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ABSTRACT Passive outdoor localization is valuable in understanding pedestrian mobility patterns for city
planning and other purposes. While there are various approaches to Wi-Fi localization, few demonstrate
robustness to temporal fluctuations in RSSI measurements. In this paper, we continue the work on the
Mobility Intelligence System (MobIntel) and address RSSI temporal fluctuation via two approaches. First,
given a rectangular testbed bounded by four sensors, we reformulate the problem from localizing the emitters
from anywhere within the testbed to classifying whether they originate from the North or South strip and
estimating their East-West position on the identified strip. This change simplifies the problem, reduces the
impact of RSSI fluctuations, and better resembles how pedestrians move in city streets. Second, we present
a multi-stage model (InXModel) to perform localization based on the reformulated problem. Within this
model, we compare the performance of four data transformation methods that further dampen the effect of
RSSI fluctuation—basic standardization (STD), Kernel Principal Component Analysis (KPCA), Transfer
Component Analysis (TCA), and Semi-Supervised TCA (SSTCA). Data resistant to improvements via
transformation are discarded to preserve model performance. We observe that the InXModel with STD
is the fastest and most accurate model, achieving a localization error  4 m in 94.3% of the cases with
a 30.2% data discard rate. Finally, we compare the InXModel with a recently published method (EMDT-
WKNN) specialized for handling RSSI temporal fluctuations and find that the former outperforms the latter.
We discuss the causes of the difference in performance.

INDEX TERMS Passive outdoor localization, RSSI fluctuation, Wi-Fi probe requests, mobility intelligence.

I. INTRODUCTION
Received Signal Strength Indicator (RSSI) measurements
have been used for WiFi-based localization in both indoor [2]
and outdoor [3] environments. RSSI is defined within the
802.11 protocol and is supported in all off-the-shelf WiFi
hardware. While popular for passive device localization, the
nonlinear and non-stationary nature of RSSI measurements
due to device power fluctuation, multi-path effects, inter-
ference, and environmental factors can yield different data
distributions over time, even if the data collection conditions
are unchanged [4]. Such fluctuations can pose a severe
challenge to the robustness of a localization model [5],
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particularly as the temporal distance between the training
dataset and the test dataset increases.
In this paper, we address the challenges of temporal fluc-

tuations in RSSI with respect to the performance of passive
outdoor localization via two steps: We first reformulate the
problem from localizing emitters within a rectangular testbed
bounded by four sensors to first classifying whether the
emitters originate from the North or South strip, and then
estimating their East-West position on the identified strip.
Under this reformulation, we introduce a robust multi-stage
localization model that performs well even when the test
data are collected months after the training data – the Inlier
X-coordinate Model (InXModel). We develop the model
under the constraint that it be scalable and readily applied
in our production environment on Clematis Street, West
Palm Beach, FL, where more than 50 sensors have been
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deployed along the stretch of five city blocks. We focus
exclusively on the 2.4 GHz band due to its ubiquitous
use across municipalities. The choice is also motivated
by hardware limitations within our existing streetscape
testbed. The specific contributions of the paper include the
following:

1) We establish a new data collection layout (i.e.,
how the data collection points are distributed in the
testbed)—the split data layout—to accommodate the
reformulated problem. The split data layout designates
the reference points (RPs), where the training data are
collected, only along the Northern and Southern strips
of the testbed, similar to how pedestrians typically
move on a city street along the two sidewalks.We argue
that for pedestrian mobility patterns, it is sufficient to
predict which sidewalk the pedestrian is on is sufficient
and the relative distance between the pedestrian
and a designated sensor on the same sidewalk is
sufficient. Both predictions are easier to make than
the traditional approach of predicting two-dimensional
coordinates. We provide qualitative and quantitative
evidence supporting the problem reformulation and
explain why the split data layout reduces the impact of
RSSI fluctuations.

2) We introduce the concept of inliers and outliers based
on the relative position of an RP or a test point (TP) to
the sensors. A TP is where the test data are collected.
We show that data collected on the inliers, defined
as those located within the sensor boundary, are the
least affected by RSSI fluctuations and, thus, the best
candidates for training a localization model.

3) We propose the new, robust, multi-stage Inlier
X-coordinate Model (InXModel) for localization. The
model includes a three-step inlier classification (pre-
screening + inlier classifier + post-screening) to isolate
inliers, followed by a one-dimensional inlier regression
that predicts the distance between the inlier and a
designated sensor.

4) We incorporate four data transformation meth-
ods—basic standardization (STD), Kernel Principal
Component Analysis (KPCA), Transfer Compo-
nent Analysis (TCA), and Semi-Supervised TCA
(SSTCA)—into the InXModel to further reduce the
impact of RSSI temporal fluctuation and compare their
performance and hyperparameter tuning efficiency.
We find that STD is the most efficient and performs
the best.

5) We compare the performance of the InXModelwith that
of a recently reportedmethod: EmpiricalModeDecom-
position Threshold smoothing (EMDT) and Weighted
K-Nearest Neighbor (WKNN), or EMDT-WKNN.
The EMDT-WKNN method is explicitly designed to
handle RSSI fluctuations in the context of indoor
localization [6]. We show that the EMDT-WKNN
method does not perform aswell as our InXModel using

our dataset and discuss the difficulties of adapting a
model for indoor localization to outdoor localization.

Paper Organization. Section II provides additional back-
ground on the impacts of RSSI fluctuation and provides
a brief review of prior work addressing these impacts.
Section III describes the main methods used in the paper,
including the four data transformation methods, algorithms
used for classification and regression, our adaptation of the
EMDT-WKNN method, and hyperparameter tuning. Sec-
tion IV describes the data collection procedure, explains the
difference between the two data collection layouts—broad
and split—, and explains how the split data layout overcomes
the shortcomings of the broad data layout. Section V presents
two unsuccessful attempts at rescuing the performance of
our prior models, with a summary of key lessons learned.
Section VI steps through the conceptualization of the new
model. Section VII details the efforts of achieving inlier
classification: separating inliers from outliers. Section VIII
reports the results of inlier regression: predicting the distance
from an inlier to a specified sensor. Section IX combines
inlier classification and regression to show the overall
performance of the InXModel and determines the best data
transformation method. Section X compares the performance
of the InXModel with the EMDT-WKNN method and
discusses its implications. Finally, Section XI concludes by
presenting limitations and directions for future work.

II. BACKGROUND AND RELATED WORK
The challenge of RSSI fluctuation in the context of
localization has been observed with various signal sources
(e.g., Wi-Fi, Bluetooth Low Energy) in indoor and outdoor
environments. This section provides additional background
on the associated challenges and surveys how prior literature
has dealt with these challenges. We also highlight why prior
methods may or may not be appropriate to meet our needs for
passive outdoor localization.

A. BACKGROUND
Fig. 1 illustrates a case of RSSI temporal fluctuation in
the real world from January through June 2023, observed
in our Mobility Intelligence System (MobIntel) deployed in
downtown West Palm Beach, FL [7]. During the six-month
period, the emitter s25 sent ten mock probe requests at 08:30
EST every day, while the four sensors, s27, s53, s55, and
s56, captured the probe requests and recorded the associated
RSSI measurements. Fig. 1(A) shows the fluctuation of
the mean RSSI obtained by the sensors every day. The x-
and y-axis represent the time of probe request emission
and the RSSI measurement, respectively. The blue, orange,
green, and red curves represent the RSSI measurements
captured by s27, s53, s55, and s56, respectively. The gaps
in the curve are due to sensors being offline at the time.
Fig. 1(B) shows the relative positions of the emitter and
the sensors. Although all devices are stationary, mounted
on light poles at least three meters above the ground
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(little interference from ground traffic and always line-of-
sight), and all measurements were taken at the same time
of day (minimum environmental variation), there is still
approximately 10 to 20 dBm of fluctuation in mean RSSI for
all sensors during the measurement period.

FIGURE 1. RSSI fluctuation over six months among MobIntel sensors.

