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Abstract
We consider the problem of assigning students to schools when students have different utilities for
schools and schools have limited capacities. The students belong to demographic groups, and fairness
over these groups is captured either by concave objectives, or additional constraints on the utility of
the groups. We present approximation algorithms for this assignment problem with group fairness
via convex program rounding. These algorithms achieve various trade-offs between capacity violation
and running time. We also show that our techniques easily extend to the setting where there are
arbitrary constraints on the feasible assignment, capturing multi-criteria optimization. We present
simulation results that demonstrate that the rounding methods are practical even on large problem
instances, with the empirical capacity violation being much better than the theoretical bounds.
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1 Introduction

Several societal decision-making problems manifest as assignment or matching. This includes
the well-known school assignment or school redistricting problems, variants of which are
implemented in several cities, including New York [3, 4], Boston [26], and San Francisco [5].
Typically, students express preferences over schools, and schools have priorities over different
types of students and a fixed capacity to accept students. This assignment can then be
modeled as a matching problem over students and school seats with one or two-sided
preferences.

A standard solution approach is to find a stable matching [2, 3] but often, legislative
or policy objectives require the problem to be augmented with additional features such as
quotas and demographic requirements on the student body selected [1, 13, 32].

While many mechanisms for school choice attempt to reconcile these policy requirements
with desirable traits like strategy-proofness or stability, we turn our focus towards a different
consideration. Instead of designing mechanisms to achieve these traits, we examine schools
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20:2 Group Fairness and Multi-Criteria Optimization in School Assignment

purely as resources to be allocated fairly among the students. We consider a viewpoint from
the perspective of the student demographics, such as location, race, income, or parental
education level, and seek a matching that is fair to these demographic groups. We adopt a
model of cardinal preferences for students, where there is a numerical value to the utility
that a student receives from being assigned to a school. This can capture outcomes such as
average travel distance or assignment to higher-ranked schools. In such settings, the students
are not strategic. Furthermore, concerns about stability may not be relevant when schools
do not have preferences, or when demographic fairness is the primary goal. For example, as
Abdulkadiroğlu and Sönmez [1] note,

“During the redesign of the admissions process, BPS [Boston Public Schools] and
the public considered the option of violating priorities at regular schools to promote
student welfare. Likewise, the New York City high school system involves some schools
at which respecting priorities emerges as a major policy goal and some other schools
where priority violations may not be a cause of concern.”

Analogous to previous work on cardinal preferences [5, 6, 27], we guarantee the existence of
assignments that are fair to various demographic groups at the cost of adding a small number
of extra seats to schools. Our model is general and allows for a variety of fairness objectives.
We are required to assign students to schools subject to: (1) matching every student, and
(2) being fair on the utilities to a pre-defined set of g (potentially overlapping) demographic
groups of students while (3) respecting the capacities of schools as much as possible. As
mentioned before, these groups can capture attributes like race, location, parental income,
etc. Each student has cardinal utilities over schools, and the group fairness could either be
captured by an objective defined over the total utility obtained by each group, or as a set of
constraints capturing the same. We note that though we have presented school assignment
as a canonical application, the assignment problem we consider is very general and has many
applications such as job assignment or course assignment.

By now viewing the demographic groups as players in a fair division problem, where
the schools are the resource to be allocated fairly, we can optimize for objectives such as
minimum welfare or proportionality. Our main result (Theorem 7) is an algorithm to find an
exactly proportional allocation, by adding O(g2) extra seats to the schools, where g is the
number of demographic groups. Since g is small in practice, this is a mild violation.

Our model is similar to the one recently introduced in [23]. However, we significantly
extend their results at the cost of a slightly larger capacity violation. Firstly, in their model,
the demographic groups are required to form a partition of the students. We have no such
restriction, and prove our results under the assumption that demographic groups can overlap
arbitrarily - which is the case in practice when considering unrelated features such as race,
sex, nationality, etc. Second, they assume that all students value schools in the same way.
That is, there is a single, global utility function. Such an assumption is also not based in
practice, where the student preferences may be globally correlated but exhibit large individual
variations. Finally, they achieve only approximate proportionality, and cannot even guarantee
that the allocation is Pareto-optimal on utilities. In contrast, our algorithms guarantee not
only exact proportionality, but a host of other fairness measures such as maximin fairness
and Nash welfare. Compared to their O(g log g) violation in total capacities, we violate
capacities by a marginally larger amount (O(g2)) but solve a much larger class of problems.
To the best of our knowledge, our work is the first to achieve not just exact proportionality,
but any concave fairness objective, in this setting while violating the school capacities by a
small amount.
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Lastly, we remark that our model can capture school-side preferences, albeit not to the
extent of stability. Suppose that a school values each student across h different axes such
as academics, sports, co-curriculars, etc. Then we can write h constraints for each school,
to ensure that the student body assigned to the school is valued at at least (or at most) a
certain threshold in each axes. In general, our framework can model such multi-objective
optimization by incurring additive violations in the capacities as well as the constraints. In
the school example, this would entail violating the capacities by an additive O(hm), where m

is the number of schools, and a similar factor in the constraints. Since m ≪ n, the number
of students, in most practical settings, this is still acceptable.

1.1 Model
Formally, there is a set S of n students divided into g possibly overlapping groups
S1, S2, . . . , Sg. There is a set T of m schools, and school j ∈ T has capacity Cj . There is
also a bipartite graph G = (S ∪ T, E), where (i, j) ∈ E is an edge if for i ∈ S, j ∈ T , it
is possible to assign student i to school j. Let y⃗ denote an assignment, where ye ∈ {0, 1}
denotes whether for edge e = (i, j) ∈ E, student i ∈ S is assigned to school j ∈ T . This
assignment is feasible if it satisfies the capacity constraint of each school, and each student
is assigned to some school1. Let uij be the (non-negative) utility derived by student i, if
assigned to school j.

