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—— Abstract

We consider the setting where a user with sensitive features wishes to obtain a recommendation from
a server in a differentially private fashion. We propose a “multi-selection” architecture where the
server can send back multiple recommendations and the user chooses one from these that matches
best with their private features. When the user feature is one-dimensional — on an infinite line — and
the accuracy measure is defined w.r.t some increasing function b(.) of the distance on the line, we
precisely characterize the optimal mechanism that satisfies differential privacy. The specification of
the optimal mechanism includes both the distribution of the noise that the user adds to its private
value, and the algorithm used by the server to determine the set of results to send back as a response.
We show that Laplace is an optimal noise distribution in this setting. Furthermore, we show that
this optimal mechanism results in an error that is inversely proportional to the number of results
returned when the function h(.) is the identity function.
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1 Introduction

Consider a user who wants to issue a query to an online server (e.g. to retrieve a search
result or an advertisement), but the query itself reveals private information about the user.
One commonly studied approach to protect user privacy from the server in this context is
for the user to send a perturbed query, satisfying differential privacy under the local trust
model [13]. However, since the query itself is changed from the original, the server may not
be able to return a result that is very accurate for the original query. Our key observation
is that in many situations such as search or content recommendations, the server is free to
return many results, and the user can choose the one that is the most appropriate, without
revealing the choice to the server. In fact, if the server also returns a model for evaluating the
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quality of these results for the user, then this choice can be made by a software intermediary
such as a client running on the user’s device. This software intermediary can also be the one
that acts as the user’s privacy delegate and is the one ensuring local differential privacy.

We call this, new for the differential privacy (DP) literature system architecture, the
“Multi-Selection” approach to privacy, and the key question we ask is: What is the precise
trade-off that can be achieved between the number of returned results and quality under a
fized privacy goal? Of course, had the server simply returned all possible results, there
would have been no loss in quality since the client could choose the optimal result. However,
this approach is infeasible due to computation and communication costs, as well as due to
potential server interest in not revealing proprietary information. We, therefore, restrict the
server to return k results for small k£, and study the trade-off between k and the quality
when the client sends privacy-preserving queries. Our algorithmic design space consists of
choosing the client’s algorithm and the server’s algorithm, as well as the space of signals they
will be sending.

Although variants of this approach have been suggested (particularly in cryptographic
contexts [58]), to the best of our knowledge, no formal results are known on whether this
approach does well in terms of reducing the “price of differential privacy”, or how to obtain
the optimal privacy-quality trade-offs. Given the dramatic increase in network bandwidth and
on-device compute capabilities of the last several decades, this approach has the potential to
offer an attractive pathway to making differential privacy practical for personalized queries.

At a high level, in addition to the novel multi-selection framework for differential privacy,
our main contributions are two-fold. First, under natural assumptions on the privacy model
and the latent space of results and users, we show a tight trade-off between utility and
number of returned results via a natural (yet a priori non-obvious) algorithm, with the error
perceived by a user decreasing as ©(1/k) for k results. Secondly, at a technical level, our
proof of optimality is via a dual fitting argument and is quite subtle, requiring us to develop
a novel duality framework for linear programs over infinite dimensional function spaces, with
constraints on both derivatives and integrals of the variables. This framework may be of
independent interest for other applications where such linear programs arise.

1.1 System Architecture and Definitions

For simplicity and clarity, we assume that user queries lie on the real number line'. Thus, we
denote the set of users by R. When referring to a user v € R, we imply a user with a query
value u € R. Let M represent the set of possible results, and let OPT : R — M denote the
function that maps user queries to optimal results. In practical applications, the function
OPT may represent a machine learning model, such as a deep neural network or a random
forest. This function OPT is available to the server but remains unknown to the users.

1.1.1 Privacy

We adopt a well-studied notion of differential privacy under the local trust model [47, 13]:

» Definition 1 (adapted from [26, 49]). Let € > 0 be a desired level of privacy and let U
be a set of input data and Y be the set of all possible responses and A(Y) be the set of all
probability distributions (over a sufficiently rich o-algebra of Y given by o(Y)). A mechanism
QU — A(Y) is e-differentially private if for all S € o(Y) and uy,us € U:

P(Qu; € S) < eP(Quz € 5).

1 We relax this one-dimensional assumption in Appendix A and provide a more detailed discussion in [41,
Appendix B.6]
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We argue that a more relevant and justifiable notion of differential privacy in our context
is geographic differential privacy [4, 1] (GDP), which allows the privacy guarantee to decay
with the distance between users. Under GDP a user is indistinguishable from “close by”
users in the query space, while it may be possible to localize the user to a coarser region in
space. This notion has gained widespread adoption for anonymizing location data. In our
context, it reflects, for instance, the intuition that the user is more interested in protecting
the specifics of a medical query they are posing from the search engine rather than protecting
whether they are posing a medical query or an entertainment query. GDP is thus appropriate
in scenarios such as search. In [57], we demonstrate how geographical differential privacy
applies to movie recommendation systems using ¢; distance between user feature vectors.
We thus restate the formal definition of GDP from [49] and use it in the rest of the work.

» Definition 2 (adapted from [49]). Let ¢ > 0 be a desired level of privacy and let U (a
normed vector space) be a set of input data and ) be the set of all possible responses and
A(Y) be the set of all probability distributions (over a sufficiently rich o-algebra of Y given by
o(Y)). A mechanism Q : U — A(Y) is e-geographic differentially private if for all S € o(})
and uy,us EU:

P(Quy € S) < efl"1=%2IP(Quy € 9).

1.1.2 “Multi-Selection” Architecture

Our “multi-selection” system architecture (shown in Figure 1) relies on the server returning
a small set of results in response to the privatized user input, with the on-device software
intermediary deciding, unknown to the server, which of these server responses to use.

User Side Server Side

u€R s(e Z)~ P,

Agent

Result Computation
e.g. browser

User

best in a a(e M%) ~ Q,

Figure 1 Overall architecture for multi-selection.

The mechanisms we consider in this new architecture consists of a triplet (Z, P, Q):

1. A set of signals Z that can be sent by users.

2. The actions of users, P, which involves a user sampling a signal from a distribution over
signals. We use P, for u € R to denote the distribution of the signals sent by user u
which is supported on Z. The set of actions over all users is given by P = {P, }ycr-

3. The distribution over actions of the server, Q. When the server receives a signal s € Z, it
responds with @, which characterizes the distribution of the k results that the server sends
(it is supported in M*). We denote the set of all such server actions by Q = {Q,}scz.?

Our central question is to find the triplet over (Z, P, Q) that satisfies e-GDP constraints
on P while ensuring the best-possible utility or the smallest-possible disutility.