The impact of temporal fluctuations in RSSI on a
localization model’s performance can be significant. Take
the best models in our previous study as examples [3].
Fig. 2 shows the cumulative density function (CDF) curves
of localization error across the three models—fingerprinting
(fp), machine learning classification (ml-clf), and machine
learning regression (ml-regr)—evaluated in a broad data
layout under different testing conditions (see Section IV-A
for the definition of the broad data layout). The x-axis
represents the localization error, computed as the Euclidean
distance between the predicted and actual emitter locations,
respectively. The y-axis represents the cumulative probability
of amodel achieving a localization error less than or equal to a
specific x-axis value. The model with the CDF curve that has
the highest area-under-the-curve has the best performance.
The fp method matches the RSSI pattern of an unknown
location to previously collected training signatures at various
reference points (RPs). The average positions of the best
matching training signatures is the predicted location. The
ml-clf method trains a classifier with the RSSI values as
features and their corresponding RPs as labels. The location
of an unknown RSSI pattern is predicted directly by the
classifier. The ml-regr method trains two regressors for the
x- and y-coordinates of the RPs, respectively, with their
RSSI values as features. After passing an unknown RSSI
pattern to the two regressors, we obtain the prediction of its
x- and y-coordinates. Curves fp-same, ml-clf-same, and ml-
regr-same represent the localization performance of the three

models trained and tested on the same data cohort collected
on 2021-04-01 (70% training, 30% testing), whereas curves
fp-diff, ml-clf-diff, and ml-regr-diff represent the localization
performance of the models trained on the 2021-04-01 data,
but tested on the 2021-07-22 data. Since the two data
collection sessions use the same devices, take place at the
same location, and follow the same procedures, the primary
cause of the drastic performance deterioration is temporal
fluctuation in RSSI associated with the three-month gap.
Although RSSI fluctuation can severely compromise the

robustness of a localization model, it is not an issue
commonly addressed in recent literature [8], [9], [10]. One
study explicitly tries to account for the problem by extending
the data collection window over several days [11]. While
multi-day RSSI collection takes into account fluctuations
during the data collection window, the common practice of
extracting both the training and test data from the same
dataset might still overestimate the model performance
because the variability in the current dataset is likely not
representative of the RSSI measured at a later time. The
underlying principle of splitting data into training and tests
requires that the random variables have stable distributions,
such that data collected today is representative of data
collected tomorrow. Unfortunately, this principle does not
apply to RSSI measurements due to their nonlinear and
non-stationary nature. Therefore, to more robustly evaluate
the performance of an RSSI-based localization model and
avoid overfitting, we advise that the training and test data
be collected in separate sessions, preferably several days or
weeks apart.

FIGURE 2. Localization performance comparison: Training and test data
from the same session vs. training and test data three months apart.

Another exacerbating factor is that we focus on passive
outdoor localization in our study, which precludes the
application of various tools that have been shown effective at
tackling RSSI fluctuation. Generally speaking, RSSI-based
device localization can be indoors or outdoors, active or
passive. Indoor localization takes place inside buildings.
Given its easier access to infrastructure, indoor localization
typically involves many more sensors than its outdoor
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counterparts. The sheer abundance of data opens doors to
more sophisticated methods to counter fluctuation (e.g., deep
learning [12], [13]).

Active localization refers to scenarios where the device to
be localized is actively involved in the localization process.
The device can take RSSI measurements on its own from
signals sent by the nearby access points and ameliorate RSSI
fluctuation by incorporating additional information (e.g.,
device orientation from a magnetometer [14]). Alternatively,
it can communicate directly with the access points and
obtain more stable signals, such as time of flight, angle-of-
arrival, etc., to compensate for RSSI variability [15], [16].
Even if the device does not measure RSSI or communicate
with the access points, it can still maintain a constant data
transmission rate such that the collected RSSI measurements
constitute rich time-series data, which unlocks methods such
as Recurrent Neural Networks and Kalman Filters to smooth
RSSI signals [17], [18].

Passive localization, on the other hand, refers to scenarios
where the target device has no knowledge of being localized,
does not exchange any data with the sensors, and emits
signals in an unpredictable manner. It does not benefit from
the luxury of leveraging any of the above-mentioned meth-
ods. Consequently, passive outdoor localization is doubly
challenged.

B. FINGERPRINTING OVER CROWDSOURCED MAPS
Fingerprinting is a standard method in RSSI-based local-
ization. It includes an offline and an online phase. During
the offline phase, a vector of RSSI measurements collected
at an RP serves as the RSSI pattern for the RP. For active
localization, RSSI is measured by the device to be localized
from the signals sent by the access points. For passive
localization, RSSI is measured by the sensors from the signals
sent by the device to be localized. RSSI measurements are
collected on many RPs to generate a radio map, which maps
one or more RSSI patterns to each RP. During the online
phase, a device at an unknown location produces an RSSI
pattern, which matches some signatures in the radio map by
similarity (usually Euclidean distance). The average location
of the RPs associated with the matched signatures is the
predicted location of the device.

Reliance on a static radio map could result in deteriorating
performance over time. The more time that elapses between
the online and offline phases, the more divergent the
RSSI collected in the online phase will be from the radio
map. Constant updates of the radio map can prevent the
performance slip, but usually at a prohibitive cost of time and
effort.

This is where crowdsourcing provides value. Crowdsourc-
ing refers to a method where normal mobile device users help
construct the radio map by reporting RSSI measurements and
their physical locations while conducting their own business.
As long as the area of interest has a constant flow of visitors,
the radio map can stay up-to-date, and the issue of RSSI
fluctuations can be mitigated.

The use of crowdsourcing to construct radio maps has
been reported before. Reference [19] shows that by using
crowdsourced RSSI data, a Local Gaussian Process model,
and a map of the area of interest, it is possible to produce
virtual radio maps for both surveyed and nearby unsurveyed
areas, yielding a localization error of 1.84 m for the former
and 5.75 m for the latter. However, this method has a major
drawback where a user must actively report their current
physical location upon submitting RSSImeasurements. In the
study, this was achieved by the user double-tapping the map
on a custom-built crowdsourcing app.
To reduce user involvement, [20] exploits motion sensor

data within the mobile device to automatically obtain
information about physical location. A crowdsourcing user
only needs to report their initial location and can then roam
the area of interest without further engagement with the data
reporting mechanisms. The study fuses motion sensor data
with RSSI measurements via Extended Kalman Filtering and
uses the fused data to generate the radio map. Their system
yields less than 2.5 m error in 90% of the cases. While this
method largely limits user collaboration, it demands motion
sensor data from the device, which makes it incompatible
with passive localization.
Reference [21] reports an unsupervised learning method

that does away with the need for a crowdsourcing device to
report location-related information. It uses RSSI measured
at a high frequency (1 Hz) and the physical constraints of
the indoor structure (e.g., walls and partitions) to optimally
predict the crowdsourcing device’s location as it roams the
area of interest. The predicted location and its accompanying
RSSI measurements are used to generate the crowdsourced
radio map. The study reports an average localization error
of approximately 3 m. Unfortunately, this method is still
unsuitable for passive localization due to the high frequency
of data reports. In Wi-Fi-based passive localization, RSSI
is measured from spontaneously emitted probe requests.
It is impossible to achieve a consistently high emission rate
from a standard, non-cooperative device becauseWi-Fi probe
requests are sent in a manufacturer-dependent, unpredictable,
and sporadic manner [22].

In summary, although crowdsourcing is a viable method
for active localization to keep the radio map fresh, it is not
applicable to passive localization.

C. RSSI SMOOTHING
RSSI fluctuationmanifests as peaks and troughswhen viewed
as a time series. One way to reduce noise in RSSI data is to
smooth the data. If RSSI data are collected at high frequency,
a smoothing algorithm such as Kalman Filtering can leverage
the correlation between adjacent data points to smooth the
fluctuations. To obtain such high-frequency RSSI data, one
can approach it either statically or dynamically.

Static, high-frequency RSSI measurements are collected at
the same RP over a short time. For an indoor environment,
RSSI collected in this way exhibits fluctuations due to
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complex RF dynamics, and they can be smoothed by
Kalman Filtering [18], [23]. However, RSSI fluctuation is
not common at the same RP over a short period of time
(e.g., within the same data collection session) in an outdoor
environment. Typically, outdoor RSSI fluctuation happens
over a large time scale (see Fig. 1), in which Kalman Filtering
cannot help due to the associated errors not having a Gaussian
distribution.

Dynamic, high-frequency RSSI measurements are typ-
ically collected over short intervals along a trajectory.
In this case, RSSI fluctuation has both a temporal and
spatial component. Reference [24] addresses this case in
a passive outdoor localization setting similar to ours. The
work relies on Constant Velocity Kalman Filtering to smooth
real-time RSSI measurements as a pedestrian moves across
a sensor-covered area. Unfortunately, the requirement of
RSSI reporting at 1 Hz precludes the use of this method on
non-collaborating devices due to the unpredictability of the
emission rate of Wi-Fi probe requests in a real-world setting.

While smoothing short-term time-series RSSI data is
incompatible with passive localization, it is possible to
smooth long-term RSSI data collected at the same RP
across multiple data collection sessions. Despite not having
a uniform interval between all RSSI measurements, the
data can be decomposed via Empirical Mode Decompo-
sition (EMD) and smoothed by removing high-frequency
components [25]. Moreover, if the time-series data span a
sufficiently long period, the data may include a wide range
of RSSI patterns to have high matching probabilities against
any future fluctuations. Thus, empirically smoothed, long-
term, time-series RSSI data can form a solid basis for a
robust fingerprinting radio map. This is precisely the idea
behind [6], which uses Empirical Mode Decomposition with
soft Thresholding (EMDT) to decompose and smooth RSSI
data collected over three months. The smoothed data are used
to build a radio map, and WKNN is applied for localization.
The method yields an average localization error of 1.52 m,
with less than 2.5 m error in 87.44% of the cases.