Given an assignment y⃗ ∈ P, we define the utility of each group Sk as Uk(y⃗) =∑
i∈Sk

∑
(i,j)∈E uijy(i,j). Let U⃗ = ⟨U1, U2, . . . , Ug⟩. The goal is to find a feasible assign-

ment y⃗ that maximizes some fairness function on the utilities perceived by the g groups. Let
f(·) be a non-decreasing concave function. Then, a general goal is to maximize

h(U⃗) =
g∑

k=1
f (Uk(y⃗)) .

In practice, several functions f can be reasonable. For instance, the celebrated Nash
welfare objective sets f = log, and the optimal solution U⃗∗ satisfies the following relation:
For any other feasible utility vector U⃗ ′, we have the relation:

1
g

g∑
k=1

U ′
k

U∗
k

≤ 1. (1)

The utilities U⃗∗ in this allocation are proportional for each of the groups, that is, U∗
k ≥ U ′

k

g ,
meaning each group gets at least 1/g of the utility it would have obtained had it been the only
group in the system and the social welfare was maximized. This notion of proportionality is
the objective considered in [23]. Note that Nash welfare is a much more general objective,
capturing proportionality for various subsets of groups, and the approach in [23] does not
extend to Nash welfare.

Other examples of utility functions that we can model include the max-min fairness
objective, which maximizes

g

min
k=1

Uk

1 Note that this is without loss of generality, since we can always add a dummy school with infinite
capacity to ensure that every student can be matched. However, this naturally affects the fairness
objective. For example, the proportional share of demographic groups can increase from this process.
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20:4 Group Fairness and Multi-Criteria Optimization in School Assignment

and tries to make the least happy group as happy as possible. This can be modeled with
simple linear constraints without needing the use of a convex function. Any objective over
the utilities that has Constant Elasticity of Substitution (CES) with certain parameters
also falls in this model. Such functions can be modeled as maximizing

g∑
k=1

ak(Uk)r.

for non-negative real numbers ak. When r ≤ 1, this function is concave and can be maximized
in our framework. Note that the r > 1 case models an inherently unfair allocation, since it
is always better to allocate more utility to the best-off group.

Finally, we can also capture group fairness through arbitrary covering or packing con-
straints where we are explicitly given utility requirements for each group. The objective is to
find an assignment where each constraint is satisfied. This can capture general multi-criteria
optimization for assignment problems in a non-fairness context. Formally, given g arbitrary
constraints, we obtain a solution that can violate the capacities by a small function of g, and
satisfies the constraints up to an additive function of g and |qmax|, the largest magnitude
coefficient in the constraint matrix. We discuss this further below.

1.2 Our Results
Our main contribution is a set of polynomial-time approximation algorithms for this problem
for arbitrary fairness objectives. In Section 2, we present two approximation algorithms
based on rounding a natural convex programming relaxation, which yield somewhat different
guarantees, as summarized in the theorem below.

▶ Theorem 1. Given any monotone, concave fairness function f , let U⃗∗ be the utilities
in the optimal solution. Then, there exist algorithms to compute an assignment y⃗ that
satisfies relaxed school capacities C⃗ ′ and yields utilities U⃗ ′ with U ′

k ≥ U∗
k for all groups

k ∈ {1, 2, . . . , g}, with one of the following guarantees:
1. A polynomial2 running time and satisfies C ′

j ≤ Cj + 1 + δj, where
∑

j δj ≤ 2g.
2. A nO(g) running time and satisfies C ′

j ≤ Cj + δj with
∑

j δj = O(g2).

Note that the latter algorithm is slower but yields better violation of capacities if g ≪ |T |.
For practical school choice scenarios [3], the number of students significantly outweighs the
number of available schools, while the number of groups g is typically small, even constant.
The above violations are, therefore, quite mild. We substantiate this via our empirical results,
which we discuss later.

We also show that the school assignment problem mentioned above is NP-Hard for the
max-min fairness objective, even when the number of schools or the number of groups is only
two. The latter result extends to the proportionality objective. This motivates the need to
relax the capacity constraints (as in Theorem 1) if our goal is to achieve a polynomial time
algorithm.

▶ Theorem 2. Suppose the number of groups g is part of the input, and the objective is
to decide if the minimum utility received by any group is at least one. Then, the school
assignment problem is NP-Complete even when there are only two schools.

2 Throughout the paper, we use this to mean polynomial in n, m, and g.
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▶ Theorem 3. Suppose the objective is to decide if an exactly proportional allocation exists.
Then, the school assignment problem is weakly NP-Complete, even when the number of
groups g = 2.

We defer the proofs to Section A. We also note that to achieve the proportionality objective,
it is known that a capacity violation of g

2 is required in the worst-case [23].

Packing/Covering Constraints and Multi-criteria Optimization

In Section 3, we present an extension of our framework to handle assignments with more
general constraints. As an application, suppose the utility of a student for a school is multi-
dimensional, capturing aspects like academic excellence, or location, or diversity of student
body. The goal is to achieve at least a specified total utility value in each dimension. Such
multi-objective optimization [16, 25, 28] can be modeled by covering or packing constraints,
and we present a result similar to Theorem 1 for this general setting. Formally, we solve a
linear relaxation of the following integer program, where we have a setting as in Section 1.1
but instead of the fairness objective and utilities, we have a matrix Q ∈ Rn×r defining r linear
constraints that we are required to satisfy. In other words, we wish to solve the following
integer program:

(IP)

∑
j

yij = 1 ∀ students i (2)

∑
i

yij ≤ Cj ∀ schools j (3)∑
i,j

qℓ
ijyij ≥ Qℓ ∀ℓ ∈ {1, 2, . . . , r} (4)

yij ∈ {0, 1} ∀ i, j (5)

We show that Theorem 1 generalizes to this setting at the cost of incurring an additional
additive loss proportional to |qmax| := maxi,j,ℓ

∣∣qℓ
ij

∣∣ and r, the number of rows in Q.