2 We treat this distribution to be supported on U* instead of k-sized subset of U for ease of mathematical
typesetting.
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1.1.3 The disutility model: Measuring the cost of privacy

We now define the disutility of a user v € R from a result m € M. One approach would be
to look at the difference between (or the ratio) of the cost of the optimum result for « and
the cost of the result m returned by a privacy-preserving algorithm. However, we are looking
for a general framework, and do not want to presume that this cost measure is known to the
algorithm designer, or indeed, that it even exists. Hence, we will instead define the disutility
of u as the amount by which u would have to be perturbed for the returned result m to
become optimum; this only requires a distance measure in the space in which u resides, which
is needed for the definition of the privacy guarantees anyway. For additional generality, we
also allow the disutility to be any increasing function of this perturbation, as defined below.

» Definition 3. The disutility of a user u € R from a result m € M w.r.t some continuously
increasing function h(.) is given by?

Dis-util®) (u, m) :=

b(lu —u')). (1)

inf
uw' ER:OPT (u')=m
We allow any function h(.) that satisfies the following conditions:

h(.) is a continuously increasing function satisfying §(0) = 0. (2)
There exists B € R™ s.t. logh(.) is Lipschitz continuous in [B, c0). (3)

The first condition (2) captures the intuition that disutility for the optimal result is zero.
The second condition (3), which bounds the growth of h(.) by an exponential function, is
a not very restrictive condition required for our mathematical analysis. Quite surprisingly,
to show that our multi-selection framework provides a good trade-off in the above model
for every h as defined above, we only need to consider the case where the h is the identity
function. The following example further motivates our choice of the disutility measure:

» Example 4. Suppose, one assumes that the result set M and the user set R are embedded

in the same metric space (d, M UR). This setup is similar to the framework studied in the

examination of metric distortion of ordinal rankings in social choice [5, 20, 40, 48]. Using

triangle inequality, one may argue that d(u, m’) — d(u,m) < 2d(u,u’) where m is the optimal

result for user u (i.e. m = argmind(u,m)) and m’ is the optimal result for user uv’.* Thus,
meM

2d(u,u’) gives an upper bound on the disutility of user u from result OPT(u’).

1.1.4 Restricting users and results to the same set

For ease of exposition, we study a simplified setup restricting the users and results to the
same set R. Specifically, since Dis-util’™) (v, OPT(v/)) < b(Ju — «/|), our simplified setup
restricts the users and results to the same set R where the disutility of user u € R from a
result a € R is given by h(Ju — a]). Our results extend to the model where the users and
results lie in different sets (see Appendix A.4). In the simplified setup, while we use a € R to
denote the result, what we mean is that the server sends back OPT(a) € M.

3 If no such v’ exists then the disutility is co as infimum of a null set is cc.
4 This follows since d(u, m’) — d(u,u’) < d(v',m’) < d(u',m) < d(u,u’) + d(u, m).
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1.1.5 Definition of the cost function in the simplified setup

We use Set(a) to convert a vector a = (a1, as,...,ar)’ € R¥ to a set of at most k elements,
formally Set(a) = {a; : ¢ € [k]}. Recall from Section 1.1.4, the disutility of user u € R from
a result a € R in the simplified setup may be written as

Dis-util’") (u, a) = h(|u — al) (4)

sim

Since we restrict the users and results to the same set, @, is supported on R¥ for every s € Z.

Thus, the cost for a user u from the mechanism (Z, P, Q) is given by

cost’(u, (Z,P,Q)) = E [IE [ min Dis-utilb(‘)(u,a)”

s~P, |a~Q; |aESet(a) sm

s~P, |a~Q; |a€ESet(a)

B, |, |, nu-a)]. (5)

where the expectation is taken over the randomness in the action of user and the server.

We now define the cost of a mechanism by supremizing over all users u € R. Since, we
refrain from making any distributional assumptions over the users, supremization rather
than mean over the users is the logical choice.

cost’)(Z, P, Q) := sup cost” (u, (Z,P,Q)) =sup E [ E [ min h(|u—a|)” (6)
u€R weR $~Pu |a~Qs [a€Set(a)

We use 1(.) to denote the identity function, i.e. 1(z) = x for every = € R and thus define
the cost function when §(.) is an identity function as follows:

cost!(Z, P, Q) := supcost' V) (u, (Z,P,Q)) =sup E [ E [ min |u — a|” (7)

u€ER u€R 5~Pu |a~Qs |acSet(a)

Recall our central question is to find the triplet over (Z, P, Q) that ensures the smallest
possible disutility / cost while ensuring that P satisfies e-geographic differential privacy. We
denote the value of this cost by f7()(e, k) and it is formally defined as

h(.) —i ; ; b()
Y (e k) : l%fpgg(z‘) Qlengz (cost (Z,P,Q))

=inf inf inf (sup E { E [ min h(ju — a|)”) , where (8)
4 PEP(Z") QeQz \yeR s~Pu |a~Q; |acSet(a)
P(Ze )= {PVu € R, P, is a distribution on Z, and P satisfies e-geographic differential
privacy},

Qz = {Q|Vs € Z,Q is a distribution on R¥}.
1.2 Our results and key technical contributions

For any h(.) satisfying (2) and (3) when the privacy goal is e-GDP our main results are:
The optimal action P, for a user u, is to add Laplace noise® of scale % to its value u

(result stated in Theorem 19 and proof sketch described in Sections 2.1, 2.2 and 2.3).

5 We use L. (u) to denote a Laplace distribution of scale % centred at u. Formally, a distribution X ~ L. (u)

€ —€lz—ul

has its probability density function given by fx(z) = Se
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Further, we emphasize that the optimality of adding Laplace noise is far from obvious®.

For instance, when users and results are located on a ring, Laplace noise is not optimal
(see appendix A.2 for an analysis when k = 2).

The optimal server response Q could be different based on different . We give a recursive
construction of Q for a general b (Section 2.4). Furthermore, when h(t) = ¢, we give an
exact construction of Q (sketched in Fig. 2 for k = 5) and show that f1)(e, k) = O(X)
in Section 2.4 and [57, Appendix C.5].

Although we do not assume that distributions in (P, Q) admit valid density functions,
we prove in Lemma 13 that it suffices to consider only bounded density functions using ideas
from mollifier theory [36]. In Appendix A, we generalize our results by allowing user queries
to lie on a higher dimensional space and studying g(.)-geographic differential privacy (defined
in Definition 21) for an increasing convex differentiable function g(). Formally, our main
results can be stated as:

» Theorem 5 (corresponds to Theorem 19 and Theorem C.3 in [41]). For e-geographic
differential privacy, adding Laplace noise, that is, user u sends a signal drawn from distribution
Lc(u), is one of the optimal choices of P(ZE) for users. Further, when h(t) = t, we have
f1O(e, k) = O(Z) and the optimal mechanism (Z,P,Q) (choice of actions of users and
server) itself can be computed in closed form. For a generic h(.), the optimal server action
Q may be computed recursively.

In addition to our overall framework and the tightness of the above theorem, a key
contribution of our work is in the techniques developed. At a high level, our proof proceeds
via constructing an infinite dimensional linear program to encode the optimal algorithm
under DP constraints. We then use dual fitting to show the optimality of Laplace noise.
Finally, the optimal set of results being computable by a simple dynamic program given such
noise.