Although the EMDT-WKNNmethod is designed for active
indoor localization, its independence of user collaboration,
device communication, and data collection frequency makes
it readily adaptable to passive outdoor localization. Hence,
we apply this method on our dataset and compare its
performance with the InXModel in Section X.

D. TRANSFER LEARNING
Transfer learning refers to a machine learning technique to
resolve the problem where the source domain (training data)
does not share the same data distribution as the target domain
(test data), and consequently, a model trained on the former is
inapplicable to the latter. This is precisely the issue when the
training and test RSSI data are collected at different (distant)
points in time. Transfer learning can be a tool to help bridge
the divergence in RSSI data distributions [5].

Typically, transfer learning algorithms extract features
common to both the source and target domain and train
models based on the shared features. In [26], the shared
features are called transfer components, which are found via
an unsupervised learning algorithm, TCA, in a reproducing
kernel Hilbert space (RKHS). These transfer components
allow the differences between the training and test RSSI
data distributions, computed asMaximumMeanDiscrepancy
(MMD), to be minimized when they are projected to the
subspace spanned by the transfer components. The same
study also proposes SSTCA, which maximally preserves the
dependency between the training input (RSSI) and the label
(location of RP) while searching for the optimal transfer
components. TCA and SSTCA perform better than other
commonly used data transformation methods, with SSTCA
slightly outperforming TCA in most cases.
Reference [27] uses Transfer Kernel Learning (TKL) to

learn a domain-invariant kernel across the source and target
domains. The goal of TKL is to minimize the distribution
difference between the source and target domains in RKHS,
but in contrast to TCA, TKL does not rely on MMD for
computing the distribution difference. Instead, it defines the
distribution difference as the Nyström approximation error
between the extrapolated kernel (the kernel matrix computed
from the combination of the source and target domain) and
the ground truth kernel (the kernel matrix computed just
from the source domain). The identifying domain-invariant
kernel can be directly used as input for a regression
algorithm to predict location. Interestingly, the study finds
that localization performance improves significantly if APs at
known locations are enabled to calibrate RSSI measurements
among themselves in real time and incorporate the calibrated
data in the source domain.
One can also consider RSSI-based localization as an image

recognition problem, i.e., representing an RP by a 2D matrix
of RSSI values instead of a 1D vector and tackling it with
deep learning. With deep learning, one can obtain a feature
extraction layer by training against the RSSI images. Later,
one can apply the same feature extraction layer to the training
and test data to acquire the shared hidden features. These
features can then be connected to a traditional classification
algorithm to finalize localization. The process of obtaining
and reusing a feature extraction layer to find common
ground between the training and test data is a key aspect
of deep transfer learning, and a scheme has been adopted
by [11] to attenuate fluctuation in the concatenated signal of
RSSI measurements and local magnetic field strength data,
and by [28] to alleviate variation in Wi-Fi channel state
information.
Among the transfer learning techniques mentioned above,

deep transfer learning is unlikely to be applicable to passive
localization due to the demand for a high AP count and data
quantity. TKL is tempting, but repurposing existing sensors
for RSSI calibration requires non-trivial modifications to our
current streetscape infrastructure. Therefore, we will only
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consider TCA and SSTCA as part of the effort to identify the
optimal data transformation method.

III. METHODS
This section briefly surveys the core methods employed in
this paper, including the four data transformation methods,
the EMDT-WKNNmethod, the classification algorithms, the
regression algorithm, and our hyperparameter tuning process.
We also offer rationales for why the methods were chosen.

A. DATA TRANSFORMATION
Given the divergence in distributions between the RSSI
training and test data, using raw measurements to train a
model is not a viable strategy. As mentioned in Section II-D,
our approach is to transform the raw measurements of both
the training and test data such that there is better alignment
between their respective distributions. We implement four
data transformationmethods; details of their implementations
are summarized below.

1) BASIC STANDARDIZATION

Basic Standardization (STD) follows the most commonly
used formula, Equation (1), to remove the mean and scale
the data to unit variance, where x 0 is the standardized
value, x is the raw value, and µ and s are the mean and
standard deviation of x, respectively. It is implemented via
the StandardScaler module of scikit-learn [29].

x 0 = x � µ

s
(1)

STD is the first step of all data processing, which means
all the other data transformation methods are built on top of
the STD-transformed data.

2) KERNEL PCA

Kernel Principal Component Analysis (KPCA) is a standard
denoising method that projects data non-linearly into a
feature space defined by the kernel function. We choose not
to use standard PCA because, for one, RSSI variability is non-
linear, and two, given the small dimensionality of our RSSI
data, there is little room for further dimensionality reduction.
Note that the dimensionality of RSSI data is determined by
the number of APs/sensors nearby, which is typically limited
in an outdoor environment.

We implement the KPCA-based data transformation
method based on the KernelPCA module of scikit-learn,
using the Radial Basis Function (RBF) as the kernel.
We use hyperparameter tuning to find the best values for the
following parameters:

• n_components: number of dimensions to include in
the transformed data

• gamma: kernel coefficient for RBF

3) TRANSFER COMPONENT ANALYSIS

As mentioned in Section II-D, Transfer Component Analysis
(TCA) aims to find transfer components in the RKHS such

that after projection, the difference in training and testing
distributions, measured by MMD, is minimized.
Our implementation of TCA follows the algorithm

described in [26]. We use hyperparameter tuning to locate the
best values for the following parameters:

• gamma: coefficient � in a Laplacian Kernel, defined as

k(x, y) = e�� ||x�y||1 (2)

where ||x � y||1 is the Manhattan distance between the
input vectors x and y. The Laplacian Kernel is used for
MMD embedding.

• mu: a regularization term to control the complexity of
the eventual transformation matrix

• m: number of dimensions to include in the transformed
data

4) SEMI-SUPERVISED TCA

Also discussed in Section II-D is Semi-Supervised TCA
(SSTCA), which restricts the search space for the transfer
components by preserving the local data geometry (i.e.,
manifold information) between the training data and the RP
locations, such that the new feature space not only minimizes
the distribution difference between the training and test data
but also optimizes for location prediction. The preservation
is realized by maximizing the dependency, computed by the
Hilbert-Schmidt Independence Criterion (HSIC), between
the training data and their labels as they undergo TCA.
The implementation of SSTCA follows the algorithm

introduced in [26]. It requires the K-Nearest Neighbors
(KNN) algorithm via the NearestNeighbors module in
scikit-learn. We use hyperparameter tuning to locate the best
values for the following parameters:

• gamma: coefficient in a Laplacian Kernel, same as in
TCA

• mu: a regularization term to control the complexity of
the eventual transformation matrix, same as in TCA

• m: number of dimensions to include in the transformed
data, same as in TCA

• hsic_gamma: a trade-off term to balance label depen-
dence and data variance in HSIC

• n_neigh: a KNN parameter to control the level of
preservation of the data locality property

• sigma: a term to control the affinity weight between
neighbors or non-neighbors resulting from the K-
Nearest Neighbors

• lambda: a regularization term for the complexity of the
optimization problem in SSTCA

B. EMDT-WKNN
Our implementation of the EMDT-WKNN method mainly
follows [6], with two customizations. First, we use the
empirical consecutive mean square error method from [25] to
select and smooth noise-dominant, high-frequency intrinsic
mode functions (IMFs). We do not use the selection criteria
in [6] because it often fails to identify even the most
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high-frequency IMF in our dataset. Second, we change the
equation in step 5 of WKNN in [6] from the original
Equation (3) to the modified Equation (4), in whichW 0

i is the
weight of each neighbor’s contribution to the final prediction,
di is the similarity between the RSSI fingerprints of the testing
instance and those of a neighbor, and d 0

ic is the physical
distance from a neighbor to their centroid. We suspect the
original Equation (3) is incorrect because when d 0

ic or di
is very small, i.e., the RSSI fingerprints are very similar
between the testing instance and a neighbor, or a neighbor is
very close to the centroid, W 0

i would be larger than 1, which
is incompatible with its role as weight in WKNN.

W 0
i =

1
d 0
ic

+ 1
di

PK 0
i=1 d

0
ic + PK 0

i=1 di
(3)

W 0
i =

1
d 0
ic

+ 1
di

PK 0
i=1

1
d 0
ic

+ PK 0
i=1

1
di

(4)

We tune the following hyperparameters to optimize the
performance of the EMDT-WKNN method:

• D: a distance threshold to filter out the initial nearest
neighbors that are too far from their centroid. If, for an
RSSI pattern, no nearest neighbor is within D distance to
the centroid, the RSSI pattern cannot be localized and it
will be discarded.