▶ Theorem 4. For arbitrary constraints, when the linear programming relaxation of (IP)
has a feasible solution, there are algorithms that output an integer solution

In polynomial time, such that the constraints Equation (4) are preserved up to an additive
r · |qmax|; and if each school is given one unit extra capacity, the total violation in
Equation (3) over this is 2r.
In nO(r) time, such that the constraints Equation (4) are preserved up to an additive
O(r2 · |qmax|); and the total violation in Equation (3) is O(r2).

As a specific application, in Section 3.4 we study the assignment with ranks problem
first considered in [18]. Here, each student ordinally ranks the schools with possible ties. An
input signature ρ⃗ of length r, the goal is to find an assignment where the number of students
who are assigned their first k choices (for all k ≤ r) is at least

∑k
j=1 ρj . In comparison to the

algorithm in [18] that runs in time nO(r2) and uses multivariate polynomial interpolation, our
algorithms present substantial improvements in both runtime and ease of implementation at
the cost of a small capacity violation, when students are given a small choice r of ranks. We
show that this problem has an additional “monotonicity” in the constraints, that enable us
to avoid the additive violation mentioned above.

FORC 2025



20:6 Group Fairness and Multi-Criteria Optimization in School Assignment

▶ Theorem 5. Given a feasible fractional solution to a matching with ranking instance with
input signature ρ, there is an algorithm to output a matching with signature σ ≻ ρ that
satisfies relaxed school capacities C⃗ ′ with one of the following guarantees:
1. A poly(n, r) running time and satisfies C ′

j ≤ Cj + 1 + δj, and
∑

j δj ≤ 2r.
2. A nO(r) running time and satisfies C ′

j ≤ Cj + δj, and
∑

j δj = O(r2).

Benchmark and Simulation

In Section 4, we present a benchmark for the group fairness objective, where we use an ILP
to find the optimum violation in capacity needed to achieve the utilities generated by the
convex program. Theorem 1 yields a theoretical upper bound on the capacity violation.
However, we show that both the ILP benchmark as well as our rounding algorithms yield
substantially better violations on realistic instances, hence showcasing the practicality of our
approach. We also present empirical results for the aforementioned matching with ranks
problem in Section C.

1.3 Techniques and Related Work
Our algorithm uses LP rounding and borrows ideas from the seminal Generalized Assignment
Problem (GAP) rounding technique of Lenstra, Shmoys, and Tardos [19, 29]. Their iterative
rounding procedure involves the observation that the number of fractional variables in a
vertex solution to a linear programming relaxation is bounded. We build on this idea and
apply it to a linear program written on paths and cycles instead of assignments, enabling us to
combine it with a theorem of Stromquist and Woodall [31]. This approach was recently used
in a similar model by the authors in [23], which they called “cake frosting”. This theorem is
a consequence of the celebrated ham-sandwich theorem [30], and is, hence, non-constructive.
Using this technique, they achieve approximate proportionality while violating the total
capacity by O(g log g), where g is the number of groups.

In contrast, we use convex programming relaxation to handle arbitrary fairness objectives
such as proportional fairness, Pareto-optimality, and maximin fairness, vastly generalizing
the space of objectives. Our method only loses O(g2) on the total capacity, while preserving
utilities from the fractional relaxation. For instance, our method would achieve exact
proportionality, and by Equation (1), it even achieves a generalization of this concept to
subsets of groups. Further, we show empirically that the use of convex programming keeps
the cake frosting instance very small and hence tractable.

At a high level, our main technical contribution is to show how the cake frosting method
can be applied to certain types of fractional solutions, in particular, a vertex solution
constructed via GAP rounding of the convex programming relaxation. We hence showcase
the full power of the technique in [31]. In addition, as discussed above, our techniques extend
smoothly to handle arbitrary covering or packing constraints on the allocations, which is
motivated by multi-objective optimization and rank optimization.

We note that the idea of using cake frosting to round fractional solutions has appeared
before for packing problems in Grandoni et al. [17], where the authors develop a PTAS for
matchings in general graphs with O(1) budget constraints on the set of chosen edges. At a
high level, all these approaches – the ones in [17, 23] and our work – apply cake frosting to
decompose paths and cycles to approximately preserve constraints, but differ in the details
of how the paths and cycles are constructed from the integer or fractional solutions. For
instance, in contrast to [23], which defines the frosting function based on schools, we define
it based on students, hence avoiding an additive violation on the utility. Further, since [17]
consider packing problems, their reduction to cake frosting is entirely different in the technical
details.



Santhini K. A., K. Munagala, M. Nasre, and G. S. Sankar 20:7

Matching with Violations

Unlike many resource allocation problems, school assignments have flexibility in the capacities
assigned to schools. Additional seats can be added with appropriate investments, or minor
adjustments to class structures. Governments have also shown a willingness to add seats,
particularly in situations where students would have gone unassigned [8]. Along these lines,
several papers have considered such assignment problems with small capacity violations.
These papers mostly fall into two categories - those that try to directly optimize the capacity
violations in some form while achieving a set goal like stability or perfectness [9, 11, 15, 18]
and those that optimize some other objective like fairness with provably small capacity
violations [17, 21, 23]. Our model falls in the latter category – we wish to find an assignment
that satisfies some notion of fairness while violating capacities by as little as possible.

Group Fairness

The school assignment problem that we study was first considered recently in Procaccia,
Robinson, and Tucker-Foltz [23]. The only objective considered in this work is proportionality
– in the assignment, each of the g demographic groups is required to achieve at least 1/g

fraction of the utility it could have achieved had it been the only group in the system. Various
such notions of group fairness have been studied in many contexts such as clustering [7, 14],
knapsack [22], and matchings [12, 24]. The objective function in Socially Fair k-clustering
[14], where the average clustering cost across each demographic group has to be minimized,
is particularly similar to ours.

2 Approximation Algorithm: Proof of Theorem 1

In this section, we prove Theorem 1. We begin with a convex programming relaxation to
the problem and then present two rounding schemes that yield the two guarantees in the
theorem.