The technical hurdles arise because the linear program for encoding the optimal mechanism
is over infinite-dimensional function spaces with linear constraints on both derivatives and
integrals, since the privacy constraint translates to constraints on the derivative of the density
encoding the optimal mechanism, while capturing the density itself requires an integral. We
call it Differential Integral Linear Program (DILP); see Section 2.2. However, there is no
weak duality theory for such linear programs in infinite dimensional function spaces, such
results only existing for linear programs with integral constraints [3]. We, therefore, develop
a weak duality theory for DILPs (see Section 2.2 with a detailed proof in [41, Appendix C.6]),
which to the best of our knowledge is novel. The proof of this result is quite technical and
involves a careful application of Fatou’s lemma [56] and the monotone convergence theorem
to interchange integrals with limits, and integration by parts to translate the derivative
constraints on the primal variables to derivatives constraint on the dual variables. We believe
our weak duality framework is of independent interest and has broader implications beyond
differential privacy; see [41, Appendix B.7] for two such applications.

5 In fact, only a few optimal DP mechanisms are known [39, 43, 46, 25], and it is known that for certain
scenarios, universally optimal mechanisms do not exist [17].
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Figure 2 Optimal mechanisms in geographic differential privacy setting when k& = 5 and € €
{0.3,0.5,1.0}. Suppose the user has a private value u. Then the user sends a signal s drawn from
distribution Lc(u) to the server, meaning the user sends s = v+ x where « is drawn from the density
function p(t) in this figure. Suppose the server receives s. Then the server responds {s+au, ..., s+as},
where the values of a1, as, ..., as are the t-axis values of dots on the density functions.

1.3 Related Work
1.3.1 Differential Privacy

The notion of differential privacy in the trusted curator model is introduced in [27]; see [29]
for a survey of foundational results in this model. The idea of local differential privacy dates
back to [47], and the algorithms for satisfying it have been studied extensively following the
deployment of DP in this model by Google [31] and Apple [6]; see, e.g. [18, 21, 60, 11] and
Bebensee [13] for a survey. Geographic differential privacy was introduced by [4] and has
gained widespread adoption for location data. Since GDP utilizes the trust assumptions of
the local model, it is only a slight relaxation of the traditional local model of DP.

1.3.2 Multi-Selection

An architecture for multi-selection, particularly with the goal of privacy-preserving advertising,
was introduced in Adnostic by [58]. Their proposal was to have a browser extension that
would run the targeting and ad selection on the user’s behalf, reporting to the server only
click information using cryptographic techniques. Similarly, Privad by [42] propose to use an
anonymizing proxy that operates between the client that sends broad interest categories to
the proxy and the advertising broker, that transmits all ads matching the broad categories,
with the client making appropriate selections from those ads locally. Although both Adnostic
and Privad reason about the privacy properties of their proposed systems, unlike our work,
neither provides DP guarantees.

Two lines of work in the DP literature can be seen as related to the multi-selection
paradigm — the exponential mechanism (see e.g. [52, 16, 50]) and amplification by shuffling
(see e.g. [30, 22, 33]). The exponential mechanism focuses on high-utility private selection

from multiple alternatives and is usually deployed in the Trusted Curator Model (TCM).

Amplification by shuffling analyzes the improvement in the DP guarantees that can be
achieved if the locally privatized data is shuffled by an entity before being shared with the
server. As far as we are aware, neither of the results from these lines of work can be directly
applied to our version of multi-selection, although combining them is an interesting avenue
for future work.

8:7
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Several additional directions within DP research can be viewed as exploring novel system
architectures in order to improve privacy-utility trade-offs, e.g., using public data to augment
private training [53, 10], combining data from TCM and LM models [8, 7, 14], and others.
Our proposed architecture is distinct from all of these. Finally, our work is different from
how privacy is applied in federated learning [38] — there, the goal is for a centralized entity
to be able to build a machine learning model based on distributed data; whereas our goal is
to enable personalized, privacy-preserving retrieval from a global ML model.

The closest work we are aware of is Apple’s very recent system using multiple options
presented to users to improve its generation of synthetic data using DP-user feedback [55].

1.3.3 Optimal DP mechanisms

To some extent, previous work in DP can be viewed as searching for the optimal DP
mechanism, i.e. one that would achieve the best possible utility given a fixed desired DP
level. Only a few optimal mechanisms are known [39, 43, 46, 25], and it is known that for
certain scenarios, universally optimal mechanisms do not exist [17]. Most closely related to
our work is the foundational work of [39] that derives the optimal mechanism for counting
queries via a linear programming formulation; the optimal mechanism turns out to be the
discrete version of the Laplace mechanism. Its continuous version was studied in [34], where
the Laplace mechanism was shown to be optimal. These works focused on the trusted curator
model of differential privacy unlike the local trust model which we study.

In the local model, [49] show Laplace noise to be optimal for e-geographic DP. Their
proof relies on formulating an infinite dimensional linear program over noise distributions
and looking at its dual. Although their proof technique bears a slight resemblance to ours,
our proof is different and intricate since it involves the minimisation over the set of returned
results in the cost function. A variation of local DP is considered in [37], in which DP
constraints are imposed only when the distance between two users is smaller than a threshold.
For that setting, the optimal noise is piece-wise constant. However, our setting of choosing
from multiple options makes the problems very different.

1.3.4 Homomorphic encryption

Recent work of [45] presents a private web browser where users submit homomorphically
encrypted queries, including the cluster center ¢* and search text q. The server computes the
cosine similarity between ¢ and every document in cluster ¢*, allowing the user to select the
index of the most similar document. To retrieve the URL, private information retrieval [24]
is used. This approach requires making all cluster centers public and having the user identify
the closest ¢*, which differs significantly from our multi-selection model.

Additionally, homomorphic encryption for machine learning models [51, 23] faces practical
challenges, such as high computational overhead and reduced utility, limiting real-world
deployment. While our multi-selection framework provides a weaker privacy guarantee
than homomorphic encryption, it avoids requiring the recommendation service to publish
its full data or index, which in certain context may be viewed as proprietary information
by the service. We thus argue that homomorphic encryption-based and multi-selection
based approaches offer distinct trade-offs, making them complementary tools for private
recommendation systems.
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1.3.5 Related work on duality theory for infinite dimensional LPs

Strong duality is known to hold for finite dimensional linear programs [19]. However, for

infinite dimensional linear programs, strong duality may not always hold (see [3] for a survey).

Sufficient conditions for strong duality are presented and discussed in [59, 12] for generalized
vector spaces. A class of linear programs (called SCLPs) over bounded measurable function
spaces have been studied in [54, 15] with integral constraints on the functions. However, these
works do not consider the case with derivative constraints on the functional variables. In [49,
Equation 7] a linear program with derivative and integral constraints (DILPs) is formulated
to show the optimality of Laplace noise for geographic differential privacy. However, their
duality result does not directly generalize to our case since our objective function and
constraints are far more complex as it involves minimization over a set of results.

