even
after stabilization of the system to favor more latency or energy
constrained systems.

Algorithm 2 DVFS component of DuoJoule.

Require: GPU frequency f , List of Available GPU frequency
Lf

1: function DVFS(mode, f)
2: if mode == “increase” or “explore” then
3: f ← Lf [next]
4: else if mode == “decrease” then
5: f ← Lf [previous]
6: end if
7: return f
8: end function

D. EarlyExit

Following our discussion of ParamTuner and DVFS, we
introduce EarlyExit (Lines 26-28 in Algorithm 3), a strategy
that effectively enhances system efficiency, potentially trading
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off some algorithmic performance for improvements in energy
and latency. DuoJoule adopts EarlyExit to halt operations
when the algorithm converges and performance no longer
improves, or when energy and latency budgets are exceeded.
This strategy is critical in systems with hard constraints on
latency or energy, where adjusting configurations might overly
compromise performance. By using an exit window—defined
by episodes or frames—DuoJoule can effectively satisfy
these targets, terminating the process when further adjustments
would lead to unacceptable trade-offs.

Considering system safety is paramount in our EarlyExit
mechanism. In the first scenario, where the algorithm has
converged, there is no system safety issue, as it has already
reached its maximum performance, allowing us to save latency
and energy. In the second scenario, where constraints are
exceeded, exiting the training improves safety by prevent-
ing overuse. DuoJoule’s adaptability and flexibility permit
dynamic adjustments to constraints during runtime, allowing
administrators to increase budgets if the algorithm is running
out before convergence. If this is not feasible, exiting training
conserves critical battery life for safety or backup systems,
with the option to continue training from a checkpoint later. In-
tegrating EarlyExit with ParamTuner and DVFS, DuoJoule
efficiently meets stringent operational constraints, ensuring
optimal performance within predefined limits.

V. EVALUATION

A. Experiment Setup

Testbeds. We evaluate DuoJoule on two GPU-enabled
NVIDIA platforms, Jetson AGX Xavier and Jetson Nano Orin
as testbeds, which are widely used in autonomous driving [45],
[46] and robotics [47], [48], [49], [50], where reliability and
performance of energy and latency are critical [51].
Benchmarks and DRL algorithms. We evaluate our solution
on two representative widely used DRL benchmarks, including
Classic Control [24] and Atari [52], which are integrated with
the widely used Autonomous Learning Library (ALL) [25].
These two benchmarks represent two different-sized DRL
scenarios, where Classic Control is a small benchmark and
Atari is a large benchmark. Our experiments evaluate the
performance of three prominent DRL algorithms: DQN [3],
DDQN [4], and C51 [5]. For DuoJoule, we started all our ex-
periments from the default parameters of ALL. The framework
then controls the system and hyperparameters for best reward.
Robotic Case Study. To showcase the robustness of our
solution in realistic settings, we conduct a practical case study
involving robotic autonomous navigation scenarios, utilizing a
high-resolution simulator DonkeyCar [28].
Metrics. Our evaluation uses three main types of metrics:
latency predictability, assessed by end-to-end latency; algo-
rithm performance, measured by maximal cumulative rewards;
and GPU energy consumption, profiled using the Tegrastats
profiler [53] to measure system-level power consumption and
calculate total energy consumption. We had at least 3 runs for
each experiment to make sure our framework and results were

Algorithm 3 Controller component of DuoJoule.

Require: Latency deadline Lt, Energy Budget Et, Total
frames F , ParamTuner change window wp, DVFS change
window wd, error rate ϵ

1: function CONTROLLER(inputs)
2: /* Metric Tracker */
3: Dlatency, Denergy ← Calculate by Eq. 6
4: ES ← Calculate ES by Eq. 7
5: /* ParamTuner */
6: if wp AND (|Dlatency| > ϵ) OR |Dlatency| > ϵ(×α))

then
7: if |ES| ≥ 1 then
8: f, b← ParamTuner(signDlat., f, b, latency)
9: else if |ES| ≤ 1 then

10: f, b← ParamTuner(signDene., f, b, energy)
11: else
12: f, b← ParamTuner(explore, f, b)
13: end if
14: end if
15: /* DVFS */
16: if wd AND (|Dlat.| > ϵ) OR |Dlat.| > ϵ(×α)) then
17: if |ES| ≥ 1 then
18: freq ← DV FS(signDlat., freq)
19: else if |ES| ≤ 1 then
20: freq ← DV FS(signDene., freq)
21: else
22: freq ← DV FS(explore, freq)
23: end if
24: end if
25: /* EarlyExit */
26: if L > Lt OR E > Et OR Converged then
27: EarlyExit()
28: end if
29: return freq, b, f
30: end function

consistent. However, we only showed one of the runs as an
evaluation and in our plots.
Baselines. We compare DuoJoule against four baselines:

• Default: This approach utilizes preset training parameters
from the Autonomous Learning Library (ALL), representing
a balanced configuration for general user preferences.