2.1 Convex Program Relaxation
Recall that there is a set S of n students divided into g possibly overlapping groups sets
S1, S2, . . . , Sg. There is a set T of schools, where school j has capacity Cj . Finally, there is
a bipartite graph G = (S ∪ T, E) between the students and schools that represents possible
assignments. An assignment of students to schools is a feasible solution y⃗ ∈ Q, where Q is
the polytope defined by the following constraints:∑

j∈T yij = 1 ∀i ∈ S∑
i∈S yij ≤ Cj ∀j ∈ T

yij ∈ {0, 1} ∀(i, j) ∈ E

Let P denote the linear relaxation of Q, where the last constraint is replaced by 0 ≤ yij ≤ 1.
The first step is to write the following convex programming relaxation:

Maximize
g∑

k=1
f(Uk)

∑
i∈Sk

∑
j∈T uijyij ≥ Uk ∀ groups k

y⃗ ∈ P
Uk ≥ 0 ∀ groups k

FORC 2025



20:8 Group Fairness and Multi-Criteria Optimization in School Assignment

This can be solved in polynomial time. Let the optimal solution to the convex program
yield utility vector U⃗∗. We now need to round the following set of constraints so that the
{yij} values are integer. Denote this formulation as (LP1).

y⃗ ∈ P, ∀ groups k,
∑

i∈Sk

∑
j∈T uijyij ≥ U∗

k .

We now present two rounding algorithms that yield the corresponding guarantees in The-
orem 1.

2.2 Generalized Assignment Rounding
The first rounding algorithm is similar to rounding for generalized assignment (GAP) [19, 29]
and is presented in Algorithm 1. We remark that the iterative procedure from Step 1-6 is
not necessary; the same can be achieved with a single LP solution. We present it this way
for ease of exposition. We show that it achieves the following guarantee, yielding the first
part of Theorem 1.

▶ Theorem 6. Algorithm 1 runs in polynomial time and finds an integer solution y⃗ ∈ P that
satisfies relaxed school capacities C⃗ ′ and yields utilities U⃗ ′, where
1. U ′

k ≥ U∗
k for all groups k, and

2. C ′
j ≤ Cj + 1 + δj, where

∑
j δj ≤ 2g.

Algorithm 1 GAP Rounding.

1: repeat
2: Obtain a vertex solution y⃗ to (LP1).
3: for all yij = b ∈ {0, 1} do
4: Fix yij = b and remove this variable from (LP1), and update the constraints.
5: end for
6: until (LP1) is not modified.
7: For each remaining student i (these have a degree more than 1), assign this student to

argmaxj{uij |yij > 0}.

Proof of Theorem 6. We denote the number of incident edges with yij > 0 as the “degree”
of a vertex. First, note that since each student i is assigned to argmaxj{uij |yij > 0}, the
utility in the integer solution is at least that in (LP1).

We now bound the capacity violation. We note that Step 4 cannot violate any capacities
since y⃗ was feasible for (LP1). It remains to argue that Step 7 does not incur too many
capacity violations. Let E be the set of remaining edges with yij ∈ (0, 1). Since y⃗ was an
extreme point solution to (LP1), |E| constraints of (LP1) must be tight.

At the beginning of Step 7, let T ′ be the set of remaining schools and among these, let
T̂ be those whose capacity constraints are tight. Let S′ be the set of remaining students.
Each student has a tight constraint associated with it. Suppose g′ of the g constraints
corresponding to the groups are tight. Since we have a vertex solution,

2|E| = 2(|S′| + |T̂ | + g′) (6)

From the Handshaking lemma, we also have
∑

v∈S′∪T ′ deg(v) = 2|E|. Combining this with
Equation (6), we have,∑

v∈S′∪T ′

deg(v) − 2|S′| − 2|T̂ | = 2g′ =⇒
∑

v∈T ′\T̂

deg(v) +
∑

v∈S′∪T̂

(deg(v) − 2) = 2g′ ≤ 2g
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We know that each school in T̂ has a degree of at least 2, since the capacity is an integer,
and all assignment variables are strict fractions. Similarly, each student in S′ has a degree at
least 2. Therefore, every term in the above summation is non-negative. Let each student or
school v ∈ T̂ ∪ S′ have degree 2 + δv, while schools v ∈ T ′ \ T̂ have degree δv. We will refer
to these δv terms as the excess degrees. Then, the above implies∑

v∈T ′∪S′

δv ≤ 2g. (7)

To bound the capacity violation in Algorithm 1, we observe the following properties:
First, if a school in T̂ had degree 2, then it must have had a capacity of at least 1, and in
the worst case, both students with edges to it will match to it. This leads to a violation of 1
in this school’s capacity. Next, for any other school v ∈ T̂ , it again has capacity at least 1
and has 2 + δv students applying to it. In the worst case, this leads to a capacity violation of
at most 1 + δv. Finally, for schools v ∈ T ′ \ T̂ , since the degree is δv, this leads to a violation
of at most δv.

In total, this leads to a capacity violation of one per school and the excess degrees
∑

v δv

lead to an additional 2g violation overall. This completes the proof. ◀

2.3 Improved Capacity Violation via Cake Frosting
While the previous section provides a polynomial-time solution, we can improve the capacity
violation bound, albeit at the cost of increased runtime. We achieve this by replacing the last
step in Algorithm 1 with a more sophisticated ’cake frosting’ technique, building on the work
of [23]. We show the following theorem, corresponding to the second part of Theorem 1.

▶ Theorem 7. There is a nO(g) time algorithm that computes an integer assignment y⃗ ∈ P
that satisfies relaxed school capacities C⃗ ′ and yields utilities U⃗ ′, such that:
1. U ′

k ≥ U∗
k for all groups k; and

2. C ′
j ≤ Cj + δj with

∑
j δj = O(g2).

Paths and Cycles

Let G be the graph at the beginning of Step 7 in Algorithm 1. Recall that the maximum
degree in G was 2, except for some vertices with excess degrees in Equation (7). We will
process the graph into a graph of maximum degree 2, with some additional properties, in
Algorithm 2.