• n_neighbors: the number of neighbors to consider in
KNN

• algorithm: the algorithm used in KNN
• leaf_size: the number of leaves in BallTree or
KDTree implementation of KNN

C. CLASSIFICATION
For general-purpose classification, we use Support Vector
Classification (SVC), supplied by the SVC module in scikit-
learn. We choose SVC with RBF as the kernel based
on our prior experience with its high speed and good
performance [3].

The hyperparameters tuned for SVC include:
• gamma: the kernel coefficient of RBF; higher � makes
the decision boundary curvier, which could lead to
overfitting

• C: a regularization parameter; higher C imparts less
leniency on misclassification, which could lead to
overfitting

For classification that requires cost analysis (i.e., bal-
ancing the classification accuracy against the cost of
discarding data, defined in more detail below), we use
the GaussianProcessClassifier (GPC) module in
scikit-learn with the default settings. We choose GPC for cost
analysis because it provides genuine probability estimates for
an observation belonging to different classes. Cost analysis in
GPC is defined as follows:

Given a classification problem involving two classes, class
0 and class 1, and letting p be the probability of an observation

belonging to class 0 and 1 � p be the probability of it
belonging to class 1, we have the following classification rule:

predict =

8
><

>:

0
p

1 � p
> c0

1
p

1 � p
< c1

(5)

c0 and c1 are the cutoff values for classifying an
observation as class 0 and class 1, respectively. In plain
language, we will only classify an observation as class 0 if the
probability of it belonging to class 0 is c0 times higher than
that of it belonging to class 1. Likewise, we will only classify
an observation as class 1 if the probability of it belonging
to class 1 is 1

c1
times higher than that of it belonging to

class 0. The default values of c0 and c1 are both 1, which
means there is no bias in classification. However, during cost
analysis, we artificially increase c0 and decrease c1 to boost
the accuracy rate (i.e., any observation that can overcome
the threshold is more likely a correct classification) at the
cost of discarding ambiguous observations that do not show
an apparent affinity to either class (observations with c1 
p

1�p  c0). If we make c0 extremely high and c1 extremely
low, we will obtain high accuracy with a high discard rate.
Thus, cost analysis examines the balance between the amount
of data one is willing to lose and the level of accuracy one
wishes to achieve.

D. REGRESSION
For general-purpose regression, we use the Support Vector
Regression (SVR) supplied by the SVR module in scikit-
learn. We choose SVR with RBF as the kernel for the same
reason as SVC, discussed above.
The hyperparameters tuned for SVC include:
• gamma: the kernel coefficient of RBF
• C: a regularization parameter
• epsilon: the ✏ value in the Epsilon-SVR model

E. HYPERPARAMETER TUNING
We conduct most of our hyperparameter tuning using the
GridSearchCV module in scikit-learn with customized
estimators and five-fold cross-validation. Due to the need
to tune many hyperparameters (e.g., SSTCA with regression
would require the tuning of 7 + 3 = 10 hyperparameters),
it is not realistic to tune all of them at once. Hence,
independent hyperparameters are tuned separately. This
means, for example, the hyperparameters of SSTCA are tuned
with the hyperparameters of SVR unchanged, and vice versa.
In practice, no more than three hyperparameters are tuned
simultaneously in any model, significantly speeding up the
tuning process.
The scoring metrics for classification are recall and false

discovery. Let tp, fp, tn, and fn be the count of true
positive, false positive, true negative, and false negative
predictions in a confusion matrix. Recall is defined as tp

tp+fn
(the rate of positive observations captured by the model),
whereas false discovery is defined as fp

fp+tp (the rate of
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negative observations classified as positive). Recall reflects
the accuracy of a classifier, whereas false discovery reveals
how often it commits a severe error. The goal of tuning
on classification is to find a set of hyperparameters that
maximize recall with the lowest false discovery.

The scoring metric for regression is the CDF at 4 m of
error. We choose this metric because, empirically, 4 m of
error is tolerable for outdoor localization on a city street to
monitor pedestrian mobility patterns. Hyperparameter tuning
on regression aims to maximize the CDF at 4 m of error.

Finally, to reduce the chance of overfitting, the best
set of hyperparameters given by GridSearchCV might
not be selected if another set exhibits only slightly worse
performance (within 2% performance drop), yet has less
extreme values (i.e., less likely to cause overfitting). For
instance, consider three values for gamma: 100, 1, and 0.1,
and the corresponding recall results: 0.98, 0.97, and 0.94 after
hyperparameter tuning of SVC. Instead of choosing the first
gamma as the best value (i.e., the one with the highest recall),
we choose the second because it is smaller than the first, yet
its performance is less than 2% lower. However, we do not
select the third gamma despite it being even smaller because
its performance is more than 2% lower than the second.

The entire hyperparameter tuning process is fully auto-
mated based on the scoring metrics and selection criteria.

IV. DATA COLLECTION
Most data collection procedures, including the physical
location of the testbed, the software and hardware, the
positions of the sensors, the cloud infrastructure to aggregate
and store data, and the data pre-processing steps, follow our
previous work [3]. Briefly, an empty parking lot with few
obstructions on the Boca Raton campus of Florida Atlantic
University is used as the testbed. Four sensors, labeled S1,
S2, S3, and S4, are mounted on top of tripods 1.8 m from
the ground. They are placed at the corners of a 16 m ⇥
16 m square, with S3 designated as the origin (0, 0) (see
Fig. 4(A)). During data collection, an emitter mounted on
a tripod 1 m high and capable of sending mock probe
requests at a pre-determined frequency is placed on various
RPs for 20 seconds each, during which time approximately
1,000 mock probe requests are sent. Each sensor captures
approximately 70% of the mock probe requests, extracts
their RSSI values, (mock) MAC addresses, and timestamps,
and uploads the data to a database. The raw RSSI data
collected after each session constitute a matrix of shape
N ⇥ 4, where N is the number of probe requests captured,
and the four columns correspond to the RSSI measurements
from the sensors, in the order of S1, S2, S3, and S4. Each
row represents the RSSI pattern (which may contain missing
values) of a single probe request emitted at an RP.

The raw data from each data collection session is examined
for outliers. For all the rows under the same RP, we use
the 3� rule to identify outliers in each RSSI column (i.e.,
a variable is deemed an outlier if it deviates from the mean
by more than three times the standard deviation). After all

FIGURE 3. Relationship among datasets and their shape.

outliers are removed, we have the cleaned raw data with
shapeN ⇤⇥4, whereN ⇤ is the number of rows remaining after
outlier exclusion.We compute themean RSSI of each column
within each RP to produce the mean data. The mean data is a
matrix of shapeM⇥4, whereM is the number of RPs, and the
four columns are the mean RSSI values corresponding to the
four sensors (Fig. 3(A)). Each row now represents the mean
RSSI pattern of an RP.
The training data for the models of our previous paper and

the InXModel are obtained by concatenating and shuffling the
mean data of multiple sessions. It is a matrix of shapeMK⇥4,
where K is the number of data collection sessions used for
training purposes (Fig. 3(B)).
However, the time-series data for the EMDT-WKNN

method is acquired differently because instead of taking
the average, we must line up individual rows of RSSI
measurements in chronological order. For each session,
we eliminate from the clean raw data any rows with missing
measurements (i.e., a sensor that fails to capture amock probe
request) and randomly sample 50 rows from each RP to form
the sampled data, which has shape 50M ⇥ 4 (Fig. 3(A)). The
time-series data is formed by concatenating the sampled data
of all training sessions in chronological order and has shape
50MK ⇥ 4, where the four columns are the raw RSSI values
corresponding to the four sensors (Fig. 3(C)). Each row of the
time-series data is an RSSI pattern (with no missing values)
of a single probe request emitted from an RP.
The test data are acquired similarly as the training data, but

from different data collection sessions designated for testing
purposes.
As mentioned in Section I, a key component of our

approach to addressing RSSI fluctuation is reformulating the
problem of pedestrian localization. To do so, we establish a
new data collection layout to determine how RPs and test
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points (TPs) are positioned in the testbed. In the following
two subsections, we define the old (broad data layout) and
the new (split data layout) layouts used in this paper.

FIGURE 4. Data collection layout.

A. BROAD DATA LAYOUT
Fig. 4(A) shows the broad data layout. The green dots
represent the sensors, and the blue dots represent RPs
where mock probe requests are emitted. S3 is designated
as the origin of the coordinate system. The broad layout
is a descendant of the layout used in our previous work,
fully covering the area bordered by the sensors. However,
to facilitate scalability, we reduce the RP density by
increasing the gap between adjacent RPs from 1 m in [3]
to 4 m. There is no distinction in the broad layout between
TPs and RPs, i.e., test data are collected at the exact physical
locations as training data.