We thus need to reprove the weak-duality theorem for our DILPs, the proof of which is
technical and involves a careful application of integration by parts to translate the derivative
constraint on the primal variable to a derivative constraint on the dual variable. Further,
we require a careful application of Fatou’s lemma [56] and monotone convergence theorem
to exchange limits and integrals. Our weak duality result generalizes beyond our specific
example and is applicable to a broader class of DILPs. Furthermore, we discuss two problems
(one from job scheduling [2] and one from control theory [32]) in [41, Appendix B.7] which
may be formulated as a DILP.

2  Characterizing the Optimal Mechanism: Proof Sketch of Theorem 5

We now present a sketch of the proof of Theorem 5; the full proof involving the many
technical details is presented in the Appendix. We first show that for the sake of analysis,
the server can be removed by making the signal set coincide with result sets (Section 2.1)
assuming that the function OPT is publicly known both to the user and server.” Then in
Section 2.2 we construct a primal linear program O for encoding the optimal mechanism,
and show that it falls in a class of infinite dimensional linear programs that we call DILPs,
as defined below.

» Definition 6. Differential-integral linear program (DILP) is a linear program over Riemann
integrable function spaces involving constraints on both derivatives and integrals.

A simple example is given in Equation (9). Observe that in equation (9), we define C; to
be a continuously differentiable function.

inf ola()do

. 9(.);c1(R_>R+)/R| \g( )

0= s.t. /g(v)du =1 o
R

—eg(v) < g'(v) < eg(v) VR

We next construct a dual DILP formulation £ in Section 2.2, and show that the formulation
satisfies weak duality. As mentioned before, this is the most technically intricate result since
we need to develop a duality theory for DILPs. We relegate the details of the proof here to
the Appendix.

7 One should note that this removal is just for analysis and the server is needed since the OPT function
is unknown to the user.

8:9
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Next, in Section 2.3, we show the optimality of the Laplace noise mechanism via dual-
fitting, i.e., by constructing a feasible solution to DILP &£ with objective identical to that of
the Laplace noise mechanism. Finally, in Section 2.4, we show how to find the optimal set
of k results given Laplace noise. We give a construction for general functions h(.) as well
as a closed form for the canonical case of h(t) = ¢. This establishes the error bound and
concludes the proof of Theorem 5.

2.1 Restricting the signal set Z to R*

We first show that it is sufficient to consider a more simplified setup where the user sends a
signal set in R¥ and the server sends back the results corresponding to the signal set. Since
we assumed users and results lie in the same set, for the purpose of analysis, this removes
the server from the picture. To see this, note that for the setting discussed in Section 1.1.4,
the optimal result for user u is the result w itself, where when we refer to “result u”, we refer
to the result OPT(u) € M.

Thus, this approach is used only for a simplified analysis as the OPT function is not
known to the user and our final mechanism will actually split the computation between the
user and the server.

Therefore a user can draw a result set directly from the distribution over the server’s
action and send the set as the signal. The server returns the received signal, hence removing
it from the picture. In other words, it is sufficient to consider mechanisms in Pﬂ(g, which are
in the following form (corresponding to Theorem 8).

1. User v € R reports s that is drawn from a distribution P, over R¥.
2. The server receives s and returns s.

We give an example to illustrate this statement below.

» Example 7. Fix a user u and let Z = {s1,52} and {a(V) a®} C R* and consider a
mechanism M where user u sends s; and se with equal probability. The server returns
a € R¥ on receiving signal s, with the following probability.

P (a =alW|s = sl) =02, P (a =a®|s = sl) = 0.8,
P (a =aW|s = 52) =04, P (a =a®|s = 52) =0.6.

Then the probability that u receives a") is 0.3 and it receives a(®) is 0.7. Now consider
another mechanism My with the same cost satisfying differential privacy constraints, where
Z = {a a®}, with user u sending signal al!) and a(® with probabilities 0.3 and 0.7.
When the server receives a € R¥, it returns a.

We show the new mechanism M satisfies differential privacy assuming the original
mechanism M satisfies it. As a result, we can assume Z = R* when finding the optimal
mechanism.

The following theorem states that it is sufficient to study a setup removing the server
from the picture and consider mechanisms in set of probability distributions supported on
R* satisfying e-geographic differential privacy (77]1(;,2 as defined in Section 1.1.5).

» Theorem 8 (detailed proof in Appendix C.1 of [41]). It is sufficient to remove the server (Q)
from the cost function f9C) (e, k) and pretend the user has full-information. Mathematically,
it maybe stated as follows.

PO, k) = inf sup E min h(ju —al)| . (10)
PEPD;?UGRQNP" a€Set(a)
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Proof Sketch. Fix Z,P € P(Ze), Qe Qy. Foru e Rand S C R¥, let P, (S) be the probability
that the server returns a set in S to user u. Then for any u;, us € R, S C R*, we can show that
Py, (S) < eslm=u2lp, (S) using post-processing theorem, and thus P = {P,}yecr € 73]1(3
because P, is a distribution on R¥ for any u € R. At the same time,

E {]E [min f)(|u—a|)”: E [min h(|u—a|))7} s0 we have

s~P, [a~Qs |aESet(a) a~P, |a€Set(a)

7O, k) = inf sup E {min h(|u—a|)}. <
Pepﬂé? weR a~Py |acSet(a)

2.2 Differential integral linear programs to represent f(e, k) and a weak
duality result

Recall the definition of DILP from Definition 6. In this section, we construct an infimizing
DILP O to represent the constraints and the objective in the cost function f(e, k). We then
construct a dual DILP &, and provide some intuition for this formulation. The proof of weak
duality is our main technical result, and its proof is defered to the Appendix.

2.2.1 Construction of DILP O to represent cost function f(e, k)
We now define the cost of a mechanism P which overloads the cost definition in Equation 6

» Definition 9. Cost of mechanism P € 73]1({,3 : We define the cost of mechanism P as

cost(P) :=sup E min “—a .
( ) uéﬂg a~ P, aeset(a)h(| |) ( )

Observe that in Definition 9 we just use P instead of the tuple (Z, P, Q) as in Equation
(6). Observe that it is sufficient to consider P in the cost since P simulates the entire
combined action of the user and the server as shown in Theorem 10 in Section 2.1. We now
define the notion of approximation using cost of mechanism by a sequence of mechanisms
which is used in the construction of DILP O.