At the end of the process, let G(V, E) be the resulting graph on fractional edges. Any
vertex has a degree of at most two, and hence we get a graph with the following structure:
Every connected component is a path or a cycle; every student has degree exactly two, and is
an internal node of a path or cycle; every school j ∈ T ′ has capacity one and degree at most
two; and finally, any school j ∈ T ′ \ T̂ has degree one and capacity one, and is, therefore, a
leaf of a path.

▶ Lemma 8. Algorithm 2 violates the total capacity by an additional 4g.

Proof. For j ∈ S1, let degree(j) = 2 + δj > 2, implying δj ≥ 1. We increase the capacity
by 1 + δj ≤ 2δj . For j ∈ S2, the new capacity is the same as the original capacity. For
j ∈ T ′ \ T̂ , suppose degree(j) = δj , then we increase the capacity by δj . By Equation (7),
the total increase is at most 4g. ◀

FORC 2025
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Algorithm 2 Graph Modification.

1: for each student i with degree strictly more than 2 do
2: Add a capacity of one to j∗ = argmaxj{uij |yij > 0}.

3: Fix yij∗ = 1 and remove this student.
4: end for
5: S1 = {j|j ∈ T̂ , degree(j) > 2}.
6: S2 = {j|j ∈ T̂ , degree(j) = 2, Cj = 2}.
7: for each school j ∈ S1 ∪ S2 ∪ (T ′ \ T̂ ) do
8: d = degree(j).
9: Create d copies of j, each with capacity one.

10: Assign (add an edge from) each i with yij > 0 to a distinct copy of j.
11: ▷ Each new school has degree one.
12: end for
13: If a school has degree one, reduce its capacity to one.

In the graph G, suppose e = (i, j); then we denote xe = yij . This graph is a collection of
paths and cycles. For non-leaf school or student v, the above conditions imply xe1 + xe2 = 1
if the two edges incident on v are e1 and e2. This follows because a degree-two school must
belong to T̂ and corresponds to a tight constraint, and any student is associated with a tight
constraint. This implies the following claim:

▷ Claim 9. For every component (path or cycle) C of G, there is some α ∈ (0, 1) such that
every even edge e in the component has xe = α and every odd edge has xe = 1 − α.

Bounding the Number of Fractional Components

We view this fractional solution as follows. For component C, set zC = α if xe = α for every
even edge. Let ueven

C (i) be the utility that group i gets in the assignment that selects all even
edges (and no odd edges) of component C. Let uodd

C (ℓ) be the utility that group ℓ gets in the
assignment that selects all odd edges of component C. We modify (LP1) to the following,
where Û∗

ℓ is the modified utility after removing the integral variables.

∀ groups ℓ,
∑

C

zC · ueven
C (ℓ) + (1 − zC) · uodd

C (ℓ) ≥ Û∗
ℓ

∀ components C, zC ∈ [0, 1].

Let s denote the number of variables. In any extreme point solution, at least s − g of the
constraints zC ∈ [0, 1] are tight, which means that at most g of the zC variables can be
fractional, in (0, 1). For all integral zC , we select the even matching if zC = 1 or the odd
matching if zC = 0. Remove these variables and rewrite the above LP just on the fractional
variables.

Reduction to Cake Frosting

For the g components with fractional zC , we need to find an integral solution that approxim-
ately preserves the utilities. This would be achieved if we could “interpolate” zC fraction
from the odd matching to the even matching. We can view this as a cake-frosting problem
as in [23], where the g groups are the players. First, we convert each cycle into a path as
follows: Pick some student i on this cycle, assign i to argmaxj{uij |yij > 0}, and delete this
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Algorithm 3 Cake Frosting Rounding.

1: for every student i do
2: if [ i−1

r , i
r ) ⊆ X then

3: Choose the edge from the even matching for student i, and include i in set T1.
4: else if [ i−1

r , i
r ) ⊆ [0, 1] \ X then

5: Choose the edge from the odd matching for student i and include i in set T2.
6: else
7: Assign i to argmaxj′{uij′ , yij′ > 0}.
8: end if
9: end for

student. This step increases the capacity of at most g schools by one and reduces each cycle
to a path that begins and ends at a school. We now present a generalization of the “cake
frosting” lemma first presented in [31] and used in [17, 23].

▶ Lemma 10 (Cake Frosting Lemma). Given g piecewise constant functions fℓ, ℓ = 1, 2, . . . , g

with domain [0, 1], and given any α ∈ (0, 1), there is a “perfect frosting” X ⊆ [0, 1] written
as a union of at most 2g − 1 intervals such that for all ℓ:∫

X

fℓ(x)dx = α ·
∫ 1

0
fℓ(x)dx.

We now show how to apply the above lemma similarly to [23, 17]. Fix a path C. Let
zC = α. Let there be r students in C, indexed from 1 to r. We divide the interval [0, 1] into
r parts where [ i−1

r , i
r ) belongs to the ith student.3 Define for every group ℓ,

ueven(ℓ, i) =


uij if the even matching assigns student i

to school j and student i is in group ℓ

0 Otherwise

uodd(ℓ, i) =


uij if the odd matching assigns student i

to school j and student i is in group ℓ

0 Otherwise

For x ∈ [ i−1
r , i

r ), define fℓ(x) = r(ueven(ℓ, i) − uodd(ℓ, i)).

Rounding Procedure

For path C, we now apply the cake frosting lemma to the function f as defined above, with
α = zC to find the perfect frosting X that is a union of at most 2g − 1 intervals. Given X,
we construct the assignment as in Algorithm 3. The final algorithm applies this procedure
separately to each of the g fractional paths. Note that the α value depends on the path.