The training data under the broad data layout were
collected on five separate days in March and April 2021, and
the test data were collected in a single session in July 2021.

B. SPLIT DATA LAYOUT
Fig. 4(B) shows the split data layout, with the green, blue, and
red dots representing the sensors, RPs, and TPs, respectively.
S3 is still designated as the origin of the coordinate system.
While the positioning of the sensors and the gap between RPs
remain the same, we make three significant changes.

1) The split layout does not cover the center of the testbed.
2) The split layout extends horizontally beyond the sensor

boundary.
3) The TPs do not overlap with the RPs.
These changes aim to address two major drawbacks of the

broad data layout.
First, the distance between adjacent RPs in the broad data

layout (Fig. 4(A)), despite being 4 m, may still be too small
to unequivocally distinguish the RSSI patterns from one RP
to its neighbors. The similarity between RP neighbors’ RSSI
patterns means that RSSI data collected at a TPmight initially
match one RP but later match its neighbor as time passes.

Second, the broad data layout does not resemble
how pedestrians move about in a real-world streetscape.
On Clematis Street, where our production environment is
deployed (Fig. 5), pedestrians almost always walk on the

sidewalk to the North and South sides of the street, as the
center space is reserved for vehicles. Thus, we only need the
localization model to function on the sidewalk rather than
the entire area to monitor pedestrian mobility patterns. The
broad data layout’s full coverage of the testbed is unnecessary.
Furthermore, since pedestrians can freely enter or leave
any area, their movement is not restricted within the sensor
boundaries. This is overlooked in the broad data layout, as no
RP exists outside the sensor boundaries.

FIGURE 5. Pedestrian (stick figures) movement on Clematis Street with
deployed sensors (yellow markers).

The first and second significant changes in the split data
layout directly resolve the second drawback, as it resembles
how pedestrians move (i.e., all RPs are located in the testbed’s
North and South strips). The RPs also extend horizontally
beyond the sensor boundaries, the sameway pedestrians enter
and leave the sensor-bounded regions.
With the empty space in the center of the testbed, the split

data layout partially addresses the first drawback (i.e., the
distance between adjacent RPs is too small). Although the
RPswithin theNorth and South strip still suffer from the same
RSSI similarity issue, the spatial gap in the middle means
that it is much less likely for an RSSI pattern from the North
to be mixed with that from the South. We will capitalize on
this enhanced ability to distinguish the Northern from the
Southern data in Section VII-D.
The third significant change in the split data layout

provides the final advantage: the separation of the RPs
from the TPs. This allows for a more rigorous, real-
istic examination of the performance of the localization
models.
Given the many benefits of the split data layout, all the

training and test data used in the paper, excluding those
specific to the prior models, were collected under the new
layout. The training data were collected across five days in
January and February 2022, and the test data were collected
across two days in March and April 2022, including a
morning and an afternoon session per day.

153006 VOLUME 12, 2024



F. Bao et al.: Addressing Temporal RSSI Fluctuation in Passive Wi-Fi-Based Outdoor Localization

V. RESCUING THE PRIOR MODELS
The impact of RSSI fluctuations on localization performance
is demonstrated in Fig. 2, as discussed previously. A straight-
forward rescue attempt is to expand the training data to
include RSSI data collected on different days. Fig. 6 shows
the results of such an approach applied to the fp, ml-clf,
and ml-regr models. The layout of the figure is the same
as described before. Curves fp-sgl, ml-clf-sgl, and ml-regr-
sgl represent the performance of the prior models trained
on the same single-day data. Curves fp-mul, ml-clf-mul, and
ml-regr-mul represent the performance of the prior models
trained on the multi-day data. All the models are tested in the
same way so that their performance can be compared directly.
The results show that, across all models, the performance of
the model trained on the multi-day data is better than the
performance when trained on the single-day data, validating
the assumption that by expanding the data variation exposed
to the model, its robustness against RSSI temporal fluctuation
improves.

FIGURE 6. Localization performance comparison of the prior models:
multi-day vs. single-day.

However, even with the multi-day training data, none of
the prior models achieves the desired performance of  4 m
of error in 90% of the cases. Therefore, the straightforward
rescue is not good enough.

Another rescue attempt incorporates the three data trans-
formation methods discussed in Section II-D (STD is not
included because it has already been applied as part of data
pre-processing in the prior models). The results are shown in
Fig. 7(A), (B), and (C) for fp,ml-clf, andml-regr, respectively.
The figure layout is the same as described before. The
blue curve represents the performance of the original model
(i.e., data transformed by STD), whereas the orange, green,
and red curves correspond to the performance after data
transformation by KPCA, TCA, and SSTCA, respectively.
Across all three prior models, some data transformation
methods boost the localization performance. For instance,
TCA and SSTCA boost fp performance, and TCA and KPCA
improve ml-clf and ml-regr performance. This highlights the

FIGURE 7. Localization performance comparison of the prior models with
various data transformation methods.

usefulness of the data transformation methods, but they again
fall short of the target of 4 m or less error in 90% of the cases.
Since neither the expansion of the training data nor the

data transformation methods can propel the prior models
to the desired performance, it is doubtful whether more
performance can be squeezed from them. Significant changes
are needed to improve localization performance further
under RSSI fluctuations. In the next section, we discuss the
drawbacks of the data collection layout used in the prior
models and explore a new layout that is more resistant to RSSI
variation.

VI. CONCEPTUALIZING A NEW MODEL
With the localization problem reformulated and a new data
collection layout established, we made a final attempt at
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rescuing the prior models by examining their performance
under the split data layout. The results are shown in Fig. 8,
with the same layout and labeling as described before. Since
none of the prior models can achieve the desired localization
performance, we are convinced that a new, more robust model
is needed.

FIGURE 8. Localization performance comparison of the prior models on
the split data layout with various data transformation methods.

We conceptualize the new model based on qualitative
reasoning and quantitative evidence in the following two
subsections.

A. QUALITATIVE REASONING
For an RSSI-based localization model to perform well,
it must capture a time-invariant, location-sensitive pattern in
the RSSI patterns. The lackluster performance of the prior
models on the split data layout (Fig. 8) suggests that if such a

pattern does exist, it most likely manifests itself over a subset
of the training and test data.
To qualitatively determine the existence of a time-

invariant, location-sensitive pattern, we plot the mean RSSI
value of each sensor at each RP as shown in Fig. 9. The
green dots represent the location of the four sensors, and the
positions of the inset bar plots represent the locations of each
RP.Within each inset bar plot, the blue, orange, green, and red
bars represent the mean RSSI values recorded by S1, S2, S3,
and S4, respectively. Essentially, each inset bar plot illustrates
the mean RSSI pattern of the RP. From these RSSI patterns,
we can make four observations.

1) Within the North or South strip, there is little RSSI
variation in the North-South direction (see blue rect-
angles). Such homogeneity indicates that a model to
predict the y-coordinate within the North or South
strip would be difficult to train. If such a model were
produced, it would yield poor accuracy in predicting
the distance between a pedestrian and the front of a
shop. Fortunately, this is not a significant issue. Under-
standing pedestrians’ North-South positions within a
sidewalk does not add much value to understanding
their mobility patterns. On the contrary, we can take
advantage of this observation by assuming that the
y-coordinates of RPs and TPs within the North or
South strip are the same. Consequently, instead of
predicting two coordinates, we only need to predict the
x-coordinate within the North or South strip.

2) Within the North or South strip, there is a noticeable,
location-sensitive pattern in the East-West direction
among RSSI measurements associated with the sensors
on the same side, as one would expect. For instance,
among the Southern RSSI patterns in the red triangle,
mean RSSI values obtained by S3 and S4 increase as
the RP approaches these sensors and decrease as it
moves away. The same pattern can be observed in the
rows in the North, relative to S1 and S2. This suggests
that predicting only the x-coordinate in the North or
South strip may be feasible.

3) The location-sensitive RSSI pattern mirrors itself on
either side of each sensor. This means the same RSSI
pattern could be associated with two RPs, one inside
and the other outside the sensor boundary (see an
example in the fuchsia rectangles). To avoid such
confusion, it would benefit a model if one of the
options, such as the one outside the sensor boundary,
were not included in the training and test data.

4) Despite a large gap between the North and South RPs,
there is still RSSI overlap, as demonstrated by the
RSSI patterns enclosed in the grey rectangle, where the
distinction between the North and South RSSI patterns
is not clear. This is unsurprising because as the RPs
move away from the sensors, the RSSI measurements
are more noise-dominant. It would benefit a model
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if these noise-dominant RSSI patterns were excluded
from the training and test data.

FIGURE 9. Mean RSSI patterns of each RP in the training data.