• MAX-A: MAX-A optimizes training parameters for best
algorithm performance.

• MIN-E: MIN-E optimizes training parameters for achieving
best energy efficiency.

• R3 [22]: This state-of-the-art solution considers auto-
balancing timing and algorithm performance under hard
memory constraints.

Implementation Details. Experiments on the Breakout envi-
ronment utilize 1,000,000 frames with an error rate of 5%.
CartPole experiments utilize 50,000 frames with an error rate
of 5%. We apply both hard and soft constraints on energy
and latency for DuoJoule. All evaluations in this section
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Fig. 8: Overall effectiveness of DuoJoule.

are easily reproducible if one follows the implementation of
the algorithms in ALL [25] and obtains the metrics discussed.
Results should be consistent with the plots in the paper.

B. Versatile Overall Effectiveness

In this subsection, we evaluate the overall effectiveness of
DuoJoule on two platforms on both environments with DRL
c51 algorithm. We set the constraints of DuoJoule to soft
energy and soft latency in all experiments in this subsection.
For a clear comparison and demonstration, we separately
discuss the performance of DuoJoule’s comparison across
all baselines under three metrics. The main goal of DuoJoule
is to achieve the highest possible algorithm performance while
consistently meeting systems’ energy and latency budgets.
Latency Predictability. As displayed in the first row of Fig. 8,
on the small benchmark CartPole, DuoJoule consistently
outperforms MAX-A by an average of 22.13%. Additionally,
DuoJoule always meets the latency budgets on the small
benchmark, but MAX-A, Default, and R3 run out of latency
budgets by 6, 1, and 2 times, out of 6 experiments respec-
tively. On the large benchmark Breakout, Default and R3

achieve lower training latency than DuoJoule by 52.31% and
63.01%, since they all consider timing as an important met-
ric but energy-agnostic. However, MAX-A underperformed
DuoJoule by an average 25.28% higher latency. Note that
considering latency budgets, DuoJoule can still almost use
up them while Default and R3 overshoot to optimize latency,
which may lead to lower algorithm performance.
Energy Efficiency. As displayed in the second row of
Fig. 8, the small benchmark CartPole, DuoJoule consis-
tently outperforms MAX-A on average by 30%. Meanwhile,
DuoJoule consumes more energy than MIN-E by 112%. It is
since MIN-E aims to optimize energy efficiency without con-
sidering algorithm performance. We observe that DuoJoule

and MIN-E always meet energy budgets on the small bench-
mark (DuoJoule may end before reaching budgets), but
Default, MAX-A, and R3 run out of energy budgets by 4,
6, and 1 times, respectively. On the large benchmark, MIN-
E achieves lower energy consumption than DuoJoule by
52.85%. While Default and R3 overshoot in optimizing the
budgets (use approximately on average only 71%, 68% of
budget respectively, while DuoJoule uses 98%). Note that,
considering energy budgets, DuoJoule uses nearly the entire
budget to achieve the highest possible performance, while
R3 optimizes memory usage and latency and MIN-E only
optimizes energy.

Algorithm Performance. As demonstrated in the third row
of Fig. 8, on the small benchmark CartPole, DuoJoule
achieves near-optimal algorithm performance. DuoJoule
trades off by only 4.24% on average compared to MAX-A
which tries to optimize only performance while DuoJoule
outperforms MAX-A in energy by 31.33% and latency by
34.71%. DuoJoule outperforms MIN-E on average of al-
gorithm performance by 98.7%. On the large benchmark
Breakout, DuoJoule consistently outperforms all baselines
except MAX-A in terms of algorithm performance. How-
ever, MAX-A cannot meet latency and energy budgets under
all experiments on the large benchmark. This indicates that
DuoJoule could strike a good balance in achieving good
algorithm performance, particularly in large benchmarks under
system constraints.

Versatile overall effectiveness: DuoJoule auto-
balances latency, energy, and algorithm performance
under-budgeted DRL training across different platforms.
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Fig. 9: DuoJoule can adapt to various constraints scenarios and dynamic budgets.