Analysis

We first bound the utility of each group ℓ in path C. Define T3 := [r] \ (T1 ∪ T2), i.e. the set
of students in C not in T1 or T2. The utility of group ℓ in the solution is

3 This is in contrast to the method in [23], which defines intervals based on schools.
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∑
i∈T1

ueven(ℓ, i) +
∑
i∈T2

uodd(ℓ, i) +
∑
i∈T3

max(ueven(ℓ, i), uodd(ℓ, i))

=
∑
i∈T1

(ueven(ℓ, j) − uodd(ℓ, j)) +
∑
i∈[r]

uodd(ℓ, j) +
∑
i∈T3

max(ueven(ℓ, i), uodd(ℓ, i)) − uodd(ℓ, i)

≥
∑
i∈T1

(ueven(ℓ, j) − uodd(ℓ, j)) +
∑
i∈[r]

uodd(ℓ, j) +
∑
i∈T3

∣∣∣[ i − 1
r

,
i

r

)
∩ X

∣∣∣(ueven(ℓ, i) − uodd(ℓ, i))

=1
r

∑
i∈T1

∫
x∈[ i−1

r
, i

r
)
fℓ(x) + uodd

C (ℓ) + 1
r

∑
i∈T3

∫
x∈[ i−1

r
, i

r
)∩X

fℓ(x)

=1
r

∫
x∈X

fℓ(x) + uodd
C (ℓ) = α

r
·
∫

x∈[0,1]
fℓ(x) + uodd

C (ℓ)

=α · (ueven
C (ℓ) − uodd

C (ℓ)) + uodd
C (ℓ) = α · ueven

C (ℓ) + (1 − α) · uodd
C (ℓ).

The first equality follows by adding and subtracting
∑

i∈T1∪T3
uodd(ℓ, i). The second

line and the only inequality follows from the observation that
∣∣[ i−1

r , i
r

)
∩ X

∣∣ ≤ 1 and
max(ueven(ℓ, i), uodd(ℓ, i)) − uodd(ℓ, i) ≥ 0. The third line follows from the definition of f ,
the fourth line follows from the the structure of X and T1, T3, and the fifth follows from the
cake frosting lemma. The above chain of inequalities shows that for each group ℓ, the integer
solution has utility at least that of the fractional solution.

To bound the total capacity violation, note that Algorithm 3 violates the capacity by one
at every interval boundary. By the Cake Frosting lemma, this is an additional violation of
O(g) per path, and hence O(g2) overall. This completes the proof of Theorem 7, and hence
Theorem 1.

3 Generalization to Arbitrary Constraints

We now consider a more general setting. As before, we are given a set T of schools, where
school j has capacity Cj , a set S of students, and a bipartite graph G = (S ∪ T, E) between
the students and schools. The objective is to find an integral assignment y⃗ of all the students
that satisfies an additional set of r covering or packing constraints (possibly with negative
coefficients4). Define LP to be the linear relaxation of (IP) in Section 1.2 obtained by relaxing
Equation (5) to yij ∈ [0, 1]. Unlike the previous section, a given yij variable can appear in
the constraints arbitrarily. We now show that both Theorems 6 and 7 generalize to this
setting, completing the proof of Theorem 4.

3.1 Generalizing Theorem 6
Our algorithm runs in the following steps, which build on Algorithm 1.

1. Solve the linear programming relaxation LP, fix and remove the integral variables, and
find a vertex solution. Let E be the set of fractional variables, and S′ be the remaining
students.

2. Rewrite LP on the variables E and without the capacity constraints Equation (3).
3. Keep eliminating integer variables, stopping at a vertex solution where all variables are

fractional. Let E′ be the remaining variables and S′′ be the remaining students.
4. Set an arbitrary yij > 0 to 1 for each i ∈ S′′.

4 Note that the only place we require non-negativity in the coefficients is in solving the convex program.
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▶ Theorem 11. For arbitrary covering or packing constraints, when the linear programming
relaxation has a feasible solution, there is a polynomial time algorithm that outputs an integer
matching and that achieves the following guarantee:

The constraints Equation (4) are preserved up to an additive r · qmax; and
If each school is given one unit extra capacity, the total violation in Equation (3) over
this is 2r.

Proof. First, the proof of Theorem 6 shows that regardless of how the students in S′ are
assigned, if each school is given one extra unit of capacity, then the total violation in capacity
is at most 2r.

Therefore, we can focus on assigning the students so that the constraints Equation (4) are
not violated significantly. In Step (2), since any student in S′′ has degree at least 2, we have
|E′| ≥ 2|S′′|. Further, any extreme point in Step (3) has exactly |E′| tight constraints. Since
the number of potential tight constraints is at most |S′′| + r, we obtain |S′′| ≤ r. Therefore
Step (4) violates each constraint by an additive r · qmax, completing the proof. ◀

3.2 Generalizing Theorem 7
We next generalize Theorem 7. We first apply Algorithm 1 to the linear programming
relaxation, stopping before Step 7. We then follow the procedure in Section 2.3 and
sequentially apply Algorithms 2 and 3 to the fractional solution. To set up the cake frosting
game to apply Algorithm 3, we view each of the r constraints in Equation (4) as a player
of the cake frosting instance. Define ueven(ℓ, i) := qℓ

ij where (i, j) is the even matching
edge adjacent to j and define uodd(ℓ, i) similarly. The only steps that are different are the
assignment steps – Step 3 in Algorithm 2 and Step 7 in Algorithm 3. Here, we perform an
arbitrary assignment of the students to the schools. We present all the details in Algorithm 4
for completeness.

▶ Theorem 12. When the linear programming relaxation has a feasible solution, if r is the
number of constraints Equation (4), there is a nO(r) time algorithm that outputs an integer
matching and achieves the following guarantee:

The constraints Equation (4) are preserved up to an additive O(r2 · qmax); and
The total violation in Equation (3) is O(r2).

Proof. We first argue about the violation in Equation (4). The only steps that affect the
constraints are the assignment steps – Steps 9 and 27 in Algorithm 4. In Step 9, the number of
students assigned is O(r) from Equation (7), while that in Step 27 is O(r2). If these students
are arbitrarily assigned, each assignment loses an additive qmax in the constraint. Therefore,
the overall additive loss is O(r2 · qmax). Note that the bound on the capacity violation follows
from the proof of Theorem 7 and holds even when these students are arbitrarily assigned. ◀

Using Theorem 4.12 in [17], we can improve Theorem 12 to the following corollary. We
do this by guessing 8r2/ϵ chosen edges with highest utility for each group and subsequently
applying Algorithms 2 and 3. Omitting the standard details yields the following corollary.