From these observations, we can sketch an outline of the
new model: It eliminates data collected from RPs outside
the East-West sensor boundary, separates the remaining data
to North and South, and then (only) predicts x-coordinates.
It is important to note that the eliminated data are not truly
lost because sensors are deployed at regular intervals along
the entire street in our urban production environment, which
means the neighboring sensor quadruplets will pick up any
data excluded by the current sensor quadruplets. The only
exception is at the very ends of the street, but data loss at those
locations is acceptable because the lost data are also outside
the street’s physical boundary.

Nevertheless, quantitative evidence is needed to validate
this qualitative sketch. We discuss the quantitative evidence
next.

B. QUANTITATIVE EVIDENCE
The qualitative sketch of the new model essentially restricts
the training and test data to only those collected within the
East-West sensor boundaries and predicts only x-coordinates.
To validate this sketch, we compare the localization perfor-
mance of the ml-regr model (one of the models in our prior
work [3]) as the data are increasingly restricted. Since this is
a proof-of-concept argument, we presume (pretend) that the
locations of all RPs and TPs are already available. We expect
the performance to peak at the restriction level indicated by
the qualitative sketch.

Fig. 10 summarizes the localization performance. The
training and test data are derived from the split data layout.
The top plot includes the CDF curves of localization error,
where the blue, orange, green, and red curves correspond

to distinct data restriction scenarios full-x-y, ns-sep-x-y, ns-
sep-x, and ns-sep-x-in, respectively. The definition of each
scenario is given below.

• full-x-y: All data are included. Two models are trained,
one for the x- and the other for the y-coordinate.

• ns-sep-x-y: All data are included, but the North and
South data are separated. Within each half, two models
are trained, one for the x- and the other for the y-
coordinate.

• ns-sep-x: All data are included, but the North and South
data are separated. Within each half, one model is
trained for the x-coordinate only. During the evaluation,
localization error is only computed for the x-coordinate.

• ns-sep-x-in: Only the data inside the East-West sensor
boundaries are considered. These data are further
separated into North and South. Within each half, one
model is trained for the x-coordinate only. During the
evaluation, localization error is only computed for the
x-coordinate.

The four smaller plots at the bottom of the figure show the
distribution of the RPs and illustrate the meaning of the four
restriction scenarios.

FIGURE 10. Localization performance of the ml-regr model as data are
increasingly restricted.

It is apparent that the localization performance improves as
data are separated (full-x-y vs. ns-sep-x-y), the y-coordinate
is ignored (ns-sep-x-y vs. ns-sep-x), and data outside the
East-West sensor boundaries are excluded (ns-sep-x vs. ns-
sep-x-in). The best performance, ns-sep-x-in, corresponds
precisely to the qualitative sketch of the new model, and it
reaches  4 m of error in 90% of the cases.
Granted, this performance will not be replicated in real life

because ns-sep-x-in is gifted with perfect a priori knowledge
of the TP locations, which guarantees that the data restrictions
are perfect. In reality, the data restrictions will not be perfect,
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as the locations of the test data are unavailable—they are
what we want to predict in the first place. If some test
data outside the sensor boundary fail to be excluded, they
might produce large prediction errors. Nevertheless, the
performance of ns-sep-x-in shows that if we can successfully
identify RSSI patterns, both in training and testing, that
originate from RPs and TPs within the East-West sensor
boundaries and split them in the North-South direction,
the remaining x-coordinate regression is likely to yield
good performance. Essentially, we have reformulated the
original localization problem into two more manageable sub-
problems: (1) identifying the data within the East-West sensor
boundaries in the North or South strip and (2) predicting
their x-coordinates. We call the first sub-problem inlier
classification and the second inlier regression.

To address these two sub-problems, we create a new
multi-stage Inlier X-coordinate Model (InXModel), as shown
in Fig. 11. In the following sections, we detail the steps
depicted in the InXModel flow chart.

FIGURE 11. Flow chart of the InXModel.

VII. INLIER CLASSIFICATION
This section first defines the meaning of inlier, outlier, and
two error types in inlier classification.We then show the result
of naive inlier classification, explore methods to boost its
performance, and demonstrate the final performance of the
improved inlier classifier.

A. INLIER AND ERROR DEFINITIONS
Inliers refer to the RSSI data originating from the RPs
within the East-West sensor boundaries. In Fig. 12, any RSSI

data collected from the green blocks are considered inliers.
Similarly, any RSSI data originating from the red or grey
blocks are considered outliers. Notice that the North inliers lie
within the boundary of S1 and S2, whereas the South inliers
lie between S3 and S4.
Suppose the blue dots represent the predicted North inliers,

and the red dots represent the predicted South inliers. If the
blue and red dots land in the green blocks, they are considered
correct predictions. Otherwise, they are errors.
There are two types of errors in inlier classification. The

first type is an error on the same side (err-same), which refers
to a situation where a predicted inlier is actually an outlier but
resides on the same side of the prediction. In Fig. 12, if the
blue and red dots land in the red blocks, they are considered
err-same. The second type is an error on the opposite side
(err-opp), which refers to a situation where a predicted inlier
is actually an outlier and resides on the opposite side of the
prediction. In Fig. 12, if the blue and red dots fall anywhere
in the grey blocks, they are considered err-opp.

FIGURE 12. Inliers, outliers, and error definitions in inlier classification.

Err-opp is more significant than err-same because it
always leads to substantial localization errors. In a real-world
application, err-opp misplaces a pedestrian from the North
sidewalk to the South or vice versa, significantly damaging
the observed mobility pattern. Err-same is not as serious,
especially if the actual position of the misclassified inlier is
near the red-green border. Therefore, we invest much effort to
reduce err-opp, even at the cost of discarding data (discussed
in detail in Section VII).

B. NAIVE INLIER CLASSIFICATION
We create two models for naive inlier classification, one for
the North and the other for the South. The input for both
inlier classifiers is the entirety of the training data, modified
by one of the four data transformation methods presented
in Section III-A. The training label is a binary value, where
1 indicates that the training data are inliers and 0 indicates
outliers. The output is also a binary value, where 1 means
that a testing RSSI pattern is predicted to be an inlier, and
0 means it is predicted as an outlier. We use SVC, described
in Section III-C, as the underlying classifier and follow the
hyperparameter tuning process described in Section III-E.
The results of the North and South naive inlier classifica-

tion across the four data transformation methods are shown
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in Fig. 13(A) and (B). Detailed metrics are available in
Table 1. The blue, orange, green, and red bars represent the
performance of STD, KPCA, TCA, and SSTCA, respectively.
Recall is the percentage of the actual inliers recovered by
the inlier classification (see Section III-E for details). For
instance, the recall of naive North inlier classification with
the STD method is 40/48 = 0.83. Err-same and err-opp rates
are the error rates computed as the count of err-same and err-
opp instances over the total count of predicted inliers. For
instance, the err-opp rate of naive South inlier classification
with the TCA method is 4/(39 + 17 + 4) = 0.067.

FIGURE 13. Metrics of naive inlier classification.

Ideally, we want recall to be high, err-same rate to be
low, and err-opp rate to be zero. However, low recall is
not by itself a fundamental deal-breaker. It means that
only a small percentage of the actual inliers are captured
by the classifier. Given that we capture millions of Wi-Fi
probe requests in the production environment, we can afford
low recall but still obtain sufficient inlier data to analyze
pedestrians’ mobility patterns. A moderate err-same rate is
also acceptable, as explained in Section VII-A. Thus, err-
opp rate is the only metric we must keep as low as possible.
The err-opp rate represented in Fig. 13 is unacceptably high;
further measures are needed to reduce it.

C. INLIER CLASSIFICATION WITH PRE-SCREENING
We implement a basic pre-screening process on the test data:
We classify a testing RSSI pattern as North if the maximum
RSSI value belongs to S1 or S2, or South if the maximum
RSSI value belongs to S3 or S4. For example, if an RSSI
pattern is (�40, �30, �50, �60), it will be pre-screened to
the North because the maximum RSSI, �30, belongs to S2.
However, if an RSSI pattern is (�40,�50, �20, �60), it will
be pre-screened to the South due to S3 having the maximum
RSSI value of�20. The rationale behind pre-screening is that
the RSSI measurements by the sensors on the same side as the

TABLE 1. Results of naive inlier classification.

RP are generally larger than those measured by the sensors
on the opposite side. Thus, most pre-screened North (South)
data are truly from the North (South). Since there are fewer
data points from the opposite side, to begin with, and if we
only feed the pre-screened North (South) data to the North
(South) inlier classifier, the chance of committing err-opp
would decrease.
It is tempting to also apply pre-screening to the training

data such that theNorth (South) inlier classifier is trained only
on the pre-screened North (South) training data. Unfortu-
nately, this would drastically diminish the power of the inlier
classifiers because the training data size would be halved after
pre-screening. Therefore, to preserve classification capacity,
both the North and South inlier classifiers are trained on the
entirety of the training data as before. Only during evaluation
do we use pre-screening and supply the pre-screened North
(South) test data to the North (South) inlier classifier. In a
sense, one can view the North (South) inlier classifier as a
‘‘double-checker’’ of the pre-screening process.
The performance of inlier classification with pre-screening

is summarized in Fig. 14 and Table 2. The layout and labeling
of the figure and table are the same as described before.
Although some sacrifices occur in recall (e.g., the correct

instances of STD South, KPCA South, and TCA South
all drop compared to naive inlier classification), we have
drastically reduced the err-opp rate. In particular, there are
no instances of err-opp among all South inlier classifiers
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FIGURE 14. Metrics of inlier classification with pre-screening.