C. Adaptability.

We evaluate the adaptability of DuoJoule from two an-
gles. First, we showcase adaptability across different con-
straints, i.e., soft and hard constraints, on latency and energy,
respectively. Second, we demonstrate DuoJoule’s adaptabil-
ity across dynamic budgeting across latency and energy.
Constrains Adaptability. In this subsection, we evaluate
the adaptability of DuoJoule across four combinations of
latency and energy constraints. As depicted in Fig. 9a, we
evaluate the differences across these four constraint settings.
Generally, ESoft LSoft demonstrates that sometimes systems
can run out of budgets within an acceptable error threshold.
However, it still achieves the highest algorithm performance.
EHard LSoft focuses energy as the hard constraint, decreasing
running out of energy budgets compared to ESoft LSoft, but
acceptably trade-off algorithm performance by an average of
5.06%. On the other hand, ESoft LHard focuses latency as
the hard constraint, decreasing running out of latency budgets
compared to ESoft LSoft, but trade-off algorithm performance
by an average of 7.23%. EHard LHard reduces almost all
running of budget cases on latency and energy budgets, re-
spectively. However, it trades off most algorithm performance,
by an average of 35.48% compared to the ESoft LSoft.
Dynamic Budgets Adaptability. In this subsection, we
evaluate the adaptability of DuoJoule to dynamic budgets.
All experiments for dynamic budgets are based on the C51
algorithm on the CartPole environment on the Xavier platform.
First, we evaluate DuoJoule under different energy budgets
within the same latency budget as shown in Fig. 9b, as
well as, three distinct latency budgets with the same energy
budget Fig. 9c. The results demonstrate that DuoJoule can
consistently avoid running out of budget while achieving
acceptable performance.

Adaptability: DuoJoule consistently maintains effec-
tiveness across various constraint settings and dynamic
budgets, ensuring robustness and resilience in different
user scenarios.

D. A Practical Case Study: Autonomous Navigation via DRL

To evaluate the effectiveness of the proposed approach in a
real-world scenario, we conduct a realistic case study based on
an autonomous navigation context. We utilize the DonkeyCar
[28] for our experiments as shown in Fig. 10. DonkeyCar
processes high-resolution RGB images at 60 FPS which
is significantly challenging for resource-constrained devices,

TABLE II: Quantitative results on DonkeyCar simulator on
an x86 desktop. Latency describes the end-to-end latency
of a DRL on-device training session, Budget refers to the
energy consumption of the DRL algorithm on the device as a
percentage. Rewardmax implies maximal episode rewards, and
Rewardavg implies average episode rewards. Arrow directions
indicate better performance.

Solution Latency(↓) Budget(↑) Rmax(↑) Ravg(↑)
MAX-A 1090.8 100.0% 3980.7 272.0
Default 1082.7 95.4% 3768.6 259.2
MIN-E 1002.4 78.2% 254.1 37.1

R3 1063.4 94.2% 4187.4 359.2
DuoJoule 924.6 88.2% 4263.7 373.7

(a) Warehouse Track (b) Generated Road Track

(c) Waveshare Track (d) Monaco Track

Fig. 10: Autonomous Navigation Environments in DonkeyCar.

particularly under latency and energy budgets. Specifically,
we conduct the case study using a desktop with one GPU,
and we choose the DDQN algorithm for this autonomous
navigation task. For conducting this experiment, we imposed
(ESoft LSoft) constraints on the budgets.

As shown in Table II, DuoJoule can attain on average
7.1% and 1577.96% better maximal episode rewards, and
37.38% and 907.27% better average episode rewards than
MAX-A and MIN-E, respectively. Although R3 and Default
do not focus on energy optimization, they underperform
DuoJoule in latency by 15% and 18%, respectively. R3
achieves nearly the same performance as DuoJoule but uses
6% more budget. This indicates better algorithm performance
of DuoJoule under practical latency and energy-constrained
scenarios. Also, we observe that MAX-A runs out of its bud-
get, which is dangerous under hard constraints, particularly in
safety-critical robotic applications. DuoJoule maximizes the
usage of budgets without running out of them, demonstrating
its practical usability in intelligent robotic scenarios.
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TABLE III: Execution overhead [ms] of DuoJoule.

Platform Env ParamTuner DVFS EarlyExit

Orin Atari 8.220 2.466 0.004
Classic Control 1.260 4.400 0.002

Nano Atari 7.430 0.065 0.003
Classic Control 1.210 0.050 0.003

Furthermore, we conduct a detailed examination of the
algorithm performance during the training episode by a
curve of cumulative rewards as shown in Fig. 11. Qual-
itatively, DuoJoule’s holistic efficient design offers sig-
nificantly higher algorithm performance quantitatively under
practical robotic scenarios by safely handling both the latency
and energy budgets.

Practical Usability: DuoJoule’s effectiveness in a
practical autonomous navigation scenario demonstrates
its pragmatic nature in intelligent robotic scenarios.