▶ Corollary 13. Suppose the linear programming relaxation has a feasible solution and let r

be the number of constraints Equation (4). Then, for any constant ϵ > 0, there is a nO(r3/ϵ)

time algorithm that outputs an integer matching and that achieves the following guarantee:
The constraints Equation (4) are preserved up to a multiplicative factor of (1 − ϵ); and
The total violation in Equation (3) is O(r2).
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3.3 Better Bounds for Monotonic Constraints

We next show that if the constraints Q have an additional monotonicity structure, then we
can generalize Theorem 6 without the additive loss in the constraints. We say that Q satisfies
monotonicity if for each student i, there is an ordering ⪰i of the schools j1 ⪰i j2 ⪰i . . . ⪰i jm

such that for all ℓ ∈ {1, 2, . . . , r} and k ∈ {1, 2, . . . , m − 1}, we have qℓ
ijk

≥ qℓ
ijk+1

.

▶ Theorem 14. If the constraints Q are monotone and the linear programming relaxation
has a feasible solution, there is a polynomial-time algorithm that outputs an integer matching
and achieves the following guarantee:

The constraints Equation (4) are preserved; and
If each school is given one unit extra capacity, the total violation in Equation (3) over
this is 2r.

▶ Theorem 15. If the constraints Q are monotone, when the linear programming relaxation
has a feasible solution, there is a nO(r) time algorithm that outputs an integer matching and
that achieves the following guarantee:

The constraints Equation (4) are preserved; and
The total violation in Equation (3) over this is O(r2).

Proof of Theorems 14 and 15. We proceed as in Theorems 6 and 7. At each point where
the algorithm assigns a student to j∗ = arg maxj∈X uij for some set X, we simply assign it
to mink{jk |jk ∈ X}. That is, assign it to the most preferred school (according to ⪰i). This
also preserves the r constraints because of monotonicity. ◀

3.4 Application: Weak Dominance of Ranks

As a special case, we consider the setting in [18]. Here, every student ranks the schools
it has an edge to, and this ranking may have ties. Let r be the largest rank any student
has, which can be much smaller than the number of schools. Given a matching, the rank
of edge (p, q) is the rank of school q in student p’s ranking. A matching M has signature
σ = (σ1, σ2, . . . , σr) if it has σt rank t edges for every t ∈ [r]. We say that signature σ weakly
dominates5 signature ρ, or σ ≻ ρ if

∀ t ∈ [r],
t∑

t′=1
σt′ ≥

t∑
t′=1

ρt′ . (8)

Given an input signature ρ, the goal is to find a matching whose signature weakly dominates
ρ. We term this the matching with ranking problem. We have the following theorems, which
directly follow from the observation that the constraints satisfy the monotonicity assumption.
At each step where, for some set X, we assign i to arg maxj∈X uij , we instead assign it to its
most preferred school from X. This preserves the signature of any fractional assignment. Our
approach yields faster nO(r) time deterministic algorithms at the cost of small violations in
capacities, whereas the algorithm in [18] is randomized and takes nO(r2) time. This concludes
the proof of Theorem 5.

5 The authors of [18] use “cumulatively better than”.
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4 ILP Benchmark and Simulation Study

The goal of our simulation is to show the practicality of the convex programming framework
in Section 2.1 as well as our rounding methods for addressing group fairness constraints in
assignments.

ILP Benchmark

First, note that our framework yields a benchmark for capacity violation for concave group
fairness objectives. We first solve the convex program in Section 2.1 to obtain the utility
vector ⟨U∗

1 , U∗
2 , . . . , U∗

g ⟩. Subsequently, we can write an ILP to satisfy all utilities and violates
total capacity the least as:

Minimize
∑
j∈T

δj

∑
i∈Sk

∑
j∈T uijyij ≥ U∗

k ∀k∑
j∈T yij = 1 ∀i ∈ S∑
i∈S yij ≤ Cj + δj ∀j ∈ T

yij ∈ {0, 1} ∀i ∈ S, j ∈ T

δj ≥ 0 ∀j ∈ T

Theorem 1 says that the optimal value to this ILP is at most min
(
O(g2), m + 2g

)
. In

our experiments, we compare the ILP benchmark for capacity violation with that of the
rounding methods in Algorithm 1 and Algorithm 3. We show that the capacity violation
for both the ILP and the rounding methods is much smaller than the theoretical bounds in
Theorem 1, showing that group fairness functions have efficient near-optimal algorithms in
the wild. We now present our empirical results for the general school assignment problem.
We present our experiments for the rank dominance problem in Section C.

4.1 Empirical Results for School Assignment
Simulation Setup

We generate r = 100 random instances with n = 1000 students, m = 10 schools with equal
capacity C = 100, and g = 7 groups. The instances are generated as follows. For every school
j and student i, an edge is added independently with probability p = 3

m . Afterwards, edges
are added from students with degree zero to a school chosen uniformly at random so that the
minimum degree is 1. Every school j has a “popularity measure” αj ∼ Uniform[0, 1]. We
set uij := ûijαj where ûij ∼ Uniform[0, 1]. This makes the utility of a school for different
students correlated. The capacities Cj are set to minimize

∑
j Cj so that all students

can be feasibly assigned. This is found by solving an LP. Each group k has a parameter
βk ∼ Uniform[0, 1]. Each student belongs to group k with probability βk independently
of other students and its other group identities. We set the fairness objective to be Nash
Welfare, corresponding to f = log, which by Equation (1) achieves proportionality and its
generalization to subsets of groups.

Empirical Results

We first solve the convex program in Section 2.1 to find the utility vector U⃗∗
k . We then

consider the following three approaches to find an integer assignment with small capacity
violations while preserving the utilities U⃗∗

k .
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Table 1 Results of experimental evaluation.