» Definition 10. Arbitrary cost approzimation: We call mechanisms P ¢ ”PH({? an arbitrary

cost approzimation of mechanisms P € Pﬂ(g if lirr%) cost(P(”)) = cost( P)
n—

Now we define the DILP O to characterise f(e, k) in Equation (10). In this formulation,
the variables are g(.,.) : Z8(R x R¥ — RT), which we assume are non-negative Riemann
integrable bounded functions. These variables capture the density function P,.

inf K
g(.,.):IZB(RxRF—R*),kER

k
st. Kk— / Leréleitrgx) b(Ju — a|)} g(u,x)d <H x,») >0VuelR

xERF i=1

0= k
/ g(u,x)d (H%) =1VuelR

xERF =1

eg(u,x) +g, (u,x) > 0; Vu e Rjx € R¥

eg(u,x) — Gy (u,x) > 0; Yu € R;x € R¥
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(12)

In DILP O, we define g _(u,x) and g,,(u,x) to be the lower and upper partial derivative of
g(u,x) at u. Now observe that, we use lower and upper derivatives instead of directly using
derivatives as the derivatives of a probability density function may not always be defined
(for example, the left and right derivatives are unequal in the Laplace distribution at origin).

Note that the DILP O involves integrals and thus requires mechanisms to have a valid
probability density function, however not every distribution is continuous, and, as a result,
may not have a density function (e.g. point mass distributions like pf defined in Definition
15). Using ideas from mollifier theory [35] we construct mechanisms P with a valid
probability density function that are an arbitrary good approximation of mechanism P in
Lemma 13, hence showing that it suffices to define O over bounded, non-negative Reimann
integrable functions g. We now prove that the DILP constructed above captures the optimal
mechanism, in other words, opt(O) = f(e, k).

» Lemma 11. Let opt(O) denote the optimal value of DILP (12), then f(e, k) = opt(O).

To prove this lemma, we show Lemma 12, which relates the last two constraints of
the DILP O to e-geographic differential privacy, and Lemma 13, which shows that an
arbitrary cost approximation of mechanism P can be constructed with valid probability
density functions.

» Lemma 12. Let P, have a probability density function given by g(u,.) : R¥ — R for every
u € R. Then, P satisfies e-geographic differential privacy iff max(|g, (u, )|, \gu(u, x)|) <
eg(u, ) Yu € R; Ve € RF 8

The proof of this lemma ([41, Appendix C.2.1]) proceeds by showing that e-geographic

differential privacy is equivalent to Lipschitz continuity of log g(u, x) in u.°

» Lemma 13. (Proven in [41, Appendiz C.2.5]) Given any mechanism P € 771(;2 (satisfying
e-geographic differential privacy), we can construct a sequence of mechanisms P with
bounded probability density functions such that P s an arbitrary cost approximation of
mechanism P € PR€,€.

Using Lemmas 13 and 12, we give the proof of Lemma 11.

Proof of Lemma 11. Consider any ¢ > 0. As established in Lemma 13, it follows for every
mechanism P € Pl(,f,z, we can construct another mechanism P with bounded probability
density functions whose cost is a ( approximation of the cost of mechanism P. Thus, we can
use Lemma 12 to conclude that the optimum value of DILP O is precisely f(e, k). <

2.2.2 Dual DILP £ and statement of weak duality theorem

Now, we write the dual of the DILP O as the DILP £ in Equation (13). Observe that, we
have the constraint that 6(.) and A(.) is non-negative, C° (continuous) and v(.,.) is a C?
function i.e. v(r,v) is continuously differentiable in r and continuous in v. Thus, we may
rewrite the equations as

8 g, (u, %), g, (u,x) denote the lower and upper partial derivative w.r.t. u

9 We handle the case when the log is not defined as the density is zero at some point separately in the
proof.
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sup / A(r)dr
5(.),A():CO(R—=RT); Jrer
v(.,):C(Rx (R)F 5R)

s.t. / o(rydr <1
g = reR
_ |:aer£eitr(1v) h(|r — a|)} 5(r) + A(r) 4 ve(r,v) + €|v(r,v)| <0 Vr € R;v € (R)*

3U : C°(RF = R) s.t. v(r,v) >0Vr>U(v) Vv e (R)F
3L : C°(RF = R) s.t. v(r,v) <0 Vr < L(v) Vv € (R)F

(13)

To get intuition behind the construction of our dual DILP &, relate the equations in
DILP O to the dual variables of DILP £ as follows. The first equation denoted by {§(r)}rer,
second equation denoted by {\(r)},.cr and the last two equations are jointly denoted by
{v(r,v)}rerive @y 10 The last two terms in the second constraint of DILP € are a consequence
of the last two equations on DILP O and observe that it involves a derivative of the dual
variable v(u,v). The linear constraint on the derivative of the primal variable translates to a
derivative constraint on the dual variable by a careful application of integration by parts,
discussed in detail in [41, Appendix C.6].

Observe that in our framework we have to prove the weak-duality result as, to the best
of our knowledge, existing duality of linear programs in infinite dimensional spaces work for
cases involving just integrals. The proof of this Theorem 14 is technical and we defer the
details to [41, Appendix C.6].

» Theorem 14. opt(O) > opt(€).

2.3 Dual fitting to show the optimality of Laplace noise addition

Before starting this section, we first define a function f (e, k) which characterises the optimal
placement of k points in R to minimise the expected minimum disutility among these k
points measured with respect to some user u sampled from a Laplace distribution. As we
shall prove in Theorem 16 that it bounds the cost of the Laplace noise addition mechanism.

A

k)= min E i - 14
fle k) min B aé?elﬁa)wy al) (14)

In this section, we first define a mechanism in Definition 15 which simulates the action of
the server corresponding to the Laplace noise addition mechanism in Section 2.3.1 and show
that the cost of Laplace noise addition mechanism is f (e, k). We finally show the optimality
of Laplace noise addition mechanism via dual fitting i.e. constructing a feasible solution to
the dual DILP £ with an objective function f(e, k) in Section 2.3.2.

2.3.1 Bounding cost function f(e, k) by the cost of Laplace noise
adding mechanism

~Lec A . . . .
We now define the mechanism P~ = {P~<},,cg which corresponds to simulating the action
of the server on receiving signal S,, ~ L.(u) from user u. We often call this in short as the
Laplace noise addition mechanism.

10Note that the variable v(r, v) is constructed from the difference of two non-negative variables corres-
ponding to third and fourth equations, respectively. The detailed proof is in [41, Appendix C.6].
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» Definition 15. The distribution PUL is defined as follows for every u € R.

ar~ qu <= a=argmin E [ min h(ya|)} where Sy, ~ L(u) (15)
acRk  Y~Lc(Sy) |a€Set(a)

(Qargmin E { min f)(|ya|)] + 8, N where Sy ~ L.(u) (16)
acRk  Y~Lc(0) [a€Set(a)

Equality (a) follows from the fact that y ~ L(2) = y — 2z ~ L(0) for every z € R.

Observe that the server responds with set of points Set(a) for some a € R* so as to
minimise the expected cost with respect to some user sampled from a Laplace distribution
centred at S,,. We show that the following lemma which states that P~Le gatisfies e-geographic
differential privacy constraints and bound f(e, k) by f (e, k).