TABLE 2. Results of inlier classification with pre-screening.

and only one each for the North inlier classifiers with STD,
KPCA, and TCA.

The success of pre-screening begs the question: Can we do
even better to remove the remaining err-opp?

D. INLIER CLASSIFICATION WITH POST-SCREENING
Err-opp occurs when a North (South) data point is classified
as a South (North) inlier. A post-screening process may

reduce this error by conducting a North-South classification
on the initially predicted inliers and flagging those that
receive contradictory predictions from the two classifications.
In other words, if some data are initially classified as North
(South) inliers by the North (South) inlier classifier but
later classified as non-North (non-South) by a post-screening
North-South classifier, the contradiction means that these
data are dubious and should be discarded. The expectation
is that err-opp will reduce even further after removing the
dubious data.
The feasibility of post-screening depends on a classifier

that can reliably distinguish North and South inliers. Such
a classifier is possible because the inliers in the training
data can be readily separated into North and South once
they are projected to the first two principal components
(Fig. 15). By combining PCA with a Gaussian Process Clas-
sifier (GPC), we train a PCA-based North-South classifier
(PCANS) on inliers. Section III-C explains the reason for
choosing GPC as the underlying classification algorithm
and explains the cost analysis procedure (i.e., balancing the
classification accuracy against the cost of discarding data).
Regarding PCANS, we define c0 as the cutoff for

classifying an RSSI pattern as North and c1 as the cutoff for
classifying an RSSI pattern as South (refer to Section III-C
for the definition of c0 and c1). c0 and c1 can be tuned like
hyperparameters based on the allowance of discard rate (any
RSSI pattern that cannot cross either cutoff is discarded).
In the following analysis, the discard rate is set at 5%.Wewill
discuss the discard rate further in Section VII-E.

FIGURE 15. Separation of North and South inliers in the training data
along principal components 1 and 2.

We pass the output of inlier classification with pre-
screening (both the North and South versions) to a tuned
PCANS. Any RSSI pattern resulting in contradictory predic-
tions between the inlier classifier and PCANS is discarded.
The results of inlier classification with post-screening are
summarized in Fig. 16 and Table 3. The layout and labeling
of the figure and table are the same as described before.
With a few more sacrifices in recall, we have elimi-

nated all instances of err-opp. Comparing the classification
performance across the four data transformation methods,
we observe that SSTCA performs best in the South but has the
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FIGURE 16. Metrics of inlier classification with post-screen.

TABLE 3. Results of inlier classification with pre-screening and
post-screening.

highest err-same in the North. STD accumulates the lowest
err-same and has a decent recall in the North, yet its recall
in the South is lackluster. Therefore, picking a clear winner
at the current stage is difficult. We will make the decision
after the overall localization performance under each data
transformation method is revealed.

To further investigate where the predicted inliers and errors
come from, Fig. 17 shows the distribution of the predicted
inliers before (blue bars) and after PCANS (orange bars).
The x-axis represents the x-coordinates of the testbed, and
the y-axis represents the count of inliers, with the top half
for the North inliers and the bottom half for the South inliers.
The total number of inliers at each x-coordinate is 12 because
the test data consists of four sessions with three RPs at
each x-coordinate. The bars inside the green, red, and grey
blocks indicate correct classification, err-same, and err-opp,
respectively.

FIGURE 17. Distribution of predicted inliers before and after PCANS.

Fig. 17(A), (C), and (E) show the effect of PCANS on
removing err-opp at x = 6.0. Fig. 17(C), (E), and (G)
demonstrate the correction of err-same in the red blocks on
the right. Sacrifices in the recall are exhibited in the green
blocks of all the panels, except Fig. 17(B) and (D).

Despite being tolerated, the unusually low recall in STD,
KPCA, and TCA in the South inlier classification deserves
attention. Fig. 17(B), (D), and (F) reveal that the loss in the
recall is mainly attributed to low inlier capture at x = 2.0 and
x = 6.0 in the South. This suggests that the RSSI patterns
of the South test data at these positions might not match
the RSSI patterns of the South training data at the nearby
positions of x = 0.0, x = 4.0, and x = 8.0.
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Fig. 18 shows the mean RSSI pattern of all RPs with the
same x-coordinates in the South, with panels (A), (B), and
(C) corresponding to the training data at x = 0.0, x = 4.0,
and x = 8.0, and panels (D) and (E) corresponding to the
test data at x = 2.0 and x = 6.0. Each bar plot’s x-axis
represents the four sensors, and the y-axis represents themean
RSSI values. Comparing the test data in panel (D) with the
training data in panels (A) and (B), we observe that weaker
RSSI measurements of S2 and S3 might contribute to the low
recall at x = 2.0. Similarly, comparing test data in panel
(E) with training data in panels (B) and (C), we see that
weaker RSSI measurements of S2 and S3 might again be the
culprit of the low recall at x = 6.0. We speculate that local
interference or slight changes in sensor setup (e.g., height
and orientation) at each data collection session might cause
weaker RSSI measurements at S2 and S3. However, these
problems might not be as big a concern in the production
environment. For local interference, its negative effect can
be mitigated by incorporating data from additional sensors
along the street. For sensor setup, there should be no change
in its orientation and height once deployed on a light pole.
That said, it remains to be seenwhether a similar deficiency in
the recall will manifest with data collected in the production
environment.

FIGURE 18. Mean RSSI patterns of x-coordinates in the South where
recall is low.

E. MECHANISM OF PCANS
Fig. 19 shows how PCANS reduces err-opp at the cost of
a reduced recall. The four panels correspond to the four
data transformation methods. Within each panel, the x- and
y-axis represent the first and second principal components
on which data are projected. The blue (red) contours are
computed likelihoods from the training data (the darker the
color gradient, the higher the likelihood), such that any data
point falling inside the contourwould be predicted by PCANS
as North (South), and any data point landing outside the
contour would be considered dubious and discarded. The blue
(red) dots are the predicted North (South) inliers by the North
(South) inlier classification with pre-screening. Any blue

(red) dots circled in red (blue) indicate that it is actually from
the South (North) or an err-opp.
PCANS can eliminate instances of err-opp if the data points

to land in the blank space (i.e., dubious) or the wrong contour
(i.e., contradiction). Fig. 19(A), (B), and (C) demonstrate the
first case, where a blue dot circled in red lands in the blank
space between the contours. Since this data point is deemed
not convincingly North or South by PCANS, it is discarded.
This is how PCANS removes the single instance of err-opp in
North STD, KPCA, and TCA (compare Table 2 with Table 3).

FIGURE 19. Mechanism of how PCANS reduces err-opp at the cost of
lowering recall.

The sacrifice in recall is also on display in all four panels.
Any time a non-circled blue (red) dot falls in the blank space
or wrong contour, it is eliminated by PCANS, equivalent
to discarding a correctly predicted inlier. For instance,
Fig. 19(D) shows that PCANS removes many red and a
few blue dots in the blank space between the contours. This
corresponds to the drop in correct classifications from 42 to
36 in the South and 43 to 41 in the North for SSTCA (compare
Table 2 with Table 3).
In Section VII-D, we mentioned that PCANS is tuned

with a discard rate of 5% for post-screening. Discard
rate plays a vital role in controlling the aggressiveness of
data elimination. Increasing the discard rate shrinks the
blue and red contours, which exposes more blank space
and makes it easier to discard data points. Since most
err-opp instances are dubious data points landing somewhere
between the contours, a high discard rate helps eliminate
them. However, the recall will also suffer from smaller
contours. Ideally, we want to balance err-opp elimination
and recall preservation with the help of a plot like Fig. 19.
Unfortunately, in practice, such a figure is not available
because we do not know the location of the test data—the
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location is what wewant to predict in the first place.While we
picked 5% via empirical intuition, a more analytical approach
should be used to estimate the optimal PCANS discard rate
for the production environment. To do so, one needs to
collect multiple sessions of labeled validation data, preferably
over a long time horizon and under various environmental
conditions, and leverage those to acquire the best estimate of
the optimal PCANS discard rate.