Procedure Average violation Range of violations

Optimal 0.66 [0,1]

GAP Rounding 2.3 [0,6]
(Algorithm 1)

Cake Frosting 1.24 [0,6]
(Algorithm 3)

To find the integer assignment with minimum violation of capacities,
∑

j δj , we solve the
ILP described above.
We solve the LP in Section 2.1 and round via Algorithm 1.
We solve the LP in Section 2.1 and round via Algorithm 3.

The capacity violations are reported in Table 1. For these instances, Theorem 1 implies
an integer assignment violating capacities by at most m + 2g = 24. For all approaches above,
the capacity violation is much lower than the theoretical bound, both on average and per
instance, with our rounding schemes finding solutions very close to the ILP benchmark.
Further, both the ILP benchmark and Algorithm 3 run within a minute on a laptop on
instances of this size. This is likely because most of the instances are already close to being
integral. All the LP solutions had at most 30 fractional variables, with an average of 21.73.
This shows the practicality of the convex programming relaxation.

5 Conclusion

We have presented a theoretically sound yet practical framework for handling group fairness
and multi-objective optimization in capacitated assignment problems. Several open questions
arise from our work. An immediate open question is to improve our theoretical bound on the
capacity violation. We believe that a O(g) violation should be possible in Theorem 1. More
broadly, our framework uses cardinal utilities and it would be interesting to incorporate group
fairness into ordinal preferences, as in stable matchings. An even more basic question is to
consider random allocations with ordinal preferences [10, 20], and define group fairness for
lotteries over allocations. Finally, it would be interesting to incorporate group fairness into
other optimization problems with rounding-based approximation algorithms, for instance,
scheduling and routing problems.
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A Proofs of NP-Hardness results

Proof of Theorem 2. We reduce from Set Cover with a collection C of sets and a universe
U of elements. Suppose the goal is to decide if a set cover instance has k sets that cover U .
Then each element becomes a group and each set a student. A student belongs to a group if
the corresponding set covers the corresponding element. There are two schools, s1 and s2.
The former school has capacity k and the latter has capacity ∞. Each student has utility 1
for s1 and 0 for s2. Then the goal of matching k students to s1 to give each group utility at
least one is exactly the same as finding a set cover of size k, completing the proof. ◀

Proof of Theorem 3. We reduce from Partition. Given a set of numbers x1, .., xn, the
goal is to decide if there is a subset of sum exactly X/2 where X =

∑
i xi. For every number

xi, create two students pi and qi, and one school Si of capacity 1. There is also a dummy
school S0 of capacity n. The students pi and qi have edges only to Si and S0, where pi

and qi have utility xi for Si and 0 for S0. All the pi students belong to group 1 and all the
qi students belong to group 2. We want to find a matching that gives utility X/2 to both
groups, which is the proportional share.

Suppose there is a subset T of the numbers that sums to exactly X/2. Then for every
xi ∈ T , we assign pi to Si and qi to S0. For every xi /∈ T , we assign qi to Si and pi to S0.
Both groups get utility X/2 each. The reverse direction is similar, completing the proof. ◀
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B Algorithm for Theorem 12

Algorithm 4 Algorithm for Theorem 12.

1: repeat
2: Obtain a vertex solution y⃗ to (LP1).
3: for all yij = b ∈ {0, 1} do
4: Fix yij = b and remove this variable from (LP1), updating the constraints as

needed.
5: end for
6: until (LP1) is not modified.
7: for each student i with degree strictly more than 2 do
8: Add a capacity of one to an arbitrary school j with yij > 0.
9: Fix yij = 1 and remove this student.

10: Decrease the capacity of j correspondingly.
11: end for
12: S1 = {j|j ∈ T̂ , degree(j) > 2}.
13: S2 = {j|j ∈ T̂ , degree(j) = 2, Cj = 2}.
14: for each school j ∈ S1 ∪ S2 ∪ (T ′ \ T̂ ) do
15: d = degree(j).
16: Create d copies of j, each with capacity one.
17: Assign (add an edge from) each i with yij > 0 to a distinct copy of j.
18: end for
19: If a school has degree one, reduce its capacity to one.
20: Set up the Cake Frosting instance as described in the text. Let X be a perfect frosting.
21: for every student i do
22: if [ i−1

r , i
r ) ⊆ X then

23: Choose the edge from the even matching for student i.
24: else if [ i−1

r , i
r ) ⊆ [0, 1] \ X then

25: Choose the edge from the odd matching for student i.
26: else
27: Assign i to some j with yij′ > 0.
28: end if
29: end for

C Empirical Results for Weak Dominance of Ranks

Simulation Setup

We generate 100 random instances with n = 1000 students, m = 10 schools with maximum
rank r = 8. The capacities Cj are set so to minimize

∑
j Cj so that all students can be

feasibly assigned. This is found by solving an LP. These instances are generated as in
section 4. That is, for every school j and student i, an edge is added independently with
probability p = 3

m . For every student, we select a random permutation of the schools in its
neighborhood to obtain a ranking of the schools for that student.

In the weak dominance of ranks setting, we generate the input signature σ =
(σ1, σ2, . . . , σr) as follows: For t ∈ [r], let Mt denote a maximum matching on edges of rank
up to t in the generated instance. We set σ1 to be a random number between 0.9|M1| and
|M1|. For, i = 2, . . . , r, to set σi, we select a random number between 0 and |Mi| −

∑i−1
t′=1 σt′ .

FORC 2025
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Empirical Results

To decide whether there exists a feasible solution for the instance with the given signature,
we solve the linear relaxation of the IP defined in Section 1.2. Out of the 100 instances, 79
of them admit a feasible solution, of which the solution is fractional in 26 instances.

Next, for the instances where the LP gives a fractional solution, we obtain an integral
solution using the algorithm of Theorem 14. This yields capacity violations of at most 4, with
an average violation of 0.53. Subsequently, we use the algorithm of Theorem 15 to obtain an
integral solution. This yields capacity violation of at most 2 with an average violation of
0.07. As in the previous experiment, we observe that the violation values are much better
than what the theoretical bounds predict.
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