~ L.
» Lemma 16 (detailed proof in Appendix C.3 of [41]). P satisfies e-geographic differential-

“ L. . >
privacy constraints i.e. P € Pﬂ({k) and thus, we have f(e, k) < cost(P*<) = f(e, k)

Proof Sketch. Observe that Pfc e 73]1({,3 from the post processing theorem, refer to [28]
since S, ~ L.(u) satisfies e-geographic differential privacy constraints.'?. Thus, we prove
f(e, k) < cost(P*<). The equality is fully proven in [57, Appendix C.3]. <

2.3.2 Obtaining a feasible solution to DILP &£

We now construct feasible solutions to DILP £. For some ¢ > 0 and A > 0, we define
5 ) = (¢/2)e I and X (r) = X (¢/2)e " vr e R (17)

Now define v,,cq = Median(Set(v)) and for every v € R¥, we consider the following
Differential Equation (18) in o(.).

— | min b(|r —al)|69@) + A @) +

Lo dl;ig) +¢|o(r)] = 0; with D(Vmeq) =0 (18)

Observe that this equation precisely corresponds to the second constraint of DILP &£
(inequality replaced by equality) with an initial value. We now show that a solution 7(.) to
differential equation (18) exists such that 2(r) is non-negative for sufficiently large r and
non-positive for sufficiently small r to satisfy the last two constraints of DILP £ in Lemma 17.
Observe that the structure of our differential equation is similar to that in [49, Equation 19].
However, our differential equation has significantly more complexity since we are minimising
over a set of points v € R¥ and also our equation has to be solved for every v € R¥ making
it more complex.

» Lemma 17 (Proof in Appendix C.4.2 of [41]). Choose { < € and 0 < A< ng(e +(, k),

then equation (18) has a unique C' solution v\°)(.) and there exists U, L € R satisfying
() >0Vr>U and v (r) <0 Vr < L.

Intuitive explanation. We just give an intuition for this proof for the case where \ exceeds
e—¢
e+¢ A
and A >

f(e, k) by showing two plots in Figure 3a and 3b for the two cases where A < %f(e, k)

f(e, k) respectively. In the first case, () (r) is positive for sufficiently large r

€—

e+¢

1 Observe that we choose a deterministic tie-breaking rule amongst all vectors minimising this objective.
12 post processing theorem can be proven even for e-geographic differential privacy similarly.
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and in second case, it goes negative for large r demonstrating the requirement of the bound

:rgf(e, k) on A. The two plots are for the case when e = 1, ¢ = 0.1, h(z) = z and thus

Cf(e, k) may be approximately by 1—91 X % = 0.44 as shown in Section 2.4. For the purpose
713

e+

of the plots, we choose v = [—1log4; 0; log4 and demonstrate the point in the Lemma.

1e61 Solution plot
Solution plot B -
015 —— A=0.46
oS S
“ = o
< oo S
) Y
= 0.05 -1
0.15 -2
-150 -100 =50 o 50 100 150 -150 -100 =50 0 50 100 150
r
(a) Solution for A = 0.40. (b) Solution for A = 0.46.
Figure 3 Solutions for Differential Equation (18) for v = [—log4; 0; log4]”.

These spikes in the solution may be observed due to the selection of v € R? due to the

term | min bH(|]r — a|)] in the differential equation. <
a€Set(v)

» Lemma 18 (detailed proof in Appendix C.4.2 of [41]). opt(E) > f(e, k).

We present a proof sketch where we do not explicitly show the continuity of the bounds U(.)
and L(.). In [41, Appendix C.7], we prove a claim showing such an existence.

Proof Sketch. Recall the functions A\(¢)(.), §(9)(.) defined in (17). Also for every v € R¥, we
obtain a function (¢ (., v) [solution of Equation (18)] with bounds U(v) and L(v) satisfying
v (r,v) >0 Yu > U(v) and v (r,v) <0 Vu < L(v) and this solution is feasible.

The objective value of this feasible solution is A and the constructed solution is feasible
for any A < Z_Cf(e + ¢, k) and ¢ > 0. Now, since f(e, k) is continuous in €, choosing ¢ to be

+¢
arbitrarily small enables us to obtain the objective value of the solution arbitrarily close to
f(e, k) and thus, opt(€) > f(e, k). <

. L.
Observe that although we defined the Laplace noise addition mechanism (P ) (see
Definition 15) entirely in terms of the user’s action, we can consider an alternate mechanism

A

Le, . . .
splitting (P ) into user’s action and server’s response attaining the same cost:
User u sends S, ~ Lc(u) to the server.

The server on receiving S, responds with a vector a = argmin  E [ min h(|y—a)] .
acRF Y~Le(Sy) |acSet(a)
» Theorem 19. For e-geographic differential privacy, sending Laplace noise, that is, user u
sends a signal drawn from distribution L.(u) is one of the optimal choices of P(Ze) for users,
and in this case f9C) (e, k) = f(e, k).

Proof. Combining the results in Lemmas 16, 11, 18 and Theorems 14 and Theorem 8, we
obtain f(e, k) < opt(£) < opt(O) < f(e, k) where f(e, k) denotes the cost of Laplace noise
addition mechanism P% i.e. cost(P%<) = f(e, k). <

13 We choose this vector as it minimises equation (14) with detailed calculation is given in Section 2.4.
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2.4 Server response given the user sends Laplace Noise

Recall that we proved in Theorem 19 that the Laplace noise addition mechanism is an
optimal action for the users. We now focus on the construction of an optimal server action
on receiving the signal s from an user.

1. User with value v € R reports s after adding Laplace noise of scale %
2. The server receives s and respond (s + ay,...,s + ax), where aq,...,ay are fixed values.

For the case of h(t) = t, the optimal mechanism is simple enough that the values
ai,as, . ..,ar can be computed by dynamic programming, as we sketch in Section B, and
this concludes the proof of Theorem 5. For other general increasing functions, the optimal
solution for {a;}*_, may not always be written in closed form, however we can always write
a recursive expression to compute the points.

Based on the above arguments in the four sections, we have the main Theorem 5.

3 Conclusion

We have defined a new “multi-selection” architecture for differential privacy that takes
advantage of technological advances that enable a server to send a small number of multiple
recommendations to the user. We have shown in a stylized model that the architecture
enables significant improvements in the achievable privacy-accuracy trade-offs. We conduct
experiments using the MovieLens dataset [44] to empirically demonstrate the privacy-utility
tradeoffs within our multi-selection framework [57]. Our analysis disregards some practical
considerations, namely, that the client’s requests are in a high dimensional feature space
(and not in one-dimension), and that the server may rely on a machine learning model to
evaluate the quality of a result that it may need to convey to the client in some compressed
form, which we leave to future work.
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Further extensions

We describe some additional results below.

When the user is not able to perform the optimal action, we show in Appendix A.3 that
cost'(Z,P,Q) = O(lokgek) for an appropriate server response Q' if the user’s action P
consists of adding symmetric noise whose distribution satisfies log-concave property'®.
Observe that this property is satisfied by most natural distributions like Exponential and
Gaussian.