E. Overhead Analysis

In this subsection, we provide a breakdown analysis of
DuoJoule to analyze the module-level execution overhead.
Table III showcases the execution overhead of the different
components of our algorithm, including ParamTuner, DVFS,
and EarlyExit. Across two testbeds in our evaluations, the
execution overhead remains under 10.690 milliseconds of the
end-to-end execution time, underscoring DuoJoule’s overall
light overhead. Specifically, ParamTuner contributes the most
to this overhead, as it computes the ES according to Sec. IV,
yet it still takes less than 8.220 milliseconds, which is negligi-
ble during DRL runtime. EarlyExit consistently exhibits a very
low execution overhead, always lower than 0.004 milliseconds
across the NVIDIA Jetson Orin Nano and NVIDIA Jetson
AGX Orin, since it will be executed at most only once during
the whole DRL execution.

Low overhead: DuoJoule’s efficient implementation
introduces low overhead, making it a lightweight deploy-
ment solution for optimizing on-device DRL training.

VI. RELATED WORK AND DISCUSSION

Related Work. DRL has become increasingly efficient in tasks
such as autonomous driving [54], [55], [29], [56], robotic

manipulation [57], health care [58], [59], federated learn-
ing [60], [61], and interactive gaming [42], [52]. Advanced
algorithms like SAC [9], TRPO [8], and A3C [62] have made
significant strides. Efforts are underway to generalize DRL
to solve multiple tasks [63] and to develop agents that require
less experience [64]. However, these works primarily focus on
optimizing algorithms without addressing latency and energy
efficiency. A few recent works have attempted to co-optimize
two of the three critical dimensions. [21] uses accelerators
for energy-efficient DRL but ignores latency and lacks a full
software solution, while [22] prioritizes latency and accuracy,
neglecting the energy aspect. However, optimizing all three
dimensions in on-device DRL remains challenging due to their
conflicting and complex interactions. Furthermore, previous
works have explored quantization [65], [66] and approximate
computing [67], [68] to reduce latency and energy in on-
device DRL. Although quantization, including quantization-
aware training [69], improves efficiency, it often compromises
accuracy. In contrast, DuoJoule optimizes batch size and
training intervals to meet budget constraints without sacrificing
precision, while still allowing the application of quantization
if needed. This is the first work to co-optimize latency, energy,
and performance for on-device DRL under budget constraints,
addressing their complex interdependencies.
Limitations of the Proposed Method. DuoJoule offers a
pure software-level solution, while some works focus on hard-
ware optimization for energy efficiency [21]. It provides an
energy-aware optimization strategy for replay-based DRL, but
its performance with other DRL methods remains unexplored.
Also, DuoJoule does not consider energy consumption be-
yond SoC, i.e., motor or control modules, which could also
make an impact on energy efficiency in the intelligent robots
context. Additionally, DuoJoule does not account for mixed
workload scenarios, which are common in advanced com-
mercial autonomous systems, such as Tesla vehicles, where
multiple components may run concurrently. Future work will
investigate these areas further.

VII. CONCLUSION

DuoJoule offers a practical framework that addresses the
critical challenge of co-optimizing energy, latency, and algo-
rithm performance in on-device DRL workloads. Extensive
evaluations on two autonomous embedded platforms have
demonstrated DuoJoule’s versatile cross-platform efficiency,
practicality, adaptability, and low runtime overhead. It consis-
tently meets latency deadlines and adheres to energy budgets
while maintaining near-optimal performance. By leveraging
a metric tracker and dynamically tuning DRL algorithm
parameters and system frequency settings, DuoJoule pro-
vides a flexible and adaptive solution. This approach not
only enhances the efficiency and applicability of DRL in
real-world autonomous systems but also ensures that these
systems can operate effectively under varying conditions. The
ability to co-optimize across multiple performance dimensions
under resource constraints underscores the practical value of
DuoJoule in the field of on-device DRL.
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[46] B. Kisačanin, “Deep learning for autonomous vehicles,” in 2017
IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL).
IEEE, 2017, pp. 142–142.

[47] A. Popov, P. Gebhardt, K. Chen, R. Oldja, H. Lee, S. Murray,
R. Bhargava, and N. Smolyanskiy, “Nvradarnet: Real-time radar ob-
stacle and free space detection for autonomous driving,” arXiv preprint
arXiv:2209.14499, 2022.

[48] NVIDIA, “Duckiebot (db-j),” https://get.duckietown.com/products/
duckiebot-db21, 2022.

[49] ——, “Sparkfun jetbot ai kit,” https://www.sparkfun.com/products/
18486, 2022.

[50] ——, “Waveshare jetbot ai kit,” https://www.amazon.com/
Waveshare-JetBot-AI-Kit-Accessories/dp/B07V8JL4TF/, 2022.
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