VIII. INLIER REGRESSION
The second sub-problem conceptualized in Section VI is
inlier regression, which aims to predict the x-coordinate of
inliers in the North and South. We train a North (South) inlier
regressor on the North (South) inlier RSSI patterns and their
x-coordinates. The same four data transformation methods
are applied to the data before they are fed to the SVR-based
regressor. The hyperparameters and the tuning process are
explained in Section III-D and Section III-E.
Fig.s 20(A) and (B) show the performance of the North

and South inlier regressors, respectively, in the form of CDF
curves of error, with the same layout and labeling as described
before. In the North, all four data transformation methods
achieve the desired performance of  4 m of error in 90% of
the cases, with STD and KPCA tied as the best performers.
In the South, all but SSTCA fulfill the desired performance,
with STD and KPCA again tied as the best performers. Thus,
based on the localization performance, both STD and KPCA
are desirable.

Fig. 20(C) illustrates the time cost of tuning the hyperpa-
rameters for each data transformation method on a Macbook
Pro with an M1 Pro chip and 32 GB of RAM. The x-axis lists
the four methods, the y-axis represents the time in seconds,
and the blue and orange bars correspond to the tuning cost
of the North and South regressor. Between the winners of the
previous round, STD is almost 100 times faster than KPCA.
Therefore, the overall winner of the data transformation
method for inlier regression is STD.

IX. INXMODEL
Combining the final version of inlier classification (pre-
screening, plus North and South inlier classification, plus
post-screening) and inlier regression (North and South inlier
regressor with STD), we present the multi-stage InXModel
(see Fig. 11 for the flow chart). The overall performance of
the InXModel across the four data transformation methods
is shown in Fig. 21(A), where the layout and labeling
of the figure remain the same as described before. The
data transformation is for inlier classification only. All four
data transformation methods reach the goal of  4 m of
error in 90% of the cases, with STD scoring the highest.
Fig. 21(B) shows the hyperparameter tuning costs of the four
methods, with the tuning carried out on the same machine,
as noted before. STD is again the fastest. Therefore, like inlier
regression, STD is the best data transformation method for
inlier classification.

FIGURE 20. Performance of inlier regression across the four data
transformation methods and their hyperparameter tuning costs.

With STD at the helm for both inlier classification
and regression, the InXModel achieves a mean absolute
localization error of 1.78 m, a CDF probability of 94.3%
for errors  4 m, and a data loss rate of 30.2%. Given an
RSSI pattern, the InXModelwill predict whether it belongs to
the North or South and its x-coordinate relative to the sensor
designated as the origin (in our case, the origin is S3).

X. COMPARISON WITH EMDT-WKNN
Reference [6] proposes the Empirical Mode Decomposition
with soft Thresholding and Weighted K-Nearest Neighbors
method (EMDT-WKNN). The approach is used to construct
a fingerprinting radio map with smoothed RSSI data col-
lected over several months, followed by weighted K-nearest
neighbors to localize an RSSI pattern (see Section II-C
for a summary of the concept, and Section III-B for the
implementation details). Although the study focuses on
indoor localization, its experimental procedure and goal of
reducing the impact of RSSI temporal fluctuations align
with ours. Hence, we implement a customized version of
the EMDT-WKNN method, tune its hyperparameters (see
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FIGURE 21. Performance of the InXModel across the four inlier
classification data transformation methods and their hyperparameter
tuning cost.

Section III-B for details), and compare its performance
with the InXModel. The result is shown in Fig. 22 with
the same layout as described above. The blue and orange
curves correspond to the InXModel (with STD for both
inlier classification and regression) and the EMDT-WKNN
method.

FIGURE 22. Localization performance comparison: InXModel vs.
EMDT-WKNN.

The EMDT-WKNN method yields a lower data loss rate
of 21.7%, but it performs worse than the InXModel, only
achieving  4 m of error in 83.5% of the cases. Note that
the data loss rate for the EMDT-WKNN method refers to
the percentage of discarded data over the entire test data (see
Section III-B for how data are discarded in EMDT-WKNN),
which differs from the inlier-based data loss rate of the
InXModel; the EMDT-WKNN method does not distinguish
between inliers and outliers
Further analysis of the performance of the EMDT-WKNN

method reveals the distribution of the unacceptable errors
(i.e., errors larger than 4 m) in Table 4. The EMDT-WKNN
method accumulates 31 instances of unacceptable error,
among which 22, or 71%, are err-opp. Among the err-opp,
more than half (13 out of 22) are from the outliers, despite
the outliers having less share of unacceptable error than the
inliers (14 vs. 17). Thus, the inability to control err-opp in the
outliers is the main reason for the lackluster performance of
the EMDT-WKNN method.

TABLE 4. Distribution of unacceptable error in the performance of The
EMDT-WKNN method.

The EMDT-WKNN method does not properly handle
outliers because outliers rarely appear in indoor localization.
In an indoor environment, APs or sensors are usually installed
close to the physical boundary of the structure, making most
of the RPs and TPs inliers. Data from the inliers tend to
have higher quality than those from the outliers due to less
ambiguity and noise. We have seen in Fig. 15 and Fig. 20 that
if outdoor localization is restricted to inliers, it is possible
to achieve good performance. Unfortunately, outliers are
inevitable, and they pose an inherent difficulty in RSSI-based
outdoor localization.
Another factor contributing to the poor performance of

the EMDT-WKNN method is that our experimental setup
involves only four sensors. In [6], the number of APs
is 10, which means their RSSI pattern is 10-dimensional;
ours is only four. The considerable reduction in available
information in each RSSI pattern may negatively affect the
method’s performance.
Finally, the RP density in our dataset (four-meter intervals

between RPs) is half of that in [6] (two-meter intervals
between RPs). Given that the performance of fingerprinting
is heavily dependent on the density of the radio map, it is not
surprising that the EMDT-WKNN method performs poorly
against our dataset.
We speculate that the EMDT-WKNN method might fare

better on data collected in our production environment.While
the RP density will not increase due to scalability concerns,
the production environment has many more sensors. A probe
request in the production environment is typically captured by

153016 VOLUME 12, 2024



F. Bao et al.: Addressing Temporal RSSI Fluctuation in Passive Wi-Fi-Based Outdoor Localization

six or more sensors nearby, which might provide sufficient
information for each RSSI pattern. Outliers can also be
addressed if we adapt some of the screening methods used
in the InXModel to the EMDT-WKNN method. In summary,
despite the poor showing with our dataset, we think the
EMDT-WKNN method may have a better chance with the
RSSI data from the production environment.

XI. CONCLUSION
In this paper, we discuss temporal fluctuations in RSSI
in an outdoor environment and demonstrate their negative
effect on passive outdoor localization models proposed in
our prior work. We then address the signal fluctuation issue,
step by step, by reformulating the localization problem,
establishing a new data layout, and conceptualizing and
implementing a multi-stage InXModel. The InXModel uses
STD as the data transformation method and consists of a
three-step inlier classification stage (pre-screening, plus inlier
classification, plus post-screening) and a subsequent inlier
regression stage. The performance of the InXModel achieves
our goal of  4 m of error in 94.3% of the cases and has
an acceptable data discard rate of 30.2%. We compare the
InXModel with a recently reported EMDT-WKNN method
explicitly designed to handle RSSI temporal fluctuation
indoors and find that the latter has a poorer performance.
We speculate that having to contend with outliers, not having
sufficient dimensions in each RSSI pattern, and not having a
radio map with sufficiently high RP density are the causes
of the poor performance of the EMDT-WKNN method.
These factors are also likely why a good indoor localization
model cannot readily translate its performance to an outdoor
setting.

Limitations. There are several limitations in this paper.
First, our data collection efforts and experimental evaluation
are limited exclusively to the 2.4 GHz band. This choice
was motivated both by the ubiquitous use of 2.4 GHz access
networks in public spaces and the hardware limitations
of our streetscape testbed. Second, despite accounting for
RSSI temporal fluctuation, our data do not consider signal
fluctuations caused by obstructions or interference, as they
are all collected in a semi-controlled area with no additional
devices nearby or line-of-sight obstructions. Further, all of
the (mock) probe requests emitted during the training and
testing sessions originate from the same emitter, whichmeans
our dataset also fails to take into account RSSI fluctuations
attributed to hardware variation. In future research, we will
include these confounding factors in the dataset by collecting
RSSI data directly in the production environment and
using multiple emitters. We will examine the potential
impact of these factors and investigate ways to mitigate
them.

Finally, the InXModel is restricted to a sensor layout where
the two sensors on the North are directly opposite to the two
on the South. However, in reality, the sensor layout might
not follow this rectangular pattern, and unplanned sensor
shutdowns can further complicate the situation. In future

research, we will study the flexibility and scalability of
the InXModel when the sensor layout changes. Since the
EMDT-WKNNmethod is more resistant to dynamic changes
in sensor availability due to its fingerprinting nature, we will
also explore better adaptations of this method for outdoor
localization.
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