4 The server’s action Q involves sampling from the posterior of the noise distribution.
'®If the random noise with log-concave distribution g is given by Y, then we have E[Y " U {0}] = % and
9(y) = 9(=).
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We further show that Laplace noise continues to be an optimal noise distribution for
the user even under a relaxed definition of geographic differential privacy (defined in
Definition 21) in Section A.1. This definition captures cases when privacy guarantees
are imposed only when the distance between users is below some threshold (recall from
Section 1.3.3 that such a setup was studied in [37]).

Often, the set of users may not belong to R but in many cases may have a feature vector
embedding in R%. Here, a server could employ dimensionality reduction techniques such
as Principal Component Analysis (PCA) to create a small number d' of dimensions
which have the strongest correlation to the disutility of a hypothetical user with features
identical to the received signal. The server may project the received signal only along these
dimensions to select the set of k results. Here, we show that cost]l(')(Z7 P,Q) =0 (ﬁ
under some assumptions as discussed in [41, Appendix B.6] when the user’s action P
consists of adding independent Gaussian noise to every feature.

A.1 A generalization of Geographic differential privacy

Here we consider a generalization of e-geographic differential privacy and define g(.)-geographic
differential privacy for an increasing convex function g(.) satisfying Assumption 20.

» Assumption 20. g(.) is a increasing convezx function satisfying g(0) = 0 and g(.) is
differentiable at 0 with g'(0) # 0.

» Definition 21 (alternate definition of geo-DP). Let € > 0 be a desired level of privacy and
let U be a set of input data and Y be the set of all possible responses and A(Y) be the set of
all probability distributions (over a sufficiently rich o-algebra of Y given by o())). For any
g(.) satisfying Assumption 20 a mechanism @Q : v — A(Y) is g(.)-geographic differentially
private if for all S € o(Y) and ui,us € U:

P(Quy € 8) < e?l=u2DP(Quy € 9).

Since this definition allows the privacy guarantee to decay non-linearly with the distance
between the user values, it is a relaxation of e-geographic DP as defined in Definition 2.
Observe that this definition captures cases where the privacy guarantees exist only when
the distance between users is below some threshold by defining g(¢) to be oo if ¢ > Ty for
some threshold 7. Under this notion of differential privacy, we may redefine cost function
090 (e k) as follows.

alt.h()(g(), k) := inf inf inf sup E [ E { min u—a ”
PG =iyt it g s BB i ()]

where ’Pg(') = {P|Vu € R,P, is a distribution on Z, and g(.)-geographic differential
privacy is satisfied}. The definition of Qz are similar to that in Section 1.1.2.

We now show that adding Laplace noise continues to remain an optimal action for the
users even under this relaxed model of geographic differential privacy.

» Theorem 22. For g(.)-geographic differential privacy, adding Laplace noise, whose density

function is p(x) = @ cem 9Ozl s one of the optimal choices of Pg(‘) for users. Further,

when h(z) = z, we have falt,h(-)(g(.% ]{7) =0 (m) and the optimal mechanism (ChO’[CC Of
actions of users and server) itself can be computed in closed form.

Proof. The proof of this theorem follows identically to that of Theorem 5. However, we
require a slight modification of Lemma 12 to prove it as stated and proven in Lemma 23. <«
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Figure 4 Geographic differential privacy setting when users and results are located on a unit
ring, for k = 2 and € € {3/8, 1}, showing the stark difference between Laplace noise and the optimal
noise. Suppose the user has a private value u. Then the user sends u + x to the server, where =
is drawn from a noise distribution with density p(t), depicted here for both Laplace noise and the
optimal noise. Suppose the server receives s. Then the server’s optimal response is s + a1 and s+ aq,
where the values of a1, a2 are the t-axis values of dots on the density functions, again assuming both
Laplace noise and the optimal noise. Laplace is not optimal when ¢ = 3/8, while Laplace is optimal
when € = 1.

» Lemma 23. Suppose, P, has a probability density function given by g(u,.)
R¥ — R for every u € R. Then, P satisfies g(.)-geographic differential privacy iff
max(|g, (u, )|, |g, (u, )]) < g'(0)g(u, x) Vu € R;Vz € R* whenever g(.) satisfies Assump-
tion 20.

The proof of this Lemma is similar to Lemma 12 and proven in [41, Appendix C.2.2]

A.2 Calculation of optimal mechanism on a ring for the case of k = 2

We calculate the optimal mechanism in geographic differential privacy setting, on a unit ring,
when e = 3/8, and the number of results is k = 2. Further, the dis-utility of an user « from a
result a is given by d(u,a) = (u,a).

We use real numbers in [—7,7) to denote users and results on a unit ring, and (x, a)
denotes |z — a|. Figure 4 illustrates the optimal mechanism under geographic DP for k = 2.
This mechanism uses noise that is a piece-wise composition of Laplace noises; we obtain a
cost of 0.72 whereas Laplace noise gives a cost of 0.75. To find the optimal mechanism for
the case of the ring, we solve the DILP O using a linear program solver and obtain the plot
shown in Figure 4 with cost of 0.72. However, when the user sends Laplace noise, the server
on receiving signal z responds with two points z + a; and z + as which maybe calculated by
the following problem.

min . /_Tr min{(z,a1), (z, a2) } p(x)dz,

a1€[—m,m),a2€[—

where p(x) is a density function for the Laplace distribution,
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A.3 Noise satisfying Monotone Hazard Rate property

Let Y denote the random noise with density g. We assume Y is symmetric about the origin,
and let X = Y+ U{0}. Let f denote the density function of X (so that f(z) = 2g(z) for
x> 0), and let F(z) =P (X > z). We assume that E[X] = .16 We assume f is continuously
differentiable and log-concave. By [9], we have F is also log-concave. Note that several
natural distributions such as Exponential (Laplace noise) and Gaussian are log-concave.

We are interested in choosing 2K — 1 values S =
{-ak-1,—ax_2,...,—a1,0,a1,...,ax_1} such that for a random draw y ~ Y, the
expected error in approximating y by its closest point in S is small. For i =0,1,2,..., K —1,

we will choose a; = F~! (1 - %) Let ¢ = E,ox {mig v — w@ Note that the error of Y
veE

with respect to S is exactly ¢.
Our main result is the following theorem:

log K
» Theorem 24. ¢ = O ( B )
Proof. Let G(z) = F~(z) for z € [0,1]. For upper bounding ¢, we map each x ~ X to the
immediately smaller value in S. If we draw z € [0, 1] uniformly at random, the error is upper
bounded as:

1

K i 1/K
o< | G- %G <K> < / (G(2) — G(1/K)) d= + %G(I/K).

0 0

Let ¢ = G(1/K). Then the above can be rewritten as: ¢ < % + fqoo F(z)dz. Next, it
follows from [9] that if F is log-concave, then so is [ F(z)dz. This means the function
foo F(z)dz

r) = v comen is non-increasing in r. Therefore,

/OO Fz)dz < F(q) /OOO Fla)dr = - E[X] = .

Let h(z) = —log F(z). Then, h is convex and increasing. Further, h(q) = log K. Let
s = F~(1/e) so that h(s) = 1. Since h(q) — h(s) > (¢ — s)h'(s), we have ¢ — s < l;;?ég
Further, h(s) < sh/(s) so that h%(g) < s. Since F(s) =1/e and E[X] =1 > [ F(x)dz, we
have s < €. Therefore, h/(s) > 1/ee. Putting this together,

s logK e log K
<= <-(1+logK)=0 .
q*e—’_h’(s)*e(—’_Og ) < € )
Therefore,
q *° log K 1
< = F(z)dx = —
¢_K+/q (z)dz O<K6>+Ke
completing the proof. <

16 This implies that a large € is equivalent to the magnitude of noise being smaller and vice-versa. Although
this distribution does not satisfy e geographic differential privacy, this follows a similar trend w.r.t e.
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A.4 Restricted and Unrestricted Setup of the Multi-Selection model

Recall the setup in Section 1 where the users and results belonged to different sets R and M
with the definition of disutility in Definition 3. In section 1.1.4, we considered an alternate
setup where the users and results belonged to the same set R and the optimal result for an
user u was the result w itself. In this section, we call these setups unrestricted and restricted
respectively and define our “multi-selection” model separately for both these setups. Finally,
we bound the cost function in the unrestricted setup by the cost function in the restricted
setup in Theorem 25 thus, showing that it is sufficient to consider the cost function in the
restricted setup.

Unrestricted setup. Recall that results and users are located in sets M and R respectively
and function OPT : R — M maps every user to its optimal result(ad). Recall that the
disutility of an user u from a result m is defined in Definition 3.

Restricted setup. This setup is very similar to the setup described except the fact that
users and results(ads) lie on the same set R. Recall from Section 1.1.4, the disutility of
an user u € R from a result a € R is given by h(|ju — a|) for some function h(.) satisfying
equations (2) and (3).

A.4.1 The space of server/user actions

Recall that the goal is to determine a mechanism that has the following ingredients:

1. A set of signals Z.

2. The action of users, which involves choosing a signal from a distribution over signals. We
use P, for u € R to denote the distribution of the signals sent by user w. This distribution
is supported on Z.

3. The distribution over actions of the server, Q5 when it receives s € Z. This distribution
denoting the distribution of the result set returned by the server given signal s may be

supported on either R* or M*. for the restricted setup and unrestricted setup respectively.

The optimal mechanism is computed by jointly optimizing over the tuple (Z, P, Q). And
thus, we define the set of server responses by Qunrestricted,z a0d Qrestricted,z fOr unrestricted
and restricted setup respectively.

Qunrestricted.z = {Q|Vs € Z, Q, is a distribution on M*}.

Qrestricted,z = {Q|Vs € Z, Qs is a distribution on R*}.

In any feasible geographic DP mechanism, the user behavior should satisfy e-geographic
differential privacy: for any u;,us € R, it should hold that P,, (S) < P,,(S)ef*1 =% where
S is any measurable subset of Z. For any fixed response size k, in order to maximize utility
while ensuring the specified level of privacy, the goal is to minimize the disutility of the user
from the result that the gives the user minimum disutility where the minimisation is the
worst case user u in R.

A.4.2 Cost functions in both the setups

b(.)

For the unrestricted and restricted setups, we define the cost functions f_ 1 i.ceq(€ k) and

fh(') (e, k) respectively below. Recall that Z may denote any set.

unrestricted

oC) k) := inf inf s E { - (D-S_ 0 )} 19
funrestrlcted(€7 ) 1 Pér;?(zs) ulé%SNPu,aNQS aegleltI%a) 1s-ut1 (Uya) ( )

QE Qunrestricted, Z
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frl(s't)ricted (e, k) := inf inf sup E min b (ju —al)|, where (20)
PGP(ZE) weR $~Pu,a~Q; | a€Set(a)
QE Qrestricted, 2
Pg )= {PVu € R, P, is a distribution on Z, and e-geographic differential privacy is
satisfied }.
We state a theorem upper bounding fl?rg;)estricted(e, k) by frhe(s't)ricted (e, k).
» Theorem 25. For any H(.) satisfying equation (2), we have fz%r)estricted(@ k) <

f’?e(s'zricted(e’ k;) :

A detailed proof for the same is provided in [41, Appendix B.4.4] using the fact that
Dis-util”™ (u, OPT(¢')) < h(ju —u|).

B Server response for odd k when h(.) is an identity function

We now show the optimal choice of A to optimize cost function f(e, k) [in Equation (14)].
Specifically, we assume odd k in this section. The solution for even k (refer [41, Theorem
C.3]) can be constructed using a similar induction where the base case for k = 2 can be
directly optimized. Assuming the symmetry of A, let A = {—yp—1,... — 41,0, Y1, .., Yo—1},
where y1,...,yp—1 are positive numbers in increasing order. We will construct the set
Y1,---,Yo—1 inductively. Let 2 be a random variable drawn from Laplace distribution £.(0)

with parameter €, and the goal is to minimize Dy = E, . (o) |:HlilI41 h(Jz — al)|. Since the
ac

density function of L£.(0) satisfies p._0)(7) = pr. (0)(—7), we have

Dy =E,. i — > 0],

b = Eznr, (0) [{fgghﬂx al)|x }

i.e. the user has a positive private value. Under this conditioning, the variable z is an
exponential random variable of mean 1. In this case, the search result being used by the
server will be one of yo,y1, ..., yp—1. Clearly, D; = 1. To compute Dp41, let s =y;. Then
using the memorylessness property of exponential random variables, we get the recurrence

Dpyq = min{h(t), (s —t)}e tdt + e *Dy
t=0

s/2 s s
:/ h(t)e—tdt+s/ e_tdt—/ h(t)e tdt + e *Dy.
t=0 t=s/2 t=s/2

The optimal Dy11 given Dy can be computed by minimising over all s € R. However, for the
case where h(.) is an identity function, we may give a closed form expression below.

s/2 s s
Dy :/ te tdt + 5/ e tdt — / te tdt + e Dy
t=0 t=s/2 t=s/2

= (1 _ (8/2)6_5/2 _ e—s/z) +s (6—5/2 _ e—s) _

((8/2)6_8/2 +e %% —se7" — e_5> +e Dy
- (1 - 6_3/2)2 + (e—s/2)2 Dy

Setting v = e~*/2, and minimizing by taking derivatives, we get —2(1 — ) 4 2Dy = 0 which

in turn gives v = ﬁ and Dyyq1 = %. Plugging in the inductive hypothesis of D, = 1/b,
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we get Dpr1 = 1/(b+ 1). Further, we get s = 2In(1 + 1/b). Thus, by returning k£ = 2b — 1
results, the expected “cost of privacy” can be reduced by a factor of b. To obtain the actual
positions 1, .., yp—1 We have to unroll the induction. For ¢ = 1,...,b — 1, the position y; is
given by:

Yi = Yi—1 +2In(1+1/(b —1)).
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